
Fast Elliptic Curve Cryptography

Using Optimal Double-Base Chains

Vorapong Suppakitpaisarn1,2, Masato Edahiro1,3, and Hiroshi Imai1,2

1Graduate School of Information Science and Technology, the University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

2ERATO-SORST Quantum Computation and Information Project, JST
5-28-3 Hongo, Bunkyo-ku, Tokyo, Japan

3System IP Core Research Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara-ku, Kawasaki, Japan

Abstract. In this work, we propose an algorithm to produce the double-
base chains that optimize the time used for computing an elliptic curve
cryptosystem. The double-base chains is the representation that com-
bining the binary and ternary representation. By this method, we can
reduce the Hamming weight of the expansion, and reduce the time for
computing the scalar point multiplication (Q = rS), that is the bottle-
neck operation of the elliptic curve cryptosystem. This representation
is very redundant, i.e. we can present a number by many expansions.
Then, we can select the way that makes the operation fastest. However,
the previous works on double-bases chain have used a greedy algorithm,
and their solutions are not optimized. We propose the algorithm based
on the dynamic programming scheme that outputs the optimized the
double-bases chain. The experiments show that we have reduced the
time for computing the scalar multiplication by 3.88-3.95%, the multi-
scalar multiplication by 2.55-4.37%, and the multi-scalar multiplication
on the larger digit set by 3.5-12%.

Key words: Elliptic Curve Cryptography, Minimal Weight Conversion,
Digit Set Expansion, Double-Base Chains

1 Introduction

Scalar multiplication is the bottleneck operation of the elliptic curve cryptogra-
phy. It is to compute

Q = rS

when S, Q are points on the elliptic curve and r is a positive integer. There are
many works proposed the ways to reduce the computation time of the operation.
Most of them are based on double-and-add method. This method depends on
the binary expansion of r explained as follows:

Define n = ⌊lg r⌋, and

r =

n−1
∑

t=0

rt2
t

2 Suppakitpaisarn, Edahiro, and Imai

where rt is a member of a finite set Ds. We call Ds as digit set, and R =
〈r0, r1, . . . , rn−1〉 as the binary expansion of r. The Hamming weight W (R) is
defined as

W (R) =

n−1
∑

t=0

W (rt),

where W (rt) = 0 when rt = 0 and W (rt) = 1 otherwise. For example, let
Ds = {0, 1}, and r = 127 = 20 + 21 + 22 + 23 + 24 + 25 + 26. The binary
expansion of r is R = 〈1, 1, 1, 1, 1, 1, 1〉, and the Hamming weight W (R) = 7.

In the double-and-add scheme, we need two elementary operations, that are
point doubles(S + S, 2S) and point additions(S + Q when S 6= Q). The number
of point doubles is constant for each scalar r. However, the number of point
additions depends on the binary expansion. In some Ds, there are more than
one way to expand a positive integer, and we need select the efficient way. This
problem has been studied extensively in [1, 2].

In [3, 4], Dimitrov et al. proposed to use double-base chains on the elliptic
curve cryptography. Let

r =
m−1
∑

t=0

rt2
xt3yt ,

such that rt be a member of digit set Ds− {0} and xt ≤ xt+1, yt ≤ yt+1 for all
t. We define

C[r] = 〈R, X, Y 〉,

when R = 〈r0, r1, . . . , rm−1〉, X = 〈x0, x1, . . . , xm−1〉, Y = 〈y0, y1, . . . , ym−1〉 as
the double-base chains of r. Also, we define the Hamming weight of double-base
chains W (C[r]) = m. For examples, one of the double-base chains of 127 =
2030 + 2132 + 2233 is C[127] = 〈R, X, Y 〉 when

R = 〈1, 1, 1〉,

X = 〈0, 1, 2〉,

Y = 〈0, 2, 3〉.

In this case W (C[127]) = 3.
In addition to point doubles and point additions needed in the binary ex-

pansion, we also need point triples(3S). In some elliptic curves where the point
triple is relatively fast, double-base chains are shown to be faster than the binary
expansion.

Similar to the binary expansion, every scalars have more than one double-
base chains, and the efficiency of elliptic curve strongly depends on which chain
we use. The algorithm to select the good double-base chains is very important.
There are many works have studied the problem [3–6], and proposed greedy
algorithms that cannot guarantee the best chain. On the other hand, we adapted
our previous works [7–9], where we propose the dynamic programming algorithm
to find the minimal weight expansion of various representation. Then, we can find
the algorithm that always outputs the best chain, where the computation time

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 3

of all elementary operations (point additions, point doubles, point triples) have
been considered. By the experiment, we have shown that the optimal double-
base chains are better than the best greedy algorithm proposed on double base
chain [6] by 3.9% when Ds = {0,±1}.

Recently, there is the independent work [10] proposed the algorithm which
can output the chains with least Hamming weight when Ds = {0, 1}. We con-
sider their work as the specific case of our works as we are working on any finite
digit sets. Also, our algorithm can output the least Hamming weight by adjust-
ing the computation time for point doubles and point additions to zero. When
the point addition is the only elementary operation concerned, minimizing the
computation time of the scalar multiplication means optimizing the Hamming
weight.

There is also the work utilizing Yao’s algorithm with double base number

system [11, 12], which is the double-base without the restriction such that xt ≤
xt+1 and yt ≤ yt+1 [13]. Their results of the algorithm is comparable to our
results even when we select the Ds that gives the best result. However, our
algorithm works better on the elliptic curve that the point triple is fast comparing
to the point double. These include inverted coordinates on edwards curves which
has the fastest point doubles [14] up to this states.

Our contribution also covers the multi-scalar multiplication, that is the op-
eration used in digital signature scheme,

Q = r1S1 + r2S2 + · · ·+ rdSd.

To work on the operation, we need to define the joint binary expansion, and
the joint Hamming weight. Let n = ⌊lg(max(r1, . . . , rd))⌋. We define the joint
binary expansion of 〈r1, . . . , rd〉 as 〈R1, . . . , Rd〉 where Ri = 〈ri,0, . . . , ri,n−1〉 is
the binary expansion of ri. Let

wt =

{

0 if 〈r1,t, . . . , rd,t〉 = 〈0〉,

1 otherwise.

We can define the joint Hamming weight JW (R1, . . . , Rd) as

JW (R1, . . . , Rd) =

n−1
∑

t=0

wt.

For example, one of the joint binary expansion of r1 = 127 = 20 +21 +22 +23 +
24 + 25 + 26 and r2 = 109 = 20 + 22 + 23 + 25 + 26 is

R1 = 〈1, 1, 1, 1, 1, 1, 1〉,

R2 = 〈1, 0, 1, 1, 0, 1, 1〉.

The joint Hamming weight JW (R1, R2) is 7.
For the elliptic curve cryptography, the optimal joint binary expansion is the

expansion with the least joint Hamming weight. This problem has been studied
extensively in [7–9, 15].

4 Suppakitpaisarn, Edahiro, and Imai

For the double-base chains, we define the joint double-base chains

C[r1, . . . , rd] = 〈R1, . . . , Rd, X, Y 〉

where

Ri = 〈ri,0, ri,1, . . . , ri,m−1〉,

X = 〈x0, x1, . . . , xm−1〉,

Y = 〈y0, y1, . . . , ym−1〉,

ri =

m−1
∑

t=0

ri,t2
xt3yt ,

〈r1,t, . . . , rd,t〉 ∈ Ds− {〈0〉}, xt ≤ xt+1, and yt ≤ yt+1. Similar to the Hamming
weight for the double-base chains, the joint Hamming weight of the joint double-
base chains is JW (C) = m. For example, one of the joint double-base chain of
r1 = 127 = 2030 + 2132 + 2233 and r2 = 109 = 2030 + 2233 is C[127, 109] =
〈R1, R2, X, Y 〉 where

R1 = 〈1, 1, 1〉,

R2 = 〈1, 0, 1〉,

X = 〈0, 1, 2〉,

Y = 〈0, 1, 3〉.

The joint Hamming weight JW (C) is 3.

The optimal binary expansion on this case has been studied in [7–9], and
the greedy algorithm for double-base chains has been proposed in [14, 16, 17].
We generalize the idea on scalar multiplication and propose the optimal double-
base chain for multi-scalar multiplication. Our algorithm improve the greedy
algorithm proposed in [14] for Ds = {0,±1} and d = 2 by 2.81% on 192-bit
scalar and 4.37% on 512-bit scalar. We also reduce the computation time of
the representation such that Ds = {0,±1,±5} proposed in the same paper by
4.1% on 192-bit scalar and 5.1% on 512-bit scalar. Moreover, we compare our
results with the hybrid binary-ternary representation proposed in [16, 17] which
are using Ds = {0,±1,±2, 3} and d = 2. On the same representation, our results
are better by 12%.

This paper is organized as follows: we show the double-and-add scheme, and
how we utilize the double-base chain to elliptic curve cryptography in Section
2. In Section 3, we show our algorithm which outputs the optimal double-base
chain. Next, we show the experimental results comparing to the existing works
in Section 4. Last, we conclude the paper in Section 5.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 5

2 Preliminaries

Using the binary expansion R = 〈r0, r1, . . . , rn−1〉, where r =
∑n−1

t=0
rt2

t ex-
plained in Section 1, we can compute the scalar multiplication Q = rS by
double-and-add scheme as shown in Algorithm 1. For example, we compute
Q = 127S when the binary expansion of 127 is R = 〈1, 1, 1, 1, 1, 1, 1〉 as follows:

Q = 2(2(2(2(2(2S + S) + S) + S) + S) + S) + S.

We need six point doubles and six point additions in this example. Generally,
we need n − 1 point doubles, and n point additions. However, Q is initialized
to O, and we need not the point addition on the first iteration. Also, rtS = 0
if rt = 0, and we need not the point addition in this case. Hence, the number
of the point additions is W (R) − 1, where W (R) the Hamming weight of the
expansion defined in Section 1. The Hamming weight tends to be less if the digit
set Ds is larger. However, as we need to precompute rtS for all rt ∈ Ds, using
big Ds makes cost for the precomputation higher.

Algorithm 1 Double-and-add method

Require: A point on elliptic curve S, the positive integer r with the binary expansion
〈r0, r1, . . . , rn−1〉.

Ensure: Q = rS
1: Q← O
2: for t← n− 1 downto 0 do
3: Q← Q + rtS
4: if t 6= 0 then
5: Q← 2Q
6: end if
7: end for

In Algorithm 2, we show how to apply the double-base chain

C[r] = 〈R, X, Y 〉,

when

R = 〈r0, r1, . . . , rm−1〉,

X = 〈x0, x1, . . . , xm−1〉,

Y = 〈y0, y1, . . . , ym−1〉

to compute scalar multiplication. For example, one of the double-base chain of
127 = 2030+2132+2233 is C[127] = 〈R, X, Y 〉, where R = 〈1, 1, 1〉, X = 〈0, 1, 2〉,
Y = 〈0, 1, 3〉. Hence, we can compute Q = 127S as follows:

Q = 2132(2131S + S) + S.

6 Suppakitpaisarn, Edahiro, and Imai

In this case, we need two point additions, two point doubles, and three point
triples. In general, the number of point additions is W (C) − 1 = m− 1 defined
in Section 1. On the other hand, the number of point doubles and point triples
are xm−1 and ym−1 respectively.

Algorithm 2 Using the double-base chain to compute scalar multiplication

Require: A point on elliptic curve S, the positive integer r with the double-base
chains C[r] = 〈R, X, Y 〉, where R = 〈r0, . . . , rm−1〉, X = 〈x0, . . . , xm−1〉, Y =
〈y0, . . . , ym−1〉.

Ensure: Q = rS
1: Q← O
2: for t← m− 1 downto 0 do
3: Q← Q + rtS
4: if t 6= 0 then
5: Q← 2(xt−1−xt)3(yt−1−yt)Q
6: else
7: Q← 2x03y0Q
8: end if
9: end for

In the double-and-add method, the number of point doubles required is
proved to be constantly equal to n − 1 = ⌊lg r⌋ − 1. Then, the efficiency of
the binary expansion strongly depends on the number of point additions or the
Hamming weight. However, the number of point doubles and point triples are
not constant, as discussed in the previous paragraph that they are equal to xm−1

and ym−1 respectively. Hence, we need to optimize the value

xm−1 · Pdou + ym−1 · Ptri + (W (C[r]) − 1) · Padd,

when Pdou, Ptri, Padd are the cost for point double, point triple, and point addi-
tion respectively. This is different from the literature [1, 2, 7–10] where only the
Hamming weight is considered.

To compute multi-scalar multiplication Q = r1S1 + · · · + rdSd, we can uti-
lize Shamir’s trick [18]. Using the trick, the operation is claimed to be faster
than to compute r1S1, . . . , rdSd separately and add them together. We show the
Shamir’s Trick in Algorithm 3. For example, we can compute Q = r1S1 +r2S2 =
127S1 + 109S2 given the expansion of r1, r2 are R1 = 〈1, 1, 1, 1, 1, 1, 1〉 and
R2 = 〈1, 0, 1, 1, 0, 1, 1〉 as follows:

127S1 + 109S2 = 2(2(2(2(2(2D + D) + S1) + D) + D) + S1) + D,

where D = S1 + S2. We need six point doubles, six point additions in this case.
Generally, we need ⌊lg(max(r1, . . . , rd))⌋ − 1 point doubles, and JW (R1, R2)
point additions.

Algorithm 4 shows how we apply Shamir’s trick with the joint double-base
chain defined in Section 1. Q = 127S1+109S2 = (2030+2132+2233)S1 +(2030+

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 7

Algorithm 3 Shamir’s trick with the joint binary expansion

Require: A point on elliptic curve S, the positive integer r1, . . . , rd with the binary
expansion R1 = 〈r1,0, r1,1, . . . , r1,n−1〉, . . . , Rd = 〈rd,0, rd,1, . . . , rd,n−1〉.

Ensure: Q =
∑d

i=1 riSi

1: Q← O
2: for t← n− 1 downto 0 do
3: Q← Q +

∑d

i=1 ri,tSi

4: if t 6= 0 then
5: Q← 2Q
6: end if
7: end for

2233)S2 can be computed as follows:

Q = 127S1 + 109S2 = 2132(2131D + S1) + D,

where D = S1 +S2. Hence, we need two point additions, two point doubles, and
three point triples. Similar to the double-base chain, xm−1 point doubles, ym−1

point triples, and JW (C[127, 109])− 1 point additions are required in general.

Algorithm 4 Using Shamir’s trick with the joint double-base chain

Require: A point on elliptic curve S, the positive integer r with the double-base chains
C[r1, . . . , rd] = 〈R1, . . . , Rd, X, Y 〉, where
Ri = 〈ri,0, . . . , ri,m−1〉, X = 〈x0, . . . , xm−1〉, Y = 〈y0, . . . , ym−1〉.

Ensure: Q = rS
1: Q← O
2: for t← m− 1 downto 0 do
3: Q← Q +

∑d

i=1 ri,tSi

4: if t 6= 0 then
5: Q← 2(xt−1−xt)3(yt−1−yt)Q
6: else
7: Q← 2x03y0Q
8: end if
9: end for

3 Algorithm

3.1 Algorithm for single integer with Ds = {0, 1}

Define the cost to compute r using the chain C[r] = 〈R, X, Y 〉 as

P (C[r]) =

{

0 if C[r] = 〈〈〉, 〈〉, 〈〉〉,

xm−1 · Pdou + ym−1 · Ptri + (W (C[r]) − 1) · Padd otherwise.

8 Suppakitpaisarn, Edahiro, and Imai

Our algorithm is to find the double-base chain of r, C[r] = 〈R, X, Y 〉 such that
for all double-base chain of r, Ce[r] = 〈Re, Xe, Y e〉,

P (Ce[r]) ≥ P (C[r]).

To explain the algorithm, we start with a small example explained in Example
1 and Figure 1.

Fig. 1. We can compute C[7] by two ways. The first way is to compute C[3], and
perform a point double and a point addition. The cost in this way is P (C[3]) + Pdou +
Padd. The second way is to compute C[2], and perform a point triple and a point
addition, where the cost is P (C[2] + Ptri + Padd). The cost of the first way is smaller
than the second way, and we select the first way to compute C[7].

Example 1. Find the optimal chain C[7] = 〈R, X, Y 〉 given Ds = {0, 1}, Ptri =
20, Pdou = 1, and Padd = 1.

Assume that we are given the optimal chain C[3] = 〈R[3], X [3], Y [3]〉 of
3 =

⌊

7

2

⌋

and C[2] = 〈R[2], X [2], Y [2]〉 of 2 =
⌊

7

3

⌋

. We want to rewrite 7 as

7 =

m−1
∑

t=0

rt2
xt3yt ,

when rt ∈ Ds − {0} = {1}. As 2 ∤ 7 and 3 ∤ 7, the smallest term much be
1 = 2030. Hence, x0 = 0 and y0 = 0. Then,

7 =

m−1
∑

t=1

2xt3yt + 1.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 9

By this equation, there are only two ways to compute the scalar multiplication
Q = 7S with Algorithm 2. The first way is to compute 3S, do point double to
6S and point addition to 7S. As we know the the optimal chain for 3, the cost
using this way is

P (C[3]) + Pdou + Padd.

The other way is to compute 2S, do point triple to 6S and point addition to 7S.
In this case, the cost is

P (C[2]) + Ptri + Padd.

The optimal way is to select one of these two ways. We will show later that
P (C[3]) = 2 and P (C[2]) = 1. Then,

P (C[3]) + Pdou + Padd = 2 + 1 + 1 = 4,

P (C[2]) + Ptri + Padd = 1 + 20 + 1 = 22.

We select the first choice, and the optimal cost is P (C[7]) = 4. The optimal
C[7] = 〈R, X, Y 〉 is considered as follows:

R = 〈1, R[3]〉.

X = 〈x0, . . . , xm−1〉,

where x0 = 0 and xt = x[3]t−1 + 1 for 1 ≤ t ≤ m− 1.

Y = 〈y0, . . . , ym−1〉,

where y0 = 0 and yt = y[3]t−1 for 1 ≤ t ≤ m− 1.
Next, we find C[3] that is the optimal double-base chain of

⌊

7

2

⌋

= 3. Similar
to 7S, we can compute 3S by two ways. The first way is to triple the point S.
Using this way, we need one point triple, which costs Ptri = 20. The double-base
chain in this case will be

〈〈1〉, 〈0〉, 〈1〉〉.

The other way is that we double point S to 2S, then add 2S with S to get 3S.
The cost is Pdou + Padd = 1 + 1 = 2. In this case, the double-base chain is

〈〈1, 1〉, 〈0, 1〉, 〈0, 0〉〉.

We select the better double-base chain that is

C[3] = 〈〈1, 1〉, 〈0, 1〉, 〈0, 0〉〉.

Last, we find C[2], the optimal double-base chain of
⌊

7

3

⌋

= 2. The interesting
point to note is that there are only one choice to consider in this case. This is
because the fact that we cannot rewrite 2 by 3A + B when A ∈ Z and B ∈ Ds
if r ≡ 2 mod 3. Then, the only choice left is to double the point S, which costs
1, and the double-base chain is

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉.

10 Suppakitpaisarn, Edahiro, and Imai

To conclude, the optimal double-base chain for 7 in this case is

C[7] = 〈〈1, 1, 1〉, 〈0, 1, 2〉, 〈0, 0, 0〉〉.

We note that C is not the double-base with the least Hamming weight as

Ce[7] = 〈〈1, 1〉, 〈0, 1〉, 〈0, 1〉〉

has lower Hamming weight.

Fig. 2. Bottom-up algorithm to find the optimal double-base chain of r

Define C[r], C[
⌊

r
2

⌋

], C[
⌊

r
3

⌋

] be the optimal double-base chain of r,
⌊

r
2

⌋

,
⌊

r
3

⌋

respectively.From Example 1, we consider r as six cases as follows:

1. r ≡ 0 mod 2 and r ≡ 0 mod 3 (r ≡ 0 mod 6). In this case, we have two
choices. The first choice is to use the chain C[

⌊

r
2

⌋

] and do the point double.

The other choice is to use the chain C[
⌊

r
3

⌋

] and do the point triple.
2. r ≡ 1 mod 2 and r ≡ 1 mod 3 (r ≡ 1 mod 6). In this case, we have two

choices. The first choice is to use the chain C[
⌊

r
2

⌋

] and do the point double

with point addition. The other choice is to use the chain C[
⌊

r
3

⌋

] and do the
point triple with point addtion.

3. r ≡ 0 mod 2 and r ≡ 2 mod 3 (r ≡ 2 mod 6). In this case, we have only one
choice. That is do the point double on C[

⌊

r
2

⌋

].

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 11

4. r ≡ 1 mod 2 and r ≡ 0 mod 3 (r ≡ 3 mod 6). In this case, we have two
choices. The first choice is to use the chain C[

⌊

r
2

⌋

] and do the point double

with point addition. The other choice is to use the chain C[
⌊

r
3

⌋

] and do the
point triple.

5. r ≡ 0 mod 2 and r ≡ 1 mod 3 (r ≡ 4 mod 6). In this case, we have two
choices. The first choice is to use the chain C[

⌊

r
2

⌋

] and do the point double.

The other choice is to use the chain C[
⌊

r
3

⌋

] and do the point triple with
point addition.

6. r ≡ 1 mod 2 and r ≡ 2 mod 3 (r ≡ 5 mod 6). In this case, we have only one
choice. That is do the point double on C[

⌊

r
2

⌋

]. Then, do the point addition.

We summarize the above statement as the following relation:

P (Cr) =







































min(P (C[
⌊

r
2

⌋

]) + Pdou, P (C[
⌊

r
3

⌋

]) + Ptri) r ≡ 0 mod 6

min(P (C[
⌊

r
2

⌋

]) + Pdou + Padd, P (C[
⌊

r
3

⌋

]) + Ptri + Padd) r ≡ 1 mod 6

P (C[
⌊

r
2

⌋

]) + Pdou r ≡ 2 mod 6

min(P (C[
⌊

r
2

⌋

]) + Pdou + Padd, P (C[
⌊

r
3

⌋

]) + Ptri) r ≡ 3 mod 6

min(P (C[
⌊

r
2

⌋

]) + Pdou, P (C[
⌊

r
3

⌋

]) + Ptri + Padd) r ≡ 4 mod 6

P (C[
⌊

r
2

⌋

]) + Pdou + Padd r ≡ 5 mod 6

Next, we will step to the algorithm. In Example 1, we consider the compu-
tation as a top-down algorithm. However, bottom-up algorithm is better way
to implement the idea. We begin the algorithm by computing the double-base
chain of

⌊

r
2x3y

⌋

for all x, y ∈ Z+ such that x+ y = q where 2q ≤ r < 2q+1. Then,

we move to compute the double-base chain of
⌊

r
2x3y

⌋

for all x, y ∈ Z+ such that

x+y = q−1 by referring to the double-base chain of
⌊

r
2x3y

⌋

when x+y = q. We

decrease the number x + y until x + y = 0, and we get the chain of r =
⌊

r
2030

⌋

.
We illustrate this idea in Figure 2.

We use this idea with the equation above to propose Algorithm 5,6. In the
algorithm, we denote C[r] = 〈R[r], X [r], Y [r]〉 as the optimal double-base chain
of r. The algorithm completes in O(

⌊

lg2 r
⌋

), and consumes O(
⌊

lg2 r
⌋

) memory.
(O(⌊lg r⌋) chains, each chain needs O(⌊lg r⌋)) The algorithm is obviously fol-
lowing the idea given above. We explain how the algorithm works by Example
2.

Example 2. Find the optimal expansion of 10 when Padd = 1, Pdou = 1, and
Ptri = 1.

In this case, the value q assigned in Line 1 is ⌊lg 10⌋ = 3.

– On this first loop when q ← 3, the possible (x, y) are (3, 0), (2, 1), (1, 2), (0, 3),
and the value v ←

⌊

r
2x3y

⌋

are
⌊

10

2330

⌋

= 1,
⌊

10

2231

⌋

= 0,
⌊

10

2132

⌋

= 0,
⌊

10

2033

⌋

= 0.
By Lines 5-8 of Algorithm 5, the optimal expansion of 0 is 〈〈〉, 〈〉, 〈〉〉, and
the optimal expansion of 1 is 〈〈1〉, 〈0〉, 〈0〉〉.

– We move to the second step when q ← 2 when the possible (x, y) are
(2, 0), (1, 1), (0, 2). In this case, the value v are

⌊

10

2230

⌋

= 2,
⌊

10

2131

⌋

= 1,

12 Suppakitpaisarn, Edahiro, and Imai

Fig. 3. Illustration of the proposed algorithm when the input r = 10, Pdou = Ptri =
Padd = 1.

⌊

10

2032

⌋

= 1. As the first loop, C[1] = 〈〈1〉, 〈0〉, 〈0〉〉. We compute C[2] us-
ing the FindOptimal method defined in Algorithm 6. In the algorithm, we
compute c2 in Lines 1-4. As

v2 =

⌊

2

1

⌋

= 1,

P (C[v2]) = P (C[1]) = P (〈〈1〉, 〈0〉, 〈0〉〉)

= xm−1 · Pdou + ym−1 · Ptri + (W (C[1]) − 1) · Padd

= 0 · Pdou + 0 · Ptri + (1− 1) · Padd = 0.

Then, c2 ← 0 + Pdou = 1. We compute c3 in Lines 5-10. In this case, v ≡
2 mod 3, and c3 ←∞. Next, we compute C[v] in Lines 11-19. Since c2 ≤ c3

and v ≡ 0 mod 2, We edit C[v2] = 〈〈1〉, 〈0〉, 〈0〉〉 to C[v] = 〈〈1〉, 〈1〉, 〈0〉〉 by
Line 12.

– The third step is when q ← 1. The possible (x, y) are (1, 0) and (0, 1), and
the value v are

⌊

10

2130

⌋

= 5 and
⌊

10

2031

⌋

= 3. We compute C[5] and C[3] using
Algorithm 6. When v = 5, v2 = 2 and v3 = 1.

P (C[v2]) = P (C[2]) = P (〈〈1〉, 〈1〉, 〈0〉〉)

= 1 · Pdou + 0 · Ptri + (1− 1) · Padd = 1.

Then,
c2 = P (C[v2]) + Pdou + Padd = 1 + 1 + 1 = 3.

On the other hand, c3 =∞ as 5 ≡ 2 mod 3. We edit

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 13

Algorithm 5 The algorithm finding the optimal double-base chain for single
integer and Ds = {0, 1}

Require: the positive integer r
Ensure: the optimal double-base chain of r, C[r] = 〈R[r], X[r], Y [r]〉
1: q ← ⌊lg r⌋
2: while q ≥ 0 do
3: for all x, y ∈ Z+ such that x + y = q do
4: v ←

⌊

r

2x3y

⌋

5: if v = 0 then
6: C[v]← 〈〈〉, 〈〉, 〈〉〉
7: else if v = 1 then
8: C[v]← 〈〈1〉, 〈0〉, 〈0〉〉
9: else

10: v2 ←
⌊

r

2x+13y

⌋

11: v3 ←
⌊

r

2x3y+1

⌋

12: C[v]← FindOptimal(v, C[v2], C[v3])
13: end if
14: end for
15: q ← q − 1
16: end while

to

C[5] = 〈〈1, 1〉, 〈0, 2〉, 〈0, 0〉〉

by Line 14. When v = 3, v2 = v3 = 1, and

c2 = P (C[1]) + Pdou + Padd = 0 + 1 + 1 = 2,

c3 = P (C[1]) + Ptri = 1.

In this case, c3 < c2, and we edit

C[1] = 〈〈1〉, 〈0〉, 〈0〉〉

as in Line 16. The result is

C[3] = 〈〈1〉, 〈0〉, 〈1〉〉.

– In the last step, q ← 0, (x, y) = (0, 0) and v = 10. Then, v2 = 5 and v3 = 3.
As a result of the previous step,

C[v2] = C[5] = 〈〈1, 1〉, 〈0, 2〉, 〈0, 0〉〉,

and

P (C[5]) = 2 · Pdou + 0 · Ptri + (2− 1) · Padd = 3.

Then,

c2 = 3 + Pdou = 4.

14 Suppakitpaisarn, Edahiro, and Imai

On the other hand,

C[v3] = C[3] = 〈〈1〉, 〈0〉, 〈1〉〉.

P (C[3]) = 0 · Pdou + 1 · Ptri + (1− 1) · Padd = 1,

and
c3 = 1 + Ptri + Padd = 3.

Hence, c3 < c2. As 10 ≡ 1 mod 3, we edit C[v3] = C[3] as in Line 18. The
result is

C[10] = 〈〈1, 1〉, 〈0, 0〉, 〈0, 2〉〉,

and the cost

P (C[10]) = 0 · Pdou + 2 · Ptri + (2− 1) · Padd = 3.

We illustrate this example as in Figure 3. In the figure, we represent the first
step in the topmost row, and the last step in the bottommost. The lower node v
refer to the result of the upper node v2 and v3 with some additional cost Pdou,
Ptri, and Padd, and select the choice with minimal cost.

3.2 Generalized Algorithm for Any Digit Sets

In this section, we expand our results applying our former works [7–9] to our
previous subsection. As a result, the proposed double-base chains can be used
on the digit set other than {0, 1}.

When Ds = {0, 1}, we usually have two choices to compute C[v]. One is to
perform a point double, and use the subsolution

C[v2] = C[
⌊v

2

⌋

].

Another is to perform a point triple, and use the subsolution

C[v3] = C[
⌊v

3

⌋

].

However, we have more choices when we deploy larger digit set. For example,
when Ds = {0,±1}

5 = 2× 2 + 1 = 3× 2− 1 = 2× 3− 1,

the number of cases increase from one in the previous subsection to three. Also,
we need more optimal subsolution in this case. Even for point double, we need

C[2] = C[

⌊

5

2

⌋

]

and

C[3] = C[

⌊

5

2

⌋

+ 1].

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 15

We call

v =

⌊

5

2

⌋

= 2

as standard, and the additional term g[v] (g[2] = 1 in C[3] and g[2] = 0 in C[2])
as carry. By this definition, we get the relation

(v mod 2) + g[v] = u + g[v2],

when u ∈ Ds. This is the case when we choose to perform point double. Let

C[v2 + g[v2]] = 〈R′, X ′, Y ′〉

be the optimal solution of r = v2 + g[v2]. Define

X ′′ = 〈x′′

0 , . . . , x′′

m−1〉 where x′′

i = x′

i + 1,

Y ′′ = Y ′,

R′′ = R′.

The edited solution of C[v + g[v]] = 〈R, X, Y 〉 when

X =

{

X ′′ if u = 0,

〈0, X ′′〉 otherwise.

Y =

{

Y ′′ if u = 0,

〈0, Y ′′〉 otherwise.

R =

{

R′′ if u = 0,

〈u, R′′〉 otherwise.

If we perform point triple, the relation is

(v mod 3) + g[v] = u + g[v3].

Again, we define C[v3 + g[v3]] = 〈R′, X ′, Y ′〉 be the optimal solution of r =
v3 + g[v3], and

X ′′ = X ′,

Y ′′ = 〈y′′

0 , . . . , y′′

m−1〉 where y′′

i = y′

i + 1,

R′′ = R′.

Similar to the case when we perform point double, the edited solution of C[v +
g[v]] = 〈R, X, Y 〉 when

X =

{

X ′′ if u = 0,

〈0, X ′′〉 otherwise.

16 Suppakitpaisarn, Edahiro, and Imai

Y =

{

Y ′′ if u = 0,

〈0, Y ′′〉 otherwise.

R =

{

R′′ if u = 0,

〈u, R′′〉 otherwise.

The equation above is simply the generalized version of the equation defined in
Algorithm 6 Lines 11-19, but in Algorithm 6 g[v2] is always equal to 0. In this
case, g[v2] can be 1 as the example shown above. Then, we need to refer to the
subsolution C[v2 + g[v2]] = C[v2 + 1], in addition to only C[v2] in Algorithm
6. Actually, g[v2] can be more than 0 and 1. We define the set of possible g[v]
for any v as G. Appendix A shows that G is always finite if Ds is finite, and
proposes the algorithm to find the set. As we need refer to C[v2 + g[v2]] for all
g[v2] ∈ G, we compute all C[v + g[v]] for all g[v] ∈ G to be referred when we
compute the larger v. We illustrate the idea in Example 3 and Figure 4.

Fig. 4. Given Ds = {0,±1}, we can compute C[5] by three ways. The first way is
to compute C[2], and perform a point double and a point addition. The second is to
compute C[3], perform a point double, and a point substitution (add the point with
−S). The third is to compute C[2], perform a point triple, and a point substitution.
All methods consume the same cost.

Example 3. Compute the optimal double-base chain of 5 when Padd = Pdou =
Ptri = 1 and Ds = {0,±1}.

When Ds = {0,±1}, we can compute the carry set G = {0, 1}.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 17

We want to compute C[5] = 〈R, X, Y 〉 such that ri ∈ Ds and xi, yi ∈ Z,
xi ≤ xi+1, yi ≤ yi+1. 5 can be rewritten as follows:

5 = 2× 2 + 1 = (2 + 1)× 2− 1 = (1 + 1)× 3− 1.

We need C[2] (v2 = 2, g[v2] = 0), C[3] (v2 = 2, g[v2] = 1), and C[2] (v3 = 1,
g[v3] = 1).

It is easy to see that the optimal chain

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉,

and
C[3] = 〈〈1〉, 〈0〉, 〈1〉〉.

P (C[2]) = P (C[3]) = 1.
We choose the best choice among 5 = 2× 2 + 1, 5 = 3× 2− 1, 5 = 2× 3− 1.

By the first choice, we get the chain

C′[5] = 〈〈1, 1〉, 〈0, 0〉, 〈0, 2〉〉.

The second choice and the third choice is

C′′[5] = 〈〈−1, 1〉, 〈0, 1〉, 〈0, 1〉〉.

We get P (C′[5]) = P (C′′[5]) = 3, and both of them can be the optimal chain
(C[5] = C′[5] = C′′[5]).

Using the idea explained above, we propose Algorithm 7,8. Most parts of the
algorithms are similar to Algorithm 5,6. We only need to compute v + g[v] in
addition to v in Algorithm 5,6. We also explain the algorithm using Example 4.

Fig. 5. Calculating C[11] given Ds = {0,±1}, Padd = 1, Pdou = 2, Ptri = 3. In this
case, G = {0, 1}.

18 Suppakitpaisarn, Edahiro, and Imai

Example 4. Given Ds = {0,±1}. Find the optimal expansion of r = 11 when
Ptri = 3, Pdou = 2, and Padd = 1.

In this example, q is initialized to ⌊lg r⌋ = 3, and G = {0, 1}.

– In the first step when q = 3, we need to find the optimal expansion of the
number with the standard

⌊

r
2330

⌋

= 1 and
⌊ r

2231

⌋

=
⌊ r

2132

⌋

=
⌊ r

2033

⌋

= 0.

That is C[0] = C[0 + 0], C[1] = C[0 + 1] = C[1 + 0], C[2] = C[1 + 1]. By
Line 7-10 of Algorithm 7, C[0] = 〈〈〉, 〈〉, 〈〉〉, and C[1] = 〈〈1〉, 〈0〉, 〈0〉〉. To find
the value of C[2], we get v2 = 1, and v3 = 0. We note that the case we are
considering is special as C[2] is one of the input of Algorithm 8 (2 ∈ 1 + G).
However, we do not need C[2] to compute itself, and Algorithm 8 can be
terminated without the input C[2].
We find c2,u for each u in Lines 1-11 of Algorithm 8. When u ∈ {±1},
va − u ≡ 1 mod 2, and c2,u ← ∞. When u = 0, c2,0 = P (C[1]) + Pdou =
0 + 2 = 2. Then, c2 ← 2, u2 ← 0, and vc2 ← 1.
We find c3,u for each u in Lines 12-22 of Algorithm 8. va−u ≡ 1 mod 3 when
u = 1, and va− u ≡ 2 mod 3 when u = 0. Then, c3,u ←∞ when u ∈ {0, 1}.
When u = −1,

va− u = 3 ≡ 0 mod 3,

and
c3,−1 = P (C1) + Ptri + Padd = 0 + 3 + 1 = 4.

Then, c3 ← 4, u3 ← −1, and

vc3 =
2− (−1)

3
= 1.

Since c2 ≤ c3, C[2] ← 〈R[2], X [2], Y [2]〉 where R[2] = 〈1〉, X [2] = 〈1〉,
Y [2] = 〈0〉 by Line 24 of Algorithm 8.

– Next, we consider the case when q = 2. That is to find the optimal expansion
of the number with the standard

⌊

11

2230

⌋

= 2,

⌊

11

2131

⌋

=

⌊

11

2032

⌋

= 1.

That is C[1] = C[1 + 0], C[2] = C[1 + 1] = C[2 + 0], and C[3] = C[2 + 1].
We have already computed C[1] and C[2] in the first step. To compute C[3]
(va = 3), we get v2 = v3 = 1.
In Lines 1-11 of Algorithm 8, we find c2,u. When u = −1, va−u

2
= 2. From

the result on the previous step, P (C[2]) = 2, and

c2,−1 = 2 + Pdou + Padd = 2 + 2 + 1 = 5.

When u = 0, va−u = 1 ≡ 1 mod 2. Then, c2,0 =∞. When u = 1, va−u
2

= 1.
As P (C[1]) = 0,

c2,1 = 0 + Pdou + Padd = 2 + 1 = 3.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 19

Hence, c2 ← 3, u2 ← 1, vc2 ← 1.
In Lines 12-22 of Algorithm 8, we find c3,u. When u ∈ {±1}, va − u 6≡
0 mod 3, and c3,u ←∞. When u = 0,

c3,0 = P (C1) + Ptri = 0 + 3 = 3.

Since c2 ≤ c3, C[3] ← 〈R[3], X [3], Y [3]〉 where R[3] = 〈1, 1〉, X [3] = 〈0, 1〉,
Y [3] = 〈0, 0〉 by Line 26 of Algorithm 8.

– When q = 1, we find the optimal expansion of the number with the standard
⌊

11

2130

⌋

= 5 and
⌊

11

2031

⌋

= 3. Those are C[3] = C[3 + 0], C[4] = C[3 + 1],
C[5] = C[5 + 0], and C[6] = C[5 + 1].
We have already computed C[3] on the previous step. Then, we proceed to
C[4]. In this case,

c2 ← c2,0 = P (C[2]) + Pdou = 2 + 2 = 4,

u2 ← 0, and

vc2 ←
4− 0

2
= 2.

c3 ← c1,1 = P (C1) + Ptri + Padd = 0 + 3 + 1 = 4.

As a result, we use Line 24 of Algorithm 8 to edit

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉

to
C[4] = 〈〈1〉, 〈2〉, 〈0〉〉.

For C[5],

c2 ← c2,1 = P (C[2]) + Pdou + Padd = 2 + 2 + 1 = 5,

u2 ← 1, and

vc2 ←
5− 1

2
= 2.

c3 ← c3,−1 = P (C[2]) + Ptri + Padd = 2 + 3 + 1 = 6.

Then, we use Line 26 of Algorithm 8, and

C[5] = 〈〈1, 1〉, 〈0, 2〉, 〈0, 0〉〉.

For C[6],
c2 ← c2,0 = P (C[3]) + Pdou = 3 + 2 = 5,

u2 ← 0, and vc2 ← 3.

c3 ← c3,0 = P (C[2]) + Ptri = 2 + 3 = 5.

Then, we use Line 26 of Algorithm 8, and

C[6] = 〈〈1, 1〉, 〈1, 2〉, 〈0, 0〉〉.

20 Suppakitpaisarn, Edahiro, and Imai

– On the last step, q = 0, and we ready to find the solution C[11] in this step.

c2 ← c2,−1 = P (C[6]) + Pdou + Padd = 5 + 2 + 1 = 8,

while
c3 ← c4,−1 = P (C[4]) + Ptri + Padd = 4 + 3 + 1 = 8.

Since u2 ← −1 and vc2 ← 6. The solution

C[11]← 〈〈−1, 1, 1〉, 〈0, 2, 3〉, 〈0, 0, 0〉〉.

We illustrate this example in Figure 5. Also, we note that when Ptri > Pdou,
we rarely use point triples (as we have not used any point triples to compute
C[11]). The situation is worse when Ptri ≈ 2× Pdou in many elliptic curves.

3.3 Generalized Algorithm for Multiple Integers

In this subsection, we expand the algorithm proposed on the previous sub-
section for the multi-scalar multiplication. In this case, we can use Shamir’s
trick to reduce the computation cost. The cost in this case PJ(C) when C =
〈R1, . . . , Rd, X, Y 〉 is

PJ(C) = xm−1 · Pdou + ym−1 · Ptri + (JW (C) − 1) · Padd,

as explained in Section 2.
We show the method in Algorithm 9,10. The generalization from Algorithm

7,8 are quite simple. We just replace the single integer with a tuple, and change
the cost function P to the joint cost function PJ .

4 Results

To evaluate our algorithm, we show some experimental results in this section.
We perform the experiment on each implementation environment such as the
scalar multiplication defined on the binary field (F2q), the scalar multiplication
defined on the prime field (Fp), and the multi-scalar multiplication defined on the
prime field. To compute point addition, point double, and point triple defined in
Section 1, we need to compute field inversion, field squaring, and field multipli-
cation. We define the cost for field inversion as [i], field squaring as [s], and field
multiplication as [m]. Basically, Pdou = Padd = [i] + [s] + 2[m]. However, there
are many researches working on optimizing more complicated operation such as
point triple, point quadruple [3, 4, 19, 20]. Moreover, when point addition is cho-
sen to perform just after the point double, we can use some intermediate results
of point double to reduce the computation time of point addition. Then, it is
more convenient to consider point double and point addition together as the ba-
sic operation. We call the operation as point double-and-add. The computation
cost of point double-and-add is Pdou+add. The similar thing also happen when
we perform point addition after point triple, and we also define point triple-and-
add as another basic operation. Also, we define the computation cost of point
triple-and-add as Ptri+add. It is obvious that we can treat these improvements
by a little modification in Algorithm 9,10.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 21

4.1 Scalar Multiplication on the Binary Field

In the binary field, the field squaring is very fast, i.e. [s] ≈ 0. Normally, 3 ≤
[i]/[m] ≤ 10. There are two methods to compute point double-and-add, point
triple, and point triple-and-add proposed by [19, 20]. In [20],

Pdou+add = 2[i] + 2[s] + 3[m]

while
Pdou+add = 1[i] + 2[s] + 9[m]

in [19]. Then, it is faster to use the method proposed in [19] if [i]/[m] ≤ 6. Also,

Ptri = 2[i] + 2[s] + 3[m]

in [20], and
Ptri = 1[i] + 4[s] + 7[m]

in [19], and [19] is better when [i]/[m] ≤ 4. For point triple-and-addition,

Ptri+add = 3[i] + 3[s] + 4[m]

in [20], and
Ptri+add = 2[i] + 3[s] + 9[m]

in [19]. Again, [19] is better when [i]/[m] ≤ 5.
In this subsection, we use the same parameter as [3] does, and perform two

experiments. First, We set [i]/[m] = 4 and use the method from [20]. In this
case,

Pdou = Padd = [i] + [s] + 2[m] = 6[m],

Pdou+add = Ptri = 2[i] + 2[s] + 3[m] = 11[m],

and
Ptri+add = 3[i] + 3[s] + 4[m] = 16[m].

In another experiment, we set [i]/[m] = 8 and use the method from [19]. In this
case,

Pdou = Padd = [i] + [s] + 2[m] = 10[m],

Pdou+add = 1[i] + 2[s] + 9[m] = 17[m],

Ptri = 1[i] + 4[s] + 7[m] = 15[m],

and
Ptri+add = 2[i] + 3[s] + 9[m] = 25[m].

In both experiments, we set Ds = {0,±1}, and we randomly select 10000 pos-
itive integers which are less than 2163, and find the average computation cost
comparing between the optimal chain proposed in this paper and the greedy al-
gorithm presented in [3, 4]. The results are shown in Table 1. Our result is 4.06%
better than [3] when [i]/[m] = 4, and 4.77% better than [3] when [i]/[m] = 8.

22 Suppakitpaisarn, Edahiro, and Imai

Table 1. Comparing the computation cost for scalar point multiplication using double-
base chains when the elliptic curve is implemented in the binary field

Method [i]/[m] = 4 [i]/[m] = 8

Binary 1627[m] 2441[m]
NAF [1] 1465[m] 2225[m]
Ternary/Binary [12] 1463[m] 2168[m]
DB-Chain (Greedy) [3] 1427[m] 2139[m]
Optimized DB-Chain (Our Result) 1369[m] 2037[m]

4.2 Scalar Multiplication on the Prime Field

When we compute the scalar multiplication on the prime field, field inversion is
very expensive task as [i]/[m] is usually more than 30. To cope with that, we
compute in the coordinate in which we need to perform field inversion as least
as possible such as inverted Edward coordinate with a curve in Edwards form
[21]. Up to this state, it is the fastest way to implement scalar multiplication. In
this case, the number of field inversion required in each scalar multiplication is
constant, and Padd = 9[m]+1[s], Pdou = 3[m]+4[s], and Ptri = 9[m]+4[s] [22]. To
compare our results with the existing work, we set the parameter similar to what
[6] does. [s] = 0.8[m], and Ds = {0,±1}. We perform five experiments, for the
positive integer less than 2256, 2320, 2384, 2448, and 2512. In each experiment, we
randomly select 10000 integer, and find the average computation cost in term of
[m]. We show the results in Table 2. Our results improve the tree-based approach
proposed by Doche and Habsieger by 3.95%, 3.88%, 3.90%, 3.90%, 3.90% when
the bit number is 192 bits, 256 bits, 320 bits, 384 bits, 512 bits respectively.

Table 2. Comparing the computation cost for scalar point multiplication using double-
base chains when the elliptic curve is implemented in the prime field

Method 192 bits 256 bits 320 bits 384 bits 512 bits

NAF [1] 1817.6[m] 2423.5[m] 3029.3[m] 3635.2[m] 4241.1[m]
Ternary/Binary [12] 1761.2[m] 2353.6[m] 2944.9[m] 3537.2[m] 4129.6[m]
DB-Chain (Greedy) [4] 1725.5[m] 2302.0[m] 2879.1[m] 3455.2[m] 4032.4[m]
Tree-Based Approach [6] 1691.3[m] 2255.8[m] 2821.0[m] 3386.0[m] 3950.3[m]
Our Result 1624.5[m] 2168.2[m] 2710.9[m] 3254.1[m] 3796.3[m]

We also compare our results with the other digit sets. In this case, we com-
pare our results with the works by Bernstein et al. [5]. In the paper, they use
the different way to measure the computation cost of the scalar multiplica-
tion. In addition to the cost of computing rS, they also consider the cost for
the precomputation. For example, we need to precompute 3S, 5S, . . . , 17S when
Ds = {0,±1,±3, . . . ,±17}. We perform the experiment on eight different curves
and coordinates. In each curve, the computation cost for point double, point ad-

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 23

dition, and point triple are different, and we use the same parameter as defined
in [5]. We use Ds = {0,±1,±3, . . . ,±(2h + 1)}, and we check all 0 ≤ h ≤ 20 to
find the digit set that give us the minimal average computation cost. Although,
the computation cost of the scalar multiplication tends to be lower if we use
larger digit set, the higher precomputation cost makes optimal h lied between 6
to 8 in most of cases.

Recently, there is a research by Meloni and Hasan [13]. Instead of using
double-base chain, they use double-base number system defined in Section 1. To
cope with the difficulties computing the number system, they introduce Yao’s
algorithm. Their result significantly improves the result using the double-base
chain using greedy algorithm, especially the curve where point triple is expensive.

In Table 3-4, we compare the results in [5], [13] with our algorithm. In Table 4,
we randomly choose 10000 positive integers less than 2160 while the numbers are
less than 2256. As the improvement from [5], our algorithm significantly improves
the efficiency. On the other hand, our results do not improve the result from [13]
in many cases. These cases are the case when point triple is costly operation,
and we need only few point triples in the optimal chain. In this case, Yao’s
algorithm works efficiently. However, our algorithm works better in the inverted
Edward coordinate, which is commonly used as the benchmark to compare the
algorithm.

Table 3. Comparing the computation cost for scalar point multiplication using double-
base chains in larger digit set when the elliptic curve is implemented in the prime field,
and the bit number is 160

Method 3DIK Edwards ExtJQuartic Hessian

DBC + Greedy Alg. [5] 1502.4[m] 1322.9[m] 1311.0[m] 1565.0[m]
DBNS + Yao’s Alg. [13] 1477.3[m] 1283.3[m] 1226.0[m] 1501.8[m]
Our Algorithm 1438.7[m] 1284.3[m] 1276.5[m] 1514.4[m]

Method InvEdwards JacIntersect Jacobian Jacobian-3

DBC + Greedy Alg. [5] 1290.3[m] 1438.8[m] 1558.4[m] 1504.3[m]
DBNS + Yao’s Alg. [13] 1258.6[m] 1301.2[m] 1534.9[m] 1475.3[m]
Our Algorithm 1257.5[m] 1376.0[m] 1514.5[m] 1458.0[m]

4.3 Multi-scalar Multiplication on the Prime Field

In this subsection, we use the algorithm proposed in Subsection 3.3, and compare
our experimental results with the work by Doche et al. [14]. In this experiment,
we are interested on the scalar multiplication when d = 2, i.e. we have two inputs
r1, r2. We set Ds = {0,±1}, and use inverted Edwards coordinates. There are

24 Suppakitpaisarn, Edahiro, and Imai

Table 4. Comparing the computation cost for scalar point multiplication using double-
base chains in larger digit set when the elliptic curve is implemented in the prime field,
and the bit number is 256. The results in this table is different from the others. Each
number is the cost for computing a scalar multiplication added by the precomputation
time. In each case, we find the digit set Ds that makes the number minimal.

Method 3DIK Edwards ExtJQuartic Hessian

DBC + Greedy Alg. [5] 2393.2[m] 2089.7[m] 2071.2[m] 2470.6[m]
DBNS + Yao’s Alg. [13] 2319.2[m] 2029.8[m] 1991.4[m] 2374.0[m]
Our Algorithm 2287.4[m] 2031.2[m] 2019.4[m] 2407.4[m]

Method InvEdwards JacIntersect Jacobian Jacobian-3

DBC + Greedy Alg. [5] 2041.2[m] 2266.1[m] 2466.2[m] 2379.0[m]
DBNS + Yao’s Alg. [13] 1993.3[m] 2050.0[m] 2416.2[m] 2316.2[m]
Our Algorithm 1989.9[m] 2173.5[m] 2413.2[m] 2319.9[m]

six experiments shown in Table 5. In each experiment, we randomly select 10000
pairs of positive integers, which are less than 2192, 2256, 2384, 2448, 2512. Our
algorithm improves the tree-based approach by 2.81%, 2.69%, 2.55%, 3.58%,
3.80%, 4.37% when the bit number is 192,256,320,384,448,512 respectively.

Table 5. Comparing the computation cost for multi scalar multiplication using double-
base chains when the elliptic curve is implemented in the prime field

Method 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

JSF [15] 2044[m] 2722[m] 3401[m] 4104[m] 4818[m] 5531[m]
JBT [14] 2004[m] 2668[m] 3331[m] 4037[m] 4724[m] 5417[m]
Tree-Based [14] 1953[m] 2602[m] 3248[m] 3938[m] 4605[m] 5292[m]
Our Result 1898[m] 2532[m] 3165[m] 3797[m] 4430[m] 5061[m]

We also compare our algorithm in the case that digit set is larger than 〈0,±1〉.
In [14], there is also a result when Ds = {0,±1,±5}. Then, we compare our
result with the result in Table 6. In this case, our algorithm improves the tree-
based approach by 4.1%, 3.7%, 3.5%, 4.6%, 4.6%, 5.1% when the bit number is
192,256,320,384,448,512 respectively.

Moreover, we observe that the hybrid binary-ternary number system pro-
posed by Adikari et al. [16, 17] is the double-base chains for multi-scalar multi-
plication when Ds = {0,±1,±2, 3}. Although the conversion algorithm is com-
paratively fast, there is a large gap between the efficiency of their outputs and
the optimal output. We show in Table 7 that the computation cost of the optimal
chains are better than the hybrid binary-ternary number system by 11−12% on
average.

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 25

Table 6. Comparing the computation cost for multi scalar multiplication using
double-base chains when the elliptic curve is implemented in the prime field, and
Ds = {0,±1,±5}

Method 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Tree-Based [14] 1795[m] 2390[m] 2984[m] 3624[m] 4234[m] 4862[m]
Our Result 1722[m] 2301[m] 2880[m] 3457[m] 4039[m] 4616[m]

Table 7. Comparing the computation cost for multi scalar multiplication using
double-base chains when the elliptic curve is implemented in the prime field, and
Ds = {0,±1,±2, 3}

Method 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Hybrid Binary-Ternary [16, 17] 1905[m] 2537[m] 3168[m] 3843[m] 4492[m] 5159[m]
Our Result 1694[m] 2263[m] 2832[m] 3400[m] 3968[m] 4537[m]

5 Conclusion and Future Works

In this work, we use the dynamic programming algorithm to present the optimal
double-base chain. The chain guarantees the optimal computation cost on the
scalar multiplication. The time complexity of the algorithm is O(lg2 r), similar
to the greedy algorithm. Also, our algorithms consume the same amount of
memory as the tree-based approach, O(lg2 r). The experiment result shows that
the optimal chain significantly improve the efficiency of scalar multiplication
from the greedy algorithm.

As a future works, we want to analyze the minimal average number of term
required for each integer. It is proved that the average number of term required
to define integer r, when 0 ≤ r < 2q is o(q) [11, 12]. Even the output of the
greedy algorithm, the number of term is o(q). However, the greedy algorithm
need Θ(q) for the double-base chain. Then, it is interesting to prove whether the
average optimal number of term in the chain is o(q). The result might introduce
us to sub-linear time scalar multiplication.

Another future work is to apply the dynamic programming algorithm to
DBNS. As [13] introduce Yao’s algorithm on the greedy result to improve the
operation, the optimal result can reduce the computation cost further. However,
there are some clues in our recent results pointed out that the problem might
be NP-hard.

References

1. Egecioglu, O., Koc, C.K.: Exponentiation using canonical recoding. Theoretical
Computer Science 8(1) (1994) 19–38

2. Muir, J.A., Stinson, D.R.: New minimal weight representation for left-to-right win-
dow methods. Department of Combinatorics and Optimization, School of Com-
puter Science, University of Waterloo (2004)

26 Suppakitpaisarn, Edahiro, and Imai

3. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Proc. of ASIACRYPT 2005. (2005)
59–78

4. Dimitrov, V., Imbert, L., Mishra, P.K.: The double-base number system and its
application to elliptic curve cryptography. Mathematics of Computation 77 (2008)
1075–1104

5. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: In Progress in Cryptology - INDOCRYPT
2007. Volume 4859 of Lecture Notes in Computer Science., Springer (2007) 167–182

6. Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains.
In: ACISP 2008. (2008) 433–446

7. Suppakitpaisarn, V.: Optimal average joint hamming weight and digit set expan-
sion on integer pairs. Master’s thesis, The University of Tokyo (2009)

8. Suppakitpaisarn, V., Edahiro, M.: Fast scalar-point multiplication using enlarged
digit set on integer pairs. Proc. of SCIS 2009 (2009) 14

9. Suppakitpaisarn, V., Edahiro, M., Imai, H.: Optimal average joint hamming weight
and minimal weight conversion of d integers. Cryptology ePrint Archive 2010/300
(2010)

10. Imbert, L., Philippe, F.: How to compute shortest double-base chains? In: ANTS
IX. (July 2010)

11. Dimitrov, V., Cooklev, T.V.: Two algorithms for modular exponentiation based on
nonstandard arithmetics. IEICE Trans. Fundamentals E78-A(1) (January 1995)
82–87 special issue on cryptography and information security.

12. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponenti-
ations. Information Processing Letters 66 (1998) 155–159

13. Meloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining yao’s
algorithm and double bases. In: CHES 2009. (2009) 304–316

14. Doche, C., Kohel, D.R., Sica, F.: Double-base number system for multi-scalar
multiplications. In: EUROCRYPT 2009. (2009) 502–517

15. Solinas, J.A.: Low-weight binary representation for pairs of integers. Centre for
Applied Cryptographic Research, University of Waterloo, Combinatorics and Op-
timization Research Report CORR (2001)

16. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary-ternary number system for
elliptic curve cryptosystems. In: ARITH19. (2009) 76–82

17. Adikari, J., Dimitrov, V., Imbert, L.: Hybrid binary-ternary number system for
elliptic curve cryptosystems. IEEE Transactions on Computers 99 (2010) to appear

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. on Information Theory IT-31 (1985) 469–472

19. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(6)
(2006) 189–206

20. Eisentrager, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and
improved Weil pairing evaluation. In: Topics in Cryptology - CT-RSA 2003. Volume
2612 of Lecture Notes in Computer Science., Springer (2003) 343–354

21. Bernstein, D.J., Lange, T.: Inverted edwards coordinates. In Boztas, S., H.-F.Lu,
eds.: AAECC 2007. Volume 4851 of Lecture Note in Computer Science., Heidelberg,
Springer (2007) 20–27

22. Bernstein, D., Lange, T.: Explicit-formulas database

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 27

Appendix A: The Carry Set

In this section, we present the algorithm to find the carry set G. We show the
method in Algorithm 11. It is based on breadth-first search scheme. And, we
find the upper bound of the cardinality of the carry set in Lemma 1.

Lemma 1. Given the finite digit set Ds, Algorithm 3 always terminates. And,

||G|| ≤ maxDs−min Ds + 2,

when G is the output carry set.

Proof. Since

G = {
c− d

2
∈ Z|d ∈ Ds ∧ c ∈ G} ∪ {

c− d + 1

2
∈ Z|d ∈ Ds ∧ c ∈ G}

∪{
c− d

2
∈ Z|d ∈ Ds ∧ c ∈ G} ∪ {

c− d + 1

2
∈ Z|d ∈ Ds ∧ c ∈ G}.

min G ≥
min G−maxDs

2
.

Then,
min G ≥ −maxDs.

Also,
maxG ≤ −minDs + 1.

We conclude that if Ds is finite, G is also finite. And, Algorithm 3 always ter-
minates.

||G|| ≤ maxDs−min Ds + 2.

⊓⊔

28 Suppakitpaisarn, Edahiro, and Imai

Algorithm 6 FindOptimal(v, C[v2], C[v3])

Require: the positive integer v,
the optimal double base chain of

⌊

v

2

⌋

, C[v2],
and the optimal double base chain of

⌊

v

3

⌋

, C[v3]
Ensure: the optimal double base chain of v, C[v]
1: c2 ← P (C[v2]) + Pdou

2: if v ≡ 1 mod 2 then
3: c2 ← c2 + Padd

4: end if
5: c3 ← P (C[v3]) + Ptri

6: if v ≡ 1 mod 3 then
7: c3 ← c3 + Padd

8: else if v ≡ 2 mod 3 then
9: c3 ←∞

10: end if
11: if c2 ≤ c3 and v ≡ 0 mod 2 then
12: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = R[v2]
X[v] = 〈x[v]0, . . . , x[v]m−1〉 where x[v]t ← x[v2]t + 1
Y [v] = Y [v2]

13: else if c2 ≤ c3 and v ≡ 1 mod 2 then
14: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = 〈1, R[v2]〉
X[v] = 〈0, x[v]1, . . . , x[v]m−1〉 where x[v]t ← x[v2]t−1 + 1
Y [v] = 〈0, Y [v2]〉

15: else if v ≡ 0 mod 3 then
16: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = R[v3]
X[v] = X[v3]
Y [v] = 〈y[v]0, . . . , y[v]m−1〉 where y[v]t ← y[v3]t + 1

17: else if v ≡ 1 mod 3 then
18: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = 〈1, R[v3]〉
X[v] = 〈0, X[v3]〉
Y [v] = 〈0, y[v]1, . . . , y[v]m−1〉 where y[v]t ← y[v3]t−1 + 1

19: end if

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 29

Algorithm 7 The algorithm finding the optimal double-base chain for single
integer for any Ds

Require: the positive integer r, the finite digit set Ds, and the carry set G
Ensure: the optimal double-base chain of r, C[r] = 〈R[r], X[r], Y [r]〉
1: q ← ⌊lg r⌋
2: while q ≥ 0 do
3: for all x, y ∈ Z+ such that x + y = q do
4: v ←

⌊

r

2x3y

⌋

5: for all g[v] ∈ G do
6: va← v + g[v]
7: if va = 0 then
8: C[va]← 〈〈〉, 〈〉, 〈〉〉
9: else if va ∈ Ds then

10: C[va]← 〈〈va〉, 〈0〉, 〈0〉〉
11: else
12: v2 ←

⌊

r

2x+13y

⌋

13: v3 ←
⌊

r

2x3y+1

⌋

14: C[va]← FindOptimal(va,C[v2 + G], C[v3 + G])
15: end if
16: end for
17: end for
18: q ← q − 1
19: end while

30 Suppakitpaisarn, Edahiro, and Imai

Algorithm 8 FindOptimal(va, C[v2 + G], C[v3 + G])

Require: the positive integer va,
the optimal double base chain of

⌊

va

2

⌋

+ g[
⌊

va

2

⌋

] for all g[
⌊

va

2

⌋

] ∈ G, C[va2 + G],
and the optimal double base chain of

⌊

va

3

⌋

+g[
⌊

va

3

⌋

] for all g[
⌊

va

3

⌋

] ∈ G, C[va3 +G]
Ensure: the optimal double base chain of va, C[va]
1: for all u ∈ Ds do
2: if va− u ≡ 0 mod 2 then
3: c2,u ← P (C[va−u

2
]) + Pdou

4: if u 6= 0 then
5: c2,u ← c2,u + Padd

6: else
7: c2,u ←∞
8: end if
9: end if

10: end for
11: c2 ← minu∈Ds c2,u, u2 ← minargu∈Dsc2,u, vc2 ←

va−u2

2

12: for all u ∈ Ds do
13: if va− u ≡ 0 mod 3 then
14: c3,u ← P (C[va−u

3
]) + Ptri

15: if u 6= 0 then
16: c3,u ← c3,u + Padd

17: else
18: c3,u ←∞
19: end if
20: end if
21: end for
22: c3 ← minu∈Ds c3,u, u3 ← minargu∈Dsc3,u, vc3 ←

va−u3

3

23: if c2 ≤ c3 and u2 = 0 then
24: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = R[vc2]
X[v] = 〈x[v]0, . . . , x[v]m−1〉 where x[v]t ← x[vc2]t + 1
Y [v] = Y [vc2]

25: else if c2 ≤ c3 then
26: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = 〈u2, R[vc2]〉
X[v] = 〈0, x[v]1, . . . , x[v]m−1〉 where x[v]t ← x[vc2]t−1 + 1
Y [v] = 〈0, Y [vc2]〉

27: else if u3 = 0 then
28: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = R[vc3]
X[v] = X[vc3]
Y [v] = 〈y[v]0, . . . , y[v]m−1〉 where y[v]t ← y[vc3]t + 1

29: else
30: C[v]← 〈R[v], X[v], Y [v]〉 where

R[v] = 〈u3, R[vc3]〉
X[v] = 〈0, X[vc3]〉
Y [v] = 〈0, y[v]1, . . . , y[v]m−1〉 where y[v]t ← y[vc3]t−1 + 1

31: end if

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 31

Algorithm 9 The algorithm finding the optimal double-base chain for d integers
on any digit set Ds

Require: the positive integer r1, . . . , rd, the finite digit set Ds, and the carry set G
Ensure: the optimal double-base chain of M = 〈r1, . . . , rd〉,

C[M] = 〈R[M]1, . . . , R[M]d, X[M], Y [M]〉
1: q ← maxi ⌊lg ri⌋
2: while q ≥ 0 do
3: for all x, y ∈ Z+ such that x + y = q do
4: vi ←

⌊

ri

2x3y

⌋

for 1 ≤ i ≤ d

5: for all 〈g[v]1 . . . g[v]d〉 ∈ Gd do
6: vai ← vi + gv

i for 1 ≤ i ≤ d, V ← 〈va1, . . . , vad〉
7: if V = 0 then
8: C[V]← 〈〈〉, 〈〉, 〈〉〉
9: else if V ∈ Dsd then

10: C[V]← 〈〈va1〉, . . . , 〈vad〉, 〈0〉, 〈0〉〉
11: else
12: V2 ← 〈

⌊

r1

2x+13y

⌋

, . . . ,
⌊

rd

2x+13y

⌋

〉

13: V3 ← 〈
⌊

r1

2x3y+1

⌋

, . . . ,
⌊

rd

2x3y+1

⌋

〉
14: C[V]← FindOptimal(V, C[V2 + G[d]], C[V3 + G[d]])
15: end if
16: end for
17: end for
18: q ← q − 1
19: end while

32 Suppakitpaisarn, Edahiro, and Imai

Algorithm 10 FindOptimal(V, C[V2 + G], C[V3 + G])

Require: V = 〈va1, . . . , vad〉 where vai are possitive integers,
the optimal double base chain of V2 + g[V2] for all g[V2] ∈ G, C[V2 + G],
and the optimal double base chain of V3 + g[V3] for all g[V3] ∈ G, C[V3 + G]

Ensure: the optimal double base chain of V , C[V]
1: for all U = 〈u1 . . . ud〉 ∈ Dsd do
2: if vai − ui ≡ 0 mod 2 for all 1 ≤ i ≤ d then
3: V C2,U ← 〈

va1−u1

2
, . . . vad−ud

2
〉

c2,U ← PJ(C[V C2,U]) + Pdou

4: if U 6= 0 then
5: c2,U ← c2,U + Padd

6: else
7: c2,U ←∞
8: end if
9: end if

10: end for
11: c2 ← minU∈Dsd c2,U

U2 ← minargU∈Dsc2,U

V C2 ← V C2,U2

12: for all U = 〈u1 . . . ud〉 ∈ Dsd do
13: if vai − ui ≡ 0 mod 3 for all 1 ≤ i ≤ d then
14: V C3,U ← 〈

va1−u1

3
, . . . vad−ud

3
〉

c3,U ← PJ(C[V C3,U]) + Ptri

15: if U 6= 0 then
16: c3,U ← c3,U + Padd

17: else
18: c3,U ←∞
19: end if
20: end if
21: end for
22: c3 ← minU∈Dsd c3,U

U3 ← minargU∈Dsc3,U

V C3 ← V C3,U3

23: if c2 ≤ c3 and U = 0 then
24: C[V]← 〈R[V]1, . . . , R[V]d, X[V], Y [V]〉 where

R[V]i = R[V C2]i for 1 ≤ i ≤ d
X[V] = 〈x[V]0, . . . , x[V]m−1〉 where x[V]t ← x[V C2]t + 1
Y [V] = Y [V C2]

25: else if c2 ≤ c3 then
26: C[V]← 〈R[V]1, . . . , R[V]d, X[V], Y [V]〉 where

R[V]i = 〈U2,i, R[V C2]i〉 for 1 ≤ i ≤ d
X[V] = 〈0, x[V]1, . . . , x[V]m−1〉 where x[V]t ← x[V C2]t−1 + 1
Y [V] = 〈0, Y [V C2]〉

27: else if U3 = 0 then
28: C[V]← 〈R[V]1, . . . , R[V]d, X[V], Y [V]〉 where

R[V]i = R[V C3]i for 1 ≤ i ≤ d
X[V] = X[V C3]
Y [V] = 〈y[V]0, . . . , y[V]m−1〉 where y[V]t ← y[V C3]t + 1

29: else
30: C[V]← 〈R[V]1, . . . , R[V]d, X[V], Y [V]〉 where

R[V]i = 〈U3,i, R[V C3]i〉 for 1 ≤ i ≤ d
X[V] = 〈0, X[V C3]〉
Y [V] = 〈0, y[V]1, . . . , y[V]m−1〉 where y[V]t ← y[V C3]t−1 + 1

31: end if

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains 33

Algorithm 11 Find the carry set of the given digit set

Require: the digit set Ds
Ensure: the carry set G
1: Ct← {0}, G← ⊘
2: while Ct 6= ⊘ do
3: let x ∈ Ct
4: Ct← Ct ∪ ({x+d

2
∈ Z|d ∈ Ds} −G− {x})

5: Ct← Ct ∪ ({x+d+1
2
∈ Z|d ∈ Ds} −G− {x})

6: Ct← Ct ∪ ({x+d

3
∈ Z|d ∈ Ds} −G− {x})

7: Ct← Ct ∪ ({x+d+1
3
∈ Z|d ∈ Ds} −G− {x})

8: G← G ∪ {x}
9: Ct← Ct− {x}

10: end while

