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Abstract. We present a new “cover and decomposition” attack on the
elliptic curve discrete logarithm problem, that combines Weil descent
and decomposition-based index calculus into a single discrete logarithm
algorithm. This attack applies, at least theoretically, to all composite
degree extension fields, and is particularly well-suited for curves defined
over Fp6 . We give a real-size example3 of discrete logarithm computations
on a curve over a 151-bit degree 6 extension field, which would not have
been practically attackable using previously known algorithms.
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1 Introduction

Elliptic curves are used in cryptography to provide groups where the discrete
logarithm problem is thought to be difficult. We recall that given a finite group G
(written additively) and two elements P,Q ∈ G, the discrete logarithm problem
(DLP) consists in computing, when it exists, an integer x such that Q = xP .
When elliptic curves are used in cryptographic applications, the DLP is usually
considered to be as difficult as in a generic group of the same size [31]. As a
consequence, for a given security level, the key size is much smaller than for
other popular cryptosystems based on factorization or discrete logarithms in
finite fields. The first elliptic curves considered in cryptography were defined over
either binary or prime fields [20, 24]. But to speed up arithmetic computations,
it has been proposed to use various forms of extension fields. In particular,
Optimal Extension Fields have been proposed in [4] to offer high performance

3 This work was granted access to the HPC resources of CCRT under the allocation
2010-t201006445 made by GENCI (Grand Equipement National de Calcul Intensif)
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in hardware implementations. They are of the form Fpd where p is a pseudo-
Mersenne prime and d is such that there exists an irreducible polynomial of the
form Xd − ω ∈ Fp[X]. In most examples, the degree d of the extension is rather
small. However, when curves defined over extension fields are considered, some
non-generic attacks, such as the Weil descent or decomposition attacks, can be
applied. The first one aims at transferring the DLP from E(Fqn) to the Jacobian
of a curve C defined over Fq and then uses index calculus on this Jacobian [2,
12, 15] to compute the logarithm; it works well when the genus of the curve
C is small, ideally equal to n, but this occurs quite infrequently in practice.
Many articles have studied the scope of this technique (cf. [7, 10, 11, 14, 16]), but
even on vulnerable curves, the Weil descent approach is often just a little more
efficient than generic attacks on the DLP. Decomposition-based index calculus,
or decomposition attack, is a more recent algorithm (see [9, 13, 18, 26]), which
applies equally well to all (hyper-)elliptic curves defined over an extension field.
Its asymptotic complexity is promising, but in practice, due to large hidden
constants in the complexity, it becomes better than generic attacks for group
sizes too large to be threatened anyway.

In this article, we combine both techniques into a cover and decomposition
attack, which applies as soon as the extension degree is composite. The idea is
to first transfer the DLP to the Jacobian of a curve defined on an intermediate
field, then use the decomposition method on this sub-extension instead of the
classical index calculus. This new attack is not a mere theoretical possibility:
we give concrete examples of curves defined over Fp6 that are practically secure
against all other attacks, but for which our method allows to solve the DLP in
a reasonable time. In particular, we have been able to compute logarithms on
a 149-bit elliptic curve group defined over a degree 6 extension field in about a
month real-time, using approximately 110 000 CPU.hours.

The paper is organized as follows: first we briefly recall in Section 2 the prin-
ciples of Weil descent and of the decomposition method. We then give an explicit
description of our attack in Section 3, introducing a useful variant of the decom-
position step that can be of independent interest. In particular, we study the
case of elliptic curves defined over Fp6 or Fp4 , list all the potentially vulnerable
curves and give a complexity analysis and a comparison with previously known
attacks. Finally, in Section 6, we describe in details the computations on our
149-bit example.

2 Survey of previous work

2.1 Weil descent and cover attacks

Weil descent has been first introduced in cryptography by Frey [10]; the idea
is to view an abelian variety A of dimension d defined over an extension field
K/k as an abelian variety WK/k of dimension d · [K : k] over k. If WK/k turns
out to be the Jacobian of a curve C|k or can be mapped into such a Jacobian,
then the discrete logarithm in A(K) can be transferred to JacC(k), where it may
become much weaker due to the existence of efficient index calculus algorithms.
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When the genus of C is small relative to the cardinality p of k, the complexity
is in O((g2 log3 p)g! p + (g2 log p)p2) as p grows to infinity [12]; the first term
comes from the relation search and the second from the sparse linear algebra.
Following [15], it is possible to rebalance these two terms by using a double
large prime variation. In this variant, only a small number pα of prime divisors4

are considered as genuine, while the rest of the prime divisors are viewed as
“large primes”. The optimal value of α depends of the cost of the two phases;
asymptotically the choice that minimizes the total running time is 1 − 1/g,
yielding a complexity in Õ(p2−2/g) for fixed g as p goes to infinity.

The main difficulty of this Weil descent method is to find the curve C.
This problem was first addressed for binary fields by Gaudry, Hess and Smart
(GHS [14]) and further generalized by Diem [7] in odd characteristic. To attack
an elliptic curve E defined over Fpn (p a prime power), the GHS algorithm builds
a curve C defined over Fp such that there exists a cover map π : C → E defined
over Fpn . The construction is more easily explained in terms of function fields:
the Frobenius automorphism σFpn/Fp can be extended to the composite field

F ′ =
∏n−1
i=0 Fpn(Eσ

i

), and the function field F = Fp(C) is defined as the sub-
field of F ′ fixed by σ. The GHS algorithm then uses the so-called conorm-norm
map NF ′/F ◦ ConF ′/Fpn (E) to transfer the discrete logarithm from E(Fpn) to
JacC(Fp). An important condition is that the kernel of this map must not inter-
sect the subgroup in which the discrete logarithm takes place, but as remarked
in [7, 16], this is not a problem in most cryptographically relevant situations.
This technique is efficient when the genus g of C is close to n. In particular, for
some specific finite fields most elliptic curves are “weak” in the sense that Weil
descent algorithms are better, if only by a small margin, than generic attacks
[23]. Indeed, when the GHS method does not provide any low genus cover for E,
it may be possible to find a sequence of low degree isogenies (a.k.a. an isogeny
walk) from E to another, more vulnerable elliptic curve E′ [11]. Nevertheless,
we emphasize that the security loss is quite small for a random curve, and for
most curves on most fields Fpn , g is of the order of 2n which means that index
calculus in the Jacobian of C is slower than generic attacks on E(Fpn).

2.2 Decomposition attack

Index calculus has become ubiquitous in the last decades for the DLP resolu-
tion. However its direct application to elliptic curves faces two major challenges:
contrarily to finite fields or hyperelliptic curves, there is no natural choice of
factor base and no equivalent of the notion of factorization of group elements.
The first main breakthrough was achieved in 2004 by Semaev [30] when he sug-
gested to replace factorization by decomposition into a fixed number of points;
for that purpose, he introduced the summation polynomials which give an alge-
braic expression of the fact that a given point decomposes into a sum of factor
base elements. But for a lack of an adequate factor base, this approach fails

4 The term prime divisor is an abuse of language that denotes the linear irreducible
polynomials that are used in the index calculus algorithm on JacC(k)
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in the general case. Then Gaudry and Diem [9, 13] independently proposed to
use Semaev’s idea to attack all curves defined over small degree extension fields
Fpn/Fp. Their method shares the basic outline of index calculus, but to distin-
guish it from what has been presented in the previous subsection, we follow [26]
and call it the decomposition attack. On E(Fpn), a convenient choice of fac-
tor base is the set of rational points of the curve having their abscissae in the
base field Fp. By combining Semaev’s summation polynomials and restriction of
scalars, the relation search then becomes a resolution of a multivariate polyno-
mial system over Fp. The complexity of this approach can be estimated using

double large prime variation by Õ
(
p2−2/n

)
for fixed n as p grows to infinity.

Unfortunately, the hidden constants in this complexity become very large as n
grows, and the resolution of the systems is intractable as soon as n ≥ 4 (or n ≥ 5
with the variant of [18]).

The decomposition attacks can also be applied to higher genus curves. How-
ever, Semaev’s polynomials are no longer available in this case and the algebraic
expression of the group law is more complicated. In [26], Nagao proposes an ele-
gant way to circumvent this problem, using divisors and Riemann-Roch spaces.
For hyperelliptic curves, the decomposition search then amounts to solving a
quadratic multivariate polynomial system. This approach is less efficient than
Semaev’s in the elliptic case, but is the simplest otherwise. For fixed extension
degree n and genus g, the complexity of a decomposition attack is in Õ

(
p2−2/ng

)
with a double large prime variation. Again, the resolution of the polynomial sys-
tem is the main technical difficulty, and is easily feasible for only very few couples
(n, g), namely (2, 2), (2, 3) and (3, 2).

3 Cover and Decomposition attack

Let Fqd/Fp be an extension of finite fields, where q is a power of p (in most
applications p denotes a large prime but in general, it can be any prime power),
and let E be an elliptic curve defined over Fqd of cryptographic interest, i.e. con-
taining a subgroup G of large prime order. As E is defined over an extension
field, it is subject to the attacks presented above. But if the degree [Fqd : Fp] of
the extension is larger than 5, then we have seen that E is practically immune to
decomposition attacks. In the following, we assume that the potential reduction
provided by the GHS attack or its variants is not significant enough to threaten
the security of the DLP on the chosen curve E.

When q is a strict power of p, we have a tower of extensions given by Fqd/Fq
and Fq/Fp. In this context, it becomes possible to combine both cover and de-
composition methods and obtain an efficient attack of the DLP on E. The idea is
to use Weil descent on the first extension Fqd/Fq to get a cover defined over Fq,
with small enough5 genus g. Then we can apply a decomposition attack on the
curve thus obtained, making use of the second extension Fq/Fp. As this cover and

5 Meaning that g should be small relatively to the genus that could be obtained by
direct Weil descent, using the extension Fqd/Fp.
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decomposition attack is more efficient when Weil descent provides a hyperelliptic
cover over the intermediate field, we focus on this case in the following.

3.1 Description of the attack

We now explicitly detail this cover and decomposition approach. We suppose
first that there exists an imaginary hyperelliptic curve H of small genus g with
equation y2 = h(x), defined over Fq, together with a covering map π : H → E
defined over Fqd . This can be obtained by the GHS attack or its variants, possibly
preceded by an isogeny walk. This cover classically allows to transfer the DLP
from G to a subgroup G′ ⊂ JacH(Fq) via the conorm-norm map NF

qd
/Fq ◦ π∗ :

E(Fqd) ' JacE(Fqd)→ JacH(Fq), assuming that ker(NF
qd
/Fq ◦ π∗)∩G = {OE}.

The decomposition part of the attack is adapted from Gaudry and Nagao;
since it is quite recent, we detail the method. As in all index calculus based
approaches, there are two time-consuming steps: first we have to collect relations
between factor base elements, then we compute discrete logarithms by using
linear algebra on the matrix of relations. We consider the same factor base as
[13, 26]

F = {DQ ∈ JacH(Fq) : DQ ∼ (Q)− (OH), Q ∈ H(Fq), x(Q) ∈ Fp},

which contains approximately p elements. As usual, we can use the hyperelliptic
involution ι to reduce the size of F by a factor 2, so that about p/2 relations are
needed.

Let n be the extension degree [Fq : Fp]. In Nagao’s decomposition method,
one tries to decompose an arbitrary divisor D (typically obtained by considering
a large multiple of some element in F) into a sum of ng divisors in the factor
base

D ∼
ng∑
i=1

((Qi)− (OH)) . (1)

Heuristically, there exist approximately png/(ng)! distinct sums of ng elements
of F , so the probability that a given divisor D is decomposable can be estimated
by 1/(ng)!. To check if D can be decomposed, one considers the Riemann-Roch
Fq-vector space

L (ng(OH)−D) = {f ∈ Fq(H)∗ : div(f) ≥ D − ng(OH)} ∪ {0}.

We can assume that the divisor D is reduced and has Mumford representa-
tion (u(x), v(x)) with deg u = g, so that this Fq-vector space is spanned by
u(x), u(x)x, . . . , u(x)xm1 , (y− v(x)), x(y− v(x)), . . . , xm2(y− v(x)), where m1 =
b(n− 1)g/2c and m2 = b((n− 1)g − 1)/2c. A function f = λ0u(x) + λ1u(x)x+
. . .+ λm1u(x)xm1 + µ0(y− v(x)) + µ1x(y− v(x)) + . . .+ µm2x

m2(y− v(x)) van-
ishes on the support of D and exactly ng other points (counted with multiplicity
and possibly defined on the algebraic closure of Fq) if its top-degree coefficient
is not zero. We are looking for a condition on λ0, . . . , λm1

, µ0, . . . , µm2
∈ Fq

such that the zeroes Q1 . . . , Qng of f disjoint from Supp(D) have x-coordinate
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in Fp; this event yields a relation as in (1). Therefore, we consider the polyno-
mial F (x) = f(x, y)f(x,−y)/u(x) where y2 has been replaced by h(x). Without
loss of generality, we can fix either λm1 = 1 or µm2 = 1 in order to have F
monic of degree ng. The roots of F are exactly the x-coordinates of the zeroes
of f distinct from Supp(D), thus we are looking for the values of λ and µ for
which F splits in linear factors over Fp. A first necessary condition is that all
of its coefficients, which are quadratic polynomials in λ and µ, belong to Fp; a
scalar restriction on these coefficients then yields a quadratic polynomial system
of (n − 1)ng equations and variables coming from the components of the vari-
ables λ and µ. The corresponding ideal is generically of dimension 0, and the
solutions of the system can be found using e.g. a Gröbner basis computation.
Since the number of systems to solve is huge (on average (ng)! · p/2, or more
if a large prime variation is applied), techniques such as the F4 variant of [19]
should be preferred. Once the solutions in Fq are obtained, it remains to check
if the resulting polynomial F splits in Fp[x], and if it is the case, to compute the
corresponding decomposition of D.

In this article, we also consider a somewhat different approach to the relation
search that offers some similarity with the method used in the number field and
function field sieves [1, 22]. More precisely, we no longer have a divisor D to
decompose, but instead search for sums of factor base elements equal to 0:

m∑
i=1

((Qi)− (OH)) ∼ 0. (2)

Heuristically, the expected number of relations of the form (2) involving m points

of the factor base is approximately pm−ng

m! . Since we need to collect at least
about p/2 relations, we look for sums of m = ng + 2 points (assuming that p ≥
(ng+2)!/2, which will always be the case in practice). As before, we work with the
Fq-vector space L(m(OH)), which is spanned by 1, x, . . . , xm1 , y, xy, . . . , xm2y,
where m1 = bm/2c and m2 = b(m + 1)/2c − g. We consider the function f =
λ0 + λ1x+ . . .+ λm1x

m1 + µ0y + µ1xy + . . .+ µm2x
m2y: it vanishes in exactly

m points if its top-degree coefficient is not zero, and the abscissae of its zeroes
are the roots of

F (x) = f(x, y)f(x,−y) = (λ0+λ1x+ . . .+λm1x
m1)2−h(x)(µ0+µ1x+ . . .+µm2x

m2)2.

Again, we fix λm1 = 1 if m is even or µm2 = 1 otherwise, so that F is monic. In
order to obtain a relation of the form (2), we look for values of λ and µ for which
F splits over Fp. The first condition is that F belongs to Fp[x]; after a scalar
restriction on its coefficients, this translates as a quadratic polynomial system
of (n − 1)m equations and n(m − g) variables. With our choice of m = ng + 2,
this corresponds to an underdetermined system of n(n− 1)g + 2n− 2 equations
in n(n− 1)g+ 2n variables. When the parameters n and g are not too large, we
remark that it is possible to compute once for all the corresponding lexicographic
Gröbner basis. Each specialization of the last two variables should then provide
an easy to solve system, namely triangular with low degrees. It remains to check
whether the corresponding expression of F is indeed split and to deduce the
corresponding relations between the points of F .
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Once enough relations of the form (2) have been collected, and possibly af-
ter a structured Gaussian elimination or a large prime variation, we can deduce
with linear algebra the logarithms of all elements in F (up to a multiplicative
constant, since we have not specified the logarithm base). To compute the dis-
crete logarithm of an arbitrary divisor D, we proceed to a descent phase: we
need to decompose this arbitrary divisor as a sum of factor base elements. This
decomposition search can be done using the first method described above. Note
that, if D does not decompose as a sum, it suffices to try small multiples 2D,
3D . . . until we find one correct decomposition. Thanks to this descent step, it
is possible to compute many discrete logarithms in the same group for negligible
additional cost.

When the cover of E is not hyperelliptic, one can still use the Riemann-
Roch based approach. It is not difficult to compute a basis of the vector spaces
L(ng(OH)−D) or L(m(OH)) and to consider a function f(x, y) (depending of
parameters λ and µ) in these spaces. Getting rid of the y-variable can be done
quite easily by computing the resultant in y of f and the equation of the curve
(or multiresultant if the curve is not planar); however, the resulting polynomial
F (x) no longer depends quadratically of the parameters λ and µ. Consequently,
the system obtained by scalar restriction still has the same number of equations
and variables but its degree is greater than 2, so that the resolution is more
complicated.

3.2 Sieving for quadratic extensions

This new decomposition technique is already faster than Nagao’s when the lexi-
cographic Gröbner basis of the system coming from (2) is efficiently computable,
but it can still be further improved. Indeed, checking that F is split has a non-
negligible cost, since we need to factor a polynomial of degree ng+ 2 into linear
terms. To avoid this, it is possible to modify the search for relations of the
form (2) using a sieving technique when the extension degree [Fq : Fp] is equal
to 2 in the odd characteristic case. Let t be an element such that Fp2 = Fp(t);
we assume wlog that t2 = ω ∈ Fp. In this case, f = λ0 + · · ·+λgx

g +µy and the
polynomial F is of the form

F (x) = (λ0x+ · · ·+ λgx
g + xg+1)2 − µ2h(x).

In particular, when the parameter µ equals 0, f is independent of the y variable;
the corresponding relation of type (2) is thus necessarily of the form (P1) +
(ι(P1))+ . . .+(Pg+1)+(ι(Pg+1))−(2g+2)OH ∼ 0, where ι(P ) is the image of P
by the hyperelliptic involution. To avoid these trivial relations, we look only for
solutions (λ0,0, . . . , λg,0, λ0,1, . . . , λg,1, µ0, µ1) ∈ VFp(I : (µ0, µ1)∞), where I is the
ideal corresponding to the 2(g + 1) quadratic polynomials in 2(g + 2) variables
arising from the scalar restriction on F ∈ Fp2 [x], setting λi = λi,0 + tλi,1 and
µ2 = µ0 + tµ1. More precisely, with the type of extension considered here, the
ideal I is given by the equations corresponding to the vanishing of the coefficients
of the Fp[x]-polynomial

2(1 · xg+1 + λg,0x
g + · · ·+ λ0,0)(λg,1x

g + · · ·+ λ0,1)− µ0h1(x)− µ1h0(x),
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where h(x) = h0(x) + th1(x), h0, h1 ∈ Fp[x]. This ideal I is not 2-dimensional,
but its saturation is.

An easy but crucial remark is that the ideal is multi-homogeneous, generated
by polynomials of bi-degree (1, 1) in the variables (1 : λ0,0 : . . . : λg,0), (λ0,1 :
. . . : λg,1 : µ0 : µ1). This additional structure has two major consequences.
First, the lexicographic Gröbner basis computation is much faster than for a
generic quadratic system of the same size. Second, if we denote by π1 the pro-
jection on the first block of variables (λ0,0, . . . , λg,0), then the image π1(VFp(I :

(µ0, µ1)∞)) = π1(VFp(I) \ VFp(µ0, µ1)) is a dimension 1 variety (whose equa-
tions are easily deduced from the lex Gröbner basis of I), and each fiber is a
1-dimensional vector space.

From this, we can simplify the relation search. Rather than evaluating a
first variable, we choose a point (λ0,0, . . . , λg,0) ∈ π1(VFp(I : (µ0, µ1)∞)) and
express the remaining variables linearly in terms of λ0,1, so that now F belongs
to Fp[x, λ0,1] and has degree 2g+ 2 in x and 2 in λ0,1. Instead of trying to factor
F for many values of λ0,1, the key idea is to compute for each x ∈ Fp the values
of λ0,1 such that F (x, λ0,1) = 0. Since F has degree 2 in λ0,1, this can be done
very efficiently by computing the square root of the discriminant. In fact, we can
speed the process even more by tabulating the square roots of Fp. Our sieving
process consists, for each root λ0,1, to increment a counter corresponding to this
value of λ0,1; when one of these counters reaches 2g + 2, then the polynomial
F evaluated at the corresponding value of λ0,1 splits into 2g + 2 distinct linear
terms, yielding a relation. This technique not only allows to skip the factorization
of a degree 2g + 2 polynomial, but is also well-suited to the double large prime
variation, as explained in next section.

3.3 Complexity analysis

Constructing the cover H|Fq of an elliptic curve E|F
qd

with the GHS method and

transferring the DLP from G ⊂ E(Fqd) to G′ ⊂ JacH(Fq) has essentially a unit
cost, which is negligible compared to the rest of the attack. The complexity of
the decomposition phase is divided between the relation search and the linear
algebra steps. In order to collect about p/2 relations using Nagao’s decomposition
method, we need to solve on average (ng)! · p/2 quadratic polynomial systems.
The resolution cost of this kind of system using e.g. Gröbner bases is hard
to estimate precisely, but is at least polynomial in the degree 2(n−1)ng of the
corresponding zero-dimensional ideal. The linear algebra step then costs O(ngp2)
operations modulo #G, using sparse linear algebra techniques. With the second
decomposition method, we need to compute first the lexicographic Gröbner basis
of an ideal generated by n(n−1)g+2n−2 quadratic equations in n(n−1)g+2n
variables. This cost is also at least exponential in n2g, but the Gröbner basis
computation has to be done only once. Afterwards, we have to solve on average
(ng + 2)! · p/2 “easy” systems. The complexity of the linear algebra step is the
same (the cost of the descent is negligible compared to the sieving phase).

When p is large relatively to n and g, the linear algebra becomes the domi-
nating phase. It is nevertheless possible to rebalance the cost of the two steps.
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Indeed, collecting extra relations can speed up the logarithm computations; this
is the idea behind structured Gaussian elimination [21] and double large prime
variation. The analysis of [15] shows that with the latter, the asymptotic com-
plexity of our cover and decomposition attack becomes either Õ(p2−2/ng) or
Õ(p2−2/(ng+2)) with the decomposition variant, as p grows to infinity for fixed n
and g. Although the complexity of the variant is asymptotically higher, the much
smaller hidden constant means that it is actually faster for accessible values of
p. Note that it is straightforward to parallelize the relation search phase; this is
also possible, but much less efficiently, for the linear algebra step. In particular,
the optimal choice of the balance depends not only of the implementation but
also of the computing power available.

When n = 2, it is possible to improve the double large prime variation by
sieving only among the values of x corresponding to the abscissae of points
of the “small primes” factor base. As soon as 2g values of x are associated
to one value of λ0,1, we obtain a relation involving at most 2 large primes (if
the remaining degree 2 factor is split, which occurs with probability close to
1/2). This speeds up the relation search and decreases the overall complexity
from Õ(p2−2/(2g+2)) to Õ(p2−2/(2g+1)) as p grows to infinity, thus reducing the
asymptotic gap between the two decomposition methods without degrading the
practical performances.

Obviously, our approach outperforms generic algorithms only if the genus of
the intermediate cover is not too large. Otherwise, it may be possible to transfer
the DLP from E to a more vulnerable isogenous curve E′. There exist two
“isogeny walk” strategies to find E′ (if it exists) [17]: one can sample the isogeny
class of E via low-degree isogenies until a weak curve is found, or one can try
all the weak curves until a curve isogenous to E is found. The best strategy to
use depends on the size of the isogeny class, on the number of weak curves and
on the availability of an efficient algorithm for constructing these weak curves.
For the cases we have considered, this isogeny walk can become the dominating
part in the overall complexity (see below for details).

4 Application to elliptic curves defined over Fp6

For an elliptic curve E defined over an extension field Fp6 , we can apply our
cover and decomposition attack either with the tower Fp6 —Fp2 —Fp or with
the tower Fp6 —Fp3 —Fp. We have seen in Section 2.2 that in practice, we can
compute decompositions only for a very limited number of values of (n, g). In
particular, our attack is feasible only if E admits a genus 3 (resp. 2) cover; we give
examples of such curves below. Of course, this attack needs to be compared with
the classic cover attacks or decomposition attacks using the base field Fp3 ,Fp2
or Fp, as recalled in Section 2.

4.1 Using a genus 3 cover

In the present subsection, we apply our cover and decomposition attack using
the first tower Fp6 —Fp2 —Fp. Thanks to the results of [7, 25, 32], in odd char-
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acteristic, we know that the only elliptic curves defined over Fq3 (in our case,
q = p2) for which the GHS attack yields a cover by a hyperelliptic curve H of
genus 3 defined over Fq, are of the form

y2 = h(x)(x− α)(x− σ(α)) (3)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3\Fq and h ∈ Fq[x] is of
degree 1 or 2. Similar results are also available in characteristic 2 (see [27]), thus
our attack is also applicable in characteristic 2; we give details of the construction
of the cover in both cases in Appendix A. The number of curves admitting an
equation of the form (3) is Θ(q2), thus only a small proportion of curves is
directly vulnerable to the cover and decomposition attack using this extension
tower. However, since this number of weak curves is much larger than the number
of isogeny classes (which is about q3/2), a rough reasoning would conclude that
essentially all curves should be insecure using an isogeny walk strategy. Assuming
that the probability for a curve to be weak is independent from its isogeny class,
we obtain that the average number of steps before reaching a weak isogenous
curve should be about q = p2 steps. It is thus the dominating phase of the
algorithm, but is still better than the Õ(p3)-generic attacks. Nevertheless, all
the curves of the form (3) have a cardinality divisible by 4, so obviously not
all curves are vulnerable to this isogeny walk (we recall that two curves are
isogenous if and only if they have the same cardinality). Still, we conjecture
that all curves with cardinality divisible by 4 are vulnerable to this cover and
decomposition attack using an isogeny walk.

We can also consider non-hyperelliptic genus 3 covers. In this case, weak
curves have equation

y2 = c(x− α)(x− σ(α))(x− β)(x− σ(β)) (4)

where c ∈ Fq3 and either α, β ∈ Fq3 \Fq or α ∈ Fq6 \
(
Fq2 ∪ Fq3

)
and β = σ3(α).

This targets much more curves: actually, about half of the curves having their
full 2-torsion defined over Fq3 admit an equation of this form [25].

For a genus 3 hyperelliptic cover over Fp2 , the quadratic polynomial systems
to solve over Fp are composed of 6 variables and 6 equations, or 8 equations and
10 variables with our variant. Such systems can be solved very quickly by any
computational algebra system. Unfortunately, with non-hyperelliptic covers, the
systems of equations are much more complicated, and we have not been able to
compute decompositions with available Gröbner basis implementations.

4.2 Using a genus 2 cover

We now consider the tower Fp6 —Fp3 —Fp. The existence of genus 2 covers
(which are necessarily hyperelliptic) defined over Fq, where q = p3, has been
studied in [3, 29]. In odd characteristic, vulnerable curves admit an equation in
so-called Scholten form

y2 = ax3 + bx2 + σ(b)x+ σ(a) (5)
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where a, b ∈ Fq2 and σ is the Frobenius automorphism of Fq2/Fq. An elliptic
curve E can be transformed into Scholten form as soon as its full 2-torsion is
defined over Fq2 [29] or its cardinality is odd and j(E) /∈ Fq [3]. Consequently, a
large proportion of curves are vulnerable to our cover and decomposition attack.
Moreover, any curve without full 2-torsion but still with a cardinality divisible
by 4, is 2-isogenous to a curve with full 2-torsion.

In this setting, the quadratic polynomial systems to solve over Fp are com-
posed of 12 variables and 12 equations, or 16 equations and 18 variables with the
decomposition variant. Solving such systems is still feasible on current personal
computers, but is much lower than in the case of hyperelliptic genus 3 cover
defined over Fp2 .

4.3 Complexity and comparison with other attacks

Apart from the square-root generic algorithms, the existing ECDLP attacks over
sextic extensions are either Gaudry’s decomposition method [13] or the GHS at-
tack followed by Gaudry’s or Diem’s index calculus [15, 8], with base field Fp
or Fp2 (using Fp3 as base field does not provide any advantage in this context).

When the base field is Fp2 , the asymptotic complexity is in Õ
(
p8/3

)
for both

decomposition and GHS (assuming a genus 3 cover), or even in Õ
(
p2
)

with a
degree 4 planar cover. But in all cases, the memory requirement is then very
large, in Õ(p2). When the base field is Fp, computing direct decompositions is
completely out of reach, and the GHS attack very rarely provides low genus
covers: the smallest possible genus is actually 9 (with corresponding degree 10
plane model), but this occurs for at most p3 curves, see Appendix C. The result-
ing genus is much higher for most curves [5], implying that this attack is rarely
practical.

We give in Table 1 a summary of the performances of the presented ap-
proaches. In order to obtain actual (and not just asymptotic) comparisons, we
also consider the cryptographically significant example of a curve E|Fp6 where p

is a prime close to 227, whose cardinality is divisible by a 160-bit prime number.
The values given are obviously just estimates relying on extrapolations of rela-
tion searches done on Magma V2-17-5 [6] with an Intel Core 2 Duo processor;
in particular, the two last estimates are greater than what could be expected
from the results obtained with optimized implementation presented in Section 6.
Details of the computations are provided in Appendix D.

5 Application to elliptic curves defined over Fp4

If E is an elliptic curve defined over Fp4 , we can use our attack with the tower
Fp4 —Fp2 —Fp. When p is odd, we have seen that E admits a genus 2 cover over
Fp2 as soon as the cardinality of E is either odd (and j(E) /∈ Fp2) or divisible
by 4. Thus, approximately 3/4 of the elliptic curves defined over Fp4 are directly
vulnerable. When the genus 2 cover H of E has an imaginary model (see Ap-
pendix B for a necessary condition), the sieving technique described in Section
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Attack
Asymptotic
complexity

Memory
complexity

Time estimates
(years)

Pollard on E(Fp6) [28] Õ(p3) Õ(1) 5× 1013

Ind. calc. on JacH(Fp2), g = 3 [15] Õ(p8/3) Õ(p2) 6× 1010 †

Ind. calc. on JacC(Fp2), d = 4 [8] Õ(p2) Õ(p2) 700 000

Decompositions on E((Fp2)3) [13] Õ(p8/3) Õ(p2) 1012

Ind. calc. on JacC(Fp), d = 10 [8] Õ(p7/4) Õ(p) 1 500(∗)

Decomp. on JacH(Fp3), g = 2 [this work] Õ(p5/3) Õ(p) 4× 106

Decomp. on JacH(Fp2), g = 3 [this work] Õ(p5/3) Õ(p) 750†

Sieving on JacH(Fp2), g = 3 [this work] Õ(p12/7) Õ(p) 300†

†: only for Θ(p4) curves before isogeny walk (∗): only for O(p3) curves

Table 1. Comparison of the complexity of various attacks on E(Fp6), log2 p ≈ 27.

3.2 can be applied. In particular, we can solve the DLP on E with a complexity
of Õ(p2−2/5), where the hidden constant is rather small. With a Nagao-style
decomposition, the asymptotic complexity becomes Õ(p2−2/4), but with a larger
constant corresponding to the resolution cost of a quadratic system composed
of 4 equations in 4 variables. If we directly apply the decomposition attack of
Gaudry and Diem to E, the asymptotic complexity is still in Õ(p2−2/4), but
the constant is much larger: the systems are also composed of 4 equations in
4 variables, but with total degree 8. For cover attacks, the case of quartic ex-
tensions has been studied in [3]; the result is that most elliptic curves defined
over Fp4 admit a cover by a non-hyperelliptic genus 9 curve. Using this cover to
solve the DLP with an index calculus method yields an asymptotic complexity
in Õ(p2−2/9), or potentially Õ(p2−2/8) with the approach of [8]. All these at-
tacks are asymptotically better than generic algorithms, but the improvement is
smaller than for elliptic curves defined over Fp6 . Nevertheless, a much larger pro-
portion of curves is directly vulnerable to our attack, and does not necessitate a
preliminary isogeny walk. We summarize in Table 2 the asymptotic complexities
of the different attacks.

Attack
Asymptotic
complexity

Ratio of
vulnerable curves

Pollard [28] Õ(p2) 1

Ind. calc. on H|Fp , g(H) = 9 [3] Õ(p16/9) 3/4

Decomp. on E|F
p4

[13] Õ(p3/2) 1

Decomp. on H|F
p2

, g(H) = 2 [this work] Õ(p3/2) 3/4

Table 2. Comparison of the complexity of various attacks on E(Fp4)
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6 A 149-bit example

In this section, we give a practical example of the cover and decomposition
attack for an elliptic curve defined over the Optimal Extension Field Fp6 , where
p = 33 554 467 = 225 + 35 is the smallest 26-bit prime. We define Fp2 as Fp[t]
where t2 = 2 and Fp6 as Fp2 [θ] where θ3 = t. The elliptic curve E is given by
the following Weierstrass equation:

y2 = x(x− α)(x− σ(α))

where σ : x 7→ xp
2

and α = 9 819 275+31 072 607 θ+17 686 237 θ2+31 518 659 θ3+
22 546 098 θ4 + 17 001 125 θ5. It has a genus 3 cover by the hyperelliptic curve

H defined over Fp2 by y2 =
(
x+ φ(x) + φσ(x) + φσ

2

(x)
)
N(x)2, with N(x) the

minimal polynomial of α over Fp2 and φ : x 7→ (α−σ2(α))(σ(α)−σ2(α))
x−σ2(α) + σ2(α).

The cover map π is given by:

π(x, y) =

(
x+φ(x)+φσ(x)+φσ

2
(x)

4 , y(x−φ
σ(x))(x−φσ

2
(x))

8N(x)(x−σ2(α))

)
.

The common cardinality of E over Fp6 and of the Jacobian of H over Fp2 is four
times the 149-bit prime ` = 356814156285346166966901450449051336101786213,
and the number of elements in the factor base is 16 775 441.

For best performances, we use the sieving approach described in Section 3.2.
As a first step, we compute a lexicographic Gröbner basis of the system composed
of 10 quadratic equations in 8 variables in about 3 s on a 2.6 GHz Intel Core 2 Duo
processor with Magma V2.16-12. Instead of the double large prime variation, we
execute a structured Gaussian elimination. During the sieving phase, we used
1 024 cores of quadri-core Intel Xeon 5570 processors at 2.93 GHz6. After 62 h,
we had collected about 1.4× 1010 ' p2/(2 · 8!) relations, that is all the possible
relations of the form (2). For comparison, we also tested Nagao-style decompo-
sitions on the same type of processors. We obtained that one decomposition test
takes about 22 ms on a single core, thus showing that our decomposition variant
is about 960 times faster.

Thanks to the large number of extra relations, structured Gaussian elimina-
tion performed quite well and, after 25.5 h on 32 cores, it reduces the number of
unknowns to 3 092 914 (a fivefold reduction). For safety, the output system con-
tains 15 000 more equations than this number of unknowns, and each equation
involves between 8 and 182 basis elements. The total number of non-zero entries
in all the equations is 191 098 665 and all these entries are equal to ±1. The most
time-consuming step is the iterative linear algebra, which is done with a MPI
implementation of the Lanczos algorithm. It took about 28.5 days on 64 cores
of the same Intel Xeon processors. A large fraction of this time was taken by
the MPI communications, since at each round 200 MB of data had to be broad-
cast between the 2 involved machines (32 cores/machine). This linear algebra

6 This work was granted access to the HPC resources of CCRT under the allocation
2010-t201006445 made by GENCI (Grand Equipement National de Calcul Intensif)
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phase produced discrete logarithms for all the basis elements that remained af-
ter structured Gaussian elimination. Substituting these values back in the initial
linear system, we recovered, in less than 12 h using 32 cores, the discrete loga-
rithms modulo ` of all elements in the basis (given by their coordinates on H):

log(5,1 646 475+19 046 912 t) = 324090233616618447788899446283862317783046006

log(6,2 062 691+792 228 t) = 134424987842262695486611476989769052152832441

log(7,3 868 228+21 035 932 t) = 229073181595667785229146623058011111735286961

...
log(33 554 465,4 471 075+14 598 628 t) = 340713467460900419473167933722631654111145151

With the results of the above precomputation, computing logarithm of ar-
bitrary points on the elliptic curve becomes easy. To demonstrate this, we con-
structed points on E with the following process and computed their logarithms.
First, we let X0=

∑5
j=0(bπ·pj+1e mod p)θj=4 751 066+748 974 θ+8 367 234 θ2+24 696 290 θ3+

1 372 315 θ4+7 397 713 θ5. We then constructed points on E with abscissa X0 + δ
for small offsets δ. Let P1, P2, P3, P4, P5 and P6 be the points corresponding
to offsets 3, 4, 11, 14, 15 and 16. We lift each of these points to the Jacobian
of H using the conorm-norm map, which takes negligible time in Magma. After
that, we apply the descent method of Section 3.1 to small multiples of the lifted
element, until we find a multiple that decomposes as a sum of elements from the
smoothness basis. Looking up the corresponding logarithms (and dividing back
by the small multiples that have been included) yields the logarithm of each
point. On average, we expect to try 6! = 720 multiples before finding a decom-
position. To actually decompose the six considered points, we needed 72.5 s. As
a consequence, each individual logarithm on E can be performed in less than
one minute. We give details in Table 3: the points involved in the decomposi-
tion are described by their abscissa together with a + or − sign that indicates
whether the “real” part of the ordinate has a positive or negative representative
in (−p/2, p/2). Similarly, we indicate the choice of the points on E with a + or
a − depending on the representative of the constant term in the ordinate7.

Points Mult. Nagao Points in decomposition

(X0 + 3)+ 97 2844007+ 3819744− 5618276− 8396644− 11841629− 23771773−

(X0 + 4)− 36 4673075− 11272201+ 12937918− 13869464− 14428213+ 21399158−

(X0 + 11)+ 742 4884810− 6230068− 8411592+ 12188294+ 20118618+ 20945232−

(X0 + 14)− 956 3660673− 4314732− 20180301+ 22563519+ 26157093− 27107773−

(X0 + 15)− 682 780652+ 8444164+ 10116987+ 11070139− 14566563− 32232816+

(X0 + 16)− 19 13089639− 19783194− 23921581− 28500971+ 30393573+ 30478839+

Table 3. Details of individual logarithm computations.

7 We did not really choose the points, but simply took the first point produced by
Magma with the specified abscissa.
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The group structure of E is Z/2Z × Z/(2`)Z and all the logarithms are
computed mod `. Thus, in order to obtain points of order `, we multiply each
of the points Pj by 2. To obtain the discrete logarithms in base P1, we simply
divide the results by the logarithm of P1. Finally, we obtain:

2·P2 = 44853429456306375520883685722551142750204929·2·P1

2·P3 = 245828744177202642167186866655188704860309093·2·P1

2·P4 = 241773698573992897197261454348760406499325884·2·P1

2·P5 = 47914434731086497860980273327037833732109767·2·P1

2·P6 = 164437442681856563836816034418873153945805017·2·P1

7 Conclusion and perspectives

In this paper, we have proposed a new index calculus algorithm to compute
discrete logarithms on elliptic curves defined over extension fields of composite
degree. In particular, sextic extensions are very well-suited to this method, as
we have practically demonstrated on a 149-bit example.

This combination of cover and decomposition techniques raises many ques-
tions. For example, it would be interesting to know if elliptic curves of prime
cardinality defined over a degree 6 extension field can be efficiently attacked.
A related problem is how to target more curves easily: this requires either an
improvement of the isogeny walk, or an efficient use of non-hyperelliptic covers.
Finally, whether our method applies to different extension degrees is an impor-
tant issue; clearly, degree 4 extensions are also susceptible, but the advantage
over generic methods is then less significant.

Acknowledgements. We acknowledge that the results in this paper have been
achieved using the PRACE Research Infrastructure resource Curie based in
France at TGCC, Bruyères-le-Chatel.
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A Genus 3 cover

A.1 Odd characteristic

We consider elliptic curves defined over Fq3 of the form

y2 = h(x)(x− α)(x− σ(α)) (6)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3 \ Fq and h ∈ Fq[x]
of degree 1 or 2. Such elliptic curves were studied by [7, 32]; they are the only
elliptic curves for which the GHS attack yields a cover by a hyperelliptic curve
H of genus 3 defined over Fq.

We give now an explicit description of the cover π : H → E; following [25],
we express this cover as a quotient by a bi-elliptic involution, instead of using
the GHS approach. For simplicity, we will assume that h(x) = x (this can always
be achieved by an appropriate change of coordinates if h has a root in Fq).

Let φ : x 7→ D
x−σ2(α) + σ2(α) be the unique involution of P1(Fq) sending

σ2(α) to∞ and α to σ(α), so that D =
(
α− σ2(α)

) (
σ(α)− σ2(α)

)
. If φ lifts to

an involution of a hyperelliptic curve H|Fq , then necessarily φσ and φσ
2

will be

also involutions of H. Observing that {Id, φ, φσ, φσ2} forms a group, this leads

us to consider the curve of equation y2 = x + φ(x) + φσ(x) + φσ
2

(x); a more
usual form for this equation is

H : y2 = F (x)N(x) (7)

where N(x) = (x− α) (x− σ(α))
(
x− σ2(α)

)
is the minimal polynomial of α

over Fq and
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F (x) = N(x)
(
x+ φ(x) + φσ(x) + φσ

2

(x)
)
∈ Fq[x]. It is clear that φ gives an

involution of H, still denoted by φ : (x, y) 7→
(

D
x−σ2(α) + σ2(α), y D2

(x−σ2(α))4

)
.

The quotient of this genus 3 hyperelliptic curve H by φ is the elliptic curve

E′ : y2 = (x− α− σ(α))
(
x2 − 4ασ(α)

)
and the quotient map π′ : H → E′ satisfies π′(x, y) =

(
x+ φ(x), y/(x− σ2(α))2

)
.

The curve E′ is 2-isogenous to the original curve E : y2 = x(x − α)(x − σ(α))
via the map:

(x, y) 7→
(

x2 − 4ασ(α)

4(x− α− σ(α))
, y

(x− 2α)(x− 2σ(α))

8(x− α− σ(α))2

)
.

Finally, the cover map π : H → E has the expression

π(x, y) =

(
F (x)

4N(x)
,
y(x− φσ(x))(x− φσ2

(x))

8N(x)(x− σ2(α))

)
. (8)

In the general case, when E has equation (6), the cover (8) remains the same
and the corresponding hyperelliptic curve H of genus 3 defined over Fq has the
following equation:

H : y2 = 4N(x)2 h

(
F (x)

4N(x)

)
.

A.2 Characteristic 2

Let E be an ordinary curve defined over a binary field Fq3 ; it admits an equation
of the form

E : y2 + xy = x3 + ax2 + b (9)

where b = 1/j(E). As already apparent in [14], the GHS attack produces a genus
3 hyperelliptic cover of E when TrFq3/Fq (b) = 0, so that Θ(q2) curves are directly

vulnerable. To describe this cover, we slightly adapt the description of [25, 27],
already used in the previous subsection.

Let σ : x 7→ xq be the Frobenius automorphism and let v = 4
√
b; by assump-

tion its trace over Fq is zero. As in the case of odd characteristic, we consider

the involution φ : x 7→ σ(v)σ2(v)
x+v + v of P1(Fq) sending v to infinity and σ(v)

to σ2(v). We denote by N the minimal polynomial of v over Fq and by F the

product N(x)
(
x+ φ(x) + φσ(x) + φσ

2

(x)
)
∈ Fq[x]. Then, φ lifts to a bi-elliptic

involution of the hyperelliptic curve H|Fq defined by

H : y2 +N(x)y = F (x)N(x) + aN(x)2. (10)

The curve E is up to a change of variable the quotient of H by φ and the
cover map from H to E is given by:

π : (x, y) 7→
(
x+ φ(x) + v,

y(x+ φ(x) + v)

N(x)
+ v2

)
. (11)
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B Genus 2 cover

Let E be an elliptic curve defined over Fq2 (where q is odd) in Scholten form:

y2 = ax3 + bx2 + σ(b)x+ σ(a)

One can observe that the map x 7→ 1/σ(x) permutes the roots of f(x) = ax3 +
bx2 +σ(b)x+σ(a). An easy consequence is that f is either irreducible or split in
linear factors over Fq2 . In particular, E has either no 2-torsion or its full 2-torsion
defined over Fq2 . Note that in the latter case, f admits at least one root with
Fq2/Fq-norm equal to 1. The elliptic curve E admits a cover by the hyperelliptic
genus 2 curve H defined over Fq, of equation

H : y2 = a(x−c)6+b(x−c)4(x−σ(c))2+σ(b)(x−c)2(x−σ(c))4+σ(a)(x−σ(c))6

where c ∈ Fq2 \ Fq. The cover map is given by

π : (x, y) 7→

((
x− c

x− σ(c)

)2

,
y

(x− σ(c))3

)
The curve H admits an imaginary model if and only if the polynomial h(x) =
a(x−c)6+b(x−c)4(x−σ(c))2+σ(b)(x−c)2(x−σ(c))4+σ(a)(x−σ(c))6 has a Fq-
rational root α. This implies that β = (α− c)2/(α−σ(c))2 is a Fq2 -rational root
of f . Hence a necessary condition forH to have an imaginary model is that E has
full 2-torsion. Now, α ∈ Fq if and only if the Fq2/Fq-norm of (α−c)/(α−σ(c)) is
equal to 1. From this, we deduce easily that a sufficient condition for the existence
of an imaginary model of H is that f admits a root β such that NFq2/Fq (β) = 1

(this implies that β is a square in Fq2) and NFq2/Fq (
√
β) = 1.

C Genus 9 cover

Let E be an elliptic curve defined over a degree 6 extension field Fq6 of odd
characteristic; we assume that j(E) /∈ Fq3 ∪ Fq2 . Using techniques as in [7, 32],
it is possible to show that the minimum genus of the Fq-cover obtained by the
GHS method is 9, which happens only in one of the following cases:

1. E admits an equation of the form

Eα : y2 = c(x− α)(x− σ(α))(x− σ2(α))(x− σ3(α)) (12)

where σ is the Frobenius automorphism of Fq6/Fq, α ∈ Fq6 \ (Fq2 ∪Fq3), and
c ∈ Fq6 .

2. E admits an equation of the form

Eα,β : y2 = c(x− α)(x− σ(α))(x− β)) (13)

where σ is the Frobenius automorphism of Fq6/Fq, α ∈ Fq3 \Fq, β ∈ Fq2 \Fq,
and c ∈ Fq6 .
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We can give an upper bound on the number of (isomorphism classes of) such
curves. It is clear that two curves Eα and Eα′ are isomorphic (or twists) if
α and α′ lie in the same PGL2(Fq)-orbit; since the number of such orbits in
Fq6 \ (Fq2 ∪ Fq3) is q3 + q − 1, there are at most O(q3) curves of type (12).
For those of type (13), we can use the transivity of the action of PGL2(Fq) on
Fq3 \ Fq to fix the value of α; the number of these curves is thus at most O(q2).
This shows that the proportion of curves defined over Fq6 for which the GHS
method yields a genus 9 Fq-cover is at most 1/q3.

D Complexity comparisons of different attacks on E(Fp6)
with log2 p ≈ 27

The basis of comparison for all attacks on the ECDLP comes from generic algo-
rithms, i.e. algorithms that do not use any information about the actual group
structure and only consider the group law, such as Pollard’s Rho [28]. Using
Floyd’s cycle-finding algorithm, the expected number of iterations is approxi-
mately 0.94

√
` ≈ 1.14×1024 where ` is the 160-bit prime dividing the cardinality

of E(Fp6). Using Magma V2-17-5 on Intel Core 2 Duo 2.6 GHz, it takes 13.91 s
to compute 10 000 iterations, corresponding to 5 × 1013 years for the complete
DLP resolution.

The main difficulty with the index calculus methods is the estimation of
the linear algebra cost, which is needed to find the optimal balance in the
large primes variation. We base our extrapolations on the experiment of Sec-
tion 6, where the resolution of a sparse system of size 3 × 106 took about
44 000 h·CPU. Thus we assume that for a factor base of size n, the linear al-
gebra costs (n/3 000 000)2 · 44 000 · 160/148 h, or n2 · 2 × 10−5 s. On the other
hand, all the relation timings are obtained with Magma as we did not implement
optimized versions of all the different attacks.

We first consider index calculus methods for which the size of the factor base
is in p2/2. The memory complexity associated to this size is clearly problematic
for any real implementation, since the sole storage of the factor base elements
requires about 260 bits, which compares to the world’s largest databases. In the
case where E admits a hyperelliptic genus 3 cover H|Fp2 , we can apply index

calculus after transfer to its Jacobian. Our experiment takes 13.27 s to complete
10 000 tests, yielding 1 689 relations; the complete relation search thus requires
2 × 106 years. With our assumption, the linear algebra step (memory issues
notwithstanding) takes 5 × 1019 years, a much more larger time. To rebalance
the two phases using double large primes, we need to divide the size of factor
base by about 40 000; the total computation time then becomes 6× 1010 years.
If E admits a non-hyperelliptic genus 3 cover C|Fp2 , this cover admits a degree

4 plane model on which we can apply Diem’s index calculus [8]. It then takes
11.74 s to complete 10 000 tests, yielding 4 972 relations. This means that 700 000
years are necessary to collect p2/2 relations. With the adapted double large prime
variation, the optimal small factor base contains about p elements, and the linear
algebra cost becomes negligible compared to the relation search. We can finally
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apply directly Gaudry’s attack [13] to E with base field Fp2 . Our experiment
needs 22.35 s for 100 tests, yielding 36 relations. In other words, finding such a
decomposition is 80 times slower than with the genus 3 hyperelliptic cover, and
the optimal balances are different. We find that the size of the factor base should
be divided by 9 000, for an overall computation time of 1012 years.

Now, we consider the index calculus method for which the size of the factor
base is in p/2. We recall that it is not possible to use Gaudry’s decomposition at-
tack with base field Fp. In the very rare case where E admits a non-hyperelliptic
genus 9 cover (see Appendix C), it is possible to use the attack of [8] on a degree
10 plane model and obtain after 200 000 tests 5 relations in 123 s. An extrapola-
tion gives a time of 50 years for the relation step. With our assumption, the linear
algebra costs 3 000 years. With the adapted double large prime variation, the
optimal size of the factor base corresponds to a twofold reduction, for an overall
computation time of 1 500 years. If E admits a genus 3 hyperelliptic cover H|Fp2 ,

we can apply the techniques presented in this article and search for decomposi-
tions in JacH(Fp2) either with Nagao’s method or our sieving variant. In the first
case, it takes 126 sec to run 5 000 tests yielding 9 relations. This means that the
relation search would need 30 years, the linear algebra still lasting 3 000 years.
The optimal balance corresponds to a reduction by a factor 2.7 of the size of the
factor base, for a total computation time of 750 years. In the second case, using
the sieving technique we obtained 3 300 relations in 1 800 s, which is 25 times
faster than with Nagao’s technique (in practice, we have seen in Section 6 that
with optimized implementation, the ratio is rather of the order of 900). With
the adapted double large prime variation, the optimal size of the factor base
corresponds to a factor 4.4 reduction, for an overall computation time of 300
years. Note that for this sieving method, we have more accurate experimental
data obtained with an optimized implementation in C instead of Magma. We
detail in Table 4 the timings obtained for curves defined over OEF of sizes 138,
144 and 150 bits; the sieving times are given for the collection of all p2/(2 · 8!)
relations, and the linear algebra is done after a structured Gaussian elimination.
Based on these figures, we estimate more accurately that breaking the DLP over
a 160-bit elliptic curve group would take about 200 years on a single core.

Size of p
Sieving

(CPU.hours)
Sieving

(real time )
Lanczos

(CPU.hours)
Lanczos

(real time)

log2 p ≈ 23 3 600 3.5 hours 4 900 77 hours

log2 p ≈ 24 15 400 15 hours 16 000 250 hours

log2 p ≈ 25 63 500 62 hours 43 800 28.5 days

Table 4. Scaling data for our implementation

Eventually, it is possible to apply our cover and decomposition technique on
a hyperelliptic genus 2 cover defined over Fp3 , but without the sieving improve-
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ment. On this curve, our experiment takes 3 780 s for a single decomposition test,
which is 150 000 times slower than with the same method on a genus 3 cover
defined over Fp2 . In particular, no rebalance is needed since the relation search
dominates the computation time of about 4× 106 years.


