
Fully Secure Anonymous Hierarchical Identity-Based
Encryption with Constant Size Ciphertexts

Jae Hong Seo and Jung Hee Cheon

Department of Mathematical Sciences and ISac-RIM, Seoul National University, Seoul, 151-747, Korea
{jhsbhs0,jhcheon}@snu.ac.kr

Abstract. Efficient and privacy-preserving constructions for search functionality on encrypted
data is important issues for data outsourcing, and data retrieval, etc. Fully secure anonymous
Hierarchical ID-Based Encryption (HIBE) schemes is useful primitives that can be applicable to
searchable encryptions [4], such as ID-based searchable encryption, temporary searchable encryp-
tion [1], and anonymous forward secure HIBE [9]. We propose a fully secure anonymous HIBE
scheme with constant size ciphertexts.

keywords. Hierarchical Identity-Based Encryption (HIBE), Anonymous Hierarchical Identity-
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1 Introduction

Shamir introduced the notion of Identity-Based Encryption (IBE) which is a public-key cryp-
tosystem being able to use any string, such as e-mail, as a public key [20], and Boneh and
Franklin proposed the first IBE scheme using pairing [5]. Hierarchical Identity Based Encryp-
tion (HIBE) is an extension allowing high level users to delegate their key generation ability
to the low level users [16, 15]. Abdalla et. al. introduced the notion of anonymous IBE and
anonymous HIBE that satisfy an additional privacy requirement such that no adversary can
obtain information for the recipient’s identity ID from ciphertexts if she do not have a private
key of ID or its ancestors’ [1]. Both anonymous IBE and anonymous HIBE is useful primitives
that can be applicable to encryption systems allowing search functionality on encrypted data
[4, 1, 9, 7, 21].

The first realization of an anonymous HIBE scheme is proposed by Boyen and Waters
[9]. Since Boyen and Waters’ anonymous HIBE, several approaches to build an anonymous
HIBE scheme are introduced [22, 19, 14]. However, all previous anonymous HIBE schemes
proved their securities in the selective security model that restricts the adversary to commit
the target ID before that public parameters are generated by the challenger in the secu-
rity game. Selective security notion does not reflect real adversaries’ behaviors sufficiently. In
contrast to selective security model, full security model allows the adversary to be able to
choose the target identity after obtaining public system parameters and private keys which
are adaptively chosen by the adversary. Therefore, full security is stronger security notion
than selective security, and it reflects real world adversary well. We propose a HIBE scheme
satisfying following properties together, full security, anonymity, and constant size ciphertexts.

Our Contributions: Our construction is inspired by two HIBE schemes proposed by Lewko
and Waters [18], and Seo et. al. [19]. The HIBE scheme in [18] achieves full security and
constant size ciphertexts, but not anonymity. On the other hand, Seo et. al.’s HIBE scheme
attains anonymity and constant size ciphertexts, but not full security. We note that our con-
struction is not a simple combination of two schemes. Let us explain what is a hard task if we



combine techniques in two schemes. Seo et. al.’s ideas to obtain anonymity are blinding public
parameters and ciphertexts, and adding re-randomization subkeys into private keys. In their
scheme, adding re-randomization subkeys into private keys does not impact the security proof
since re-randomization subkeys do not contain the master secret key used to decrypt. More
precisely, in the security proof of selective model, the simulator know the target ID∗ before
he generates public parameters, so that he can generate public parameters to allow to be able
to generate all private keys except for the target ID∗. That is, when the simulator generates
public parameters, the element hard to compute in the underlying hard problem is embedded
to the private key for ID∗. Hence the simulator can generate almost all elements except the
private key for target ID∗ and its ancestors’, and so he can easily generate re-randomization
subkeys for all private keys. However, this strategy cannot apply to the full security model
directly. Since the simulator cannot see target ID∗ before generating public parameters, the
simulator should be able to generate all private keys to reply key extraction queries. There-
fore, adding re-randomization subkeys to private keys is not an easy work contrast to the
scheme in [19].

We construct the scheme in bilinear groups of composite order of four primes, and give the
provable security of our construction under six new static assumptions. Even though our con-
struction use composite order group of four primes, we claim that our construction is practical
in comparison with other anonymous HIBE schemes. All selective secure (H)IBE scheme can
be transfered to the full secure scheme by increasing group size [2]. This transformation in-
creases, however, the group size exponentially according to the maximum hierarchical depth,
eventually resulting schemes are very inefficient compare to our construction. Moreover, as-
sumptions used to prove confidentiality and anonymity of our scheme are static (but not
standard). I.e. assumptions are independent from the maximum number of the adversary’s
private key queries.

Applications: Anonymous IBE and HIBE have variety applications in search on encrypted
data of public-key cryptosystems, such as Public-key Encryption with Keyword Search (PEKS)
[4, 1]. PEKS is a useful primitives for constructing secure audit logs [24, 13], secure multi-
dimensional range query [21], conjunctive keyword search [7], and anonymous credential
[10]. ID-based searchable encryptions and temporary searchable encryptions are extensions
of PEKS. For example, we can use two level anonymous HIBE scheme where the first level is
used for user’s identities and the second level is used for keywords. This is an combination of
IBE and PEKS, called Identity-Based Encryption with Keyword Search (IBEKS) proposed
in [1]. In IBEKS scheme, each user in the first level of anonymous HIBE scheme can generate
all tokens for keywords chosen by himself using his private key without requiring to a central
authority. Public-key Encryption with Temporary Keyword Search (PETKS) is also a useful
application of anonymous HIBE [1]. In PETKS scheme, intermediate nodes in hierarchy of
anonymous HIBE is corresponds to time periods and leaf nodes are corresponds to keywords.
The time travel of PETKS scheme is defined as in forward secure public-key encryption that
is an important application of HIBE [11]. Then, users can generate a token for keyword which
is available in temporary time periods defined by users. Forward secure public-key encryption
[11] and forward-secure HIBE scheme [25] can be constructed using a HIBE scheme as a
building block. If we use an anonymous HIBE scheme instead a HIBE scheme, then we can
obtain an anonymous forward secure HIBE scheme [9].



2 Definitions

In this section we define anonymous HIBE scheme and give their security models.

2.1 Anonymous HIBE scheme

Every user of HIBE scheme has an ID consisting of a vector as a public key such as ID =
[I1, · · · , Ik] where k means user’s position in the hierarchy. We sometimes denote ID|k to
emphasize the length of ID instead of ID when the length of ID is k. The root node of
hierarchy means Private Key Generator (PKG), denoted by ID|0.

Definition 1. A HIBE scheme consists of four probabilistic algorithms, Setup, KeyGen, Enc
and Dec algorithms as follows.

Setup(λ, `) → {params,MSK}. Setup takes the security parameter λ and the maximum
hierarchical depth ` as input, and it generates public system parameters, denoted by params
and the master secret key, denoted by MSK = PvkID|0. params includes the message
space M, the ciphertext space CT and the identity space I. MSK is kept by PKG as
secret values.

KeyGen(PvkID|τ , ID|k)→ {PvkID|k}. KeyGen generates the private key PvkID|k of the iden-
tity ID|k using the private key PvkID|τ for the identity ID|τ where τ < k and ID|τ is an
ancestor identity of ID|k.

Enc(params, ID, M)→ {CT}. Enc outputs a ciphertext CT ∈ CT for a message M ∈ M
and a recipient identity ID ∈ I.

Dec(PvkID, CT )→ {M}. Dec returns the message M ∈M.

Enc and Dec have to satisfy the consistency constraint such that for every identity ID ∈ I
and the corresponding private key PvkID generated by KeyGen and every message M ∈M,

Dec(PvkID,Enc(params, ID ,M )) = M

where the probability goes over all randomness used in all algorithms above.

2.2 Security Models

We deal with two kinds of security notions, the confidentiality and the anonymity. Confi-
dentiality means that ciphertexts does not leak information about corresponding plaintexts,
and the anonymity means recipient’s privacy. Both of security notions are defined by games
between an adversary A and a challenger C, IND-ID-CPA game for confidentiality and ANON-
ID-CPA game for anonymity.

IND-ID-CPA Game:

Setup. C runs Setup and gives A public system parameters and retains the master secret key
as secret values.

Query Phase 1. A adaptively issues identities ID. C generates PvkID by running KeyGen,
and sends PvkID to A.

Challenge. A outputs two equal length messages M0, M1 and a target identity ID∗. The
target identity ID∗ and its prefixes have not queried before. Then, C flips a random
coin β and makes the challenge ciphertext, Enc(params, ID∗, Mβ). Then sends it to the
adversary.



Query Phase 2. Repeat Query Phase 1. The only restriction is A cannot query for the target
identity ID∗ and its prefixes.

Guess. A outputs a guess β′ of β, and then wins if β = β′.

The advantage of A in the above game is defined as the absolute value of the difference
between the probability of β = β′ and 1/2.

Definition 2. We say that an HIBE scheme is IND-ID-CPA secure if for any polynomial
time adversary, its advantage in IND-ID-CPA game is negligible.

ANON-ID-CPA Game:

Setup. C runs Setup and gives A the public system parameters and retains the master secret
key as secret values.

Query Phase 1. A adaptively issues identities ID. C generates PvkID by running KeyGen,
and sends PvkID to A.

Challenge. A outputs message M and two target identities ID∗0 and ID∗1. Both of two target
identities and their prefixes have not queried before. Then, C flips a random coin β and
makes the challenge ciphertext, Enc(params, ID∗β, M). Then sends it to the adversary.

Query Phase 2. Repeat Query Phase 1. The only restriction is A cannot query for the target
identities and their prefixes.

Guess. A outputs a guess β′ of β, and then wins if β = β′.

The advantage of A in ANON-ID-CPA game is defined as the absolute value of the difference
between the probability of β = β′ and 1/2.

Definition 3. We say that an HIBE scheme is ANON-ID-CPA secure if for any polynomial
time adversary, its advantage in ANON-ID-CPA game is negligible.

We can extend the above security notions to the CCA security notions, IND-ID-CCA and
ANON-ID-CCA by allowing the adversary to use the decryption oracle in Query Phases of
both games. CCA security can be achieved from CPA security by using techniques that are
method of transforming from CPA-secure (`+ 1)-level HIBE to CCA-secure `-level HIBE, for
example [3, 8]. Therefore in this paper we only focus on CPA security notions.

3 Background in Mathematics and Complexity Assumptions

3.1 Bilinear Groups of Composite Order

We will use a bilinear group of composite order n = p1p2p3p4. Bilinear groups of composite
order were introduced by Boneh, Goh, and Nissim [6]. Many literatures make cryptographic
schemes over composite order bilinear groups [6, 7, 17, 22, 23, 19, 18].

Let G be a group generating algorithm that takes a security parameter λ as a input and
outputs a tuple

(p1, p2, p3, p4,G,GT , e)

where p1, p2, p3 and p4 are distinct primes, G and GT are cyclic groups of order n = p1p2p3p4,
and e: G×G→ GT is a non-degenerate bilinear map; i.e., e satisfies the following properties:

1. (bilinear) For ∀g1, h1 ∈ G and ∀a, b ∈ Z, e(ga1 , h
b
1) = e(g1, h1)

ab.
2. (non-degenerate) For generator g1 of G, e(g1, g1) generates GT .



3. (efficiently computable) There exists an efficient algorithm that computes bilinear map e
in polynomial time with respect to λ.

We assume that group operations in G and GT are all computable in polynomial time with
respect to λ. Furthermore, we assume that descriptions of G and GT contain generators as
well as identity elements 1G, 1GT of G and GT , respectively.

We will use a notation Gpi to denote a subgroup of G of order pi. Then G is a direct product
of Gpi ’s, Gp1 ×Gp2 ×Gp3 ×Gp4 . We use notations Gpipj and Gpipjpk to denote subgroups of
order pipj and pipjpk, respectively. Since G has a composite order n = p1p2p3p4, subgroups
with order as a factor of N exist, hence such notations make sense.

If X is a generator of G, then Xp2p3p4 , denote to X1, is a generator of Gp1 . Similarly
Xp1p3p4 , Xp1p2p4 , Xp1p2p3 are generators of Gp2 , Gp3 , Gp4 , respectively, and denote to X2, X3,
X4, respectively. We note that e(Ri, Rj) = 1 for distinct i and j, and all random elements
Ri ∈ Gpi , Rj ∈ Gpj . This is followed from the fact that e(Ri, Rj) = e(Xa

i , X
b
j ) for some

integers a, b ∈ ZN , and e(Xa
i , X

b
j ) = e(X

p1p2p3p4
pi

a
, X

p1p2p3p4
pj

b
) = e(X,X)

p1p2p3p4
p1p2p3p4
pipj

ab
= 1

since i 6= j.

3.2 Complexity Assumptions

We need six complexity assumptions to prove the security of our anonymous HIBE construc-
tion. Our assumptions are not standard assumptions, however, these guarantee the security
against adversarial strategy that does not use the properties of group representation if the
finding nontrivial factors of the group order is hard. The hardness of our assumptions relies
on the theorems of Katz, Sahai, and Waters [17].

Assumption 1:
For a given group generator G, let the following distribution be P1(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

g
R← Gp1 , X3

R← Gp3 , X4
R← Gp4

D ← (G, n, g,X3, X4), T0
R← Gp1p2p4 , T1

R← Gp1p4 ,

β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.

Give (D,T ) to the adversary B. Then B outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv1G,B(λ), in group generated by G to be
the absolute value of the difference of the success probability of the adversary and 1/2, where
the probability is over the distribution P1(λ) and the random coins of B.

Definition 4. We say that a group generator G satisfies Assumption 1 if Adv1G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

Assumption 2:
For a given group generator G, let the following distribution be P2(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

g,X1
R← Gp1 , X2, Y2

R← Gp2 , X3, Y3
R← Gp3 , X4

R← Gp4

D ← (G, n, g,X1X2, X3, Y2Y3, X4), T0
R← Gp1p2p3 , T1

R← Gp1p3 ,



β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.

Give (D,T ) to the adversary B. Then B outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv2G,B(λ), in group generated by G to be the
absolute value of the difference of the success probability of B and 1/2, where the probability
is over the distribution P2(λ) and the random coins of B.

Definition 5. We say that a group generator G satisfies Assumption 2 if Adv2G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

Assumption 3:
For a given group generator G, let the following distribution be P3(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

X1
R← Gp1 , Y2

R← Gp2 , X3, Y3, Y
′
3
R← Gp3 , X4

R← Gp4

D ← (G, n,X1, Y2Y3, X3, X4), T0 ← Y2Y
′
3 , T1

R← Gp2p3 ,

β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.

Give (D,T ) to the adversary B. Then A outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv3G,B(λ), in groups generated by G to be the
absolute value of the difference of the success probability of B and 1/2, where the probability
is over the distribution P3(λ) and the random coins of B.

Definition 6. We say that a group generator G satisfies Assumption 3 if Adv3G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

Assumption 4:
For a given group generator G, let the following distribution be P4(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

X1
R← Gp1 , Y2

R← Gp2 , X3
R← Gp3 , X4, Y4

R← Gp4

D ← (G, n,X1, Y2Y4, X3, X4), T0
R← Gp2p4 , T1

R← Gp4 ,

β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.

Give (D,T ) to the adversary B. Then A outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv4G,B(λ), in groups generated by G to be the
absolute value of the difference of the success probability of B and 1/2, where the probability
is over the distribution P4(λ) and the random coins of B.

Definition 7. We say that a group generator G satisfies Assumption 4 if Adv4G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

Assumption 5:
For a given group generator G, let the following distribution be P5(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

g,X1, Y1
R← Gp1 , X2, Y2, Z2

R← Gp2 , X3, Z3
R← Gp3 , X4

R← Gp4
D ← (G, n, g,X1X2, X3, Y1Y2, Z2Z3, X4),

T0 ← e(X1, Y1), T1
R← GT ,

β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.



Give (D,T ) to the adversary B. Then B outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv5G,B(λ), in groups generated by G to be the
absolute value of the difference of the success probability of B and 1/2, where the probability
is over the distribution P5(λ) and the random coins of B.

Definition 8. We say that a group generator G satisfies Assumption 5 if Adv5G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

Assumption 6:
We uses Assumption 6 to prove the anonymity of our anonymous HIBE construction. For

a given group generator G, let the following distribution be P6(λ).

(p1, p2, p3, p4,G,GT , e)
R← G(λ), n← p1p2p3p4,

X1, Y1,W1
R← Gp1 , Y2, Z2,W2,W

′
2
R← Gp2 , Z3

R← Gp3 ,

X4, Z4,W4,W
′
4
R← Gp4

D ← (G, n,X1X4, Y1Y2, Z2, Z3, Z4,W1W2W4),

T0 ←W1W
′
2W
′
4, T1

R← Gp1p2p4 ,

β
R← {0, 1}, T ← T0 · (1− β) + T1 · β.

Give (D,T ) to the adversary B. Then B outputs β′, and succeeds if β = β′. We define the
advantage of the adversary B above, denote to Adv6G,B(λ), in groups generated by G to be the
absolute value of the difference of the success probability of B and 1/2, where the probability
is over the distribution P6(λ) and the random coins of B.

Definition 9. We say that a group generator G satisfies Assumption 6 if Adv6G,B(λ) is a
negligible function of λ for any polynomial time adversary B.

4 Construction

In this section we proposed a fully secure anonymous HIBE with constant size ciphertexts. We
build a scheme in bilinear groups G of composite order of product of four primes, n = p1p2p3p4.
We utilize subgroups Gp1 , Gp2 , Gp3 , Gp4 of G for different usage. All meaningful information
are embedded in a subgroup Gp1 . Subgroups Gp3 and Gp4 are respectively used private keys
and public parameters to look like random. Subgroup Gp2 is not appeared in real scheme. We
use Gp2 only for security proof.

All public parameters and ciphertexts are blinded by random elements of Gp4 , so cipher-
texts does not leak ID information. If the private key does not have blinding factors in Gp4 ,
blinding factors of ciphertexts will be removed during paring operation in the decryption
procedure. HIBE schemes usually use public parameters to re-randomize children’s key in
delegation algorithm, however, if public parameters have blinding factors, we cannot use pub-
lic parameters to re-randomize children’s key. If then, decryption algorithm will not work
correctly. Therefore we need to add re-randomization subkey to the private key. We now de-
scribe our construction with keeping this idea in mind.

Setup(λ, `): First, the setup algorithm runs group generator G and obtains (p1, p2, p3, p4,
G,GT , e). Next, it chooses random elements g, h, u1, · · · , u`, w,∈ Gp1 , X3 ∈ Gp3 , X4 ∈ Gp4 ,
R4,g, R4,h, R4,u1 , · · · , R4,u` ∈ Gp4 . It then, sets n = p1p2p3p4, G = gR4,g, H = hR4,h,
U1 = u1R4,u1 , · · · , U` = u`R4,u` and E = e(g, w), and

params ← [G,n,G ,H ,U1 , · · · ,U`,X3 ,X4 ,E ], MSK ← [g , h, u1 , · · · , u`, w ]



Lastly, it publishes the params and retain the MSK as secret values.
Enc(params, ID ,M ): Parse ID to [I1, · · · , Ik]. Enc picks a random integer s ∈ Zn and random
elements R̄4, R̄

′
4 ∈ Gp4 . A random element of Gp4 can be chosen by raising X4 to random

exponents from ZN . Next, it sets

CT ← [ C0 = MEs, C1 = (H
∏k
i=1 U

Ii
i )sR̄4, C2 = GsR̄′4 ] ∈ GT ×G3.

KeyGen(MSK, ID): Parse ID to [I1, · · · , Ik]. KeyGen algorithm picks random integers r1, r2 ∈
ZN and random elements

R
(d)
3 , R

′(d)
3 , R

(d)
k+1, · · · , R

(d)
` , R

(r)
3 , R

′(r)
3 , R

(r)
k+1, · · · , R

(r)
` ∈ G2(`−k)+4

p3 .

The private key PvkID consists of two subkeys Pvk
(d)
ID ∈ G`−k+2

p1p3 and Pvk
(r)
ID ∈ G`−k+2

p1p3 . Pvk
(d)
ID

is used for decryption and delegation, and Pvk
(r)
ID is used for re-randomization. It sets

Pvk
(d)
ID ← [K

(d)
1 = gr1R

(d)
3 ,K

(d)
2 = w(h

∏k
i=1 u

Ii
i )r1R

′(d)
3 , E

(d)
k+1 = ur1k+1R

(d)
j+1, · · · , u

r1
` R

(d)
` ].

Pvk
(r)
ID ← [K

(r)
1 = gr2R

(r)
3 ,K

(r)
2 = (h

∏k
i=1 u

Ii
i )r2R

′(r)
3 , E

(r)
k+1 = ur2k+1R

(r)
j+1, · · · , u

r2
` R

(r)
` ].

KeyGen(PvkID|k−1
, ID|k): Given a private key PvkID|k−1

for 2 ≤ k ≤ `, this algorithm derives

the private key for ID|k. Parse PvkID|k−1
to Pvk

(d)
ID|k−1

= [K
(d)
1 ,K

(d)
2 , E

(d)
k , · · · , E(d)

` ] and

Pvk
(r)
ID|k−1

= [K
(r)
1 ,K

(r)
2 , E

(r)
k , · · · , E(r)

` ]. This algorithm consists of two steps, Delegate step

and Re-randomize step. In Delegate step, it generates the private key for child, ID|k. The
result of Delegate step is sufficient to decrypt the ciphertext for ID|k, however, the random-
ness of these keys are associated with parents keys. It means that distributions of private keys
generated by Delegate step are different from private keys generated by MSK. We set two
distributions to be same by carrying out Re-randomize step after Delegate step.

Step 1 (Delegate Step): for ∀i ∈ [k + 1, `],

[K
′(d)
1 ,K

′(d)
2 , E

′(d)
i ]← [K

(d)
1 ,K

(d)
2 (E

(d)
k )Ik , E

(d)
i ],

[K
′(r)
1 ,K

′(r)
2 , E

′(r)
i ]← [K

(r)
1 ,K

(r)
2 (E

(r)
k )Ik , E

(r)
i ].

Step 2 (Re-randomize Step): Choose two random integers s, t ∈ ZN and random elements

R̄
(d)
3 , R̄

′(d)
3 , R̄

(d)
k+1, · · · , R̄

(d)
` , R̄

(r)
3 , R̄

′(r)
3 , R̄

(r)
k+1, · · · , R̄

(r)
` from Gp3 . Random elements in Gp3 can

be generated by raising X3 to random exponent from Zn. Pvk
(d)
ID|k and Pvk

(r)
ID|k are respec-

tively re-randomized as follows:

[K
′(d)
1 (K

′(r)
1 )sR̄

(d)
3 ,K

′(d)
2 (K

′(r)
2 )sR̄

′(d)
3 , E

′(d)
i (E

′(r)
i )sR̄

(d)
i ],

[ (K
′(r)
1 )tR̄

(r)
3 , (K

′(r)
2 )tR̄

′(r)
3 , (E

′(r)
i )tR̄

(r)
i ].



Dec(PvkID, CT ): Parse ID, CT and PvkIDd to [I1, · · · , Ik], [C0, C1, C2] and [K
(d)
1 , K

(d)
2 , E

(d)
k+1,

E
(d)
` ], respectively. Then Dec outputs

M ← C0 ·
e(K

(d)
1 , C1)

e(K
(d)
2 , C2)

We can easily check the correctness of the Dec algorithm for a valid ciphertext so that we
omit details.

5 Security Analysis

To prove the security of our anonymous HIBE scheme, we take the proof methodology of [23,
18]. In other word, we first define semi-functional ciphertexts and semi-functional keys, and
we will show that the real security game is computationally indistinguishable from a game
that all query results are semi-functional ones. In the real game, the simulator can always
check whether the challenge ciphertext is valid or not by generating the corresponding private
key himself. Therefore it is uneasy to make reduction to the hard problem. If the simulator,
however, can only generate semi-functional ones (ciphertexts and keys), he cannot check by
himself the validity of the ciphertexts since semi-functional keys cannot decrypt the semi-
functional ciphertext except for the special case. Therefore it is possible to make reduction
to the hard problem. Semi-functional ciphertexts are of the form

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2

where C ′0, C
′
1, C

′
2 are the result of Enc algorithm, g2 ∈ Gp2 , and x, zc

R← ZN . Semi-functional
keys are of the form

K
(d)
1 = K

′(d)
1 gγ2 ,K

(d)
2 = K

′(d)
2 gγzk2 , E

(d)
i = E

′(d)
i gγzi2 ,

K
(r)
1 = K

′(r)
1 gγ

′

2 ,K
(r)
2 = K

′(r)
2 g

γ′z′k
2 , E

(r)
i = E

′(r)
i g

γ′z′i
2 ,

for ∀ i ∈ [j+1, `], where K ′1,K
′
2, E

′
j+1, · · ·E′` are the result of KeyGen algorithm, g2 ∈ Gp2 , and

γ, γ′, zk, zj+1,· · · , z`
R← ZN . Since elements of Gp2 are used in the semi-functional ones, Dec

algorithm will remove elements of Gp2 if it takes semi-functional keys and normal ciphertexts,
or normal keys and semi-functional ciphertexts. However, Dec algorithm outputs the result
multiplied by additional term e(g2, g2)

xγ(zc−zk) if it takes semi-functional keys and semi-
functional ciphertexts. If zk = zc, then the additional term is 1GT , so that decryption will be
correct.

We uses a hybrid argument to prove the confidentiality. The first game is the real IND-ID-
CPA game, denote to GameReal. The second game GameRestricted restricts that the adversary
cannot query for the private key for identities which are prefixes of the challenge identity mod-
ulus p2, and remains others are same to GameReal. Next, we define q + 1 number of games,
Gamek where 0 ≤ k ≤ q, and q is the number of key extraction queries made by the adversary.
In Gamek, the adversary is given semi-functional ciphertext as the challenge ciphertext, and
the first k key extraction results are also semi-functional keys, and others are remained like
GameRestricted. There leaves last game GameMhiding that is like Gameq except the challenge
ciphertext. In GameMhiding the first component of the challenge ciphertext is a random ele-
ment of GT . Then the adversary cannot get any information about the challenge message in



GameMhiding, so that his advantage is information theoretically zero in GameMhiding. The
security proof consists of the proofs of indistinguishability between each sequential games.

Theorem 1. Our HIBE scheme is IND-ID-CPA secure if the group generator G holds As-
sumption 1, 2, 3, 4 and 5.

Lemma 1. If a group generator G satisfies Assumption 2, 3 and 4, there is no adversary such
that the difference of the advantage in between GameReal and GameRestricted is non-negligible.

proof. Suppose that A output identities ID0 and ID1 such that ID0 6= ID1 mod n and ID0 =
ID1 mod p2. Then simulator S can compute a nontrivial factor of n by taking gcd(ID0 −
ID1, N). Let gcd(ID0 − ID1, N)=a, and b = N

a . Then we consider the following two cases:
(Three cases cover all possibilities.)

1. p1 divides b
2. p3 divides b
3. p4 divides b.

In case 1, S will break Assumption 2. Given instance of Assumption 2, g,X1X2, X3, Y2Y3, X4

and T , S simulates using g,X3, and X4, and then obtains b from A. (Given g,X3, X4 S
can simulate with the adversary A.) S checks p1|b by testing gb = 1. Next, S computes
e((X1X2)

b, T ). If e((X1X2)
b, T ) is the identity of GT , then T ∈ Gp1p3 . Otherwise, T ∈ Gp1p2p3 .

In case 2, S will break Assumption 3. Given instance of Assumption 3. X1, Y2Y3, X3, X4

and T , S simulates using X1, X3 and X4, and then obtains b. S checks p3|b by testing Xb
3 = 1.

Next, S checks e((Y2Y3)
b, Y2Y3) = e(T b, Y2Y3). If the equality holds, then Gp2 part of T is

same to Y2. Otherwise, Gp2 part of T is random.
In case 3, S will break Assumption 4. Given instance of Assumption 4. X1, Y2Y4, X3, X4

and T , S simulates using X1, X3 and X4, and then obtains b. S checks p4|b by testing Xb
4 = 1.

Next, S checks whether e((Y2Y4)
b, T ) = 1GT or not. If the equality holds, then T is chosen

from Gp4 . Otherwise, T is chosen from Gp2p4 . �

Lemma 2. If a group generator G satisfies Assumption 1, there is no adversary such that
the difference of the advantage in between GameRestricted and Game0 is non-negligible.

proof. Simulator S is given the instance of Assumption 1 ,G, n, g,X3, X4 and T .
Setup: S chooses random integers b, a1, · · · , a`, α ∈ Zn and random elements R4,g, R4,h,
R4,u1 ,· · · , R4,u` ∈ Gp4 . (S can compute random elements in Gp4 from randomly exponents
of X4.) It sets and sends params ← [G,n,G = gR4 ,g ,H = gbR4 ,h ,U1 = ga1 R4 ,u1 , · · · ,U` =
ga`R4 ,u` , X3, X4, E = e(g, gα)] to A. Keep [g = g, h = gb, u1 = ga1 , · · · , u` = ga` , w = gα]
Query Phase: S returns to private query for ID = [I1, · · · , Ik]. Since S knows MSK, he can
generate all private keys.
Challenge: S is given ID∗ = [I∗1 , · · · , I∗k ] and two messages M0, M1 from A. S tosses a random
coin β ∈ {0, 1}, and returns

CT = [C0 = Mβe(T, g
α), C1 = T b+

∑k
i=1 aiI

∗
i R′4, C2 = TR′′4 ]

where R′4 and R′′4 are random elements in Gp4 . If T is a random element from Gp1p4 , then CT
distributes as a normal ciphertext in GameRestricted. If T is a random element from Gp1p2p4 ,

then CT distributes as a semi-functional ciphertext with zc = b+
∑k

i=1 aiI
∗
i in Game0. Since

zc mod p2 is not correlated with b mod p1 and ai mod p1, Gp2 part of T zc is independently
random from params and T .
Guess: S transfers output of A. �



Lemma 3. If a group generator G satisfies Assumption 2, 3, there is no adversary such that
the difference of the advantage in between Gamek−1 and Gamek is non-negligible.

To prove Lemma 3, we use hybrid steps, too. We define a sequence of games ˜Game
(0)
k , ˜Game

(1)
k ,

· · · , ˜Game
(`+1)
k which locate between Gamek−1 and Gamek. In ˜Game

(0)
k , Gp2 parts of Pvk(d)

are same to Pvk(r) of k-th key query result, and others are remained like Gamek−1. In

˜Game
(τ)
k , Gp2 parts of first τ components of Pvk(d) are independent from first τ components

of Pvk(r), and others are remained like ˜Game
(τ−1)
k . Then, ˜Game

(`+1)
k is identically equal to

Gamek.

Lemma 4. If a group generator G satisfies Assumption 2, there is no adversary such that

the difference of the advantage in between Gamek−1 and ˜Game
(0)
k is non-negligible.

proof. Simulator S is given the instance of Assumption 2 ,G, n, g,X1X2, X3, Y2Y3, X4 and T .
Setup: S chooses random integers b, a1, · · · , a`, α ∈ Zn and random elements R4,g, R4,h,
R4,u1 ,· · · , R4,u` ∈ Gp4 . (S can compute random elements in Gp4 from randomly exponents
of X4.) It sets and sends params ← [G,n,G = gR4 ,g ,H = gbR4 ,h ,U1 = ga1 R4 ,u1 , · · · ,U` =
ga`R4 ,u` , X3, X4, E = e(g, gα)] to A. Keep [g = g, h = gb, u1 = ga1 , · · · , u` = ga` , w = gα]
Query Phase: Since S knows MSK, he can generate all normal private keys. For first i-th
(i < k) queries, S generates normal private keys, and multiplies a random power of Y2Y3 to
every component of keys, and then he returns to the adversary. These keys are distributed
as semi-functional keys. For i > k case, S returns normal keys. For k-th query for ID =

[I1, · · · , Ij ], S chooses a random integer t ∈ Zn and random elements R
(d)
3 , R

(d)
3,j+1, · · · , R

(d)
3,` ,

R
(r)
3 , R

(r)
3,j+1, · · · , R

(r)
3,` ∈ Gp3 and respectively sets Pvk

(d)
ID and Pvk

(r)
ID as follows:

Pvk
(d)
ID =


K

(d)
1 ← T,

K
(d)
2 ← wT b+

∑j
i=1 aiIiR

(d)
3 ,

E
(d)
i ← T aiR

(d)
3,i ], ∀ i ∈ [j + 1, `]

Pvk
(r)
ID =


K

(r)
1 ← T t,

K
(r)
2 ← T t(b+

∑j
i=1 aiIi)R

(r)
3 ,

E
(r)
i ← T taiR

(r)
3,i ∀ i ∈ [j + 1, `].

If T ∈ Gp1p3 above is a normal key in Gamek−1. If T ∈ Gp1p2p3 , then each Gp2 part of Pvk(d)

is independently random from params and T since b+
∑j

i=1 aiIi mod p2 and ai mod p2
for i ∈ [j + 1, `] are independently random from params and T . Gp2 part of Pvk(r) is same to

Pvk(d), so that this is a key in ˜Game
(0)
k . Note that zk = b+

∑j
i=1 aiIi.

Challenge: S is given ID∗ = [I∗1 , · · · , I∗k ] and two messages M0, M1 from A. S tosses a random
coin β ∈ {0, 1}, and returns the challenge ciphertext

[Mβe(X1X2, w), (X1X2)
b+

∑k
i=1 aiI

∗
i R′4, (X1X2)R

′′
4 ]

where R′4 and R′′4 are chosen at random from Gp4 . Note that zc = b +
∑k

i=1 aiI
∗
i . Since for

all ID queried by A, ID mod p2 is not equal to ID∗ mod p2, zc mod p2 is independent
random from zk mod p2, and ai mod p2 for i ∈ [j + 1, `] used in the k-th key query. Hence,
all randomness used in the challenge ciphertexts are independently random from all other



randomness used in the game. If S generates the corresponding semi-functional ciphertext of
k-th key query, and tests whether k-th key is semi-functional key, then decryption will always
work without respect to that the k-th key is semi-functional key or not since zc = zk.
Guess: S transfers output of A. �

Lemma 5. If a group generator G satisfies Assumption 3, there is no adversary such that

the difference of the advantage in between ˜Game
(0)
k and ˜Game

(1)
k is non-negligible.

proof. Simulator S is given the instance of Assumption 3 ,G, n, g,X1, Y2Y3, X3, X4 and T .
Setup: S chooses random integers b, a1, · · · , a`, α and random elements R4,g, R4,h, R4,u1 ,· · · ,
R4,u` ∈ Gp4 . (S can compute random elements in Gp4 from randomly exponents of X4.) It
sets and sends params ← [G,n,G = gR4 ,g ,H = gbR4 ,h ,U1 = ga1 R4 ,u1 , · · · ,U` = ga`R4 ,u` ,
X3, X4, E = e(g, gα)] to A. Keep [g = g, h = gb, u1 = ga1 , · · · , u` = ga` , w = gα]
Query Phase: Since S knows MSK, he can generate all normal private keys. For first i-
th (i < k) queries, S generates normal private keys, and multiplies a random power of
Y2Y3 to every component of keys, and then he returns to the adversary. These keys are
distributed as semi-functional keys. For i > k case, S returns normal keys. For k-th query for
ID = [I1, · · · , Ij ], S chooses random integers r1, r2, t, tj+1, · · · , t` ∈ Zn and random elements

R
(d)
3 , R

(d)
3,j+1, · · · , R

(d)
3,` , R

(r)
3 , R

(r)
3,j+1, · · · , R

(r)
3,` ∈ Gp3 and respectively sets Pvk

(d)
ID and Pvk

(r)
ID as

follows:

Pvk
(d)
ID =


K

(d)
1 ← gr1(Y2Y3),

K
(d)
2 ← w(h

∏j
i=1 u

ai
i )r1(Y2Y3)

tR
(d)
3 ,

E
(d)
i ← ur1aii (Y2Y3)

tiR
(d)
3,i , ∀ i ∈ [j + 1, `]

Pvk
(r)
ID =


K

(r)
1 ← gr2T,

K
(r)
2 ← (h

∏j
i=1 u

ai
i )r2(Y2Y3)

tR
(d)
3 ,

E
(r)
i ← ur2aii (Y2Y3)

tiR
(r)
3,i . ∀ i ∈ [j + 1, `]

If T = Y2Y
′
3 , Gp2 part of each component of Pvk(r) is same to Gp2 part of the corresponding

component of Pvk(d), so that this is a key in ˜Game
(0)
k . If T is random element in Gp2p3 , then

above is a key in ˜Game
(1)
k .

Challenge: S is given ID∗ = [I∗1 , · · · , I∗k ] and two messages M0, M1 from A. S tosses a random
coin β ∈ {0, 1}, and returns the challenge ciphertext

[Mβe(g, g
α)s, (h

j∏
i=1

uaii )s(Y2Y3)
s′R′4, g

s(Y2Y3)
s′′R′′4 ]

where R′4 and R′′4 are random elements in Gp4 and s, s′, s′′ ∈ Zn are random integers.
Guess: S transfers output of A. �

Similarly we can prove indistinguishability between ˜Gamek(τ) and ˜Gamek(τ + 1) for τ ∈
[1, `]. Simulator can generate all normal keys, semi-functional keys, the challenge ciphertext,

and Pvk
(d)
ID for k-th query for ID using the instance of Assumptions 3 as in Lemma 5. Then,

S computes the (τ + 1)-th component of Pvk
(r)
ID using T for its Gp2p3 part. Since there is no

technical difference from the security proof of Lemma 5, we give following lemma without
proof.

Lemma 6. If a group generator G satisfies Assumption 3, there is no adversary such that the

difference of the advantage in between ˜Game
(1)
k and ˜Game

(`+1)
k = Gamek is non-negligible.



Lemma 4, 5 and 6 imply Lemma 3.

Lemma 7. If a group generator G satisfies Assumption 5, there is no adversary such that
the difference of the advantage in between Gameq and GameMhiding is non-negligible.

proof. Simulator S is given the instance of Assumption 5 ,G, n, g,X1X2, X3, Y1Y2, Z2Z3, X4

and T .
Setup: S chooses random integers b, a1, · · · , a`, α ∈ Zn and random elements R4,g, R4,h,
R4,u1 ,· · · , R4,u` ∈ Gp4 . (S can compute random elements in Gp4 from randomly exponents of
X4.) It sets and sends params ← [G,ns,G = gR4 ,g ,H = gbR4 ,h ,U1 = ga1 R4 ,u1 , · · · ,U` =
ga`R4 ,u` , X3, X4, E = e(g,X1X2)] to A. Keep [g = g, h = gb, u1 = ga1 , · · · , u` = ga` ]. Then
an unknown master secret key w is X1.
Query Phase: S returns to private query for ID = [I1, · · · , Ij ]. S chooses random integers r1, t,

tj+1, · · · , t`, r2, s, sj+1, · · · , s` ∈ Zn and random elements R
(d)
3 , R

′(d)
3 , R

(d)
3,j+1, · · · ,R

(d)
3,` , R

(r)
3 ,

R
′(r)
3 , R

(r)
3,j+1, · · · , R

(r)
3,` ∈ Gp3 . X3 can be used for generating random elements in Gp3 . He sets

a semi-functional key Pvk
(d)
ID and Pvk

(r)
ID as follows:

Pvk
(d)
ID =


K

(d)
1 ← gr1(Z2Z3)

tR
(d)
3 ,

K
(d)
2 ← X1X2(h

∏j
i=1 u

Ii
i )r1R

′(d)
3 ,

E
(d)
i ← ur1i (Z2Z3)

tiR
(d)
3,i , ∀ i ∈ [j + 1, `]

Pvk
(r)
ID =


K

(r)
1 ← gr2(Z2Z3)

sR
(r)
3 ,

K
(r)
2 ← (h

∏j
i=1 u

Ii
i )r2(Z2Z3)R

′(r)
3 ,

E
(r)
i ← ur2i (Z2Z3)

siR
(d)
3,i , ∀ i ∈ [j + 1, `]

S sends these to A.
Challenge: S is given ID∗ = I∗1 , · · · , I∗k and two messages M0, M1 from A. S tosses a random
coin β ∈ {0, 1}, and returns the challenge ciphertext

[MβT, (Y1Y2)
b+

∑k
i=1 aiI

∗
i R′4, Y1Y2R

′′
4 ]

where R′4 and R′′4 are random elements in Gp4 . Since b +
∑k

i=1 aiI
∗
i mod p2 is independent

from ai mod p2 for i ∈ [1, `] and b mod p2, Gp2 parts of C1 and C2 are independent random
elements from params. If T is a random element from GT , then CT distributes as a ciphertext
in GameMhiding. If T = e(X1, Y1), then CT distributes as a semi-functional ciphertext with

zc = b+
∑k

i=1 aiI
∗
i in Gameq.

Guess: S transfers output of A. �

Proof of Theorem 1
In GameMhiding the adversary cannot get information about the challenge messages since the
challenge message is multiplied by a random element in the challenge ciphertext. Therefore
the advantage of the adversary in GameMhiding is information theoretically zero. By Lemma
1, 2, 3 and Lemma 7, theorem is completed. ut

We also uses a hybrid steps for proving the anonymity. Similarly to the proof of the
confidentiality we define a sequence of games GameReal, GameRestricted, Game1, · · · , Gameq,
GameMhiding. Additionally we define GameRandom that C1 and C2 in the challenge ciphertexts
are independent random elements in Gp1p2p4 , others are remained like GameMhiding. The



adversary in GameRandom cannot get any information about the identity from the challenge
ciphertext, so that his advantage is information theoretically zero. We can show that these
games are indistinguishable step by step.

Theorem 2. Our HIBE scheme is ANON-ID-CPA secure if a group generator G holds As-
sumption 1, 2, 3, 4, 5 and 6.

Lemma 8. If a group generator G satisfies Assumption 1, 2, 3, 4 and 5, there is no adversary
such that the difference of the advantage in between GameReal and GameMhiding is non-
negligible.

The proof of Lemma 8 is basically same to the proof of Theorem 1. We defined GameReal
and GameMhiding as ANON-ID-CPA games. The differences among a sequence of games as
ANON-ID-CPA is essentially same to the differences among a sequence of games as ANON-
ID-CPA. Therefore the proof of Theorem 1 essentially implies Lemma 8.

Lemma 9. If a group generator G satisfies Assumption 6, there is no adversary such that
the difference of the advantage in between GameMhiding and GameRandom is non-negligible.

proof. Suppose that there exists an adversary A such that the difference of the advantage in
between GameMhiding and GameRandom is non-negligible. Now we describe that the simulator
S breaks Assumption 6 by using A with non-negligible advantage. S receives the instance of
Assumption 6, X1X4, Y1Y2, Z2, Z3, Z4, W1W2W4, and T .
Setup. It chooses random integers a1, · · · , a`, b ∈ Zn and random elements Z4,h, Z4,ui ∈ Gp4 .
It sets params = [G, n,G = X1X4, H = (X1X4)

bZ4,h, U1 = (X1X4)
a1Z4,u1 , · · · , U` =

(X1X4)
a`Z4,u` , Z3, Z4, E = e(X1X4, Y1Y2)] and sends it to A. Then unknown secret elements

are [g = X1, h = Xb
1, u1 = Xa1

1 , · · · , u` = Xa`
1 , w = Y1].

Query Phase1. When A queries the private key for ID = [I1, · · · , Ik], S chooses random

integers r1, r2 ∈ ZN and random elements Z
′(d)
2 , Z

′′(d)
2 , Z

(d)
2,k+1, · · · , Z

(d)
2,` , Z

′(r)
2 , Z

′′(r)
2 , Z

(r)
2,k+1,

· · · , Z(r)
2,` ∈ Gp2 , Z

′(d)
3 , Z

′′(d)
3 , Z

(d)
3,k+1, · · · , Z

(d)
3,` , Z

′(r)
3 , Z

′′(r)
3 , Z

(r)
3,k+1, · · · , Z

(r)
3,` ∈ Gp3 to generate

semi-functional key for ID|k. It sets Pvk
(d)
ID and Pvk

(r)
ID as follows:

K
(d)
1 ← (Y1Y2)

r1Z
′(d)
2 Z

′(d)
3 ,

K
(d)
2 ← (Y1Y2)((Y1Y2)

b
∏k
i=1(Y1Y2)

aiIi)r1Z
′′(d)
2 Z

′′(d)
3 ,

E
(d)
i ← (Y1Y2)

air1Z
(d)
2,i Z

(d)
3,i ∀i ∈ [k + 1, `].

K
(r)
1 ← (Y1Y2)

r2Z
′(r)
2 Z

′(r)
3 ,

K
(r)
2 ← ((Y1Y2)

b
∏k
i=1(Y1Y2)

aiIi)r2Z
′′(r)
2 Z

′′(r)
3 ,

E
(r)
i ← (Y1Y2)

air2Z
(r)
2,i Z

(r)
3,i ∀i ∈ [k + 1, `]

Then the above keys are well-formed with randomness as if r̄1 = r1logX1
Y1 for Pvk

(d)
ID,

r̄2 = r2logX1
Y1 for Pvk

(r)
ID.

Challenge. A gives a message M and two identities ID(0) = [I
(0)
1 , · · · , I(0)k0

] and ID(1) =

[I
(1)
1 , · · · , I(1)k1

] to S. S chooses a random coin β ∈ {0, 1}, and random elements Z ′2, Z
′′
2 ∈ Gp2 ,

Z ′3 ∈ Gp3 , Z ′′4 ∈ Gp4 , R ∈ GT , and then it sets the challenge ciphertext as follows:

[R, (W1W2W4)
b+

∑kβ
i=0 aiI

(β)
i Z ′′2Z

′′
4 , T ].



Table 1. Anonymous HIBE schemes

size in size in size in Security # of primes
params Pvk CT Model in group order

[9] O(`2) O(`2) O(`) Selective 1
[22] O(`) O((`− k)k) O(`) Selective 2
[19] O(`) O(`− k) 4 Selective 2
ours O(`) O(`− k) 3 Full 4

`: the maximum depth of hierarchy,
k: a depth of a corresponding identity,

A random element in GT can be generated by raising e(X1X4Z
′
2Z
′
3, X1X4Z

′
2Z
′
3) to a random

integer in Zn.
If T = W1W

′
2W
′
4 then CT distributes as in GameMhiding. Otherwise, since W1W2W4 is

chosen independent at random, CT distributes as in GameRandom.
Query Phase 2. A adaptively issues key extraction queries and S replies as Query Phase1.
Guess. A outputs a bit β′, then S also return the same bit β′ as its guess. �

Proof of Theorem 2
In GameRandom the adversary cannot get information about the challenge ID since the
challenge ciphertext distributes as random. Therefore the advantage of the adversary in
GameRandom is information theoretically zero. By Lemma 8 and Lemma 9, theorem is com-
pleted. ut

6 Related Works-Anonymous HIBE

The concepts of anonymous HIBE scheme were introduced by Abdalla et. al. [1]. A first
realization of anonymous HIBE scheme was proposed by Boyen and Waters [9]. They attained
anonymity under the decisional linear assumption. Shi and Waters proposed a delegatable
hidden-vector encryption (dHVE) whose definition is a generalization of anonymous HIBE
[22]. First anonymous HIBE scheme with constant size ciphertexts was proposed by Seo et.
al.[19]. They embedded Boneh, Boyen, and Goh’s HIBE scheme with short ciphertexts to the
subgroup Gp of the composite order bilinear group Gp×Gq, and blinds ID information using
random elements of subgroup Gq. Recently Ducas proposed new constructions for anonymous
HIBE using asymmetric pairing [14]. All prior anonymous HIBE schemes, however, were
proved only in the weaker selective security notion, that is, the adversary should select the
target ID before she see the system parameters. We give comparisons with our construction in
the table 1. Recently, Caro et al. [12] proposed a fully secure anonymous HIBE scheme with
constant ciphertexts, which attains the same performance as our HIBE scheme. We should
note that this paper and [12] are definitely independent results.

7 Conclusion

In this paper we proposed a fully secure anonymous hierarchical ID-based encryption scheme
with constant size ciphertexts in composite order bilinear group of four primes, and proved
the security under six static assumptions. Our construction satisfies full security, anonymity,
and constant size ciphertexts, together, so that it is able to be used as a primitive in public-
key searchable encryption fields efficiently. We leave efficient constructions in prime order



group under simple assumptions, such as the bilinear Diffie-Hellman assumption and linear
assumption as an interesting open problem.
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