
Alexander Rostovtsev, Alexey Bogdanov and Mikhail Mikhaylov
St. Petersburg state Polytechnic University

rostovtsev@ssl.stu.neva.ru

Secure evaluation of polynomial using privacy ring homomorphisms
Method of secure evaluation of polynomial y = F(x1, …, xk) over some rings on

untrusted computer is proposed. Two models of untrusted computer are considered:
passive and active. In passive model untrusted computer correctly computes polyno-
mial F and tries to know secret input (x1, …, xk) and output y. In active model un-
trusted computer tries to know input and output and tries to change correct output y so
that this change cannot be determined.

Secure computation is proposed by using one-time privacy ring homomorphism
/n → /n[z]/(f(z)), n = pq, generated by trusted computer. In the case of active
model secret check point v = F(u1, …, uk) is used. Trusted computer generates poly-
nomial f(z) = (z − t)(z + t), t ∈ /n and input Xi(z) ∈ /n[z]/(f(z)) such that Xi(t) ≡
xi (mod n) for passive model, and f(z) = (z − t1)(z − t2)(z − t3), ti ∈ /n and input
Xi(z) ∈ /n[z]/(f(z)) such that Xi(t1) ≡ xi (mod n), Xi(t2) ≡ ui (mod n) for active
model. Untrusted computer computes function Y(z) = F(X1(z), …, Xk(z)) in the ring
/n[z]/(f(z)). For passive model trusted computer determines secret output y ≡ Y(t)
(mod n). For active model trusted computer checks that Y(t2) ≡ v (mod n), then deter-
mines correct output y ≡ Y(t1) (mod n).

1. Introduction

Sometimes it is necessary to execute some program with secret data on a com-
puter which cannot be considered as trusted one. Untrusted computer can have low
reliability, it can give wrong results, it doesn’t keeps data in secret, etc. Usually we
can assume that untrusted computer computes function y = F(x1, …, xk) for input
(x1, …, xk) and gives output y.

Some examples of such problems are.
1. Computing salary, taxes on untrusted computer in such a way that real salary

and taxes stay unknown and user can check that they are computed cor-
rectly.

2. Public key encryption of secret plaintext on untrusted computer in such a
way that terminal cannot understand the plaintext and cannot give incorrect
ciphertext.

Assume that untrusted computer is controlled by adversary. Usually two general
models of untrusted computer (or adversary) are used. In passive model untrusted
computer correctly executes the program and tries to find secret input x and secret
output y. In active model untrusted computer tries to find x, y and tries to change
correct output in such a way that it is hard to recognize such changing.

It is obvious that security can be obtained if one uses trusted computer, that by
invertible way transforms input (and possibly function F), gives transformed input

mailto:rostovtsev@ssl.stu.neva.ru

to untrusted computer, which computes transformed output and gives it to trusted
computer. Trusted computer applies inverse transform and obtains correct output y.

Let ϕ is the transform, and x = ϕ(x), y = ϕ(y), F = ϕ(F). Such protection method
is correct if equalities y = F(x) and y = F(x) hold simultaneously. Notice that ϕ can
differently act on set of inputs and outputs and on set of algorithms F. Such protec-
tion method is practical if map ϕ can be computed easily.

Security can be obtained if next conditions hold.
1. For given x, y, F and possibly F it is hard to compute x, y.
2. In the case of active model texts (x, y) must contain redundancy, which al-

lows to recognize true and wrong outputs.
3. For given pairs (x1, y1), …, (xm, ym) and given xm+1 it is hard to compute such

incorrect output ym+1, that pair (xm+1, ym+1) will be not rejected.
Suitable way for constructing secure computations is using homomorphisms of

algebraic structures (groups, rings). Notice that since all field homomorphisms are
injective, such homomorphisms are non-common.

Using equations y = F(x) and y = F(x) we can be write ϕ(y) = ϕ(F)(ϕ(x)) or in
multiplicative notations ϕ(Fx) = ϕ(F)ϕ(x). In the case of groups last equation cor-
responds to group homomorphism. Here data x and algorithm F must be members
of the same group, which is non-common. Sometimes it is possible to apply homo-
morphism ϕ to input x only. Finite Abelian group is isomorphic to direct sum of
cyclic groups [7]. If homomorphism of Abelian groups maps each generator of cy-
clic group to generator of group of the same order, it is invertible. For example,
well-known RSA cryptosystem [10] maps x → xe (mod n) for composite n = pq
with secret factorization and uses privacy homomorphisms of finite Abelian group
(/n)*.

If we want to provide secure computation on untrusted computer, ring homo-
morphisms seem more common then group ones. Here algorithm F can be consid-
ered as sequence of ring operations (additions, multiplications, inversions and divi-
sions if it is possible). It is known that computable function F can be represented as
composition of computable Boolean functions (or normal algebraic form polyno-
mials). So secure computation can be obtained if one can build privacy ring
homomorphism of normal algebraic form. This problem is far from being solved.
Well known privacy group homomorphism (/n)* → {0, 1}+, n = pq, for input x

such that Jacobi symbol 1x
n

  = 
 

, has image 0 if x is a square modulo n (in this

case 1x x
p q

   
= =   

   
), it has image 1 if x is not a square modulo n (in this case

1x x
p q

   
= = −   

   
). But this homomorphism does not hold under multiplication and

hence cannot be used for normal algebraic form polynomials.

Usually elements of rings can be defined by polynomials. For passive model se-
cure polynomial evaluation is oblivious polynomial evaluation (untrusted computer
cannot have any information about value of y for given value of variable x). Prob-
lem of oblivious polynomial evaluation over field is connected with problem of
noisy polynomial reconstruction [8]. Theoretically secure polynomial evaluation
protocol, required pre-distributed data, was performed in [11]. Oblivious polyno-
mial evaluation technique based on zero-knowledge proofs was performed in [4].
Such approaches cannot provide large computation scale and are not practical. Se-
cure polynomial evaluation based on privacy ring homomorphisms seems to be
more practical.

Large class of computable function can be described using ring of integers .
There are well-known ring homomorphisms [z] → , computed by substituting
z = t for some t ∈ . Secure input and output are polynomials: ϕ(x), ϕ(y) ∈ [z]. If
algorithm F takes some multiplications, degree of output polynomial as element of
[z] can be very large, and computations become too slow. Degree of output poly-
nomial can be limited if instead of [z] one uses [z]/(f(z)), where polynomial f(z)
has at least one root in . Ring homomorphism [z]/(f(z)) →  is computed sub-
stituting some root of polynomial f(z) instead z. Hence computation of the ring
homomorphism is equivalent to computation of roots of polynomial f(z). Polyno-
mials over finite fields can be easily factored [3]. This factorization can be lifted to
ring of integers  by Hensel’s lemma. Hence this homomorphism is not secure.
Sometimes ring of algebraic integers R = [w]/(g(w)) for irreducible polynomial
g(w) is considered instead of . Polynomials over R also can be factored. It is suf-
ficient to consider polynomials over finite field, given by polynomial g(w), find its
roots and lift them to ring R.

The goal of this paper is description of privacy homomorphisms of ring /n
and its application to secure evaluation of polynomials over some rings on un-
trusted computer both for passive and active models.

2. Mathematical background and privacy homomorphisms

Let p ≠ q are large integers and n = pq. Ring /n ≅ /p ⊕ /q is widely
used in public key cryptosystems. Set of such cryptosystems includes RSA [10],
Fiat-Shamir [2], public-key cryptosystem based on permutation polynomials [1].
Paillier cryptosystem [9] and its elliptic curve analog [3] are defined over rings
/n2 ≅ /p2 ⊕ /q2. Security of those cryptosystems is based on complexity
of integer factorization problem.

There are some well-known number theory problems connected with factoriza-
tion problem.

1. Computing Euler function φ(n) = (p − 1)(q − 1) is equivalent to factoring.
Indeed, if p, q are known, then φ(n) can be computed. Back, if n, φ(n) are
known, then p, q are roots of polynomial x2 − (n + 1 − φ(n))x + n.

2. Quadratic equation solving x2 − D ≡ 0 (mod n) is equivalent to factoring.
The congruence holds if and only if hold both x2 − D ≡ 0 (mod p), x2 − D ≡ 0
(mod q). Last two equations have 2 roots, so equation x2 − D ≡ 0 (mod n) has
4 roots. If those roots ti are known, then p = GCD(n, ti + tj). Back, if p, q are
known, then equations x2 − D ≡ 0 (mod p), x2 − D ≡ 0 (mod q) can be easily
solved, roots of these equations give 4 roots modulo n.

3. If class number h of imaginary quadratic order of discriminant D = −n or
D = −4n can be computed (since n is composite, h is even), then number n
can be factored. Indeed, let h = h12k, h1 is odd. Take arbitrary reduced quad-
ratic form (a, b, c), b2 − 4ac = D, a > 1 and exponent it to power h1 and then
successively square it. With probability ≈ 0.5 one obtains reduced form (a1,
a1, c1) and p = GCD(n, a1), or form (a1, b1 a1) and p = GCD(n, 2a1 − b1). In-
verse reduction is not true: for given large primes p, q it is hard to compute
class number of imaginary quadratic order of discriminant D = −n or D =
−4n.

Consider privacy ring homomorphisms for passive and active models. Comput-
ing of such homomorphism doesn’t take knowledge of factorization of n.

Algorithm 1. Generating ring homomorphism /n → /n[z]/(f(z)),
()x X za for passive model.

Input: n = pq, x ∈ /n.
Output. polynomial f(z), X(z) ∈ /n[z]/(f(z)).
Method.
1. Generate random t ∈ /n and compute D ≡ t2 (mod n).
2. f(z) = z2 − D.
3. Compute X(z) = z − t + x.
4. Return: f(z), X(z).

Polynomial f(z) not necessary has degree 2 for passive model. Sometimes it is
common to use polynomials of more degree.

Protocol 2. Secure computation y = F(x) for passive model.
Entities: trusted computer, untrusted computer.
Secret input of trusted computer: x.
Common input of trusted and untrusted computers: number n with unknown (to

untrusted computer) factorization.
Output: y = F(x).
Method.

1. Trusted computer generates secret ring homomorphism /n →
/n[z]/(f(z)), ()x X za using algorithm 1 and sends f(z), X(z) and algo-
rithm F to untrusted computer.

2. Untrusted computer computes Y(z) = F(X(z)) in the ring /n[z]/(f(z)) and
sends Y(z) to trusted computer.

3. Trusted computer computes y ≡ Y(t) (mod n).

Algorithm 3. Generating ring homomorphism /n → /n[z]/(f(z)),
()x X za for active model.

Input: n = pq, x ∈ /n, check point (u, v), v = F(u).
Output. polynomial f(z), X(z) ∈ /n[z]/(f(z)).
Method.
1. Generate random t1, t2 ∈ /n.
2. f(z) = (z − t1)(z − t2)(z + t1 + t2) = z3 − (t1

2 + t1t2 + t2
2)z + t1t2(t1 + t2).

3. Compute 1 2
1 2

(mod)u xa t t n
t t

−
= + +

−
, 1 2

1 2
1 2

(mod)t u t xb t t n
t t

−
= −

−
,

X(z) = z2 +az + b (mod n) (these equations satisfy conditions X(t1) ≡ x (mod
n), X(t2) ≡ u (mod n)).

4. Return: f(z), X(z).

Polynomial f(z) not necessary has degree 3 for active model. Sometimes it is
common to use polynomials of more degree.

Protocol 4. Secure computation y = F(x) for active model.
Entities: trusted computer, untrusted computer.
Secret inputs of trusted computer: x; check point (u, v) for v = F(u).
Common input of trusted and untrusted computers: number n with unknown (to

untrusted computer) factorization.
Output: y = F(x).
Method.
1. Trusted computer generates secret ring homomorphism /n →
/n[z]/(f(z)), ()x X za using algorithm 3 and sends f(z), X(z) and algo-
rithm F to untrusted computer.

2. Untrusted computer computes Y(z) = F(X(z)) in the ring /n[z]/(f(z)) and
sends Y(z) to trusted computer.

3. Trusted computer checks equality Y(t2) ≡ v (mod n). If it holds, output is
probably true.

4. Trusted computer computes y ≡ Y(t) (mod n).

Homomorphisms of ring /n2 and secure computation in this ring can be ob-
tained similarly.

Theorem 1. Let f(z) = (z − t1)…(z − td), ti ∈ /n for 1 ≤ i ≤ n, is square-free
polynomial and t is a root of f(z). Then rings /n[t]/(f(t) and /n coincide.

Proof. Let g(z), h(z) ∈ /n[z]/(f(z)) and g(t), h(t) ∈ /n  their images un-
der substitution z ta . Then image of g(z) + h(z) is g(t) + h(t) ∈ /n, image of
g(z)h(z) is g(t)h(t) ∈ /n. So substitution z ta is ring homomorphisms
/n[z]/(f(z)) → /n and /n[z]/(f(z)) → /n[t]/(f(t)) ⊆ /n. Kernel of the
first homomorphism is ideal (z − t). Kernel of the second homomorphism is also
ideal (z − t). According to ring homomorphism theorem if domains and kernels of
homomorphism coincide, images of homomorphism are isomorphic. For arbitrary
c homomorphic images of polynomial cz − ct + 1 are 1 for both homomorphisms.
Under addition group /n is cyclic with generator 1. Hence rings /n[t] and
/n[t]/(f(t) are homomorphic images of ring /n[z]/(f(z)) and coincide. n

Hence surjective ring homomorphism /n[z]/(f(z)) → /n[t] is given by
substitution z ta . Composition of homomorphic embedding /n →
/n[z]/(f(z)) according to Algorithm 1, 3 and homomorphism /n[z]/(f(z)) →
/n is identity map of /n. Indeed, if X(z) is the image of x under embedding,
then second homomorphism gives X(t) ≡ x (mod n).

Ring /n has important property: factoring of square free polynomials over
this ring is hard problem. So ring homomorphism /n[z]/(f(z)) → /n[t]/(f(t))
is hard to compute if element t as a root of f(z) is unknown. Other common rings
such as , , finite fields do not possess this property. Polynomial over finite field
can be easily factored [5]. Polynomials over ,  can be factored using algorithm
[5] and p-adic lifting according to Hensel’s lemma.

Theorem 2. If square free polynomial f(z) ∈ /n[z], n = pq, factors over

/n:
1

() ()
d

i
i

f z z t
=

= −∏ , d ≥ 2, and GCD(ti, tj) is invertible element in /n for

any ti ≠ tj, then polynomial f(z) has d2 different roots in /n.
Proof. According to Chinese remainder theorem /n ≅ /p ⊕ /q. Hence

polynomial f(z) has d different roots u1, …, ud in /p and has d different roots v1,
…, vd in /q. Any pair ui, vj of roots by Chinese remainder theorem defines ele-
ment zi,j ∈ /n which is a root of f(z) modulo n, different pairs define different
zi,j. There are d2 such different pairs and d2 roots zi,j of polynomial f(z) over /n. n

Theorem 3. Let f(z) is polynomial as in theorem 2. Next claims are equivalent.

1. Factorization n = pq is known.
2. It is possible to compute or to guess d + 1 roots of f(z) ∈ /n[z].
3. It is possible to compute or to guess all d2 roots of f(z) ∈ /n[z].
Proof. 1 ⇒ 2, 3. Let factorization n = pq is known. By theorem 2 d2 roots of

polynomial f(z) over /n are defined by its roots over finite fields /p, /q.
Roots of polynomials over finite fields can be computed effectively [5]. Then using
Chinese remainder theorem, one can compute all d2 roots over /n and hence
d + 1 roots.

2 ⇒ 1, 3. Let d + 1 roots z1, …, zd+1 of polynomial f(z) ∈ /n[z] are known.
Define zi ≡ ui (mod p), zi ≡ vi (mod q). Since deg(f) = d, there exists a pair zi, zj ∈
/n such that zi − zj ≡ 0 (mod p) and zi − zj ≠ 0 (mod q). Then GCD(n, zi − zj) = p
and q = n/p. If factorization of n is known, all d2 roots of f(z) over /n can be
computed as above.

Implication 3 ⇒ 2 is trivial. n

3. Applications and limitations

Some public key cryptosystems are defined in terms of ring /n, its finite ex-
tension or ring of polynomials over /n ([1], [2], [3], [9], [10]). These cryptosys-
tems can be realized by direct application of algorithms, described in the section 2.

Ring /n with proposed homomorphisms admits next operations: addi-
tion/subtraction, multiplication, inversion modulo n if it is possible. Representing
element z ∈ /n as absolutely minimal residue allows interpret computation in
/n as computation in subset of integers  that absolutely do not exceed n/2.
Computing in the field  can be defined as computing over integers and hence
over /n for numerators and denominators. Computing in the ring n of n-adic
integers can be represented by computing in /n according to Hensel’s lemma.
Proposed ring homomorphisms can be easily transformed to finite extension of ini-
tial ring: to ring /n[w]/(g(w)) or to ring [w]/(g(w)), where g is a polynomial.
Hence proposed method can be applied for secure evaluation of polynomials over
those rings.

But there are some limitations if polynomials over ordered rings are used. For
example, in ring  inequality holds 1 > 0, hence this ring is ordered. Ring of alge-
braic integers also is ordered by norm map. Ring /n has characteristic n: 0 = 1 +
… + 1 (n times), this ring is non-ordered. Indeed, if we assume that 1 > 0, then 1 +
1 = 2 > 0 and hence n = 0 > 0  contradiction.

Absolutely small elements of  and their images in quotient ring /n as abso-
lutely minimal residues coincide. Hence small positive and negative integers as

elements of /n can be recognized. But their images under privacy homomorph-
ism can be not small. So generally it is impossible to recognize when element of
ring /n[z]/(f(z)) is positive, negative or zero. If we protect secret data with pro-
posed privacy homomorphism, then branching programs with protected data such
as “If argument is positive, do step A, else do step B” are impossible. Ring  is or-
dered and Euclidean, it admits division, but in ring /n[z]/(f(z)) there is no divi-
sion. This property limits possible applications of proposed privacy homomor-
phisms. For example, exponentiation in prime finite field or exponentiation on el-
liptic curve over prime finite field cannot be realized with proposed homomor-
phisms.

Consider some cryptographic protocols based on proposed privacy homo-
morphism.

Protocol 5. RSA public key encryption [10] on untrusted computer (active
model).

It is required to encrypt secret plaintext on untrusted computer in such a way
that the computer cannot know the plaintext.

Entities: trusted computer and untrusted computer.
Common input: composite number n = pq, public exponent e.
Secret input of trusted computer: plaintext x, check point (u, v), v ≡ ue (mod n).
Output: ciphertext y ≡ xe (mod n).
Method.
1. Trusted computer generates secret homomorphism (f(z), X(z)) using algo-

rithm 3 and sends it to untrusted computer.
2. Untrusted computer computes ciphertext Y = Xe ∈ /n[z]/(f(z)) and sends

it to trusted computer.
3. Trusted computer checks that Y(t2) ≡ v (mod n) and if it is so, finds cipher-

text y ≡ Y(t1) (mod n).

Consider small example. Let p = 57, q = 79, n = 47⋅79 = 3713, φ(n) = 3588. Let
secret exponent is e = 101, check point is u = 1002, v = ue = 164, plaintext is x =
1234.

Compute ring homomorphism. Choose t1 = 502, t2 = 2233 and find f(z) = z3 +
1110z + 3058. Compute coefficients of the image of plaintext according to algo-
rithm 3: a = 255, b = 3659, X(z) = 3659 + 255z + z2.

Encrypt image of plaintext. Y(z) = 2995 + 1425z + 2417z2.
Test that computation has no errors. Y(t2) ≡ v ≡ 164 (mod n), hence result likes

probably true.
Find the true ciphertext y ≡ Y(t1) ≡ 32 (mod n). Its coincides with xe (mod n)

computed by common method.
Map /n → /n, (mod)ez z na , GCD(e, φ(n)) = 1, is invertible. Hence

this map defines permutation of elements of /n and monomial ze is permutation

polynomial over /n. There are some other classes of permutation polynomials
over /n [1]: Lucas polynomials, Dickson polynomials, elliptic curve division
polynomials (elements of affine coordinate ring of corresponding elliptic curve),
etc. Permutation polynomial has inverse under polynomial composition. If
g(h(z)) = z, then h(g(h(z))) = h(z) and applying permutation, inverse to permutation
defined by h(z) we obtain h(g(z)) = z. So polynomials g(z) and h(z) are mutually
inverse under composition. If polynomial g(z) defines encryption, then polynomial
h(z) defines decryption. Analogs of RSA cryptosystem can be obtained changing
monomial ze by some permutation polynomial. Proposed privacy ring homomorph-
ism can be applied to any polynomial over /n and hence to any class of permu-
tation polynomials and protocol 5 can be easily transformed to public key encryp-
tion defined by some permutation polynomial over /n. Notice that due to ring
isomorphism /n ≅ /p ⊕ /q, permutation polynomials can be computed
over prime finite fields, Chinese remainder theorem gives permutation polynomial
over /n.

Consider Paillier elliptic curve encryption/decryption [3]. This protocol is simi-
lar to [9] and exploits elliptic curve E(/n2): V2W = U3 + AUW2 + BW3 (mod n2)
with number of points mn (number of points #E(/n) = m is secret key) and fixed
point Q ∈ E(/n2) of order m, GCD(m, n) = 1. This point can be computed from
random point Q′ ∈ E(/n2), Q = nQ′. Since elements of /n form ideal /n2,
elliptic curve E(/n2) has reduction modulo n and number of points of E modulo
n is m. Point at infinity (0, 1, 0) ∈ E(/n) can be lifted to point (xn, 1, 0) ∈
E(/n2) for any x, 0 ≤ x < n. Note that multiplying point (n, 1, 0) ∈ E(/n2) by
exponent x one obtains point (xn, 1, 0).

Paillier elliptic curve encryption of plaintext x takes next operations.
1. Generating random number r, 1 ≤ r ≤ n.
2. Computing over ring /n2 point rQ, computes point S = (xn, 1, 0) + rQ.

Ciphertext is point S.
Paillier public key decryption of ciphertext S takes elliptic curve point multipli-

cation by m. Then mS = mrQ + m(xn, 1, 0) = (mxn, 1, 0). Dividing U-coordinate of
this point by n, one obtains mx (mod n) and finds x ≡ m−1mx (mod n).

Since untrusted computer computes point rQ for random number r, using check
point is uncommon. So only passive model can be considered.

Secure decryption of ciphertext can be executed by next protocol.

Protocol 6. Paillier elliptic curve encryption on untrusted computer (passive
model).

It is required to decrypt ciphertext on untrusted computer in such a way that the
computer cannot know the plaintext.

Entities: trusted computer and untrusted computer.
Common input: a square of composite number, n2 = (pq)2, elliptic curve

E(/n2): V2W = U3 + AUW2 + BW3 (mod n2), point Q ∈ E(/n2).
Secret input of trusted computer: plaintext x, point Q ∈ E(/n2) of order m.
Output: ciphertext y.
Method.
1. Trusted computer generates secret homomorphism (f(z), X(z), Q(z)) using

algorithm 1 or algorithm 3 for arbitrary check input, deg(f) ≥ 3, and sends it
to untrusted computer (it is possible to use original point Q instead of Q(z)).

2. Untrusted computer generates random number r, 1 ≤ r ≤ n, computes point
rQ(z) (or point rQ), computes point Y(z) = (X(z)n, 1, 0) + rQ(z) and sends it
to trusted computer.

3. Trusted computer finds y ≡ Y(t) (mod n).

Consider small example. Let p = 37, q = 53, n = 37⋅53 = 1961. Elliptic curve
V2W = U3 + 2UW2 + 8W3 has m = 1581 points over /n and has mn points over
/n2. Point Q = (517462, 1, 1733727) has order m. Plaintext is x = 132.

Trusted computer computes ring homomorphism for the case when point Q is
unchanged. It chooses t1 = 502, t2 = 1000, finds f(z) = 281884 + 2091517z + z3,
X(z) = 655492 + 1882651z + z2 and sends f(z), X(z), Q to untrusted computer.

Untrusted computer computes point (nX(z), 1, 0), generates random number r =
1174, computes point Y(z) = rQ + (nX(z), 1, 0) = (3151615 + 370629z +
2074728z2, 1, 753386+727531z + 1078660z2) and sends point Y(z) to trusted com-
puter.

Trusted computer finds true ciphertext y ≡ Y(t1) (mod n2) = (3275158, 1,
3559577). Decryption of this ciphertext gives the plaintext.

5. Security

Problem of computing homomorphism between two general rings is in com-
plexity class AM ∩ co-AM and is not NP-complete [6].

Semantic security of proposed scheme for passive model depends on hardness
of finding a root of polynomial f(z) over /n. Given homomorphic image X(z)
can correspond to arbitrary x ≡ X(t) (mod n) with the same probabilities.

Proposed ring homomorphism seems to be secure, at least for passive model.
Indeed, if f(z) = z2 − D, then computing its root (mod)t D n≡ ± takes computing

(mod)D n and hence computing ϕ(n) or factorization of number n. Other algo-
rithms for computing (mod)D n are unknown.

Theorem 4. If there exists polynomial-time algorithm that computes one of
four possible values of (mod)D n for any D, which is a square in /n, then

there exists probabilistic polynomial-time algorithm of factorization of n with
probability arbitrary near to 1.

Proof. Choose arbitrary t ∈ (/n)*, compute D ≡ t2 (mod n). Applying algo-
rithm of computing square root, find (mod)w D n≡ . Since there are 4 different
values (mod)D n , with probability 0,5 we have w ≠ ±t (mod n). If this condition
holds, then GCD (n, t + w) is divisor of n. Else take another t and repeat the proce-
dure. After k attempts probability of factorization of n is 1 − 2−k. Is S is complexity
of computing (mod)D n , then after k attempts complexity of factorization is
O(k(S + (log n)2). n

Privacy homomorphism with check point cannot provide security if it is twice.
Indeed let untrusted computer obtains two inputs X1(z), X2(z) and correct output
Y1(z) corresponding to input X1(z). Then computing GCD(X1(z), X2(z)) = (z − t2),
untrusted computer can find true check result Y(t2) and can change true result so
that trusted computer cannot recognize the change. Hence, privacy homomorphism
can be attacked using birthday paradox. But if length of number n is about 1000
bits, this attack is impossible in practice.

Besides of that privacy homomorphism with check point is secure only if the
check point (input, output and intermediate data) is secret. Indeed, if untrusted
computer knows check input u and check output v, represented by polynomials
X(z), Y(z), then X(z) − u ≡ 0 (mod (z − t2)), Y(z) − v ≡ 0 (mod (z − t2)). Hence with
probability near to 1 equality holds z − t2 = GCD(X(z) − u, Y(z) − v). This allows
computing t2, and changing true result Y(z) by any Y(z) ≡ v (mod (z − t2)) so that
trusted computer cannot recognize the change. Instead of u, v intermediate data can
be used.

Cardano formulas for computing roots of polynomial f(z) = z3 + Az + B over

/n takes computing
3 2

(mod)
27 4
A BQ n= + , 3

1 2
Bw Q−

= + , 3
2 2

Bw Q−
= − ,

3 (mod)n− The roots of the polynomial are:

t1 = w1 + w2 (mod n),

1 2 1 2
2 3 (mod)

2 2
w w w wt n+ −

= − + − ,

1 2 1 2
3 3 (mod)

2 2
w w w wt n+ −

= − − − .

Known algorithms of computing a root of cubic polynomial f(z) takes computing
φ(n) and hence factorization of n.

Bibliography

1. Castagnos V. and Vergnaud D. Trapdoor permutation polynomials over
Z/nZ and public key cryptosystems // Proceedings of ISC 2007, pp.
333−350.

2. Fiat A., Shamir A. How to prove yourself: Practical solutions to identifica-
tion and signature problems // Advances in Cryptology — CRYPTO′85.
LNCS, v. 263, Springer-Verlag, 1990, pp. 186–194.

3. Galbraith S. Elliptic curve Paillier schemes // Journal of cryptology, v. 15,
No. 3, 2001, pp. 129−138.

4. Hazay C. and Lindell Y. Efficient oblivious polynomial evaluation with
simulation-based security // International association for Cryptologic re-
search, e-print IACR archive, 2009-459.

5. Kaltofen E. and Shoup V.. Subquadratic-time factoring of polynomials over
finite fields // Mathematics of computation, v. 67, Number 223, 1998, pp.
1179−1197.

6. Kayal N. and Saxena N. Complexity of ring morphism problems // Compu-
tational Complexity archive, v. 15, issue 4, 2006, pp. 342−390.

7. Lang S. Algebra, Addison-Wesley publishing company, 1965.
8. Naor M. and Pinkas B. Oblivious polynomial evaluation // SIAM J. of com-

puting, v. 35, number 5, 2006, pp. 1254−1281.
9. Paillier P. Public key cryptosystem based on composite degree residousity

classes // EUROCRYPT’99, LNCS, v. 1592, Springer-Verlag, 1999, pp.
223−238.

10. Rivest R. L., Shamir A. and Adleman L. A method for obtaining digital sig-
natures and public-key cryptosystems // Communications of the ACM, v. 21,
№ 2, 1978, pp. 120–126.

11. Tonicelli R., Dowsley R., Hanaoka G., Imai H., Muller-Quadi J., Otsuka A.
and Nascimento A.C.A. Sequentially composable information theoretically
secure oblivious polynomial evaluation // International association for Cryp-
tologic research, e-print IACR archive, 2009-270.

