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Abstract We present an efficient and optimally resilient Asyn-
chronous Byzantine Agreement (ABA) protocol involving
n = 3t+1 parties over a completely asynchronous network,
tolerating a computationally unbounded Byzantine adver-
sary, who can control at most t parties out of the n parties.
The amortized communication complexity of our ABA pro-
tocol is O(n3 log 1

ε ) bits for attaining agreement on a sin-
gle bit, where ε (ε > 0) denotes the probability of non-
termination. We compare our protocol with the best known
optimally resilient ABA protocols of Canetti et al. (STOC
1993) and Abraham et al. (PODC 2008) and show that our
protocol gains by a factor of O(n8(log 1

ε )
3) over the ABA

protocol of Canetti et al. and by a factor of O(n5 logn
log 1

ε

) over
the ABA protocol of Abraham et al. in terms of the commu-
nication complexity.

To design our protocol, we first present a new, optimally
resilient statistical asynchronous verifiable secret sharing
(AVSS) protocol with n = 3t + 1, which significantly im-
proves the communication complexity of the only known
optimally resilient statistical AVSS protocol of Canetti et al.
Our AVSS protocol shares multiple secrets simultaneously
and incurs lower communication complexity than executing
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multiple instances of an AVSS protocol sharing a single se-
cret. To design our AVSS protocol, we further present a new
asynchronous primitive called asynchronous weak commit-
ment (AWC), which acts as a substitute for asynchronous
weak secret sharing (AWSS), which was used as a primitive
for designing AVSS by Canetti et al. We observe that AWC
has weaker requirements than the AWSS and hence can be
designed more efficiently.

The common coin primitive is one of the most impor-
tant building blocks for the construction of an ABA proto-
col. The best known common coin protocol of Feldman et
al. requires multiple instances of an AVSS protocol sharing
a single secret as a black-box. Unfortunately, this common
coin protocol does not achieve its goal when the multiple
invocations of AVSS sharing a single secret is replaced by
a single invocation of an AVSS protocol sharing multiple
secrets simultaneously. Therefore in this paper, we extend
the existing common coin protocol to make it compatible
with our new AVSS protocol (sharing multiple secrets). As
a byproduct, our new common coin protocol is much more
communication efficient than the existing common coin pro-
tocol.

1 Introduction

The problem of Byzantine Agreement (BA) was introduced
in [26] and since then it has emerged as one of the most fun-
damental problems in distributed computing. Informally, a
(threshold) BA protocol allows a set of n mutually distrust-
ing parties, each holding a private bit, to agree on a common
bit, even though t of the n parties may act maliciously in
any arbitrary manner to make the honest parties disagree.
The BA problem has been investigated extensively in var-
ious models (see for example [23,18,8,2] and their refer-
ences). It has been considered to be very interesting to study
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the BA problem in the asynchronous settings, as an asyn-
chronous network models a real-life network like the Inter-
net more appropriately than a synchronous network. Though
considered to be interesting, the problem of asynchronous
BA (called ABA) has got relatively less attention in com-
parison to the BA problem in the synchronous setting. Un-
like a synchronous network, there is no upper bound on the
message delivery time in an asynchronous network and the
messages can be arbitrarily delayed. The inherent difficulty
in designing an asynchronous protocol is that we cannot dis-
tinguish between a slow but honest sender (whose messages
are delayed) and a corrupted sender (who did not send any
message); due to this, at any stage of an asynchronous proto-
col, a party cannot wait to receive the communication from
all the n parties and the communication from t (potentially
slow but honest) parties may have to be ignored. Due to this,
designing asynchronous protocols calls for new techniques
(for a comprehensive introduction to the asynchronous pro-
tocols, see [8]).

Compared to the synchronous BA protocols, the best
known ABA protocols involve huge communication com-
plexity (more on this in the sequel). The main goal of this
paper is to provide a communication efficient ABA proto-
col.

1.1 Existing Results

We consider a computationally unbounded threshold adver-
sary Adv, who can corrupt any t parties out of the n par-
ties in a Byzantine1 fashion. From [26], a BA (and hence
an ABA) protocol tolerating Adv is possible if and only if
t < n/3. Thus, an ABA protocol designed with exactly
n = 3t + 1 parties is called an optimally resilient proto-
col. Fisher, Lynch and Paterson’s impossibility result on de-
terministic ABA protocols [17] implies that any (random-
ized) ABA protocol must have non-terminating runs, where
some honest party(ies) may not output any value and thus
may not terminate at all. An ABA protocol is called (1− ε)-
terminating [9,8]), if the honest parties terminate the pro-
tocol with probability2 at least (1 − ε), where ε > 0. On
the other hand, an ABA protocol is called almost-surely ter-
minating [1], if the probability of the occurrence of a non-
terminating execution is asymptotically zero. The important
parameters of an ABA protocol are:
– Resilience: it is the maximum number of corruptions (t)

that the protocol can tolerate.
– Communication Complexity (CC): it is the total number

of bits communicated by the honest parties in the proto-
col. The communication complexity has two parts: the

1 A Byzantine corrupted party can behave in any arbitrary manner
during the execution of a protocol.

2 In the rest of the paper, all probabilities are taken over the random
inputs of the honest parties.

private communication, done privately among the hon-
est parties and the broadcast communication, done pub-
licly. The broadcast primitive in the asynchronous set-
ting is implemented using the Bracha’s A-cast protocol
[7].

– Expected Running Time (ERT): we consider the expected
running time R of an ABA protocol, conditioned on the
event that the parties terminate; this notion of expectancy
is weaker than the usual notion of expectation, where
the expectancy is taken over all possible events. Since
an (1 − ε)-terminating ABA protocol may have non-
terminating runs, in which case the (usual) expected run-
ning time will be infinity, we measure the expected run-
ning time with respect to the executions where the par-
ties terminate. This notion of ERT was used in [9,8]
(more on this later) and we follow the same notion.

Based on the above parameters, we summarize the best known
ABA protocols in Table 1.

Table 1 Summary of the best known ABA protocols. Here poly(x)
stands for polynomial in x and AST stands for almost surely terminat-
ing. The ERT is conditioned on the event that the parties terminate the
protocol.

Ref. Type Resilience CC ERT (R)
[7] AST t < n/3 O(2n) O(2n)

[15,16] AST t < n/4 poly(n) O(1)
[9,8] (1− ε) t < n/3 poly(n, 1

ε
) O(1)

[1] AST t < n/3 poly(n) O(n2)

Common Approach Used to Design ABA Protocols : Over
a period of time, the techniques and the design approaches
of ABA protocols have evolved spectacularly. Rabin [28]
designed an ABA protocol assuming that the parties have
access to a “common coin protocol”, which allows the hon-
est parties to output a common random bit with some proba-
bility (called the success probability). Bracha [7] presented a
simple implementation of the common coin protocol, whose
success probability is Θ(2−n). Feldman and Micali [15,16]
were the first to come up with a common coin protocol that
has a constant success probability. The essence of [15] is the
reduction of the common coin to that of designing an Asyn-
chronous Verifiable Secret Sharing (AVSS) protocol. Here
AVSS is a two phase protocol (sharing and reconstruction)
carried out among the parties. Informally, the goal of an
AVSS protocol is to allow a special party called dealer to
share a secret s among the parties during the sharing phase
in a way that would later allow for a unique reconstruction of
the secret in the reconstruction phase, while preserving the
secrecy of s until the reconstruction phase. Following [15,
16], almost all the protocols for ABA followed the same ap-
proach of reducing the problem of ABA to that of AVSS.
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The same approach is followed by the authors in [9,1] for
designing their optimally resilient ABA protocols3 and in
this paper, we follow the same approach (a more detailed
discussion on our and the existing approaches will appear in
the sequel).

1.2 Our Motivation and Contribution

In the literature, a lot of attention has peen paid for con-
structing communication efficient BA protocols in the syn-
chronous setting (see for example [6,10,14,27,20]). Unfor-
tunately, the same is not the case for ABA protocols with
optimal resilience. Designing an optimally resilient, com-
munication efficient ABA protocol that runs in constant ex-
pected time is an important and interesting problem to work
on. Our result in this paper marks a significant progress in
this direction.

We present an optimally resilient, (1 − ε)-terminating
ABA protocol that requires a private communication ofO(R
n4 log 1

ε ) bits and broadcast of O(Rn4 log 1
ε ) bits for reach-

ing agreement on t + 1 = Θ(n) bits concurrently; here R
is the expected running time of the protocol, conditioned
on the event that the protocol terminates. So the (expected)
amortized communication complexity of our protocol for
reaching agreement on a single bit is O(Rn3 log 1

ε ) bits of
private, as well as broadcast communication. Moreover, con-
ditioned on the event that our ABA protocol terminates, it
does so in constant expected time; i.e. R = O(1). In Table
2, we compare our ABA protocol with the optimally resilient
ABA protocols of [9,1].

Table 2 Comparison of our optimally resilient ABA protocol with the
best known optimally resilient ABA protocols. Here AST stands for
almost surely terminating. The communication complexity is the ex-
pected communication complexity as it depends on the expected run-
ning time of the protocol. The expected running time is conditioned on
the event that the honest parties terminate the protocol.

Ref. Type ERT (R) CC
[9] (1− ε) O(1) Private– O(Rn11(log 1

ε
)4)

broadcast– O(Rn11(log 1
ε
)2 logn)

[1] AST O(n2) Private– O(Rn6 logn)
broadcast– O(Rn6 logn)

Thisa (1− ε) O(1) Private– O(Rn3(log 1
ε
))

Article broadcast– O(Rn3(log 1
ε
))

a The communication complexity of our protocol is the amortized com-
plexity for reaching agreement on a single bit.

From the table, we find that our ABA protocol achieves a
huge gain in the communication complexity over the ABA
protocol of [9], while keeping all other properties in place

3 The authors in [1] followed a slightly different approach.

(namely constant expected running time and (1−ε)-terminating).
On the other hand, our ABA protocol enjoys the following
merits over the ABA protocol of [1]:

1. Our ABA protocol is better in terms of the communica-
tion complexity when (log 1

ε ) < n5 log n.
2. Our ABA protocol runs in constant expected time (con-

ditioned on the event that the protocol terminates). How-
ever, we stress that our ABA protocol is (1−ε)-terminating,
whereas the ABA protocol of [1] is almost surely termi-
nating.

A Brief Discussion on the Approaches Used in the ABA
Protocols of [9,1] and the Current Article : We now briefly
discuss the approaches used in the ABA protocols of [9], [1]
and the current article.

• The ABA protocol of Canetti et al. [9,8] uses the reduction
from the ABA to AVSS. Hence they have first designed an
AVSS protocol with n = 3t + 1. There are well known in-
herent difficulties in designing an AVSS protocol with n =

3t+1 (see [9,8]). To overcome these difficulties, the authors
in [9] used the following route to design their AVSS proto-
col: ICP → A-RS → AWSS → Two & Sum AWSS → AVSS,
where X → Y means that protocol Y is designed using
the protocol X as a black-box. Since the final AVSS pro-
tocol is designed on the top of so many sub-protocols, it
is highly communication intensive as well as very much
involved. The protocol incurs a private communication of
O(n9(log 1

ε )
4) bits and broadcast of O(n9(log 1

ε )
2 log(n))

bits during the sharing phase; during the reconstruction phase,
it incurs a private communication ofO(n6(log 1

ε )
3) bits and

broadcast ofO(n6(log 1
ε ) log(n)) bits4. The protocol shares

a single secret and all the (honest) parties terminate the pro-
tocol with probability at least (1− ε).

• The ABA protocol of [1] followed the same reduction from
the ABA to AVSS as in [9], except that the use of AVSS is re-
placed by a variant of AVSS called shunning (asynchronous)
VSS (SVSS), where each (honest) party is guaranteed to ter-
minate almost-surely (i.e. with probability one). SVSS is a
slightly weaker notion of AVSS in the sense that if all the
parties behave correctly, then SVSS satisfies all the prop-
erties of AVSS without any error; otherwise it fails to sat-
isfy the properties of AVSS, but enables some honest party
to identify at least one corrupted party, whom the honest
party “shuns” from then onwards. In order to design their
SVSS protocol, the authors in [1] first designed a weaker
primitive called weak SVSS (W-SVSS), which is used as a
black-box to design the SVSS protocol. Here W-SVSS is the
“shunning” variant of the asynchronous weak secret sharing

4 The exact communication complexity analysis of the AVSS (and
the ABA) protocol of [9] was not done earlier. For the sake of com-
pleteness, we carry out the same in APPENDIX A.
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(AWSS) primitive, which was used in [9,8] for designing
the AVSS protocol.

The use of SVSS instead of AVSS in generating the com-
mon coin causes the ABA protocol of [1] to run for O(n2)
expected time; however unlike the AVSS of [9] (which is
(1 − ε)-terminating), the SVSS protocol of [1] is almost
surely terminating. The protocol shares a single secret and
requires a private communication of O(n4 log(n)) bits and
broadcast of O(n4 log(n)) bits.

• Similar to [9,8] and [1], we too follow the same path of
constructing an AVSS protocol to design our ABA protocol.
So we first design a communication efficient AVSS protocol
with n = 3t + 1. But instead of following the fairly com-
plex route taken by [9] for the design of their AVSS proto-
col, we follow a much shorter route: ICP→ AWC→ AVSS.
Here asynchronous weak commitment (AWC) is a new prim-
itive introduced by us, which acts as a substitute for the
AWSS primitive, which was used as a black-box in [9] as
well as in [1] (the shunning variant) for designing the AVSS
(SVSS). We find that AWC has “weaker” requirements than
the AWSS and hence can be designed more efficiently than
the existing AWSS protocols (the details are elaborated in
Section 2.3.2 and section 4.3). More specifically, while the
existing AWSS and W-SVSS are based on the idea of us-
ing bi-variate polynomials of degree t in each variable, we
design an AWC scheme using Shamir secret sharing [30],
which is based on univariate polynomials of degree t; this
immediately implies a gain of Θ(n) in the communication
complexity. In addition to introducing the new primitive AWC,
we also extend the existing notion of information checking
protocol (ICP) [9] to deal with multiple verifiers simulta-
neously, instead of a single verifier (the details will appear
later). This helps us to use the ICP primitive in designing
our AWC protocol.

Besides following a shorter route and introducing a new
primitive for designing the AVSS, we significantly improve
the communication complexity of each building block. In
addition, each of the building blocks is designed to deal
with multiple values concurrently (unlike the existing pro-
tocols) and this leads to a significant gain in the communi-
cation complexity. Specifically, our AVSS protocol requires
a private communication and broadcast communication of
O((`n2 + n3) log 1

ε ) bits to share ` secrets concurrently,
where ` ≥ 1. Moreover, it requires a broadcast communi-
cation of O((`n2 + n3) log 1

ε ) bits to reconstruct the ` se-
crets. Like the AVSS protocol of [9], our AVSS protocol is
also (1−ε)-terminating, where all the parties terminate with
probability at least (1− ε).

To design our ABA protocol, we also make several changes
to the existing common coin protocol. As discussed earlier,
the common coin protocol is a very important building block
for an ABA protocol. The best known common coin proto-

col of [16,8] employs AVSS sharing a single secret. Infor-
mally, in the common coin protocol of [16], each party is
asked to act as a dealer and share n random secrets using an
AVSS protocol. So each party invokes n parallel instances
of an AVSS protocol as a dealer to share n secrets in paral-
lel. It is obvious that we can do better if each party invokes
a single instance of our new AVSS protocol that can share n
secrets concurrently. However, our detailed analysis of the
existing common coin protocol shows that the above “triv-
ial” modification leads to an incorrect common coin pro-
tocol. Hence we bring several modifications to the existing
common coin protocol, so that it can use our new AVSS pro-
tocol (that shares multiple secrets concurrently). As a result,
our new common coin protocol is more communication ef-
ficient than the existing common coin protocol of [8,9].

Interestingly, we show that our new common coin pro-
tocol is actually a multi-bit common protocol, which allows
the parties to generate (t+1) random common coins concur-
rently, which further allows the parties to reach agreement
on t+ 1 bits concurrently.

1.3 Organization of the Paper

In the next section, we describe the asynchronous network
model and formally define ABA, AVSS, AWC, AWSS and
AICP. This is followed by the description of the existing
tools used in our protocols. In section 3, we present our
AICP, followed by our new primitive AWC in section 4; in
the same section, we also compare our AWC scheme with
the best known existing AWSS scheme of [25] and the ex-
isting W-SVSS scheme of [1]. In section 5, we present our
AVSS scheme. The existing common coin protocol from [8]
is presented in section 6. In the same section, we show that
a simple substitution of the existing AVSS scheme (sharing
a single secret) by our AVSS scheme (sharing multiple se-
crets) in the common coin protocol may lead to an incorrect
common coin protocol. This is followed by the modifica-
tions needed to get a correct (multi-bit) common coin proto-
col. In section 7, we recall the existing voting protocol from
[8], which is required along with the common coin protocol
to get an ABA scheme. Finally, in section 8, we present our
(multi-bit) ABA protocol.

2 Model and Definitions

We consider an asynchronous network consisting of n par-
ties, say P = {P1, . . . , Pn}, where each party is modelled
as a probabilistic polynomial time interactive Turing ma-
chine. Each pair of parties is directly connected by a secure
and authentic channel and t out of the n parties can be un-
der the influence of a computationally unbounded Byzantine
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(active) adversary, denoted as Adv. The adversary Adv, com-
pletely dictates the parties under its control and can force
them to deviate in any arbitrary manner during the execution
of a protocol. The parties not under the influence of Adv are
called honest or uncorrupted.

The underlying network is asynchronous, where the com-
munication channels between the parties have arbitrary, yet
finite delay (i.e the messages are guaranteed to reach their
destinations eventually). Moreover, the order in which the
messages reach their destinations may be different from the
order in which they were sent. To model the worst case sce-
nario, Adv is given the power to schedule the delivery of ev-
ery message in the network. Note that, while Adv can sched-
ule the messages of the honest parties at its will, it has no
access to the “contents” of the messages communicated be-
tween the honest parties.

As in [8], we consider a computation (protocol execu-
tion) in the asynchronous model as a sequence of atomic
steps, where in each such step, a single party is active. The
party is activated by receiving a message after which it per-
forms an internal computation and then possibly sends mes-
sages on its outgoing channels. The order of the atomic steps
are controlled by a “scheduler”, which will be under the con-
trol of Adv. At the beginning of the computation, each party
will be in a special start state. We say a party has termi-
nated/completed the computation if it reaches a halt state,
after which it does not perform any further computation. A
protocol execution is said to be complete if each (honest)
party terminates the protocol. Notice that the executions that
complete do so after a finite number of steps.

Running Time of an Asynchronous Protocol : We now
recall the definition of running time of an asynchronous pro-
tocol from [9]. Consider a virtual “global clock”, measuring
the time in the network. Note that the parties cannot read
this clock. Let the delay of a message be the time elapsed
from its sending to its receipt. Let the period of a finite ex-
ecution of a protocol be the longest delay of a message in
the execution. The duration of a finite execution is the total
time measured by the global clock divided by the period of
the execution (infinite executions have infinite duration).

More precisely, consider a protocol execution, with some
inputs and random inputs for the parties. Recall that such an
execution is a sequence of atomic steps. Assume that the first
atomic step is a fictitious step, where a special “wakeup”
message is sent to all the parties. We now assign round-
numbers to the atomic steps as follows: The fictitious atomic
step, denoted l0 is the only step at round zero. Next, for each
i > 0, let li be the last atomic step where an (i−1)-message
is delivered; we call a message an (i− 1)-message if it was
sent in an atomic step that belongs to round (i− 1). All the
steps after li−1 until (and including) the step li are in round

i. The duration of the execution is the round number of the
last atomic step.

Let C denote the event that the (honest) parties termi-
nate the execution of a given protocol. The expected run-
ning time (ERT) of a protocol, relative to an adversary and
some input values for the parties and conditioned on the
event C, is the expected value of the duration of a complete
execution (thus the expectancy is taken only over the ran-
dom inputs of the parties in which the event C occurs). The
(non-relative) expected running time R(π|C) of a protocol
π, conditioned on the event C, is the maximum over all in-
puts ~x = (x1, . . . , xn) and adversaries Adv, of the expected
running time of the protocol relative to input ~x and adver-
sary Adv and conditioned on the event C. That is:

R(π|C) = Max~x,Adv{Exp~r[D(π,Adv, ~x, ~r)|C]},

whereD(π,Adv, ~x, ~r) is the duration of the execution of the
protocol π with inputs ~x = (x1, . . . , xn) and random inputs
~r = (r1, . . . , rn) for the parties and with adversary Adv.

We now present the definition of ABA and the primitives
which are used for the construction of our ABA protocol.
Our ABA protocol is (1 − ε)-terminating, where ε > 0. To
bound the probability of non-termination by ε, all our pro-
tocols work over a finite field F where F = GF (2κ), such
that |F| > 2n and ε = 2−Ω(κ), for some non-zero κ. Thus
each field element can be represented by κ = O(log 1

ε ) bits.
Moreover, we assume n = poly(κ). That is, n is polynomial
in κ. Thus we have that n = poly(log 1

ε ).

2.1 Asynchronous Byzantine Agreement (ABA)

Definition 1 (ABA [9]) : Let π be an asynchronous protocol
executed among the set of parties in P , where each party has
a private binary input. We say that π is an (1−ε)-terminating
ABA protocol for a single bit, for an allowed error parameter
ε (where ε > 0) if the following holds for every possible Adv
and every input vector of the parties:

1. Termination: If all the honest parties participate in the
protocol then with probability5 at least (1−ε), all honest
parties eventually terminate the protocol.

2. Correctness: All the honest parties who have terminated
the protocol hold identical bit as the output. Moreover, if
all the honest parties had the same input, say ρ, then all
honest parties upon termination output ρ.

The above definition can be extended in a straight forward
way for agreement on ` bits, where ` > 1 and we call such
a protocol as multi-bit ABA protocol.

5 Here and in the sequel the probabilities are taken over the random
inputs of the parties.
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2.2 Asynchronous Verifiable Secret Sharing (AVSS)

We now present the definition of AVSS, which is the major
component in the design of the existing common coin pro-
tocol. As mentioned earlier, any AVSS protocol consists of
two protocols: a sharing protocol (called Sh) where a spe-
cial player called dealer shares a secret among the parties
and a reconstruction protocol (called Rec) where the parties
reconstruct the secret from its shares. More formally:

Definition 2 (Asynchronous Verifiable Secret Sharing (AV
SS) [9]) Let (Sh, Rec) be a pair of protocols for the n par-
ties, where a dealer D ∈ P has a private input s ∈ F for Sh.
Then (Sh, Rec) is a (1− ε)-AVSS scheme6, for an allowed
error parameter ε (where ε > 0), if the following require-
ments hold for every possible behavior of Adv:

– Termination: With probability at least (1 − ε), the fol-
lowing requirements hold:
1. If D is honest and all the honest parties participate in

the protocol Sh, then each honest party eventually
terminates the protocol Sh.

2. If some honest party terminates Sh, then irrespective
of the behavior of D, each honest party eventually
terminates Sh.

3. If all the honest parties have terminated Sh and in-
voked Rec, then each honest party eventually termi-
nates Rec.

– Correctness: If some honest party terminates Sh, then
there exists a fixed value s, where s ∈ F ∪ {⊥}, such
that the following requirements hold with probability at
least (1− ε):
1. Each honest party outputs s upon terminating Rec

(i.e. s is the reconstructed secret). This property is
also called the strong-commitment property7.

2. If D is honest, then s is the shared secret; i.e. s = s.
– Secrecy: Let VIEW(s) denote the random variable (over

the random inputs of the parties), describing the view of
the adversary during an execution of Sh, where D has
the input s. If D is honest during Sh and no honest party
has begun executing the protocol Rec, then the distribu-
tion of VIEW(s) is the same (i.e. identically distributed)
for all s ∈ F.

Before proceeding further, we make the following note:

Note 1 There exists a “stronger” definition of VSS (AVSS)
which requires that D’s committed secret s ∈ F, instead
of F ∪ {⊥} [22]. Such a stronger definition8 is required if
VSS is used for secure multi-party computation MPC [3].
However, VSS (AVSS) satisfying the above (weak) defini-
tion is enough for the construction of (asynchronous) BA

6 Such schemes are also called statistical AVSS.
7 We often say that D has committed s during the sharing protocol.
8 The interpretation of s =⊥ will be clear during the description of

our protocol.

protocols. We also note that the above weak definition of
VSS is used in [24] to study the round complexity of VSS.
The above definition is equivalent to saying that s ∈ F, by
fixing a default value in F, which may be output in case the
Rec protocol ends with a ⊥. 2

The above definition can be extended in a straight forward
way for a secret ~S = (s1, . . . , s`), containing ` elements
from F.

2.3 Asynchronous Weak Commitment (AWC)

To design our AVSS protocol, we introduce a new asyn-
chronous primitive called AWC. This new primitive will act
as a “substitute” for the asynchronous weak secret sharing
(AWSS) primitive; recall that AWSS was used as a primitive
in [9] to design a (1− ε)-AVSS, while a “shunning variant”
of AWSS was used as a primitive in [1] to design an almost
surely terminating shunning AVSS.

Informally, an AWC scheme consists of two protocols:
a commitment protocol (called Com) and a decommitment
protocol (called DeCom). In the commitment protocol, a
special party called Committer “commits” a secret to the
parties in a distributed fashion and during the decommit-
ment protocol, Committer “decommits” the secret and the
parties verify whether this was the secret committed earlier
and either accept or reject the secret. More formally:

Definition 3 (Asynchronous Weak Commitment (AWC))
Let (Com, DeCom) be a pair of protocols for the n parties,
where a Committer ∈ P has a private input s ∈ F for
Com (the secret to be committed). In the protocol DeCom,
Committer has a private input s? ∈ F∪{⊥} (the secret to be
decommitted) and each party upon terminating DeCom ei-
ther outputs s? or outputs ⊥. Then (Com, DeCom) is a (1−
ε)-AWC scheme, for an allowed error parameter ε (where
ε > 0), if the following requirements hold for every possi-
ble behavior of Adv:

– Termination: With probability at least (1 − ε), the fol-
lowing requirements hold:
1. If Committer is honest and all the honest parties par-

ticipate in the protocol Com, then each honest party
eventually terminates the protocol Com.

2. If some honest party terminates Com, then irrespec-
tive of the behavior of Committer, each honest party
eventually terminates Com.

3. If all the honest parties have terminated Com, Committer
invokes DeCom and all the honest parties participate
in DeCom, then each honest party eventually termi-
nates DeCom.

– Correctness: If some honest party terminates Com, then
there exists a fixed value s, where s ∈ F ∪ {⊥}, such



7

that the following requirements9 hold with probability
at least (1 − ε) upon the completion (if it completes) of
DeCom:
1. If an honest party outputs s? ∈ F (namely s? is ac-

cepted as the decommitted secret and s? is from the
field F), then all the honest parties output s?. More-
over, s? = s (so in this case, s ∈ F).

2. If Committer is honest, then all the honest parties
output s?, where s? = s = s.

– Secrecy: Let VIEW(s) denote the random variable (over
the random inputs of the parties), describing the view of
the adversary during an execution of Com, where
Committer has the input s. If Committer is honest dur-
ing Com and has not begun executing the protocol
DeCom, then the distribution of VIEW(s) is the same
(i.e. identically distributed) for all s ∈ F.

The above definition can be extended in a straight forward
way for a secret ~S = (s1, . . . , s`), containing ` elements
from F.

Comparison of AVSS and AWC: There are two (subtle)
differences between the AVSS and AWC. The first is regard-
ing the termination of the reconstruction protocol and the
decommitment protocol respectively. In AVSS, we demand
that irrespective of the behavior of D, if the honest parties
terminate the sharing protocol and invoke the reconstruc-
tion protocol, then all the honest parties should eventually
terminate the reconstruction protocol. But this need not be
the case for the decommitment protocol. Specifically, the de-
commitment protocol requires the participation of Committer
and so if Committer is corrupted and does not invoke the
decommitment protocol, then the honest parties will never
terminate the decommitment protocol.

The second difference is regarding the committed value.
In AVSS, we demand that irrespective of the behavior of D,
only the committed value s ∈ F ∪ {⊥} should be recon-
structed by the honest parties in the reconstruction proto-
col. That is, a corrupted D cannot later change the commit-
ted secret during the reconstruction protocol in co-operation
with the corrupted parties. However, in AWC, a corrupted
Committer can later decommit an s? during the decommit-
ment protocol, where s? is different from the secret s, com-
mitted during the commitment protocol, provided s 6= ⊥
and s? = ⊥ (so s ∈ F). Notice that even though Committer
can later “change” the committed value, the change is al-
lowed only from a non-⊥ committed value to ⊥; so a cor-
rupted Committer cannot commit an s ∈ F and later de-
commit s? ∈ F, where s? 6= s.

9 We often say that s is the value committed by Committer during
the commitment protocol. The interpretation of s = ⊥ will be clear
during the description of our protocol.

Finally, we note that the above differences between AVSS
and AWC holds only when Committer is corrupted; other-
wise AWC provides the same properties as the AVSS.

2.3.1 Asynchronous Weak Secret Sharing (AWSS)

Like AVSS, an AWSS protocol also consists of two pro-
tocols: a sharing protocol (called WSh), where the dealer
shares a secret and a reconstruction protocol (called WRec),
where the parties reconstruct the secret from its shares. An
AWSS protocol also has three properties, namely Termina-
tion, Correctness and Secrecy. The Termination and the
Secrecy conditions are the same as for the AVSS (see Def-
inition 2), except that Sh is replaced by WSh and Rec is
replaced by WRec. The Correctness condition is also the
same as for the AVSS for the case when the dealer is honest;
however, the Correctness condition is weakened in AWSS
for the case when the dealer is corrupted as follows:

If an honest party terminates WSh then a value, say
s ∈ F ∪ {⊥} is fixed. Moreover, with probability at
least (1 − ε), each honest party will output either s
or ⊥ at the end10 of WRec.

2.3.2 Comparison of AWSS and AWC

Property wise, the sharing protocol of AWSS and the com-
mitment protocol of AWC demands the same; namely a dis-
tributed commitment to a unique value s, which should be
secure if D (resp. Committer) is honest. However, the (sub-
tle) difference is between the decommitment protocol and
the reconstruction protocol. The difference is about the role
of Committer and D for the termination of the respective
protocols: the reconstruction protocol of an AWSS scheme
does not demand a special role by D to enforce the termi-
nation. So this protocol will always terminate (if it is in-
voked by the honest parties) even if D is corrupted and does
not participate. On the contrary, the decommitment protocol
demands a special role from Committer to enforce the ter-
mination. Here Committer has to invoke the protocol; so if
Committer is corrupted and does not invoke the decommit-
ment protocol, this protocol may never terminate.

The above difference intuitively suggests that D has to
work/communicate “more” during the sharing protocol of an
AWSS scheme, as compared to what is done by Committer dur-
ing the commitment protocol of an AWC scheme. The ve-
racity of the intuition is confirmed by our ability to design
an AWC protocol more efficiently than the existing AWSS
protocols (for the comparison, see Section 4.3).

10 It is possible that some honest parties output s, while others output
⊥.
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2.4 Asynchronous Information Checking Protocol (AICP)

An Information Checking Protocol (ICP) is used for authen-
ticating data in the presence of computationally unbounded
corrupted parties. The notion of ICP was first introduced by
Rabin et al. [29]. As described in [29,9,12], an ICP is exe-
cuted among three parties: a Signer, an intermediary INT and
a Verifier. Informally, an ICP consists of two phases (where
each phase is implemented by different protocol(s)):

– Signature generation phase: here Signer computes his
IC (information checking) signature on a secret s ∈ F,
denoted by ICSig(Signer, INT,Verifier, s) and hands it
to INT. Signer also computes some verification infor-
mation and hands it to Verifier.

– Signature revelation phase: here INT reveals the signa-
ture ICSig(Signer, INT,Verifier, s), claiming that he has
received it from Signer. Verifier then verifies the sig-
nature, using the verification information and either ac-
cepts or rejects the signature (and hence s).

IC signature may be considered as the information theoret-
ically secure substitute of traditional digital signatures. It
provides the properties like unforgeability and non-repudiation;
in addition, it also provides information theoretic security.
That is, if Signer and INT are honest, then at the end of the
signature generation phase, s remains secure in the informa-
tion theoretic sense.

We extend the above notion of ICP in two directions:
First, we consider multiple verifiers, where each party in P
acts as a Verifier. This will be later helpful in using the ICP
as a tool in our AWC protocol. It is important here to note
that Signer and INT can be any two parties from the set P .
They just play their “special” role as Signer and INT. Sec-
ond, instead of a single secret, we consider ICP that can
deal with multiple secrets concurrently and thus achieves
better communication complexity, than executing multiple
instances of ICP, dealing with a single secret. Our ICP is ex-
ecuted in the asynchronous settings and thus we call it AICP.
We now formally define AICP.

Definition 4 ((Multi-Verifier) Asynchronous Information
Checking Protocol (AICP)) An AICP involves three enti-
ties: a Signer ∈ P , an intermediary INT ∈ P and the set
of n parties in P acting as verifiers. The protocol is carried
out in three phases (where each phase is implemented by a
protocol):

1. Generation Phase: this phase is initiated by Signer, where
Signer has a secret input ~S = (s1, . . . , s`) ∈ F`. In this
phase, Signer sends ~S to INT, along with some authenti-
cation information. In addition, Signer sends some veri-
fication information to each individual verifier.

2. Verification Phase: this phase is initiated by INT, where
INT interacts with Signer and the verifiers to ensure that
the secret ~S received from Signer will be later accepted

by each (honest) verifier inP during the revelation phase.
During the interaction, Signer has the option of replac-
ing the secret ~S, as well as the authentication informa-
tion and the verification information (by sending new
values for them) . The secret ~S, along with the authenti-
cation information, which is finally possessed by INT at
the end of this phase is called Signer’s IC signature on
~S, denoted as ICSig(Signer, INT,P, ~S), given to INT by
Signer.

3. Revelation Phase: this is carried out by INT and the ver-
ifiers in P , where INT and the verifiers interact with
each other. Here INT reveals ICSig(Signer, INT,P, ~S)
and each verifier checks ICSig(Signer, INT,P, ~S) with
respect to his verification information and possibly let
his findings known to the other verifiers. Based on the
verification information and possibly on the response re-
ceived from the other verifiers, each individual verifier
Pi ∈ P either outputs Reveali = ~S (indicating that Pi
is convinced that INT indeed obtained ~S from Signer)
or Reveali =⊥ (indicating that Pi is not convinced that
INT obtained ~S from Signer). Accordingly, we say that
the verifier Pi accepted (resp. rejected) the ICSig and
hence ~S.

A triplet of protocols (Gen,Ver,RevealPublic) (for the gen-
eration, verification and revelation phase respectively), where
Signer has a private input ~S ∈ F` for the protocol Gen, is
called an (1 − ε)-AICP, for an allowed error parameter ε
(where ε > 0), if the following requirements hold for every
possible behavior of Adv:

1. AICP-Correctness1: If Signer and INT are honest, then
each honest verifier Pi ∈ P will output Reveali = ~S at
the end of RevealPublic.

2. AICP-Correctness2: If INT is honest and possesses ICSig
(Signer, INT,P, ~S) at the end of Ver, then with proba-
bility at least (1 − ε), each honest verifier Pi ∈ P will
output Reveali = ~S at the end of RevealPublic.

3. AICP-Correctness3: If Signer is honest and INT pos-
sesses ICSig(Signer, INT,P, ~S) at the end of Ver, then
the probability that an honest verifier Pi outputs Re-
veali = ~S? at the end of RevealPublic, where ~S? 6= ~S

is at most ε.
4. AICP-Secrecy: If Signer and INT are honest, then the

information received by Adv till the end of Ver is dis-
tributed independently of the secret ~S. This implies that
if Signer and INT are honest and INT has not executed
RevealPublic, then Adv has no information about ~S.

2.5 Existing Tools

A-cast : In our protocols, we use the asynchronous broad-
cast primitive, called A-cast, which was introduced and ele-
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gantly implemented by Bracha [7] with 3t + 1 parties. For-
mally, A-cast is defined as follows:

Definition 5 (A-cast [9]) Let π be an asynchronous proto-
col initiated by a special party in P (called Sender), having
an input m (the message to be broadcast). We say that π is
an A-cast protocol if the following requirements hold, for
every possible behavior of Adv:

– Termination:
1. If Sender is honest and all the honest parties partic-

ipate in the protocol, then each honest party eventu-
ally terminates the protocol.

2. Irrespective of the behavior of Sender, if any honest
party terminates the protocol then each honest party
eventually terminates the protocol.

– Correctness: If the honest parties terminate the protocol
then they do so with a common outputm?. Furthermore,
if Sender is honest then m? = m.

For the sake of completeness, we recall the Bracha’s A-cast
protocol from [8] and present it in Fig. 1.

Fig. 1 Bracha’s A-cast protocol with n = 3t+ 1.

A-cast(m)

The following step is executed only by Sender:

1. Send the message (MSG,m) to all the parties.

For i = 1, . . . , n, every party Pi in P (including Sender) executes
the following steps:

1. Upon receiving a message (MSG,m) from Sender, send the mes-
sage (ECHO,m) to all the parties.

2. Upon receiving (n− t) messages (ECHO,m?) that agree on the
value of m?, send the message (READY,m?) to all the parties.

3. Upon receiving (t+1) messages (READY,m?) that agree on the
value of m?, send the message (READY,m?) to all the parties.

4. Upon receiving (n − t) messages (READY,m?) that agree on
the value of m?, send the message (OK,m?) to all the parties,
output m? and terminate the protocol.

Theorem 1 ([8]) Protocol A-cast requires a private com-
munication of O(`n2) bits to broadcast an ` bit message.

In the rest of the paper, we use the following notation while
invoking the A-cast protocol:

Notation 1 (Notation for Using the A-cast Protocol) We
say that a party Pj receives the message m from the broad-
cast of Pi, if Pj (as a receiver) completes the execution
of Pi’s A-cast (namely the instance of the A-cast protocol
where Pi is Sender), with m as the output.

Randomness Extractor : In our common coin protocol, we
will use a well known method for randomness extraction in
the information theoretic settings. The setting is as follows:
we are given a set of N values from F, say a1, . . . , aN , such
that at least K out of these N values are selected uniformly
and randomly from F; however, the exact identity of those
K values are not known. The goal is to compute K values
b1, . . . , bK from a1, . . . , aN , each of which is uniformly dis-
tributed over F. This is achieved through the following well-
known method introduced in [5,4]: let f(x) be the poly-
nomial of degree at most N − 1, such that f(i) = ai+1,
for i = 0, . . . , (N − 1). Then set b1 = f(N), . . . , bK =

f(N + K − 1) (of course we require |F| ≥ N + K for
this, which will be the case in our protocol). The elements
b1, . . . , bK are uniformly distributed over F, as there exists a
one-to-one mapping between b1, . . . , bK and the K random
elements in the vector (a1, . . . , aN ). We call this algorithm
as EXT and invoke it as (b1, . . . , bK) = EXT(a1, . . . , aN ).

3 Asynchronous Information Checking Protocol

We present an AICP called MultiVerifierAICP. The underly-
ing idea behind the protocol is as follows: let ~S = (s1, . . . , s`) ∈
F` be the secret, on which Signer wants to give his IC signa-
ture to INT. For this, during the generation phase, Signer se-
lects a polynomial F (x) of degree at most `+t over F, which
is an otherwise random polynomial such that F (βi) = si,
for i = 1, . . . , `. Here β1, . . . , β` are pre-selected, distinct
elements from F, which are known publicly. The polyno-
mial F (x) is given to INT. In addition, to each verifier Pi,
Signer gives the value of F (x) at a random evaluation point
αi (different from all βj’s). During the revelation phase, INT
publicly discloses F (x) (by broadcasting) and each verifier
Pi checks whether the value held by him is indeed the value
of F (x) at αi. It is easy to note that the above simple proto-
col satisfies the AICP-Correctness3 property. Specifically,
if Signer is honest and INT is corrupted, then INT will not
know the evaluation point αi of an honest verifier Pi and
so with high probability, INT cannot disclose an incorrect
polynomial F (x), different from F (x), and still remain un-
noticed by an honest verifier Pi.

The above protocol also satisfies the AICP-Secrecy prop-
erty, as the degree of F (x) is at most ` + t and at most t
points on F (x) will be disclosed to Adv (through t corrupted
verifiers); so Adv will lack ` additional points on F (x) to
uniquely interpolate F (x) and obtain the value of F (x) at
β1, . . . , β` (which are the secrets). More specifically, from
the view point of Adv, who holds t random points on a poly-
nomial of degree at most `+ t, there is a single polynomial
that will be “consistent” with those t random points and any
` secrets.

Unfortunately, the above protocol steps alone are not
enough to achieve the AICP-Correctness2. This is because
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if Signer is corrupted, then he might give F (x) to INT ,
but evaluations of a different polynomial F (x) 6= F (x) to
each honest verifier. To avoid this situation, we have to add
additional steps in the above protocol, which allows INT to
interact with the verifiers, to check the consistency of F (x)
(received by him) and the values at the random evaluation
points (received by the verifiers). The interaction should be
in a “zero-knowledge” fashion, meaning that it should not
compromise the privacy of the information held by INT and
the (honest) verifiers.

To enable the zero-knowledge interaction, Signer dis-
tributes some additional information to INT and the veri-
fiers during the generation phase. Specifically, in addition to
F (x), Signer gives to INT another random polynomialR(x)
of degree at most `+t. In parallel, to each individual verifier
Pi, Signer gives the value of R(x) at αi. Now the specific
details of the zero-knowledge consistency checking, along
with the other formal steps of the protocol MultiVerifierAICP
are given in Fig. 2.

We now prove the properties of the protocol MultiVerifier
AICP. Before that, we prove the following two claims, which
will be required to prove the properties of the protocol.

Claim 1. Let F (x), R(x) be two polynomials of degree at
most ` + t and (αi, vi, ri) be a tuple such that F (αi) 6= vi
and R(αi) 6= ri. Then for a random d ∈ F \ {0}, the con-
dition B(αi) 6= dvi + ri will be true except with probability

at most ε, where B(x)
def
= dF (x) +R(x).

PROOF: We first argue that there exists only one non-zero
d ∈ F, for which the condition B(αi) = dvi + ri will hold,
even though F (αi) 6= vi and R(αi) 6= ri. For otherwise,
assume there exists another non-zero e ∈ F, where e 6= d,
for which B(αi) = evi + ri is true, even if F (αi) 6= vi and
R(αi) 6= ri. This implies that

dF (αi)+R(αi) = dvi+ri and eF (αi)+R(αi) = evi+ri.

This implies that (d− e)F (αi) = (d− e)vi or F (αi) = vi,
which is a contradiction. Now since d is randomly chosen
from F \ {0}, the condition B(αi) = dvi + ri holds with
probability at most 1

|F|−1 ≈ ε. 2

Claim 2. In the protocol MultiVerifierAICP, if Signer and
INT are honest, then Signer will broadcast the OK message
(and not the polynomial F (x)) during the protocol Ver.

PROOF: Follows from the fact that if Signer and INT are
honest then F (αi) = vi and R(αi) = ri holds for every
verifier Pi ∈ R. Moreover, INT will correctly broadcast the

polynomial B(x) during the protocol Ver, where B(x)
def
=

dF (x) +R(x) and so dvi + ri = B(αi) will hold for every
verifier Pi ∈ R. 2

Lemma 1 (AICP-Correctness1) If Signer and INT are hon-
est, then in the protocol RevealPublic, each honest verifier
Pi ∈ P will output Reveali = ~S? = ~S.

PROOF: From Claim 2, if Signer and INT are honest, then
Signer will broadcast the OK message during Ver, as vi =
F (αi) and ri = R(αi) will be true for each verifier Pi ∈
R and there are at least t + 1 honest verifiers in R. Now
during RevealPublic, INT will correctly broadcast ICSig =

F (x) (so F ?(x) = F (x)) and each honest verifier Pi ∈ R
will broadcast the Accept message, as the condition C1,
i.e. vi = F (αi) will hold for each of them. Hence each hon-
est verifier Pi ∈ P will eventually receive t + 1 Accept
messages from at least t + 1 verifiers in R and hence will
output Reveali = ~S?. Now it is easy to see that ~S? = ~S. 2

Lemma 2 (AICP-Correctness2) If INT is honest and pos-
sesses ICSig(Signer, INT,P, ~S) at the end of Ver, then with
probability at least (1− ε), each honest verifier Pi ∈ P will
output Reveali = ~S at the end of RevealPublic.

PROOF: If Signer is honest, then the lemma follows from
Lemma 1. So we consider the case when Signer is corrupted.
We claim that in this case, except with probability ε, each
honest verifier Pi ∈ R will broadcast the Accept message
during RevealPublic, in response to ICSig(Signer, INT,P, ~S)
broadcasted by the honest INT. Now since there are at least
t+1 honest verifiers (and at most t corrupted verifiers) in the
set R, it implies that each honest verifier Pi ∈ P will even-
tually receive the Acceptmessage from at least t+1 differ-
ent verifiers inR and will output Reveali = ~S. We consider
the following two cases, depending upon what Signer broad-
casts during Ver:

1. Signer broadcasts a polynomial F (x) during Ver: In this
case, the above claim is true, as INT will set ICSig(Signer,
INT,P, ~S) = F (x) as the IC signature and each honest
verifier Pi ∈ R will set vi = F (αi) as his verification
information. During RevealPublic, the honest INT will
correctly broadcast ICSig(Signer, INT, ~S,P) = F ?(x) =

F (x) and so the condition C1, namely F ?(αi) = vi will
hold for each honest verifier Pi ∈ R.

2. Signer broadcasts the OK message during Ver: In this
case, INT will broadcast ICSig(Signer, INT, ~S,P) =
F ?(x) = F (x) during RevealPublic. Now we have the
following cases depending on the relationship that holds
between (F (x), R(x)) held by INT and the tuple (αi, vi,
ri)) held by an honest verifier Pi ∈ R:
(a) F (αi) = vi: clearly Pi will broadcast the Accept

message, as the condition C1, i.e. F ?(αi) = vi will
hold for Pi.

(b) F (αi) 6= vi and R(αi) = ri: Here also Pi will
broadcast the Acceptmessage, as the condition C2,
i.e. B(αi) 6= dvi + ri will hold for Pi.

(c) F (αi) 6= vi and R(αi) 6= ri: In this case, Pi will
broadcast the Accept message, except with prob-
ability at most ε, as the condition C2, i.e. B(αi) 6=
dvi + ri will hold for Pi, which follows from Claim
1. More specifically, if F (αi) 6= vi and R(αi) 6= ri,
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Fig. 2 AICP with n = 3t+ 1.

MultiVerifierAICP(Signer, INT,P, ~S = (s1, . . . , s`), ε)

Gen(Signer, INT,P, ~S, ε)

The following steps are executed only by Signer:

1. Select a random polynomial F (x) over F of degree at most ` + t, such that F (βi) = si, for i = 1, . . . , `, where β1, . . . , β` are
publicly known distinct elements from F.

2. Select a random polynomial R(x) over F of degree at most `+ t.
3. For i = 1, . . . , n, select αi randomly from F as the evaluation point, corresponding to the verifier Pi, subject to the condition that

αi ∈ F \ {β1, . . . , β`}.
4. Send F (x), R(x) to INT and for i = 1, . . . , n, send (αi, vi, ri) to the verifier Pi, where vi = F (αi) and ri = R(αi).

Ver(Signer, INT,P, ~S, ε)

Signer, INT and the verifiers in P interact as follows:

1. For i = 1, . . . , n, verifier Pi sends the message (Received, i) to INT after receiving (αi, vi, ri) from Signer.
2. Upon receiving the message (Received, i) from the verifier Pi, INT includes Pi to a dynamic set R, which is initially ∅. If
|R| ≥ 2t+ 1, then INT randomly selects d ∈ F \ {0}, computes B(x) = dF (x) +R(x) and broadcasts (d,B(x),R) (as a Sender).

3. Upon receiving (d,B(x),R) from the broadcast of INT, Signer checks dvi + ri
?
= B(αi) for every Pi ∈ R.

If dvi + ri 6= B(αi) for every verifier Pi ∈ R, then Signer broadcasts the polynomial F (x).
Otherwise Signer broadcasts the message OK.

4. Depending upon the message received from the broadcast of Signer, INT and the verifiers do the following:
(a) If OK is received from the broadcast of Signer then:

i. INT sets ICSig(Signer, INT, ~S,P) = F (x), where F (x) is received from Signer during Gen.
ii. For i = 1, . . . , n, verifier Pi sets (αi, vi) as his verification information, where αi and vi is received by Pi from Signer dur-

ing Gen.
(b) If a polynomial F (x) of degree at most `+ t is received from the broadcast of Signer, then:

i. INT sets ICSig(Signer, INT, ~S,P) = F (x).
ii. For i = 1, . . . , n, verifier Pi computes vi = F (αi) and sets (αi, vi) as his verification information.

RevealPublic(Signer, INT,P, ~S, ε)

1. INT broadcasts ICSig(Signer, INT, ~S,P).
2. For i = 1, . . . , n, verifier Pi does the following:

(a) Wait to receive ICSig(Signer, INT, ~S,P) from the broadcast of INT. Upon receiving, interpret ICSig(Signer, INT, ~S,P) as a
polynomial F ?(x) of degree at most `+ t.

(b) If Pi ∈ R, then broadcast the message Accept if one of the following conditions holds:
i. vi = F ?(αi) — we call this as condition as C1.

ii. B(αi) 6= dvi + ri and Signer broadcasted the OK message during the protocol Ver— we call this as condition as C2.
If Pi ∈ R and neither C1 nor C2 holds, then broadcast the message Reject.

(c) If the Accept message is received from the broadcast of t+1 different verifiers in the setR, then output Reveali = ~S?, where
~S? is the vector of ` values of the polynomial F ?(x) at x = β1, . . . , β`.

(d) If the Reject message is received from the broadcast of t+ 1 different verifiers inR, then output Reveali = ⊥.

then there exists a unique, non-zero, random d, for
which B(αi) = dvi + ri will hold. However, a cor-
rupted Signer while distributing the tuple (αi, vi, ri)
to an honest Pi ∈ R during the protocol Gen, has
no idea (other than guessing) about the random d,
which will be selected by the honest INT only during
the protocol Ver (when (αi, vi, ri) has been already
delivered to Pi). 2

Lemma 3 (AICP-Correctness3) If Signer is honest and
INT possesses ICSig(Signer, INT,P, ~S) at the end of Ver,
then the probability that an honest verifierPi outputs Reveali
= ~S? at the end of RevealPublic, where ~S? 6= ~S is ε.

PROOF: First of all we have to consider a corrupted INT, as
an honest INT always correctly reveals ICSig(Signer, INT,P,
~S). Now in order that an honest verifier Pi ∈ P outputs Re-
veali = ~S? at the end of RevealPublic, where ~S? 6= ~S,

it must be the case that INT revealed incorrect ICSig during
RevealPublic. More specifically, INT must have broadcasted
an incorrect polynomial F ?(x) during RevealPublic, which
when evaluated at x = β1, . . . , β` gives the elements of ~S?

as the output. We now claim that if INT does so, then except
with probability ε, every honest verifier Pi ∈ R will broad-
cast the Reject message during RevealPublic. As there
can be at most t corrupted verifiers in the set R (who may
broadcast the Accept message in response to the incorrect
polynomial), no honest verifier in the set P will output ~S?.
We consider the following two cases, depending upon what
the honest Signer broadcasts during Ver:

1. Signer broadcasts the polynomial F (x) during Ver: This
implies that B(αi) = dvi + ri does not hold for all the
verifiers Pi ∈ R during Ver, otherwise Signer would
have broadcast the OK message. So clearly the condition
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C2 will not hold for any honest verifier Pi ∈ R. So the
only condition in which an honest verifier Pi ∈ Rwould
broadcast the Accept message is that the condition C1,
namely F ?(αi) = vi holds for Pi. However, F ?(x) 6=
F (x) and the corrupted INT will have no information
about αi, as both Signer and Pi are honest. Moreover,
αi’s are randomly selected from F\{β1, . . . , β`}. So the
probability that INT can ensure F ?(αi) = vi = F (αi) is
the same as the probability that INT can correctly guess
αi, which is at most `+t

|F−`| ≈ 2−Ω(κ) ≈ ε (since F ?(x)
and F (x) can have the same value for at most `+t values
of x).

2. Signer broadcasts the OK message during Ver: This im-
plies that B(αi) = dvi + ri holds for all the verifiers
Pi ∈ R, otherwise Signer would have broadcast the
F (x) polynomial. We show that in this case, the con-
ditions under which an honest verifier Pi ∈ R would
broadcast the Acceptmessage (in response to the poly-
nomial F ?(x) 6= F (x)) during RevealPublic are either
impossible or may happen with probability at most ε:
(a) F ?(αi) = vi = F (αi): As discussed above, this can

happen with probability at most ε.
(b) B(αi) 6= dvi + ri and Signer broadcasted the OK

message during Ver: This case is never possible be-
cause ifB(αi) 6= dvi+ri, then an honest Signer would
have broadcasted F (x) during Ver, which is a con-
tradiction. 2

Lemma 4 (AICP-Secrecy) If Signer and INT are honest,
then the information received by Adv till the end of Ver is
distributed independently of the secret ~S.

PROOF: First of all notice that if Signer and INT are honest,
then Signer will broadcast the OK message during Ver. Now
without loss of generality, let the verifiers P1, . . . , Pt ∈ P
be under the control of Adv. So at the end of Ver, Adv will
know d and the polynomial B(x) = dF (x) + R(x), as
they are broadcasted. In addition, Adv will also know αi
and vi = F (αi), ri = R(αi), for i = 1, . . . , t. The adver-
sary Adv can also compute B(β1), . . . , B(β`), from which
he gets dF (β1)+R(β1), . . . , dF (β`)+R(β`). However, the
degree of the polynomials F (x) andR(x) is at most `+t and
the two polynomials are independent of each other. Now it
is easy to see that d, F (α1), . . . , F (αt), R(α1), . . . R(αt),

dF (β1) + R(β1), . . . , dF (β`) + R(β`) has distribution in-
dependent of F (β1) = s1, . . . , F (β`) = s`. This is be-
cause from the adversary’s point of view, for every possi-
ble choice of the R(x) polynomial of degree `+ t, which is
consistent with r1 = R(α1), . . . , rt = R(αt) and dF (β1)+
R(β1), . . . , dF (β`) + R(β`), there exists a unique polyno-
mial F (x) of degree `+ t, consistent with v1 = F (α1), . . . ,

vt = F (αt) and dF (β1) +R(β1), . . . , dF (β`) +R(β`). 2

Theorem 2 Protocol Gen requires a private communica-
tion of O((` + n) log 1

ε ) bits. Protocol Ver requires broad-

cast of O((` + n) log 1
ε ) bits and private communication of

O(n log n) bits. Protocol RevealPublic requires broadcast
of O((`+ n) log 1

ε ) bits.

PROOF: In the protocol Gen, Signer privately sends ` + t

field elements to INT and three field elements to each ver-
ifier. Since each field element can be represented by κ =

O(log 1
ε ) bits, Gen incurs a private communication ofO((`+

n) log 1
ε ) bits. In the protocol Ver, every verifier privately

sends the message (Received, ?) to INT, thus incur-
ring a private communication of O(n log n) bits (assuming
that the identity of each party can be represented by log n

bits). In addition, INT broadcasts the polynomial B(x) con-
taining `+ t field elements, while Signer may also broadcast
the polynomial F (x) of degree at most ` + t, thus incur-
ring a broadcast of O((` + n) log 1

ε ) bits. In the protocol
RevealPublic, INT broadcasts ICSig, which is a polynomial
of degree at most ` + t, consisting of ` + t field elements,
while each verifier inR broadcasts Accept/Reject mes-
sage. So RevealPublic involves broadcast ofO((`+n) log 1

ε )

bits. 2

In the rest of the paper, we will use the following notations
while using the protocol MultiVerifierAICP.

Notation 2 (Notation for Using the Gen,Ver and Reveal
Public Protocols) Recall that Signer and INT can be any
party from the set P . We say that:

1. “Party Pi gives ICSig(Pi, Pj ,P, ~S) to party Pj” to mean
that Pi as a Signer executes the protocol Gen(Pi, Pj ,P,
~S, ε), considering Pj as an INT to give Pi’s IC signature
on ~S to Pj .

2. “Party Pi receives ICSig(Pj , Pi,P, ~S) from the party
Pj” to mean that Pi as an INT has completed the proto-
col Ver(Pj , Pi,P, ~S, ε) and finally possesses ICSig(Pj ,

Pi,P, ~S), where Pj is Signer.
3. “Party Pi reveals ICSig(Pj , Pi,P, ~S)” to mean that Pi

as an INT executes the protocol RevealPublic(Pj , Pi,

P, ~S, ε) along with the participation of the verifiers in P
to reveal ICSig(Pj , Pi,P, ~S) and hence ~S, where Pj is
Signer.

4. “PartyPk completes the revelation of ICSig(Pj , Pi,P, ~S)
with output Revealk = ~S? (resp. Revealk = ⊥)” to
mean that Pk as a verifier has completed the protocol
RevealPublic(Pj , Pi,P, ~S, ε), where Pj is Signer and
Pi is INT, with output Revealk = ~S? (resp. Revealk
= ⊥).

5. “PartyPi successfully/correctly revealed ICSig(Pj , Pi,P,
~S) (and hence ~S)” to mean that every honest verifier
Pk ∈ P outputs Revealk = ~S after completing the pro-
tocol RevealPublic(Pj , Pi,P, ~S, ε), where Pi is INT and
Pj is Signer.

6. “PartyPi failed to reveal ICSig(Pj , Pi,P, ~S) (and hence
~S)” to mean that every honest verifier Pk ∈ P outputs
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Revealk = ⊥ after completing the protocol RevealPub
lic(Pj , Pi,P, ~S, ε), where Pi is INT and Pj is Signer.

4 Asynchronous Weak Commitment (AWC)

We now present our AWC scheme. For the ease of presen-
tation, we will first present an AWC scheme which allows
to commit and decommit a single secret. This will be fol-
lowed by the description of the modifications required to
make the scheme to deal with ` secrets concurrently. We
will then compare our AWC scheme with the existing AWSS
and W-SVSS schemes. Finally, we discuss an important in-
terpretation of our AWC for committing and decommitting
polynomials, instead of committing and decommitting a se-
cret. The interpretation will be very helpful when we use our
AWC scheme for designing our AVSS.

4.1 AWC Scheme for a Single Secret

We present an AWC scheme called AWC− Single, consist-
ing of a pair of protocols (Com,DeCom), which allows a
Committer ∈ P to commit to a secret s ∈ F in a distributed
fashion among the parties in P . The high level idea of the
protocol is as follows: During the protocol Com, Committer com-
putes n Shamir shares [30] for the secret s, with threshold t.
Specifically, Committer selects a random polynomial of de-
gree at most t, subject to the condition that the constant term
of the polynomial is the secret s. Let Sh1, . . . , Shn be the n
shares, which are the evaluation of the selected polynomial
at n publicly known distinct values. Then Committer sends
the ith share Shi to the party Pi and also gives his IC sig-
nature on Shi (as a Signer) to the party Pi (considering
Pi as an INT). On receiving the IC signature on Shi from
Committer, the party Pi then himself acts as a Signer and
gives backPi’s IC signature on the same share Shi to Committer
(considering Committer as an INT). On receiving back 2t+

1 IC signatures from at least 2t+1 parties, Committer broad-
casts the identities of these 2t + 1 parties (we denote these
parties by the set WCORE) and every (honest) party termi-
nates the protocol Com on receiving WCORE from Committer.
The interpretation is that Committer has committed the se-
cret to the parties in WCORE, where the committed secret is
determined by the shares of the (honest) parties in WCORE.
That is, the committed secret is the constant term of the
polynomial, defined by the shares of the honest parties in
WCORE. If the polynomial is of degree at most t, then we
say that the committed secret is from F, otherwise ⊥ is the
committed secret.

If Committer is honest then the protocol Com preserves
the privacy of the secret s; this follows from the privacy of
the Shamir secret sharing with threshold t and the secrecy
property of the AICP. Moreover, Committer will eventually

broadcast the set WCORE, as there are at least 2t+1 honest
parties in the set P who will give back their IC signatures
on their respective shares to Committer and so each honest
party will eventually terminate the protocol Com. Further-
more, the committed secret s will be from F, as the shares
of the honest parties in WCORE will define a polynomial
of degree at most t. Now consider the case when Com is
corrupted. In that case, he may not distribute “consistent”
Shamir shares to the honest parties in WCORE. More specif-
ically, the shares given to the honest parties in the set WCORE
may not lie on a unique polynomial of degree at most t, so
the committed secret may be⊥. However, we will show that
this will not cause any problem later in the protocol DeCom;
that is, if the corrupted Committer later tries to decommit
s? 6= ⊥, then no honest party will accept the decommitted
value.

In the protocol DeCom, Committer reveals the IC sig-
nature of all the 2t + 1 parties in the set WCORE on their
respective shares. So the participation of Committer is very
crucial in the protocol DeCom, as otherwise, the honest par-
ties will never participate in the protocol DeCom. This im-
plies that if Committer is corrupted (and does not start re-
vealing the signatures) then no (honest) party will participate
(and hence terminate) in DeCom. Now if all the signatures
(on the shares) are revealed correctly by Committer and the
2t + 1 shares lie on a unique polynomial of degree at most
t, then the constant term of the polynomial is output as the
decommitted secret; otherwise the parties output ⊥.

It is easy to see that if Committer is honest then in-
deed every honest party will output s as the decommitted
secret, where s was committed during Com. This is because
Committer will successfully reveal the IC signature of the
2t + 1 parties in WCORE, on the corresponding Shamir
shares; moreover all these shares will lie on the original
polynomial of degree at most t. On the other hand, if Committer is
corrupted and s? is output as the decommitted secret then
with high probability, s? was committed during Com among
the (honest) parties in WCORE. This is because a corrupted
Committer will fail to reveal the IC signature of an honest
party Pi ∈ WCORE on an incorrect share Sh′i, which was
not given to the ith party during Com. So if at all s? is out-
put as the decommitted secret, then it implies that during the
protocol Com, the constant term of the polynomial defined
by the shares of the honest parties in WCORE was s?.

Notice that the IC signatures given by Committer to the
respective parties in WCORE are not used at all in the proto-
col Com and DeCom. In fact, it is enough for Committer to
get the IC signatures from the parties in WCORE to de-
sign the AWC scheme. However, the signatures given by
Committer to the parties in WCORE will play a very crucial
role, when we will use the AWC scheme to design our AVSS
scheme. The formal details of the protocol AWC− Single
are given in Fig 3.
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Fig. 3 AWC with n = 3t+ 1.

AWC− Single(Committer,P, s, ε)
Com(Committer,P, s, ε)

All instances of Gen and Ver in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of
Com by ε.

GENERATING THE COMMITMENT INFORMATION : The following code is executed only by Committer:
1. Select a random polynomial f(x) over F of degree at most t, such that f(0) = s and for i = 1, . . . , n, compute the ith share

Shi = f(i).
2. For i = 1, . . . , n, give ICSig(Committer, Pi,P, Shi) to Pi by acting as a Signer and considering Pi as an INT.
3. For i = 1, . . . , n, if ICSig(Pi,Committer,P, Sh′i) is received from Pi, such that Sh′i = Shi and the message (Sign-Sent,

i, Committer) is received from the broadcast of Pi, then include Pi in a set dynamic set WCORE, which is initially ∅.
4. Wait till |WCORE| = 2t+ 1 and then broadcast the set WCORE and terminate.

SIGNING THE SHARES, VERIFYING Committer’S CLAIM AND TERMINATION : For i = 1, . . . , n, every party Pi ∈ P (including
Committer) executes the following code:
1. On receiving ICSig(Committer, Pi,P, Shi) from Committer, act as a Signer and give back ICSig(Pi,Committer,P, Shi) to

Committer, considering Committer as an INT. In addition, broadcast the message (Sign-Sent, i, Committer) to notify
that signature is given to Committer.

2. Wait to receive a set WCORE of size 2t+1 from the broadcast of Committer. On receiving WCORE, wait to receive the message
(Sign-Sent, j, Committer) from the broadcast of every Pj ∈ WCORE. On receiving all these messages, terminate the
protocol.

DeCom(Committer,P, s, ε)

All instances of RevealPublic in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of
DeCom by ε.

DECOMMITTING THE SECRET : The following code is executed only by Committer:
1. Act as an INT and reveal ICSig(Pj ,Committer,P, Shj), corresponding to each Pj ∈WCORE.

VERIFYING THE DECOMMITMENT AND TERMINATION : For i = 1, . . . , n, every party Pi ∈ P (including Committer) executes the
following code:
1. Act as a verifier and wait to complete the revelation of ICSig(Pj ,Committer,P, Shj), corresponding to each Pj ∈WCORE.
2. If ∃Pj ∈ WCORE, such that Pi completes the revelation of ICSig(Pj ,Committer,P, Shj) with output Reveali = ⊥ then

output ⊥ and terminate.
3. If Pi completes the revelation of ICSig(Pj ,Committer,P, Shj) with output Reveali = Shj , then do the following:

(a) If the points {(j, Shj) : Pj ∈WCORE} lie on a unique polynomial, say f?(x), of degree at most t, then output s? = f?(0)
and terminate.

(b) If the points {(j, Shj) : Pj ∈WCORE} do not lie on a unique polynomial of degree at most t, then output⊥ and terminate.

We now prove the properties of the protocol AWC− Single.

Lemma 5 (Termination) Protocols (Com,DeCom) satisfy
the termination condition of definition 3.

PROOF: It is easy to see that if Committer is honest then
eventually every honest party Pi will give ICSig(Pi,Commi
tter,P, Sh′i) to Committer, where Sh′i = Shi and there are
at least 2t+1 such honest parties. So eventually, Committer
will broadcast a set WCORE and by the properties of broad-
cast, every honest party will eventually receive the set. More-
over, the honest Committer also must have received the mes-
sage (Sign-Sent, i, Committer) from the broadcast of
every party Pi ∈ WCORE, before including Pi in the set
WCORE and so from the properties of broadcast every other
honest party will also eventually receive these messages and
will terminate the protocol Com. This proves the first re-
quirement.

Let Pi be an honest party who has terminated Com. Thus
Pi has received the set WCORE of size 2t + 1 from the
broadcast of Committer, along with the message (Sign-Se
nt, j,Committer) from the broadcast of everyPj ∈WCORE.

Now from the properties of broadcast, every other honest
party will also eventually receive this set and the correspond-
ing messages and will terminate Com. This proves the sec-
ond requirement.

Let Committer invokes the protocol DeCom. This im-
plies that corresponding to each Pj ∈WCORE, Committer
reveals the signature ICSig(Pj ,Committer,P, Shj). Now
eventually all these signatures will be revealed. That is, each
honest party Pi will complete the revelation of all these sig-
natures with some output, which may be either ⊥ or some
value. Now irrespective of these outputs (of the signature
revelation), each honest party will either output a value from
F or ⊥ and terminate the protocol DeCom. This proves the
third requirement. 2

Lemma 6 (Correctness) Protocols (Com,DeCom) satisfy
the correctness condition of definition 3.

PROOF: Let Pi be an honest party who terminated the pro-
tocol Com. This implies that Pi received the set WCORE of
size 2t+1 from the broadcast of Committer, along with the
messages (Sign-Sent, j, Committer) from the broad-
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cast of every (honest) Pj ∈ WCORE. This further implies
that Committer has given the shares of the secret to the (hon-
est) parties in WCORE; otherwise Committer will not re-
ceive the signature of those honest parties on the correspond-
ing shares and those honest parties would not have broadcast
the corresponding (Sign-Sent, j, Committer) message.
Now out of the 2t+1 parties in the set WCORE, at most t can
be corrupted. We define the committed secret s as follows:
if the shares of the honest parties in WCORE lie on a unique
polynomial of degree at most t, say f(x), then s = f(0),
otherwise s = ⊥. Note that s is well defined, as there are at
least t+ 1 honest parties in WCORE.

Now if Committer is honest, then during the protocol
DeCom, Committer will successfully reveal all the signa-
tures corresponding to every party in WCORE, except with
probability at most ε. That is, corresponding to every honest
Pj ∈WCORE, Committer (as an INT) will successfully re-
veal ICSig(Pj ,Committer,P, Shj); this follows from AICP-
Correctness1. On the other hand, corresponding to every
corrupted Pj ∈ WCORE, Committer (as an INT) will suc-
cessfully reveal ICSig(Pj ,Committer,P, Shj), except with
probability ε′ = ε

n ; this follows from AICP-Correctness2.
As there can be at most t corrupted parties in WCORE, ex-
cept with probability at most tε′ ≈ ε, all the 2t+1 signatures
(corresponding to the parties in WCORE) will be correctly
revealed by Committer. Moreover, the points {(j, Shj) :

Pj ∈ WCORE} will define the original polynomial f(x) of
degree at most t, selected during Com. So each honest party
will output s = f(0). Furthermore, it is easy to see that
s = s, as f(x) = f(x). This proves the second requirement
of the correctness property.

Now consider a corrupted Committer and let Pi be an
honest party, who outputs s? ∈ F in the protocol DeCom.
This implies that corresponding to every Pj ∈ WCORE,
partyPi completed the revelation of ICSig(Pj ,Committer,P,
Shj) with output Reveali = Shj . Moreover, the points
{(j, Shj) : Pj ∈ WCORE} lie on the polynomial f?(x) of
degree at most t, where s? = f?(0). We first claim that ev-
ery other honest party will also eventually complete the rev-
elation of ICSig(Pj ,Committer,P, Shj) with output Shj .
This follows from the steps of the protocol RevealPublic.
We next claim that except with probability ε, the polynomial
f?(x) is the same as the polynomial f(x). This follows from
the fact that except with probability ε′ = ε

n , a corrupted
Committer will fail to correctly reveal ICSig(Pj ,Committer,
P, Sh′j) on an arbitrary Sh′j , corresponding to an honest
Pj ∈ WCORE (follows from AICP-Correctness3). More-
over, there are at least t + 1 such honest Pj’s in the set
WCORE. So except with probability (t+1)ε′ ≈ ε, the signed
shares corresponding to the honest parties in WCORE which
are revealed by Committer are the same shares which were
given to those honest parties during Com. Now there exists
only a single polynomial of degree at most t, consistent with

the shares of all the honest parties in WCORE. This proves
the first requirement of the correctness property. 2

Lemma 7 (Secrecy) If Committer is honest then the infor-
mation received by Adv till the end of Com is distributed
independently of the secret s.

PROOF: The proof follows from the properties of the Shamir
secret sharing and the AICP-Secrecy. More specifically, with-
out loss of generality, let P1, . . . , Pt be under the control of
Adv. So Adv will know t points (namely the shares) on the
polynomial f(x), which is a random polynomial of degree
at most t. So from the view point of the adversary, for every
possible secret s, there exists a unique polynomial of degree
at most t with s as the constant term and which is consis-
tent with his t shares and so all possible secrets are equi-
probable from his view point. Moreover, the adversary will
not get any extra information about the remaining shares (of
the honest parties) from the instances of AICP, which are
used to generate the IC signature on these shares. That is,
corresponding to every honest Pi, the adversary obtains no
information about the share Shi = f(i) during the instances
Gen(Committer, Pi,P, Shi),Ver(Committer, Pi,P, Shi),
Gen(Pi,Committer,P, Shi) and Ver(Pi,Committer,P, Shi),
which are invoked during Com to generate Committer’s and
Pi’s IC signature on Shi (this follows from Lemma 4). 2

Theorem 3 Protocols (Com,DeCom) is a (1−ε)-AWC scheme.
Protocol Com requires a private communication ofO(n2 log 1

ε )

bits and broadcast of O(n2 log 1
ε ) bits. Protocol DeCom re-

quires a broadcast of O(n2 log 1
ε ) bits.

PROOF: In the protocol Com, at most 2n instances of Gen
and Ver, each dealing with a single value are executed to
generate the IC signatures. During DeCom, at most n in-
stances of RevealPublic, each dealing with a single value
are executed to reveal the signatures. The proof now follows
from Theorem 2 by substituting ` = 1 and from Lemma 5-7.
2

4.2 AWC Scheme for ` Secrets

The AWC scheme presented in the last section allows to
commit and later decommit a single secret. Now consider
a scenario where a Committer would like to commit and
later decommit a vector ~S = (s1, . . . , s`), consisting of `
elements from F, where ` > 1. One simple way of doing
this is to execute an instance of the Com and DeCom proto-
col on the behalf of each element sl ∈ ~S; this will require a
private as well as broadcast communication ofO(`n2 log 1

ε )

bits. However, we now show how to commit and decom-
mit all the ` elements of ~S concurrently, so that it requires
a private as well as broadcast communication of O((`n +

n2) log 1
ε ) bits. So if ` = Ω(n), which will be the case in
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our AVSS scheme and the common coin protocol, then the
broadcast communication of our protocol will be indepen-
dent of `. This will be a significant gain in the communi-
cation complexity, considering the fact that implementing
broadcast through the A-cast protocol over a point to point
network is an expensive operation11.

The key idea here is that we extend the protocol Com and
DeCom in a “natural” way, so as to deal with ` values con-
currently. That is, the instances of Gen,Ver and RevealPublic
in the Com and DeCom protocol are now invoked to deal
with ` values concurrently, instead of a single value. For ex-
ample, on the behalf of each party Pi, Committer will com-
pute ` Shamir shares (one corresponding to each of the ` se-
crets). Now instead of executing ` different instances of Gen
(each dealing with a single value) to give his IC signature
on the ` ith share, Committer will execute a single instance
of Gen to give his IC signature on all the ` ith share con-
currently. The other steps are modified and extended sim-
ilarly. The modified protocols are presented in Fig 4. The
new scheme is called AWC−Multiple, as it deals with mul-
tiple secrets. The properties of the modified scheme follow
using the same arguments as for the earlier scheme and so
we avoid giving the complete proofs to avoid repetition.

We state the following theorem, stating the communi-
cation complexity of the protocol AWC−Multiple, whose
proof follows from the properties of the protocol and the
communication complexity of our AICP (Theorem 2).

Theorem 4 In AWC−Multiple, protocol Com requires a
private communication ofO((`n+n2) log 1

ε ) bits and broad-
cast ofO((`n+n2) log 1

ε ) bits. Protocol DeCom requires a
broadcast of O((`n+ n2) log 1

ε ) bits.

4.3 Comparison of Our AWC with the AWSS of [25] and
W-SVSS of [1]

The best known AWSS scheme was presented in [25]. The
scheme is an (1−ε)-AWSS scheme and based on the idea of
using a bi-variate polynomial to share a secret. Specifically,
to share a secret s, a random bi-variate polynomial F (x, y)
with s as the constant term is used and each party receives n
points on this polynomial (along with additional information
like the IC signatures). So this approach inherently requires
the distribution of Ω(n2) elements from F to share a single
secret. On the other hand, in our AWC scheme, to commit a
single secret, only n elements from F need to be distributed,
as the secret is committed using a univariate polynomial (ig-
noring the IC signatures). This automatically suggests a gain
of Ω(n) in the communication complexity.

The weak-shunning VSS (W-SVSS) of [1], which may
be considered as a “shunning” variant of AWSS, is also based

11 Recall that an instance of A-cast requires a private communication
of O(`n2) bits to broadcast an ` bit message.

on the idea of using a bi-variate polynomial of degree t in
each variable to share the secret (however, it does not use
any IC signature) and so it also requires distributing Ω(n2)

elements from the underlying field to share a single secret.
Moreover, W-SVSS does not satisfy all the properties of
AWSS. Specifically, if all the parties behave honestly during
the protocol then we get the same properties as in an AWSS
scheme; otherwise the protocol does not provide the prop-
erties of an AWSS, but ensures that there exists at least one
honest party, who will identify at least one corrupted party,
who behaved dis-honestly and whom the honest party will
shun (ignore) from then onwards for the rest of the protocol
execution. However, unlike the AWSS scheme of [25] and
our AWC scheme, both of which are (1−ε)-terminating, the
W-SVSS scheme of [1] is al most surely terminating (i.e. ter-
minates with probability one).

4.4 AWC for Sharing Polynomials

There is another interesting way to interpret the computation
done in the protocol AWC− Single and AWC−Multiple;
we will be using this interpretation while using our AWC
for our AVSS. For simplicity, we focus on the protocol
AWC− Single (Fig 3); the same discussion even holds for
the protocol AWC−Multiple (Fig 4). Recall that in the pro-
tocol Com in AWC− Single, in order to commit a secret s,
Committer selected a polynomial f(x) of degree at most t
with s as the constant term and shared s through this poly-
nomial by giving a point on the polynomial to each party as
a share. We defined the committed value s as follows: we
considered the polynomial f(x) defined by the shares of the
honest parties in WCORE; if f(x) has degree at most t, then
s = f(0) ∈ F; otherwise s = ⊥. Moreover, if Committer
is honest then f(x) = f(x) (see the proof of Lemma 6). We
can view this entire computation (during the protocol Com)
as follows:

– Committer has committed a polynomial f(x) among the
(honest) parties in WCORE, where |WCORE| = 2t+ 1.
Each (honest) party Pj ∈ WCORE has the share Shj =
f(j) and the IC signature of Committer on the share
Shj , namely ICSig(Committer, Pj ,P, Shj). In addition,
Committer will have the IC signature of eachPj ∈WCO
RE on the share Shj , namely ICSig(Pj ,Committer,P,
Shj). We call the signatures given by Committer (as a
Signer) to the parties in WCORE (as an INT) as the sec-
ondary signatures, while the signatures given by the par-
ties in WCORE (as a Signer) to Committer (as an INT)
are called the primary signatures. The reason for dis-
tinguishing these two types of signatures will be clear
when we use the AWC scheme in our AVSS scheme.
Notice that if Committer is honest, then corresponding
to each Pj ∈ WCORE, the primary as well as the sec-
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Fig. 4 AWC for ` secrets with n = 3t+ 1.

AWC−Multiple(Committer,P, ~S = (s1, . . . , s`), ε)

Com(Committer,P, ~S = (s1, . . . , s`), ε)

All instances of Gen and Ver in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of
Com by ε.

GENERATING THE COMMITMENT INFORMATION : The following code is executed only by Committer:
1. For l = 1, . . . , `, corresponding to the secret sl ∈ ~S, select a random polynomial fl(x) over F of degree at most t, such that

fl(0) = sl.
2. For i = 1, . . . , n, compute the vector of ith share ~Shi = (f1(i), . . . , f`(i)).
3. For i = 1, . . . , n, give ICSig(Committer, Pi,P, ~Shi) to Pi by acting as a Signer and considering Pi as an INT.
4. For i = 1, . . . , n, if ICSig(Pi,Committer,P, ~Sh′i) is received from Pi, such that ~Sh′i =

~Shi, and the message (Sign-Sent,
i, Committer) is received from the broadcast of Pi, then include Pi in a dynamic set WCORE, which is initially ∅.

5. Wait till |WCORE| = 2t+ 1 and then broadcast the set WCORE and terminate.
SIGNING THE SHARES, VERIFYING Committer’S CLAIM AND TERMINATION : For i = 1, . . . , n, every party Pi ∈ P (including

Committer) executes the following code:
1. On receiving ICSig(Committer, Pi,P, ~Shi) from Committer, act as a Signer and give back ICSig(Pi,Committer,P, ~Shi) to

Committer, considering Committer as an INT. In addition, broadcast the message (Sign-Sent, i, Committer) to publicly
notify that signature is given to Committer.

2. Wait to receive a set WCORE of size 2t+1 from the broadcast of Committer. On receiving WCORE, wait to receive the message
(Sign-Sent, j, Committer) from the broadcast of every Pj ∈ WCORE. On receiving all these messages, terminate the
protocol.

DeCom(Committer,P, ~S, ε)

All instances of RevealPublic in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of
DeCom by ε.

DECOMMITTING THE SECRET : The following code is executed only by Committer:
1. Act as an INT and reveal ICSig(Pj ,Committer,P, ~Shj), corresponding to each Pj ∈WCORE.

VERIFYING THE DECOMMITMENT AND TERMINATION : For i = 1, . . . , n, every party Pi ∈ P (including Committer) executes the
following code:
1. Act as a verifier and wait to complete the revelation of ICSig(Pj ,Committer,P, ~Shj), corresponding to each Pj ∈WCORE.
2. If ∃Pj ∈ WCORE, such that Pi completes the revelation of ICSig(Pj ,Committer,P, ~Shj) with output Reveali = ⊥ then

output ⊥ and terminate.
3. If corresponding to Pj ∈WCORE, party Pi completes the revelation of ICSig(Pj ,Committer,P, ~Shj) with output Reveali =

~Shj , then interpret ~Shj as (f1(j), . . . , f`(j)) and do the following:
(a) If for l = 1, . . . , `, the points {(j, fl(j)) : Pj ∈WCORE} lie on a unique polynomial, say f?l (x), of degree at most t, then

output ~S? = (f?1 (0), . . . , f
?
` (0)) and terminate.

(b) If ∃l ∈ {1, . . . , `}, such that the points {(j, fl(j)) : Pj ∈WCORE} do not lie on a unique polynomial of degree at most t,
then output ⊥ and terminate.

ondary signature is on the same share Shj . Moreover,
even if Committer is corrupted, the primary as well the
secondary signature will be on the same share Shj , cor-
responding to each honest Pj ∈WCORE.

– If Committer is honest, then the polynomial f(x) will
have degree at most t. However, if Committer is cor-
rupted then the polynomial can have degree more than
t.

– If Committer is corrupted, then the polynomial f(x)
will be known to Adv. However, if Committer is honest,
then Adv may know at most t points on f(x); moreover
the information received by Adv will be distributed in-
dependently of the secret s = f(0). So even though the
committed polynomial f(x) will not be completely ran-
dom, the secrecy of f(0) will be preserved if Committer is
honest (see the proof of Lemma 7).

Also recall that during the protocol DeCom, to decommit
the secret, Committer has to reveal all the primary signa-

tures on the shares (the secondary signatures will be used
later when we use the AWC as a black-box in our AVSS),
corresponding to the parties in WCORE. If all the signatures
are revealed correctly and the revealed shares lie on a poly-
nomial of degree at most t, say f?(x), then s? = f?(0) ∈ F
is outputted as the decommitted secret; otherwise ⊥ is out-
putted. Moreover, we have shown that if f?(x) has degree
at most t, then f?(x) is the same polynomial, which was
committed during the protocol Com (see Lemma 6). We
can view this computation during the protocol DeCom, as
if Committer decommits a polynomial f?(x). If the poly-
nomial has degree at most t, then all the (honest) parties
output this polynomial; moreover the same polynomial was
committed during Com. However, if the polynomial has de-
gree more than t or the same polynomial was not committed
during Com, then the parties output ⊥.

We remark that the above idea of abusing the notion of
“committing (decommitting) a secret” to “committing (de-
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committing) a polynomial f(x) of degree at most t” is not
new and it is very well known and commonly used in the lit-
erature of WSS and VSS (for example, see[24,19,22]). This
does not break the interface when AWC is further used as a
black-box in our AVSS. The reason is that Committer still
has to follow exactly the same steps “internally” to commit
the polynomial f(x), as he has to perform for committing
a secret s. That is, for committing a secret s, Committer
had to select a polynomial f(x) of degree at most t, with
the condition that f(0) = s; so s was the “actual” input of
Committer for the protocol Com, while the polynomial f(x)
was the randomly generated information, which Committer
used for committing s. Instead, we now view this f(x) as
the input of Committer and the rest of the protocol steps are
the same.

Following the above discussion, in the rest of the paper,
we will “abuse” the notion of committing and decommiting
secrets (through AWC) and instead say that Committer com-
mits and decommits polynomials (in the sense explained
above) using the Com and DeCom protocols. More specifi-
cally, we will use the following notation:

Notation 3 (Notation for Using AWC to Commit/Decom
mit Polynomials) Recall that Committer can be any any
party in the set P . We say that:

1. “Committer commits ` polynomials f1(x), . . . , f`(x)”
to mean that Committer executes the protocol Com(Com
mitter,P, (f1(0), . . . , f`(0)), ε), where f1(x), . . . , f`(x)
are used as the ` polynomials by Committer during the
step 1 of GENERATING THE COMMITMENT INFORMA-
TION in the protocol AWC−Multiple. If the honest par-
ties terminate this protocol, then they will know a set
WCORE of size 2t + 1, such that each (honest) Pj ∈
WCORE will have the secondary signature ICSig(Commi
tter, Pj ,P, ~Shj) and corresponding to eachPj ∈WCOR
E, Committer will have the primary signature ICSig(Pj ,

Committer,P, ~Shj). Here ~Shj = (f1(j), . . . , f`(j)) will
be called the share of the committed polynomials f1(x),
. . . , f`(x).

2. “Committer decommits ` polynomials f1(x), . . . , f`(x)”
to mean that Committer executes the protocol DeCom(Co
mmitter,P, (f1(0), . . . , f`(0)), ε), where during the step
DECOMMITTING THE SECRET, Committer will reveal
the primary signatures ICSig(Pj ,Committer,P, ~Shj), cor-
responding to each Pj ∈ WCORE, such that ~Shj =

(f1(j), . . . , f`(j)). If the honest parties terminate the pro-
tocol, then they either output the polynomials f1(x), . . . ,
f`(x), if all these polynomials are of degree at most t and
the same polynomials were committed by Committer ear-
lier during the Com protocol; otherwise the parties out-
put ⊥.

5 Asynchronous Verifiable Secret Sharing (AVSS)

We now present our AVSS scheme. For the ease of presen-
tation, we first present an AVSS scheme for sharing a single
secret. This will help us to understand the underlying ideas.
Later we will show how to modify the scheme so as to share
` secrets concurrently.

5.1 AVSS for Sharing a Single Secret

Before going into the details of the AVSS, we first closely
look into our AWC scheme for sharing a single secret (namely
the protocol AWC− Single) and see why it fails to satisfy
the properties of AVSS. The first easy observation is that if
Committer is honest, then the protocol AWC− Single pro-
vides all the properties of an AVSS (namely Com can be
used as the sharing protocol, while DeCom can be used as
the reconstruction protocol). Moreover, even if Committer is
corrupted, the Com protocol provides all the properties of a
sharing protocol of an AVSS; the problem arises during the
DeCom protocol, as it may fail to satisfy two important re-
quirements of a reconstruction protocol of an AVSS. More
specifically, if Committer is corrupted, then the following
two problems may arise during the DeCom protocol:

– The corrupted Committer may not initiate the protocol
DeCom, in which case, the honest parties will never ter-
minate the protocol. This will be a violation of the third
requirement of the termination condition of AVSS, which
requires that all the honest parties should terminate the
reconstruction protocol, even if D (in this case Committer)
is corrupted. This problem arises because the participa-
tion of Committer (namely the revelation of the primary
signatures) is the key step in the DeCom protocol.

– The honest parties may output ⊥ during the protocol
DeCom, even if an s ∈ F was committed by Committer
during the Com protocol. This is because even though a
corrupted Committer cannot successfully reveal (as an
INT) the primary signatures of an honest Pj ∈WCORE
on an “incorrect” share Sh′j 6= Shj (such that Sh′j was
not given as a share to Pj during the Com), the corrupted
Committer can always successfully reveal the primary
signatures of a corrupted Pj ∈ WCORE on any arbi-
trary share Sh′j of his choice; this is because in AICP, if
Signer (in this case the party Pj) and INT (in this case
the Committer) are both corrupted, then INT can suc-
cessfully reveal the signature of Signer on any arbitrary
value, which is “consistent” with the verification infor-
mation of the verifiers. So if the revealed shares corre-
sponding to the corrupted Pj’s in WCORE do not lie on
the polynomial defined by the shares of the honest Pj’s
in WCORE, then the parties end up outputting ⊥, even
though s 6= ⊥ was committed during Com. This will
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be a violation of the first requirement of the correctness
condition of AVSS, which demands the reconstruction
of the committed value s during the reconstruction pro-
tocol.

To get away with these problems, we use the idea of shar-
ing the secret using a bi-variate polynomial of degree t in
each variable. This idea of sharing the secret using bi-variate
polynomials is not new and has been widely used in the lit-
erature of VSS in the synchronous settings (for example,
see [24,22,12,19,21] and their references). The same idea
was also used in [1] to design a shunning-VSS (SVSS). We
use the idea of bi-variate polynomials to design a (1 − ε)-
AVSS. We would like to stress that even though the idea was
also used in [1] to get an SVSS12, our goal is different from
theirs. Moreover, we use AWC (based on univariate polyno-
mials) to design our AVSS, while [1] used W-SVSS (based
on bi-variate polynomials) to design their SVSS. So even
though the central idea of using the bi-variate polynomial
is common in our AVSS as well as in the SVSS of [1], the
protocol steps are completely different as both these prim-
itives (AVSS and SAVSS) have different properties and ac-
cordingly, the “interface” to use AWC (resp. W-SVSS) as a
black-box are also different. So our AVSS and SVSS of [1]
are incomparable.

Before proceeding further, we provide a brief background
about symmetric bi-variate polynomials, which are used in
our protocol.

Bi-Variate Polynomials: A symmetric bi-variate polyno-
mial F (x, y) over F of degree t is a polynomial over two
variables, each of degree at most t, where F (x, y) has the
following form:

F (x, y) =

t∑
i,j=0

rijx
iyj and F (l,m) = F (m, l),∀l,m ∈ F,

which implies that rij = rji, for i, j = 1, . . . , t. Notice
that F (x, y) has (t + 1) + t + . . . + 1 = (t+1)(t+2)

2 co-

efficients. Let fi(x)
def
= F (x, i), for i = 1, . . . , n; then

fi(x) is a univariate polynomial of degree at most t. More-
over, fi(j) = F (j, i) = fj(i) = F (i, j), which follows
from the symmetry of the bi-variate polynomial. Notice that
the knowledge of fi(x) provides t + 1 distinct points on
the polynomial F (x, y); i.e. given fi(x), one can compute
fi(j) = F (j, i), for j = 1, . . . , t + 1. This immediately
implies that given any t + 1 distinct fi(x)’s, one can effi-
ciently compute F (x, y), as the knowledge of t+1 such dis-
tinct fi(x)’s provides (t+1)(t+2)

2 distinct points on F (x, y),
which are sufficient to interpolate F (x, y).

An interesting property of the bi-variate polynomials,
which will be used to prove the privacy of our AVSS is the

12 Recall that SVSS does not provide all the properties of AVSS if
the corrupted parties deviate from the protocol.

following: let s ∈ F be the secret and F (x, y) is a random,
symmetric bi-variate polynomial of degree t, subject to the
condition that s = F (0, 0). Then given only t distinct poly-
nomials fi(x)’s, where fi(x) = F (x, i), no information is
revealed about s; intuitively this is because the knowledge
of t such distinct fi(x)’s provides (t + 1) + t + . . . + 2 =
(t+1)(t+2)

2 − 1 points on F (x, y), which is one less than the
number of coefficients in F (x, y). We will later formalize
this intuition, while proving the properties of our AVSS. We
now discuss the underlying ideas used in our AVSS. The de-
scription is quiet lengthy, but we feel that it is required to
understand the issues that arise while designing the protocol
and how we get rid of those issues step by step.

Informal Description of Our AVSS (Assuming Honest
D): In our AVSS scheme, to share a secret s, the dealer D se-
lects a random, symmetric bi-variate polynomial F (x, y) of
degree t, subject to the condition F (0, 0) = s. For i =

1, . . . , n, D sends the polynomial fi(x) = F (x, i) to the
party Pi; we call fi(x) as the share of s for the party Pi.

Moreover, for a share fi(x), we call sij
def
= fi(j), as the jth

share-share of the share fi(x), for j = 1, . . . , n. So every
party Pj will have a share-share of the share fi(x) of every
other party Pi. This is because the jth share-share of fi(x)
is fi(j), which is the same as fj(i), as fi(j) = fj(i). So
given his share fj(x), party Pj can compute the jth share-
share fj(i) = fi(j) of the ith share fi(x). This implies that
Adv will have at most t share-shares of the share fi(x) of
each honest Pi.

For simplicity, let us first assume that D is honest; then
clearly the above distribution of information by D satisfies
the secrecy property of AVSS, as Adv will have at most t
shares, which does not provide him the complete informa-
tion to know F (0, 0). During the reconstruction protocol,
every party can reveal their share of s and given any t+1 cor-
rect shares, we can reconstruct F (x, y) and hence s. How-
ever, we have to incorporate a mechanism, which would al-
low us to identify the correct shares; i.e. if a corrupted Pi
reveals an incorrect share f ′i(x), where f ′i(x) 6= fi(x), then
the honest parties should be able to identify this. For this,
we use the following idea: during the sharing protocol, on
receiving his share fi(x), party Pi acts as a Committer and
commits his share fi(x) using an instance of our AWC (this
is where we use the notion of committing a polynomial through
AWC). We denote the instance of Com (resp. DeCom) exe-
cuted on behalf of the party Pi as Comi (resp. DeComi). No-
tice that in Comi, if Committer (namely Pi) is honest, then
it reveals no new information about the share fi(x) to Adv.
More specifically, Adv may learn at most t shares (points) of
the committed polynomial fi(x) during Comi; we call the
shares of the committed polynomial fi(x) received during
Comi as the AWC-shares of fi(x), to distinguish it from the
share-shares of fi(x). Now it is easy to see that the t AWC-
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shares of fi(x) and the t share-shares of fi(x) obtained by
Adv will be the same, namely the points fi(j), correspond-
ing to the t Pj’s under the control of Adv. So asking each
party to commit his share fi(x) does not hamper the privacy
of s, as now new information about F (x, y) is revealed to
Adv.

The honest parties will commit his share of s, however
a corrupted party may commit an incorrect share of s. That
is, if Pi is corrupted, then he may commit an incorrect share
f ′i(x) during Comi, where f ′i(x) 6= fi(x). We get rid of this
problem as follows: we ask a party Pj to participate in Comi,
only if the jth AWC-share of the committed polynomial is the
same as the jth share-share of the ith share; otherwise Pj
does not participate in Comi at all. That is, during Comi, if
Pj receives the secondary signature ICSig(Pi, Pj ,P, Shj)
from the Committer Pi, then Pj checks that Shj is the same

as the jth share-share of fi(x) by checking Shj
?
= fj(i),

where fj(x) is the share of Pj (received from D). If the
check passes, then only Pj performs the rest of the steps of
the Com protocol (namely giving back the primary signature
ICSig(Pj , Pi,P, Shj), broadcasting the Signature-Sent
message, etc) during the instance Comi.

Notice that the above idea of pre-checking a condition
before participating in an instance of Com will not cause
any problem for the termination of the Com instances of
the (honest) parties. This is because if Pi is honest, then the
pre-checking will pass for every honest Pj during Comi and
since there are at least 2t + 1 honest parties, eventually all
the honest parties will participate in Comi, corresponding to
an honest Committer Pi. So each such Comi will eventually
terminate, as a WCORE of size 2t+1 will be eventually con-
structed in such instances; we call the WCORE constructed
during the instance Comi as WCOREi. The interesting fea-
ture of the above pre-checking is that it now ensures that if
the instance Comi, executed on the behalf of a corrupted Pi
has terminated, then the committed polynomial is his share
fi(x) = F (x, i). This is because there will be at least t + 1

honest parties in WCOREi, who would have checked that
the AWC-share of the committed polynomial is the same as
the share-share of fi(x) and there exists a unique polyno-
mial of degree at most t, namely fi(x), consistent with both
the share-shares, as well as the AWC-shares of the honest
parties in WCOREi.

Next notice that during the sharing protocol, we can-
not wait for the termination of all the n instances of the
Com protocol, due to the fact that the instances correspond-
ing to the t corrupted parties may never terminate. As a re-
sult, we have to terminate the sharing protocol, as soon as
2t + 1 Com instances terminate, as otherwise it may lead
to indefinite waiting. Now a subtle problem here is different
parties may terminate different instances of Com at different
time and it is essential that all the (honest) parties agree on
the same 2t+1 parties whose instances of Com will be even-

tually completed by all the parties. We solve this problem as
follows: we ask D to keep “track” of all the Com instances
and as soon as D completes 2t + 1 such instances, he no-
tifies this to everyone by broadcasting the identities of the
committers of these instances and the respective WCOREi
sets.

More specifically, if D completes an instance Comi, cor-
responding to the partyPi, he includesPi in a set ShVCORE.
That is, if D receives the set WCOREi of size 2t + 1 from
the broadcast of Pi and the messages (Sign-Sent, j, Pi)
by all the Pj’s in WCOREi (which are conditions that need
to be satisfied in order that D terminates the instance Comi),
then D includes Pi in the set ShVCORE. The interpretation
is that ShVCORE is the set of parties whose instances of
Com have been terminated by D. Now as soon as D in-
cludes 2t + 1 parties in the set ShVCORE, he broadcasts
ShVCORE, along with the WCOREi sets corresponding to
each Pi ∈ ShVCORE, indicating that D has completed the
Com instances of the 2t + 1 parties in ShVCORE. The par-
ties then verify that this is indeed the case. That is, each
party waits to receive an ShVCORE, along with the cor-
responding WCOREi’s from the broadcast of D and then
waits to himself complete the Com instances of each party
in ShVCORE, before terminating the sharing protocol. This
way, each party will eventually agree on the set of 2t + 1

parties (along with the corresponding WCOREi’s), whose
instances of Com will be completed by all the (honest) par-
ties.

Once the honest parties terminate the sharing protocol,
the reconstruction protocol may be as follows: we ask each
party Pi ∈ ShVCORE to decommit his committed share
fi(x) by executing the instance DeComi. Notice that we
cannot wait for the completion of all the 2t+ 1 instances of
DeCom, corresponding to the 2t + 1 parties in ShVCORE,
as there may be t corrupted parties in ShVCORE, who may
never execute their instance of DeCom. So during the recon-
struction protocol, as soon as a party completes the DeCom in-
stances of t + 1 parties from ShVCORE, with a univariate
polynomial of degree t as the output, he takes those polyno-
mials, reconstructs F (x, y) using them, outputs s = F (0, 0)

and terminates. The property of DeCom ensures that if the
output of an instance of DeCom is a polynomial of degree t,
then the same polynomial was committed during the corre-
sponding instance of Com.

Dealing with a Corrupted D: Unfortunately, all the discus-
sion till now holds good only under the condition that D is
honest; however if D is corrupted, then the only the above
steps will not ensure all the properties of AVSS. This is be-
cause a corrupted D may distribute “inconsistent” shares to
the honest parties; i.e. if D is corrupted, then the shares of all
the honest parties may not lie on a unique bi-variate polyno-
mial. More specifically, if there exists a unique, symmetric
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bi-variate polynomial of degree t, say F (x, y), such that for
every honest Pi ∈ ShVCORE, it holds that fi(x) = F (x, i)

(we will often say that the share fi(x) lies on F (x, y) if
this condition is satisfied), where fi(x) is the share of Pi,
then we say that D has committed s = F (0, 0) during the
sharing protocol; otherwise we say that D has committed
s = ⊥. Notice that s is well defined, as there will be at least
t+ 1 honest parties in ShVCORE, each holding a univariate
polynomial of degree at most t as a share, which are suffi-
cient to define a symmetric, bi-variate polynomial of degree
t. Moreover, if D is honest, then s = s, as the shares of all
the parties in ShVCORE will lie on the original polynomial
F (x, y). Furthermore, just by following the steps discussed
earlier, swill be reconstructed during the reconstruction pro-
tocol. However, if D is corrupted then the committed secret
s may be ⊥, but by following the steps discussed earlier, a
value s?, where s? 6= ⊥ may be reconstructed, which will
violate the correctness requirement of AVSS. More specif-
ically, if D is corrupted, then the shares of all the honest
parties in ShVCORE may not lie on a unique bi-variate poly-
nomial, which further implies that fi(j) 6= fj(i) will hold,
for at least one pair of honest parties (Pi, Pj). Now during
the reconstruction protocol, depending upon which t+1 in-
stances of DeCom are first completed with univariate poly-
nomials of degree t as the output, any bi-variate polynomial
of degree t can be reconstructed and hence any secret can be
reconstructed.

To deal with the above problem, it is enough if we can
somehow allow for the decommitment of all the shares, com-
mitted by all the honest parties in ShVCORE. However it
seems to be difficult because as mentioned earlier, we cannot
afford to wait for the termination of all the DeCom instances,
as it may cause problem for the termination condition. This
is where the secondary signatures which were given during
the Com protocol plays a crucial role. Recall that during the
Com protocol, each party in WCORE holds the signature of
Committer on the corresponding share, but it was not used
during the DeCom protocol; we will now make use of those
secondary signatures, while executing the DeCom instances
in our reconstruction protocol.

Specifically, instead of just checking that there are ex-
actly 2t+1 parties in ShVCORE and there exists some WCOR
Ej of size exactly 2t+1 corresponding to each Pj ∈ VCOR
E, the parties check that there are at least 2t + 1 parties in
ShVCORE, i.e. |ShVCORE| ≥ 2t + 1. In addition, corre-
sponding to each Pj ∈ ShVCORE, there should also exist
at least 2t + 1 parties in the set ShVCORE, who are also in
WCOREj , i.e. |ShVCORE ∩ WCOREj | ≥ 2t + 1 should
hold for each Pj ∈ ShVCORE (why this is helpful will
be clear in the sequel). This implies that while constructing
ShVCORE, D has to ensure that the above conditions are sat-
isfied by ShVCORE and only then be broadcasts ShVCORE
during the sharing protocol. This further implies that D sim-

ply should not terminate immediately an instance Comj after
receiving a WCOREj of size 2t + 1 from Pj (and the cor-
responding sign-sent messages); rather D should keep
“expanding” the set WCOREj in each instance Comj after
receiving “new” sign-sent messages from new parties,
which were not present in the set WCOREj . Similarly, a
party Pi should not terminate immediately an instance Comj

after receiving a WCOREj of size 2t + 1 (and the corre-
sponding sign-sent messages); rather Pi should keep
participating in Comj , till he receives a ShVCORE from D,
satisfying the new condition. This process of expansion of
WCOREj’s in the individual instances of Com should be
continued by D, till he finds a ShVCORE of size at least
2t+ 1, satisfying the new condition.

On the first look, this process of expansion of the indi-
vidual WCOREj’s beyond its initial size of 2t+1 may look
counter-intuitive; however this is very much required, other-
wise even an honest D may fail to find an ShVCORE, satis-
fying the new conditions. More specifically, ideally if D is
honest, then every honest party will be eventually included
in the WCOREj of each honest Pj , but it is not known when
will the honest parties will be included in WCOREj , due
to the asynchronous nature of the network. Now if D termi-
nates an instance Comj immediately after receiving a WCOR
Ej of size 2t+1, then it is not necessary that WCOREj con-
tains only honest parties. So if D terminates exactly 2t + 1

instances of Com with the corresponding (possibly differ-
ent) WCOREj’s of size exactly 2t + 1, then the condition
|ShVCORE ∩WCOREj | ≥ 2t+ 1 may not be satisfied. In-
stead, if D keeps expanding each individual WCOREj and
keeps checking for the above condition, then eventually he
will find an ShVCORE of size at least 2t+ 1, satisfying the
new condition. So the terminating condition for the sharing
protocol is that each party should receive an ShVCORE of
size at least 2t+1 and WCOREj’s of size at least 2t+1 for
each Pj in ShVCORE, so that the condition |ShVCORE ∩
WCOREj | ≥ 2t + 1 is satisfied for every Pj ∈ ShVCORE.
As discussed above, if D is honest, then eventually this con-
dition will be satisfied and the sharing protocol will termi-
nate.

If the parties terminate the sharing protocol with an
ShVCORE satisfying the above properties, then the recon-
struction protocol proceeds as follows: we first ask each party
Pj ∈ ShVCORE to decommit his committed share fj(x) in
the instance DeComj , for which Pj will reveal the primary
signatures ICSig(Pi, Pj ,P, fj(i)), corresponding to each Pi
∈WCOREj and we check whether all these revealed fj(i)’s
lie on a polynomial of degree at most t, say f j(x). Recall
that according to the protocol steps of DeCom, if f j(x) is a
polynomial of degree at most t, then f j(x) would be consid-
ered as the output of DeComj and by the properties of Com,
the same polynomial was committed by Pj during the in-
stance Comj . However, we now perform additional check-
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Fig. 5 AVSS with n = 3t+ 1.

AVSS− Single(D,P, s, ε)
Sh(D,P, s, ε)

All instances of Com in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of Sh by ε.

DISTRIBUTION OF SHARES — The following code is executed only by D:
1. Select a random, symmetric bivariate polynomial F (x, y) of degree t, such that F (0, 0) = s. For i = 1, . . . , n, compute

fi(x)
def
= F (x, i).

2. For i = 1, . . . , n, send the share fi(x) to the party Pi.
COMMITMENT OF THE SHARES — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive fi(x) from D.
2. If fi(x) has degree at most t, then act as a Committer and execute Com(Pi,P, fi(x), ε′)a to commit the share fi(x). We call

this instance of Com, initiated by Pi as Comi and let WCOREi be the instance of WCORE constructed in the instance Comi.
3. For j = 1, . . . , n, participate in the instance Comj of Com, initiated by Pj . During the instance Comj , if the secondary signature

ICSig(Pj , Pi,P, fj(i)) is received from Pj , then check whether fj(i)
?
= fi(j). If fj(i) = fi(j), then only perform the rest of

the steps of the protocol Com that Pi is supposed to perform in the instance Comj . Otherwise, do not participate further in the
instance Comj .

4. For j = 1, . . . , n, do not terminate and keep participating in the instance Comj , even after receiving the set WCOREj of size
2t+ 1 from the broadcast of Committer Pj .

ShVCORE CONSTRUCTION — The following code is executed only by D:
1. If a WCOREj of size 2t+1 is received from the broadcast of Committer Pj and the messages (Sign-Sent, k, Pj) are received

from the broadcast of every Pk ∈WCOREj in the instance Comj , then include Pj in a dynamic set T (which is initially ∅). Do
not terminate Comj and keep participating in the instance Comj .

2. If a new message (Sign-Sent, k, Pj) is received from the broadcast of Pk during the instance Comj , where Pj ∈ T and
Pk 6∈WCOREj , then update WCOREj and include Pk in WCOREjb.

3. Keep updating T and the existing WCOREjs, corresponding to the Pjs in T , by performing the previous two steps, until
there exists a set ShVCORE ⊆ T , such that |ShVCORE| ≥ 2t + 1 and |ShVCORE ∩ WCOREj | ≥ 2t + 1 holds for every
Pj ∈ ShVCORE.

4. On finding ShVCORE, broadcast the set ShVCORE and the set WCOREj corresponding to each Pj ∈ ShVCORE and terminate.
VERIFICATION OF ShVCORE AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive ShVCORE and WCOREj corresponding to each Pj ∈ ShVCORE from the broadcast of D. On receiving check
if |ShVCORE| ≥ 2t+ 1 and |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE.

2. If the checking in the previous step passes, then corresponding to each Pj ∈ ShVCORE, wait to receive the message
(Sign-Sent, k, Pj) from the broadcast of every party Pk ∈ WCOREj , during the instance Comj . On receiving all these
messages, terminate the protocol.

Rec(D,P, s, ε)

All instances of DeCom in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of Rec by ε.

DECOMMITTING THE SHARE — The following code is executed by every party Pj ∈ ShVCORE:
1. Act as a Committer and decommit the share fj(x) committed during Comj by executing DeCom(Pj ,P, fj(x), ε′). Denote this

instance of DeCom as DeComj .
2. If Pj ∈ WCOREk, corresponding to some Pk ∈ ShVCORE, then reveal the secondary signature ICSig(Pk, Pj ,P, fk(j)),

received during the instance Comk from Committer Pk, by executing an instance of RevealPublic.
VERIFYING THE DECOMMITMENT, SECRET RECONSTRUCTION AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P

executes the following code:
1. Corresponding to every Pj ∈ ShVCORE, participate in the instance DeComj , executed by Pj .
2. Corresponding to every Pj ∈ ShVCORE, participate in the instances of RevealPublic, executed by Pj to reveal the secondary

signatures ICSig(Pk, Pj ,P, fk(j)), corresponding to every Pk ∈ ShVCORE where Pj ∈WCOREj .
3. Construct a set RecVCORE, which is initially ∅. Include Pj ∈ ShVCORE in RecVCORE if all the following holds:

(a) A polynomial of degree at most t, say fj(x) is obtained as the output at the end of DeComj .
(b) Corresponding to every Pk ∈ ShVCORE where Pj ∈ WCOREk, party Pi completed the revelation of the secondary

signature ICSig(Pk, Pj ,P, fk(j)) with output Reveali = fk(j) and fj(k) = fk(j) holds.
4. Wait till |RecVCORE| = |ShVCORE| − t.
5. Corresponding to every Pk ∈ ShVCORE, compute his share fk(x) as follows:

(a) If Pk ∈ RecVCORE, then fk(x) is the same as obtained at the end of DeComk.
(b) If Pk 6∈ RecVCORE, then fk(x) is obtained by interpolating the points {(j, fk(j))}, where Pj ∈ RecVCORE, Pj ∈

WCOREk and Pj revealed the secondary signature ICSig(Pk, Pj ,P, fk(j)).
6. If the shares {fk(x) : Pk ∈ ShVCORE} lie on a unique, symmetric bi-variate polynomial of degree t, say F (x, y), then output

s = F (0, 0) and terminate; otherwise output ⊥ and terminate.

a See the last section for the interpretation of committing and decommitting a polynomial through a polynomial of degree t.
b This step denotes the “expansion” of WCOREj beyond its initial size of 2t+ 1.
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ing for Pj before taking f j(x) as the output of DeComj .
More specifically, along with the above steps, we also ask Pj
to reveal the secondary signatures ICSig(Pk, Pj ,P, fk(j)),
received from Pk during the instance Comk, corresponding
to all Pk’s in ShVCORE, where Pj ∈ WCOREk; moreover
fk(j) should be the same as f j(k), otherwise Pj is dis-
carded. The idea is that if Pj ∈ ShVCORE and honest and if
Pj ∈WCOREk, corresponding to another Pk ∈ ShVCORE,
then Pj must have participated in the instance Comk, other-
wise Pj will be never included in WCOREk. This further im-
plies that during Comk, Pj must have received the secondary
signature ICSig(Pk, Pj ,P, fk(j)) from the Committer Pk
and would have verified that fk(j) = f j(k) and only then
would have continued with the rest of the steps in Comk.
So an honest Pj ∈ ShVCORE will be able to pass these
additional checking during the reconstruction protocol and
will not be discarded. The interesting feature is that once
we have |ShVCORE| − t non-discarded parties, denoted by
RecVCORE, then apart from the shares committed by the
honest parties in RecVCORE, we will also know the shares
committed by the honest parties in ShVCORE\RecVCORE,
through the secondary signatures revealed by the parties in
RecVCORE. This is because for each honestPk ∈ ShVCORE
\ RecVCORE, there will be at least t+ 1 parties, who were
present in WCOREk and who will be also present in RecVCO
RE. This is ensured because during the sharing protocol there
were at least 2t+1 common parties in ShVCORE and WCOR
Ek; so clearly there will be at least t+ 1 common parties in
RecVCORE and WCOREk, as RecVCORE ⊂ ShVCORE,
where |RecVCORE| = |ShVCORE| − t. Now these t + 1

parties in WCOREk (who are also in RecVCORE) will cor-
rectly reveal the secondary signatures of Pk on the t + 1

AWC-shares of fk(x), which are enough to reconstruct the
share fk(x), which has degree at most t. This implies that
even without waiting to terminate the DeCom instances of
all the parties in ShVCORE, we can reconstruct the shares of
all the honest parties in ShVCORE. We then check whether
all the reconstructed shares lie on a unique symmetric bi-
variate polynomial of degree t and accordingly output ei-
ther the constant term of the polynomial as the reconstructed
value or⊥ as the reconstructed value. Since the shares of all
the honest parties in ShVCORE are reconstructed correctly,
no value other than the committed secret s will be recon-
structed. Protocol AVSS− Single is formally presented in
Fig 5.

We now prove the properties of the protocol AVSS− Single.

Lemma 8 (Termination) Protocols (Sh,Rec) satisfy the ter-
mination condition of definition 2.

PROOF: If D is honest, then fi(j) = fj(i) will hold for every
pair (Pi, Pj) of honest parties, which implies that every hon-
est party will eventually participate in the Com instance of
every other honest party. This implies that D will eventually

include every honest party Pi in the instance WCOREj cor-
responding to every honest Pj . This is because D does not
immediately terminate the instance Comj after receiving a
WCOREj of size 2t+1 from Pj in the instance Comj . Now
every honest party will be eventually included in the set T
and so D will eventually find an ShVCORE ⊆ T , such that
|ShVCORE| ≥ 2t+1 and |ShVCORE∩WCOREj | ≥ 2t+1

holds for every Pj ∈ ShVCORE. This implies that D will
eventually broadcast ShVCORE and WCOREjs correspond-
ing to every Pj ∈ ShVCORE. By the properties of broad-
cast, every honest party will eventually receive these sets
from the broadcast of D. Moreover, every honest party will
also eventually receive the desired (Sign-Sent, ?, ?) mes-
sages, as D have received these messages while construct-
ing ShVCORE and the corresponding WCOREs. So every
honest party will eventually terminate the protocol Sh. This
proves the first requirement.

Let Phon be the first honest party who has terminated Sh.
This implies that Phon must have received the set ShVCORE
and the sets WCOREjs corresponding to everyPj ∈ ShVCORE
and verified that |ShVCORE| ≥ 2t + 1 and |ShVCORE ∩
WCOREj | ≥ 2t + 1. By the properties of broadcast, ev-
ery other honest party will also eventually receive these sets
and the verification will also pass for them. Party Phon must
have also received all the desired (Sign-Sent, ?, ?) mes-
sages from the broadcast of the corresponding parties before
terminating Sh. The properties of broadcast implies that ev-
ery other honest party will also eventually receive the same
(Sign-Sent, ?, ?) messages and will eventually terminate
the protocol Sh. This proves the second requirement.

If the honest parties terminate Sh, then they know shV
CORE and there are at least |ShVCORE| − t honest par-
ties in the set ShVCORE. During the protocol Rec, these
honest parties (in ShVCORE) will honestly perform all the
steps required during DECOMMITTING THE SHARE, namely
they will decommit their share, which will be a univariate
polynomial of degree at most t, except with probability at
most ε′ (follows from the correctness property of AWC);
moreover they will be able to correctly reveal all the re-
quired secondary signatures, except with probability at most
ε′ (follows from the AICP-Correctness2). So even if the
corrupted parties in ShVCORE do not perform their steps
correctly during the Rec protocol, the honest parties will be
eventually included in the set RecVCORE, except with prob-
ability at most |ShVCORE| · ε′ ≈ ε. It is now easy to see that
once the set RecVCORE is constructed, every honest party
will eventually output either an s or ⊥ and hence will termi-
nate Rec. This proves the third requirement. 2

Lemma 9 (Secrecy) If D is honest then the information re-
ceived by Adv till the end of Sh is distributed independently
of the secret s.



24

PROOF: Let C be the set of parties under the control of Adv,
where |C| ≤ t and D 6∈ C. So Adv will know the shares
fi(x), where Pi ∈ C. We first claim that throughout the pro-
tocol Sh, the adversary obtains no extra information other
than these shares. This is because during the instance Comi

corresponding to an honest party Pi, Adv will obtain at most
t AWC-shares of the share fi(x), which are already known
to Adv, as these AWC-shares are the same as the t share-
shares of fi(x), which Adv can compute from the shares of
the t parties in C. The secrecy property of Com ensures that
the information revealed to Adv during Comi is independent
of fi(0) and hence no new information about the share fi(x)
is revealed to Adv during Comi. We now sow that given only
the shares of the corrupted parties in C, no information about
the secret s = F (0, 0) is revealed to Adv. The proof follows
from the properties of a symmetric bivariate polynomial of
degree t, as given in [11]; for the sake of completeness, we
recall the proof in the sequel.

To complete the proof, it is sufficient to show that from
the view point of the adversary, for every possible secret
s ∈ F, there are same number of symmetric bi-variate poly-
nomials F (x, y) of degree t, with s = F (0, 0), such that
F (x, y) is consistent with the shares received by Adv during
Sh; i.e. fi(x) = F (x, i) holds for every Pi ∈ C. We proceed
to do the same in the following.

Let f i(x)
def
= F (x, i). Consider the polynomial

h(x) =
∏
Pi∈C

(
−1
i
· x+ 1

)
.

The polynomial h(x) has degree at most t, where h(0) = 1

and h(i) = 0, for every Pi ∈ C. Now define the bi-variate
polynomial

Z(x, y)
def
= h(x) · h(y).

Note that Z(x, y) is a symmetric bi-variate polynomial of

degree t and Z(0, 0) = 1 and zi(x)
def
= Z(x, i) = 0, for

every Pi ∈ C. Now if during the protocol Sh, D in reality
has used the polynomial F (x, y), then for every possible s,
the information (namely the shares) held by Adv is also con-
sistent with the polynomial

F (x, y) = F (x, y) + (s− s) · Z(x, y).

Indeed F (x, y) is a symmetric bi-variate polynomial of de-
gree t and for every Pi ∈ C,

f i(x) = F (x, i) = fi(x) + (s− s) · zi(x) = fi(x),

and

F (0, 0) = F (0, 0) + (s− s) · Z(0, 0) = s+ s− s = s.

Thus there exists a one-to-one correspondence between the
consistent polynomials for the shared secret s and those for
s and so all secrets are equally likely from the view point of
the adversary. 2

Lemma 10 (Correctness) Protocols (Sh,Rec) satisfy the
correctness condition of definition 2.

PROOF: Let Phon be the first honest party to terminate the
protocol Sh; this implies that Phon has received the set shVC
ORE and the corresponding WCOREjs from D and verified
that |ShVCORE| ≥ 2t + 1 and |ShVCORE ∩WCOREj | ≥
2t+ 1 for every Pj ∈ ShVCORE. Notice that each party Pi
in H has committed the same share fi(x), as received from
D. We define the committed secret s, committed by D as
follows: if there exists a unique symmetric bi-variate poly-
nomial of degree t, say F (x, y), such that fi(x) = F (x, i)

holds for every Pi ∈ H (recall that this means that the shares
of the parties in H lie on F (x, y)), then s = F (0, 0); other-
wise s = ⊥. It is easy to see that if D is honest, then s = s,
as F (x, y) = F (x, y) in this case. We next show that each
honest party upon terminating Rec will output only s; we
consider the following two cases, depending upon whether
D is honest or corrupted:
1. D is honest: we first observe that if there exists a cor-

rupted Pj ∈ ShVCORE, then the share f j(x) committed
by Pj during Comj is the same as fj(x), where fj(x) =
F (x, y) and F (x, y) is the polynomial selected by D.
This is because each honest party Pi in WCOREj must
have checked that the AWC-share f j(i) received from
Pj during Comj is the same as the ith share-share fi(j)
of fj(x) received from D before participating in Comj ;
i.e. Pi have checked that f j(i) = fi(j) before participat-
ing (exchanging the primary and secondary signatures)
in Comj . Moreover, there are at least t+1 honest Pis in
WCOREj , whose share-shares of fj(x) uniquely define
the share fj(x) and so f j(x) = fj(x).
We next claim that during the protocol Rec, the share
fk(x) computed on behalf of each Pk ∈ ShVCORE is
the same as fk(x) = F (x, k), except with probability at
most ε′, which implies that s = F (0, 0) will be output,
except with probability |ShVCORE| · ε ≈ ε′. There are
two cases:
(a) Pk ∈ RecVCORE: In this case, fk(x) is the out-

put of the instance DeComk. If Pk is honest then
clearly fk(x) = fk(x), as the (correctness) prop-
erty of DeCom ensures that if Committer is honest,
then the polynomial (of degree at most t) committed
by him during the Com protocol, will be obtained as
the output during DeCom. On the other hand, if Pk is
corrupted, then also fk = fk(x), except with prob-
ability ε′; this is because the (correctness) property
of DeCom ensures that if Committer is corrupted
and the output of DeCom is a polynomial of degree
at most t, then except with probability ε′, the same
polynomial was committed during the Com protocol.
Moreover, as discussed above the polynomial com-
mitted by a corrupted Pk ∈ ShVCORE during Comk

is the same as fk(x).
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(b) Pk 6∈ RecVCORE: In this case, fk(x) is computed
by interpolating the points {(j, fk(j))}, where Pj ∈
RecVCORE, Pj ∈ WCOREk and Pj has (correctly)
revealed the secondary signature ICSig(Pk, Pj ,P,
fk(j)) on the AWC-share fk(j), which was given to
Pj by Pk during the instance Comk. Moreover the
revealed fk(j) lies on the share f j(x), where f j(x)
is computed as the share on the behalf of Pj dur-
ing Rec; i.e. fk(j) = f j(k). We first notice that
there will be at least t + 1 such interpolating points
{(j, fk(j))}. This follows from the fact that Pk ∈
ShVCORE implies that during Sh, |ShVCORE∩WCO
REk| ≥ 2t + 1 and at least t + 1 of these common
parties (which were present in ShVCORE as well as
in WCOREk) will be present in RecVCORE. Now
we have already shown in the previous case that the
share f j(x) computed on the behalf of each Pj ∈
RecVCORE is the same as the original share fj(x)
except with probability ε′; i.e. f j(x) = fj(x) =

F (x, j). Now the fact that for each interpolating point
(j, fk(j)) used to interpolate fk(x) the relation fk(j)
= f j(k) holds implies that fk(j) = fj(k) = F (j, k)

holds. So except with probability ε′, fk(x) = fk(x).
2. D is corrupted: If s = F (0, 0), then the proof is exactly

the same as for the case when D is honest. Now let us
consider the case when s = ⊥, which implies that the
shares of the parties in H do lie on a unique symmetric
bi-variate polynomial of degree t. We show that except
with probability at most ε′, the share of each party Pk
inH will be computed correctly during the protocol Rec
and so except with probability at most |H| · ε′ ≈ ε, ev-
ery honest party will output ⊥, irrespective of the shares
which are computed on behalf of the corrupted parties in
ShVCORE.
If Pk ∈ RecVCORE, then the above claim is true, as
in this case, the share fk(x) computed on the behalf
of Pk is obtained as the output of Comk and the cor-
rectness property of AWC ensures that for an honest
Committer, the committed polynomial will be obtained
correctly during the DeCom. If Pk 6∈ RecVCORE, then
also the claim is true, as in this case the share fk(x)
computed on the behalf of Pk is obtained by interpolat-
ing the points {(j, fk(j))}, wherePj ∈ RecVCORE, Pj ∈
WCOREk and Pj has (correctly) revealed the secondary
signature ICSig(Pk, Pj ,P, fk(j)) on the AWC-share fk(j),
which was given to Pj (as an INT) by Pk (as a Signer)
during the instance Comk. The AICP-Correctness3 prop-
erty ensures that all the revealed points {(j, fk(j))} in-
deed lie on the original polynomial fk(x), which was
committed by Pk during Comk and so fk(x) = fk(x).
2

Theorem 5 Protocols (Sh,Rec) is a (1 − ε)-AVSS scheme.
Protocol Sh requires a private communication ofO(n3 log 1

ε )

bits and broadcast of O(n3 log 1
ε ) bits. Protocol Rec re-

quires a broadcast of O(n3 log 1
ε ) bits.

PROOF: During the protocol Sh, D distributes n univari-
ate polynomials of degree at most t as shares and n in-
stances of Com are executed. During the protocol Rec, at
most n instances of DeCom and at most n2 instances of
RevealPublic are executed. The proof now follows from The-
orem 2 by substituting ` = 1, Theorem 3 and from Lemma
8-10. 2

5.2 AVSS for Sharing ` Secrets

Consider a scenario where D would like to share a vector
of secrets ~S = (s1, . . . , s`), consisting of ` elements from
F, where ` > 1 and later the parties would like to recon-
struct these secrets. One way of doing this is to execute an
instance of the Sh and Rec protocol on the behalf of each
element sl ∈ ~S; this will require a private as well as broad-
cast communication ofO(`n3 log 1

ε ) bits. However, we now
show how to share and reconstruct all the ` elements of ~S
concurrently, so that it requires a private as well as broadcast
communication ofO((`n2+n3) log 1

ε ) bits. So if ` = Ω(n),
which will be the case in our common coin protocol, then
the broadcast communication of our protocol will be inde-
pendent of `.

The underlying idea is to “extend” the AVSS scheme for
sharing a single secret to deal with ` secrets concurrently in a
“natural” way, similar to what was done earlier for the AWC.
More specifically, D selects a random symmetric bi-variate
polynomial Fl(x, y) for sharing each sl ∈ ~S and computes

` ith share f1,i(x), . . . , f`,i(x), where fl,i(x)
def
= Fl(x, i)

and distributes these shares. But now, instead of executing
` different instances of Com to commit ` ith share, party Pi
executes a single instance of Com to commit all the ` poly-
nomials (shares) concurrently. The rest of the protocol steps
of AVSS− Single are modified in the same way, so as to deal
with ` shares concurrently. The modified protocols are pre-
sented in Fig 6. The new scheme is called AVSS−Multiple,
as it deals with multiple secrets. The properties of the modi-
fied scheme follow using the same arguments as for the ear-
lier scheme and so we avoid giving the complete proofs to
avoid repetition.

We state the following theorem, stating the communi-
cation complexity of the protocol AVSS−Multiple, whose
proof follows from the properties of the protocol and the
communication complexity of our AICP (Theorem 2) and
AWC (Theorem 4).

Theorem 6 In AVSS−Multiple, protocol Sh requires a pri-
vate communication ofO((`n2 +n3) log 1

ε ) bits and broad-
cast of O((`n2 + n3) log 1

ε ) bits. Protocol Rec requires a
broadcast of O((`n2 + n3) log 1

ε ) bits.
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Fig. 6 AVSS with n = 3t+ 1.

AVSS−Multiple(D,P, ~S = (s1, . . . , s`), ε)

Sh(D,P, ~S = (s1, . . . , s`), ε)

All instances of Com in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of Sh by ε.

DISTRIBUTION OF SHARES — The following code is executed only by D:
1. For l = 1, . . . , `, corresponding to the secret sl ∈ ~S, select a random, symmetric bivariate polynomial Fl(x, y) of degree t, such

that Fl(0, 0) = s. For i = 1, . . . , n, compute fl,i(x)
def
= Fl(x, i).

2. For i = 1, . . . , n, send the share f1,i(x), . . . , f`,i(x) to the party Pi.
COMMITMENT OF THE SHARES — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive f1,i(x), . . . , f`,i(x) from D.
2. If f1,i(x), . . . , f`,i(x) have degree at most t, then act as a Committer and execute an instance of Com to commit the shares

f1,i(x), . . . , f`,i(x). We call this instance of Com, initiated by Pi as Comi and let WCOREi be the instance of WCORE con-
structed in the instance Comi.

3. For j = 1, . . . , n, participate in the instance Comj of Com, initiated by Pj . During the instance Comj , if the secondary

signature ICSig(Pj , Pi,P, (f1,j(i), . . . , f`,j(i))) is received from Pj , then check whether fl,j(i)
?
= fl,i(j), for l = 1, . . . , `. If

fl,j(i) = fl,i(j) for all l = 1, . . . , `, then only perform the rest of the steps of the protocol Com that Pi is supposed to perform
in the instance Comj . Otherwise, do not participate further in the instance Comj .

4. For j = 1, . . . , n, do not terminate and keep participating in the instance Comj , even after receiving the set WCOREj of size
2t+ 1 from the broadcast of Committer Pj .

ShVCORE CONSTRUCTION — The following code is executed only by D:
1. If a WCOREj of size 2t + 1 is received from the broadcast of Committer Pj and the messages (Sign-Sent, k, Pj) are

received from the broadcast of every Pk ∈WCOREj in the instance Comj , then include Pj in a set T (which is initially ∅). Do
not terminate Comj and keep participating in the instance Comj .

2. If a new message (Sign-Sent, k, Pj) is received from the broadcast of Pk during the instance Comj , where Pj ∈ T and
Pk 6∈WCOREj , then update WCOREj and include Pk in WCOREj .

3. Keep updating T and the existing WCOREjs, corresponding to the Pjs in T , by performing the previous two steps, until
there exists a set ShVCORE ⊆ T , such that |ShVCORE| ≥ 2t + 1 and |ShVCORE ∩ WCOREj | ≥ 2t + 1 holds for every
Pj ∈ ShVCORE.

4. On finding ShVCORE, broadcast the set ShVCORE and the set WCOREj corresponding to each Pj ∈ ShVCORE and terminate.
VERIFICATION OF ShVCORE AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive ShVCORE and WCOREj corresponding to each Pj ∈ ShVCORE from the broadcast of D. On receiving check
if |ShVCORE| ≥ 2t+ 1 and |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE.

2. If the checking in the previous step passes, then corresponding to each Pj ∈ ShVCORE, wait to receive the message
(Sign-Sent, k, Pj) from the broadcast of every party Pk ∈ WCOREj , during the instance Comj . On receiving all these
messages, terminate the protocol.

Rec(D,P, ~S = (s1, . . . , s`), ε)

All instances of DeCom in the following protocol are executed with error parameter ε′ = ε
n

to bound the error probability of Rec by ε.

DECOMMITTING THE SHARE — The following code is executed by every party Pj ∈ ShVCORE:
1. Act as a Committer and decommit the shares f1,j(x), . . . , f`,j(x) committed during Comj by executing an instance of DeCom.

Denote this instance of DeCom as DeComj .
2. If Pj ∈ WCOREk, corresponding to some Pk ∈ ShVCORE, then reveal the secondary signature

ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))), received during the instance Comk from Committer Pk.
VERIFYING THE DECOMMITMENT, SECRET RECONSTRUCTION AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P

executes the following code:
1. Corresponding to every Pj ∈ ShVCORE, participate in the instance DeComj , executed by Pj .
2. Corresponding to every Pj ∈ ShVCORE, participate in the instances of RevealPublic, executed by Pj to reveal the secondary

signatures ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))), corresponding to every Pk ∈ ShVCORE where Pj ∈WCOREj .
3. Construct a set RecVCORE, which is initially ∅. Include Pj ∈ ShVCORE in RecVCORE if all the following holds:

(a) ` polynomials of degree at most t, say f1,j(x), . . . , f`,j(x) are obtained as the output at the end of DeComj .
(b) Corresponding to every Pk ∈ ShVCORE where Pj ∈ WCOREk, party Pi completed the revelation of the secondary sig-

nature ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))) with output Reveali = (f1,k(j), . . . , f`,k(j)). Moreover, for l = 1, . . . , `,
f l,j(k) = fl,k(j) holds.

4. Wait till |RecVCORE| = |ShVCORE| − t.
5. Corresponding to every Pk ∈ ShVCORE, compute his shares f1,k(x), . . . , f`,k(x) as follows:

(a) If Pk ∈ RecVCORE, then f1,k(x), . . . , f`,k(x) are the same as obtained at the end of DeComk.
(b) If Pk 6∈ RecVCORE, then for l = 1, . . . , `, the polynomial f l,k(x) is obtained by interpolating the points {(j, fl,k(j))},

where Pj ∈ RecVCORE, Pj ∈WCOREk and Pj revealed the secondary signature ICSig(Pk, Pj ,P, (f1,k(j), f`,k(j))).
6. If for l = 1, . . . , `, the shares {f l,k(x) : Pk ∈ ShVCORE} lie on a unique, symmetric bi-variate polynomial of degree t, say

F l(x, y), then output S = (F 1(0, 0), . . . , F `(0, 0)) and terminate; otherwise output ⊥ and terminate.
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6 Existing Single Bit Common Coin and Our Multi-Bit
Common Coin

In this section, we recall the description of the existing com-
mon coin protocol from [8] and state the properties that the
protocol achieve. We then show that if we directly substi-
tute our AVSS scheme AVSS−Multiple in this common
coin protocol to achieve efficiency, then the resultant pro-
tocol fails to satisfy the properties of a common coin pro-
tocol. We then show the modifications that are required in
the existing common coin protocol so that it can use our
AVSS scheme AVSS−Multiple as a black-box. Interest-
ingly, our analysis shows that infact by doing the modifi-
cations to the common coin protocol and by incorporating
our AVSS scheme AVSS−Multiple, we get a new common
coin protocol which allows to generate Θ(n) common coins
concurrently, instead of a single common coin (as was the
case in the existing common coin protocol); moreover the
Θ(n) coins are generated with significantly less communi-
cation complexity (a comparison will be provided at the end
of the section).

6.1 Existing Common Coin Protocol

We recall the definition of the common coin and the con-
struction of the common coin protocol following the de-
scription of [8]. In the following description, we assume that
(Sh,Rec) is a given (1− ε)-AVSS scheme.

Definition 6 (Common Coin [8]) Let π be an asynchronous
protocol, where each party inP has a local random input and
a binary output. We say that π is a (1− ε)− completing, t−
resilient, p−common coin protocol, if the following require-
ments hold for every possible input of the honest parties and
every possible behaviour of Adv:

– Termination: If all the honest parties participate in π,
then with probability at least (1−ε), all the honest parties
terminate the protocol.

– Correctness: For every possible value σ ∈ {0, 1}, with
probability at least p, all the honest parties output σ.

The Underlying Idea: The existing common coin protocol,
referred as CC, consists of two stages. In the first stage, each
party acts as a dealer and shares n random secrets, using n
distinct instances of Sh, each with an allowed error parame-
ter of ε′ = ε

n2 . The ith secret shared by each party is actually
“associated” with the party Pi. Once a party Pi terminates
any t + 1 instances of Sh, corresponding to the t + 1 se-
crets associated with him, he broadcasts the identity of the
dealers, who have shared those t + 1 secrets. We say that
these t + 1 secrets are attached to Pi and later these t + 1

secrets will be reconstructed to compute a “value”, that will
be associated with Pi.

Now during the second stage, after terminating the Sh in-
stances of all the secrets attached to a party Pi, party Pj is
sure that a fixed (yet unknown) value is attached to Pi. Once
Pj is assured that values have been attached to “enough”
number of parties, he participates in the Rec instances of
the relevant secrets. This process of ensuring that there are
enough parties that are attached with values is the core idea
of the protocol. Once all the relevant secrets are reconstructed,
each party locally computes his binary output based on the
reconstructed secrets, in a way described in the protocol,
which is presented in Fig. 7. The protocol CC is a (1− ε)−
completing, t − resilient, 14 − common coin protocol, for a
given ε, where 0 < ε ≤ 0.2.

The proof that the protocol CC satisfies the properties of
a common coin protocol is given in [8] and we do not recall
it here. However, we do recall one of the lemmas used in [8]
to prove the properties of the protocol CC. This is because
in the next section, we will show that if we substitute the n
instances of Sh executed by a party in the protocol CC by
a single instance of the Sh protocol of our AVSS scheme
AVSS−Multiple (to share all the n secrets concurrently),
then this lemma may not be true any more; that is, the ad-
versary in the modified common coin protocol may behave
in such a way that the properties stated in the following
lemma may not be true. For the sake of completeness, we
also present the proof of the lemma.

Lemma 11 ([8]) In the protocol CC, once an honest party
Pj receives the message (Attach Ti toPi) from the broad-
cast of Pi and adds Pi in the set Gj , then a unique value, say
Vi, is fixed such that the following holds:

1. Every honest party will associate the value Vi with Pi,
except with probability 1− ε

n .
2. Vi is distributed uniformly over [0, . . . , u] and is inde-

pendent of values associated with the other parties.

PROOF: Once an honestPj receives the message (Attach Ti
to Pi) and adds Pi in Gj , a unique value Vi is fixed, where
Vi = (

∑
Pk∈Ti xki) mod u and xki is the secret shared by

Pk (as a D) during the instance Shki. According to the pro-
tocol steps, eventually all the honest parties will participate
in the instances Recki and will reconstruct the secrets xkis
at the end of Recki, except with probability ε′. Now since
|Ti| = t + 1, every honest party will associate Vi with Pi
with probability at least 1− (t+ 1)ε′ ≈ 1− ε

n .
An honest party participates in the instances Reckis only

after it receives the message (Attach Ti to Pi) from the
broadcast of Pi. So the set Ti is fixed before any honest
party starts participating in the instances Reckis. The se-
crecy property of AVSS ensures that the corrupted parties
will have no information about the value shared by any hon-
est party until the value is reconstructed after executing the
corresponding reconstruction protocol. Thus when the set Ti
is fixed, the values that are shared by the corrupted parties
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Fig. 7 Existing common coin protocol.

CC(ε)

All instances of Sh and Rec in the following protocol have error parameter ε′ = ε
n2 , so as to bound the error probability of the protocol

by ε. For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. Initialize a Boolean flag flagi = 0.
2. For j = 1, . . . , n, corresponding to the party Pj , choose a random value xij and act as a D to execute an instance of Sh, denoted by

Shij , to share xij .
3. For every j, k ∈ {1, . . . , n}, participate in the instances Shjk and Shkj .
4. Construct a dynamic set Ti, which is initially ∅. On terminating all the n instances Shj1, . . . ,Shjn executed by Pj (as a D), include

Pj to Ti.
5. Wait till |Ti| = t+ 1. Then assign Ti = Ti and broadcast the message (Attach Ti to Pi).

(We say that the secrets {xji|Pj ∈ Ti} are attached to the party Pi).
6. Create a dynamic set Gi, which is initially ∅. Add party Pj to Gi if

(a) The message (Attach Tj to Pj) is received from the broadcast of Pj and
(b) Tj ⊆ Ti.
Wait until |Gi| = 2t+ 1. Then assign Gi = Gi and broadcast the message (Pi Accepts Gi).

7. Create a dynamic set Si, which is initially ∅. Add party Pj to Si if
(a) The message (Pj Accepts Gj) is received from the broadcast of Pj and
(b) Gj ⊆ Gi.
Wait until |Si| = 2t+ 1. Then set flagi = 1 and let Hi be the current contents of Gi.

8. Wait until flagi = 1. Then for every Pj ∈ Gi, participate in the instance Reckj , corresponding to every Pk ∈ Tj , to reconstruct the
secret xkj , which was shared in the instance Shkj .
(note that some parties may be included in Gi after flagi has been set to 1. The corresponding instances of Rec are invoked immedi-
ately).

9. Let u = d0.87nea. Every party Pj ∈ Gi is associated with a value, say Vj , where Vj is the sum modulo u of all the secrets attached
to Pj . That is, Vj = (

∑
Pk∈Tj

xkj) mod u, where xkj is obtained as the output in the instance Reckj .
10. Wait until the values associated with all the parties in Hi are computed. If there exits a party Pj ∈ Hi such that Vj = 0, then output

0 and terminate. Otherwise output 1 and terminate.

a Here u is selected like this so as to ensure that the probability computations satisfy certain conditions while proving the properties of the
protocol.

corresponding to Pi are completely independent of the val-
ues shared by the honest parties corresponding to Pi. Now,
each Ti contains at least one honest party and every honest
party’s shared secrets are uniformly distributed and mutu-
ally independent. Hence the sum Vi is uniformly and inde-
pendently distributed over [0, . . . , u]. 2

6.2 An InCorrect Common Coin Protocol

In the protocol CC, each party invokes n instances of Sh
(each sharing a single secret) to share n secrets. One can
easily imagine that those n instances of Sh protocol could be
replaced by a more efficient, single instance of the Sh pro-
tocol of our AVSS scheme AVSS−Multiple, where all the
n secrets can be shared concurrently. This would naturally
lead to a more efficient common coin protocol. In the follow-
ing, we do the same in the protocol WCC. But as the name
suggests, we then show that this “direct” replacement with-
out further modification will lead to an incorrect common
coin protocol. Protocol WCC is given in Fig 8.

We next show that the protocol WCC may not satisfy the
second part of Lemma 11. That is, during the protocol WCC,
the adversary can behave in such a way that the unique value
Vi, associated with an honest Pi, may not be distributed

uniformly over [0, . . . , u]. More specifically, Adv can de-
cide the Vi for up to t − 1 honest parties and thus such
Vi’s are no longer random and uniformly distributed over
[0, . . . , u]. Consequently, Adv can enforce few honest par-
ties to always output 0, while the remaining honest parties
may output σ ∈ {0, 1} with probability at least 1

4 . This will
strictly violate the property of the common coin. We first
discuss the underlying reason for the problem before speci-
fying the exact adversarial behaviour.

The Reason for the Problem: Recall that in the protocol
CC, every honest party Pk shares the secret xki, correspond-
ing to a party Pi, using an “independent” instance Shki of
Sh and if the corresponding instance Recki is invoked, then
only the secret xki is reconstructed. So even after learning
the secret xki that an honest Pk have selected for an honest
Pi, the adversary Adv will not know the secrets xkjs that the
honest Pk have selected on the behalf of another honest Pj
(unless the corresponding instance Reckj is invoked). How-
ever, in the protocol WCC, all the n secrets that an honest Pk
has selected on behalf of the n parties are shared by a single
instance of Sh. Now if we want to reconstruct only the secret
xki that Pk has selected on behalf of a party Pi, then it is not
possible to do so, without learning all the n secrets that Pk
have shared. That is, if we invoke Reck to just reconstruct
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Fig. 8 An incorrect common coin protocol obtained by using the instances of Sh and Rec protocol, capable of sharing and reconstructing n secrets
concurrently.

Protocol WCC(ε)

All instances of Sh and Rec in the following protocol have error parameter ε′ = ε
n

, so as to bound the error probability of the protocol
by ε. For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. Initialize a Boolean flag flagi = 0.
2. For j = 1, . . . , n, corresponding to the party Pj , choose a random value xij and act as a D and execute the protocol Sh(Pi,P, ~Si, ε′),

to share the vector of secrets ~Si = (xi1, . . . , xin). We denote this instance of Sh by Shi.
3. For every j ∈ {1, . . . , n}, participate in the instance Shj .
4. Construct a dynamic set Ti, which is initially ∅. On terminating the instance Shj executed by Pj (as a D), include Pj to Ti.
5. Wait till |Ti| = t+ 1. Then assign Ti = Ti and broadcast the message (Attach Ti to Pi).

(We say that the secrets {xji|Pj ∈ Ti} are attached to the party Pi).
6. Create a dynamic set Gi, which is initially ∅. Add party Pj to Gi if

(a) The message (Attach Tj to Pj) is received from the broadcast of Pj and
(b) Tj ⊆ Ti.
Wait until |Gi| = 2t+ 1. Then assign Gi = Gi and broadcast the message (Pi Accepts Gi).

7. Create a dynamic set Si, which is initially ∅. Add party Pj to Si if
(a) The message (Pj Accepts Gj) is received from the broadcast of Pj and
(b) Gj ⊆ Gi.
Wait until |Si| = 2t+ 1. Then set flagi = 1 and let Hi be the current contents of Gi.

8. Wait until flagi = 1. Then for every Pj ∈ Gi, participate in the instance Reck, corresponding to every Pk ∈ Tj , to reconstruct the
vector of secrets ~Sk = (xk1, . . . , xkj), which was shared in the instance Shk.
(note that some parties may be included in Gi after flagi has been set to 1. The corresponding instances of Rec are invoked immedi-
ately).

9. Let u = d0.87ne. Every party Pj ∈ Gi is associated with a value, say Vj , where Vj is the sum modulo u of all the secrets attached
to Pj . That is, Vj = (

∑
Pk∈Tj

xkj) mod u, where xkj is the jth element of the vector ~Sk = (xk1, . . . , xkj), which is obtained as
the output in the instance Reck.

10. Wait until the values associated with all the parties in Hi are computed. If there exits a party Pj ∈ Hi such that Vj = 0, then output
0 and terminate. Otherwise output 1 and terminate.

the secret xki, then in addition to xki, everyone (including
Adv) learns all the n secrets xk1, . . . , xkn shared by Pk and
this is the main cause of the problem. Specifically, the adver-
sary Adv may schedule the delivery of the messages in such
a way that he first learns all the secrets that an honest party
has shared on the behalf of each honest party and then ac-
cordingly decide the secrets that the corrupted parties should
share on behalf of the honest parties, so that finally the value
associated with an honest party is no more a random value.
Thus the adversary can completely “control” the final value
associated with an honest Pi.

In a more detail, let Pi be an honest party. We describe a
specific behavior of Adv in the protocol WCC, which would
allow Adv to decide Vi to be 0 and thus make the honest Pi
to output 0 (this strategy can be extended for t − 1 honest
Pis) whereas the remaining honest parties output σ ∈ {0, 1}
with probability at least 1

4 . The adversarial strategy is given
in Fig 9.

It is easy to see that by following the strategy given in
Fig 9, the adversary can ensure that the t+1 parties in the set
Ti computed by Adv indeed becomes the first t + 1 parties,
whose instances of Sh are completed by Pi. And so those
t+1 parties will be taken as the Ti by the party Pi. Moreover,
after broadcasting the message (Attach Ti to Pi), party
Pi will be included in the set Gi and also Pi will be eventu-

ally included in the set Hi. Later, Vi = 0 will be computed
as the value associated with Pi and since Pi ∈ Hi, party Pi
will output 0. So by following this strategy, Adv can ensure
that the honest Pi outputs 0 in the protocol WCC.

The above problem can be eliminated if we can ensure
that no corrupted party can ever share a secret on the behalf
of any party after learning the secrets which some honest
parties have shared. This is what we achieved in our com-
mon coin protocol presented in the next section.

6.3 A Multi-Bit Common Coin Protocol

In this section, we show how to amend the protocol WCC,
so that it can handle the problem described in the previous
section. Our new common coin protocol called MCC thus
makes use of the Sh and Rec protocols of our AVSS scheme
AVSS−Multiple. Interestingly, we also show that instead of
outputting a single bit common coin (as in the protocol CC),
protocol MCC can output (n− 2t) = (t+ 1) = Θ(n) com-
mon coins, without requiring any additional communication
from the parties. Thus instead of executing (t+ 1) indepen-
dent instances of CC to generate (t+ 1) common coins, we
can execute a single instance of our protocol MCC and gen-
erate (t+1) common coins; moreover we achieve this at less
cost. We first give the definition of multi-bit common coin,
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Fig. 9 The adversarial strategy with respect to an honest Pi in the protocol WCC.

1. Let Pi be an honest party and Pj be a corrupted party. All corrupted parties participate in WCC honestly, except that Pj does not
select the n secrets on behalf of the n parties and does not invoke the instance Shj .

2. Except for the instance Shi and the corresponding instance Reci, Adv (as a scheduler) delays all the messages sent to Pi and sent
by Pi in every other instance Shk and the corresponding instances Reck. This prevents Pi to participate in any instance Shk and
the corresponding Reck and hence to construct Ti. However, this does not prevent Pi to be part of Tk for some Pk. The adversary
Adv schedules the messages like this until the following happens:
(a) n−t−1 honest parties (except Pi) and t−1 corrupted parties (except Pj) perform all the steps of WCC (honestly), construct the

respective sets (namely Tks, Gks, Sks and Hks), set flagks to 1 and start participating in the corresponding Rec instances. This
way the n secrets selected by each of the n− t− 1 honest parties (except Pi) and the t− 1 corrupted parties will be revealed.
(it is to be noted that the corrupted parties can reconstruct the secrets in each Reck by behaving honestly, even if the participation
of the honest Pi in Reck is delayed).

(b) Adv computes a set Ti of size t+ 1 containing the corrupted Pj and any t honest Pk’s, whose Reck instances have terminated.
So the secrets ~Sk = (xk1, . . . , xkn), shared by Pk ∈ Ti are known to the adversary.

(c) Adv selects xji, corresponding to Pj , such that Vi = (
∑
Pk∈Ti

xki) mod u = 0. Party Pj is then instructed to act as a D and
invoke Shj , with xji being the secret selected on the behalf of Pi.

3. Once the above conditions are satisfied, Adv schedules the messages to and from Pi corresponding to every instance Shk, such that
the set Ti computed by Adv (during the step 2(b)) indeed becomes the Ti for the party Pi (in the protocol WCC) and Pi broadcasts
the message (Attach Ti to Pi) and eventually includes Pi in the set Gi.

which is a straightforward “extension” of definition 6 for `
bits.

Definition 7 (Multi-Bit Common Coin) Let π be an asyn-
chronous protocol, where each party in P has a local ran-
dom input and an ` bit output. We say that π is a (1 − ε) −
completing, t − resilient, p − multibit common coin proto-
col, with ` bits output, if the following requirements hold for
every possible input of the honest parties and every possible
behaviour of Adv:

– Termination: If all the honest parties participate in π,
then with probability at least (1−ε), all the honest parties
terminate the protocol.

– Correctness: For every possible value σ ∈ {(0, . . . , 0(`
times)), (1, . . . , 1(` times))}, with probability at least p

all the honest parties output σ.

We now present our multi-bit common coin protocol MCC,
which goes almost in the same line as the protocol WCC,
except that we add few additional steps and modify some of
the steps, due to which the corrupted parties are forced to
share their secrets before learning anybody elses’ secrets. In
addition, we also modify the way in which a party computes
his final output so that instead of outputting a single bit, he
now outputs ` = t + 1 bits. We first discuss the high level
idea of the protocol, specially the new steps that are added
in the protocol WCC.

The High Level Idea of MCC : In the protocol MCC, we
ensure that instead of a single value, n − 2t = t + 1 values
are associated with each party Pi as follows: Recall that in
the protocol WCC and CC, the value associated with Pi is
decided based on the secrets shared by the t + 1 parties in
Ti on the behalf of Pi. More specifically, as in the worst
case, there could be only one honest party in Ti, we added

all the t + 1 secrets shared by these parties on the behalf of
Pi to get the uniformly random associated value. We observe
that instead if we ensure that there are at least t + 1 honest
parties in Ti, then by applying the randomness extraction
algorithm EXT, we can get t + 1 random values associated
with Pi. So in the protocol MCC, instead of ensuring that
|Ti| = t + 1, party Pi ensures that |Ti| = 2t + 1, which
implies that now Pi waits to terminate the Sh instances of
2t+1 parties, instead of t+1 parties, to determine the values
that will be associated with Pi. Notice that there are at least
2t+1 honest parties inP and so an honest Pi will eventually
find 2t+ 1 parties whose instances of Sh will be terminated
by him and thus an honest Pi will eventually terminate. Now
out of the 2t + 1 parties in the set Ti, at least t + 1 will
be honest, who will share uniformly random values on the
behalf of Pi; however, the identities of the honest parties in
Ti will be unknown. So later, on reconstructing the secrets
that the 2t+ 1 parties in Ti have shared on the behalf of Pi,
we apply the EXT algorithm on these 2t+ 1 values and get
t+ 1 random values, which will be associated with Pi.

Having discussed the idea behind how to get t + 1 val-
ues associated with a party, we next discuss how we ensure
that a corrupted party is not able to see the secrets shared
by the honest parties, before sharing his secrets (as it was
the case in WCC). In the protocol MCC, a party Pi simply
does not add a party Pj in the set Ti after himself terminating
the instance Shj ; rather Pi waits to see that whether n − t
parties have terminated the instance Shj , before adding Pj
to Ti. This is achieved by asking every party to broadcast a
“terminate” message (along with the identity of the dealer of
the instance) once it terminates an instance of Sh and asking
Pi to wait for n − t such terminate messages correspond-
ing to Pj . Next the construction of the sets Gi,Si and Hi is
done in the same way as in the protocol WCC. Now what
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follows is the most crucial step of MCC: after constructing
the set Si, party Pi simply does not set his flagi to 1 and
starts participating in the corresponding Rec instances; in-
stead Pi broadcasts a “reconstruct enable” message, indicat-
ing that he is “ready” to participate in the Rec instances. In
addition, Pi starts participating in the corresponding Rec in-
stances only after receiving the reconstruct enable messages
from n− t parties. Most importantly, once Pi starts partici-
pating in the Rec instances (after receiving n− t reconstruct
enable messages), he stops participating in the Sh instances
of all the parties, which are not present in his Ti set at that
stage. Thus, if Pj 6∈ Ti, then Pi stops participating in the in-
stance Shj and later resumes (participates) this instance only
if Pj is included in Ti.

The above two conditions, namely participating in the
Rec instances only after receiving n − t reconstruct enable
messages, in conjunction with stopping participation in all
the Shj instances where Pj 6∈ Ti, ensures that a corrupted
party is not able to select and share the secrets on the behalf
of the honest parties after learning the secrets which the hon-
est parties have shared on the behalf of the honest parties.
Notice that the second condition, namely stopping the par-
ticipation in the Shj instances of the parties not in Ti while
participating in the Rec instances, may look counter intu-
itive. However, it is very much required to prevent the ad-
versarial strategy discussed in the previous section (detailed
proof is given in Lemma 13). Protocol MCC is presented in
Fig 10.

We now proceed to prove the properties of the protocol
MCC. Most of the properties follow from the properties of
the protocol CC, whose proofs are given in [8]. For the sake
of completeness, we will present them here. As in [8], while
proving the properties, we assume that the following event
E occurs: the invocations of Sh and Rec have been “prop-
erly” completed. This means that if an honest party has ter-
minated an instance of Sh, then a vector S of n values is
fixed, such that each honest party will eventually complete
the corresponding instance of Rec and output S. Moreover,
if the dealer of this instance of Sh is honest, then S is the
vector of n values, which he has shared on behalf of the n
parties. It is easy to see that the event E occurs with proba-
bility at least 1− nε′ = 1− ε.

Lemma 12 Conditioned on the event E, all the honest par-
ties terminate the protocol MCC in constant time.

PROOF: We structure the proof in the following way. We first
show that assuming every honest party has broadcasted the
message Reconstruct Enabled, every honest party will
terminate the protocol in constant time. Then we show that
there exists at least one honest party who will broadcast
the Reconstruct Enabledmessage. Consequently, we
prove that if some honest party broadcasts the Reconstruct

Enabledmessage, then eventually every other honest party
will do the same.

So let us prove the first statement. Assuming every hon-
est party has broadcasted the Reconstruct Enabled
message, it will hold that eventually every honest party Pi
will receive n− t such messages from the broadcast of n− t
honest parties and will start participating in the Reck in-
stances corresponding to each Pk ∈ Ti. Now it clear that if
a party Pk is included in the set Ti of an honest Pi, then Pk
will be also eventually included in the set Tj of every other
(honest) Pj . Hence if Pi participates in Reck, then eventu-
ally every other honest party will do the same. Now given
that the event E occurs, all invocations of Rec terminate in
constant time. Also the protocol for the broadcast terminates
in constant time. This proves the first statement.

We next show that there exists at least one honest party,
say Pi, who will broadcast the Reconstruct Enabled
message. First notice that tillPi broadcasts the Reconstruct
Enabled message, every honest party will keep participat-
ing in all the instances of Sh. By the termination property
of Sh, every honest party will eventually terminate the Sh
instance of every other honest party. Moreover, there are at
least n − t honest parties. So from the protocol steps, it is
easy to see that for the honest Pi, the set Ti will eventually
contain at least n − t parties and hence Pi will eventually
broadcast the message (Attach Ti to Pi). Similarly, every
honest party Pj will be eventually included in the set Gi and
so Gi will eventually contain at least n− t parties and hence
Pi will broadcast the message (Pi AcceptsGi). Similarly,
the set Si will eventually be of size n− t and hence Pi will
broadcast the Reconstruct Enabled message.

Now we show that once the honest Pi broadcasts the
Reconstruct Enabledmessage, every other honest party
Pj will also eventually do the same. It is easy to see that
every party that is included in Ti will be also eventually
included in Tj . And hence, all the conditions that are sat-
isfied for honest Pi above will be eventually satisfied for
every other honest Pj . So Pj will eventually broadcast the
Reconstruct Enabled message. 2

We now prove the following important lemma, which is at
the heart of MCC. The lemma shows that in the protocol
MCC, the adversary strategy shown in Fig. 9 is not possible.

Lemma 13 Let a corrupted party Pk is included in Tj of
an honest Pj in the protocol MCC. Then the values shared
by Pk in the instance Shk are completely independent of the
values shared by the honest parties in their instances of Sh.

PROOF: Let Pi be the first honest party who receives the
Reconstruct Enabledmessage from at least n−t par-
ties and starts participating in the Rec instances, correspond-
ing to each party in Ti. To prove the lemma, we first assert
that a corrupted party Pk will be never included in the set Tj
of any honest Pj , if Pk executes the instance Shk (and hence
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Fig. 10 Multi-Bit common coin protocol.

Protocol MCC(ε)

All instances of Sh and Rec in the following protocol have error parameter ε′ = ε
n

, so as to bound the error probability of the protocol
by ε. For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. For j = 1, . . . , n, corresponding to the party Pj , choose a random value xij and act as a D and execute the protocol Sh(Pi,P, ~Si, ε′),
to share the vector of secrets ~Si = (xi1, . . . , xin). Let this instance of Sh be denoted as Shi,

2. For j = 1, . . . , n, participate in the instance Shj .
3. Upon terminating the instance Shj , broadcast the message (Pi terminated j).
4. Create a dynamic set Ti, which is initially ∅. Upon receiving the message (Pk terminated j) from the broadcast of n− t parties

Pk, add Pj to Ti.
5. Wait till |Ti| = 2t+ 1. Then assign Ti = Ti and broadcast the message (Attach Ti to Pi).

(We say that the secrets {xji|Pj ∈ Ti} are attached to the party Pi).
6. Create a dynamic set Gi, which is initially ∅. Add party Pj to Gi if

(a) The message (Attach Tj to Pj) is received from the broadcast of Pj and
(b) Tj ⊆ Ti.
Wait until |Gi| = 2t+ 1. Then assign Gi = Gi and broadcast the message (Pi Accepts Gi).

7. Create a dynamic set Si, which is initially ∅. Add party Pj to Si if
(a) The message (Pj Accepts Gj) is received from the broadcast of Pj and
(b) Gj ⊆ Gi.

8. Wait until |Si| = 2t+ 1. Then do the following:
(a) Broadcast the message Reconstruct Enabled. Let Hi be the current contents of Gi.
(b) If a party Pj 6∈ Ti, then stop participating in the instance Shj . Later resume participating in the instance Shj only if Pj is

included in Ti.
9. Wait to receive the Reconstruct Enabled message from the broadcast of at least n − t parties. On receiving these messages,

participate in the instance Reck, corresponding to every Pk ∈ Ti, to reconstruct the secrets shared by Pk in the instance Shk.
(When new parties are added to Ti, party Pi participates in the corresponding Rec instances.)

10. Let u = d0.87n(n− 2t)e. For every party Pj ∈ Gi, associate n− 2t = t+ 1 values (Vj1, . . . , Vj(n−2t)) as follows:
(a) Set (vj1, . . . , vj(n−2t)) = EXT(Xj), where Xj is the vector of size 2t + 1, consisting of the jth values, reconstructed during

the instances Reck, where Pk ∈ Tj . That is, Xj = {xkj}, where Pk ∈ Tj and xkj is the jth element of the n length vector,
reconstructed in the instance Reck.

(b) Set Vjl = vjl mod u, for l = 1, . . . , n− 2t.
11. Wait until the n− 2t values associated with all the parties in Hi are computed. Then do the following:

(a) If there exits a party Pj ∈ Hi such that Vjl = 0 for some l ∈ {1, . . . , n − 2t}, then output (0, . . . , 0((n − 2t) times)) and
terminate.

(b) If Vjl = 1 for every party Pj ∈ Hi and every l ∈ {1, . . . , n− 2t}, then output (1, . . . , 1((n− 2t) times)) and terminate.

selects his secrets to be shared on behalf of the honest par-
ties) only after Pi started participating in the Rec instances
corresponding to the parties in Ti. We prove this by contra-
diction.

So let Pi received the Reconstruct Enabled mes-
sage from the parties in the set B1, where |B1| ≥ n − t.
Moreover, assume that Pk executes the instance Shk only
after Pi received the Reconstruct Enabled message
from the parties in B1 and started participating in the Rec in-
stances corresponding to the parties in Ti. Furthermore, as-
sume that Pk is still included in the set Tj of some hon-
est Pj . Now Pk ∈ Tj implies that Pj must have received
the message (Pm terminated k) from the broadcast of
at least n − t Pms, say B2, which implies that the (honest)
parties in B2 have terminated the instance Shk and there are
at least t + 1 such honest parties in B2. Now |B1 ∩ B2| ≥
n − 2t and thus there exists at least one honest party, say
Pα, who is present in B1 as well as in B2, as n = 3t + 1.
This implies that the honest Pα ∈ B1 must have terminated
the instance Shk before broadcasting the Reconstruct
Enabledmessage; otherwisePα ∈ B2 would have stopped

participating in the instance Shk and would never broad-
cast the message (Pα terminated k); this is because dur-
ing the step 8(b) of the protocol, the honest Pα would have
stopped participating in the instance Shk while broadcasting
the Reconstruct Enabled message if Pα has not al-
ready terminated the instance Shk. This further implies that
Pk must have executed the instance Shk (which the honest
Pα have completed) before Pi started participating in the
Rec instances. But this is a contradiction to our assumption.

Hence if the corrupted Pk is included in Tj of any honest
Pj then he must have invoked the instance Shk before any
honest party started participating in any Rec instance. Thus
while choosing his own secrets for the instance Shk, the cor-
rupted Pk will have no knowledge about the secrets shared
by the honest parties in their instances of Sh. 2

Lemma 14 Let u = d0.87n(n−2t)e. In the protocol MCC,
once an honest partyPj receives the message (Attach Ti to
Pi) from the broadcast of Pi and includes Pi in the set Gj ,
then n − 2t unique values, say Vi1, . . . , Vi(n−2t) are fixed
such that the following holds:
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1. Every honest party will associate Vi1, . . . , Vi(n−2t) with
Pi, except with probability ε.

2. Each value Vi1, . . . , Vi(n−2t) is distributed uniformly over
[0, . . . , u] and independent of the values associated with
the other parties.

PROOF: The values Vi1, . . . , Vi(n−2t) are defined in the step
10 of the protocol. We now prove the first part of the lemma.
According to the lemma condition, Pi ∈ Gj . This implies
that Ti ⊆ Tj . So the honest Pj will participate in the in-
stance Reck, corresponding to each Pk ∈ Ti. Moreover,
eventually Ti ⊆ Tm and Pi ∈ Gm will hold for every other
honest party Pm. So, every other honest party will also even-
tually participate in the instance Reck corresponding to each
Pk ∈ Ti. Now by the property of Rec, each honest party will
eventually reconstruct ~Sk = (xk1, . . . , xki, . . . , xkn) at the
completion of Reck, except with probability ε′. Thus, with
probability 1 − (n − t)ε′ ≈ 1 − ε, every honest party will
correctly have the vector Xi during the step 10 and hence
will associate the values Vi1, . . . , Vi(n−2t) with Pi.

We now prove second part of the lemma. By Lemma 13,
when Ti is fixed, the values that are shared by corrupted par-
ties in Ti are completely independent of the values shared by
the honest parties in Ti. Now Ti contains n − t parties and
hence at least n− 2t honest parties and every honest partys’
shared secrets are uniformly distributed and mutually inde-
pendent. This implies that in the vector Xi, there are at least
n − 2t uniformly random values and so from the proper-
ties of EXT, the values vi1, . . . , vi(n−2t) computed from Xi

will be completely random. Finally, since each Vil is com-
puted as vil modulo u, the values Vi1, . . . , Vi(n−2t) will be
uniformly distributed over [0, . . . , u]. 2

Lemma 15 In the protocol MCC, once an honest party broad-
casts the message Reconstruct Enabled, there exists
a set M of size |M | ≥ n

3 , such that the following holds:

1. For every party Pj ∈M , some honest party has received
the message (Attach Tj to Pj) from the broadcast of
Pj .

2. When any honest party Pj broadcasts the message
Reconstruct Enabled, then it will hold that M ⊆
Hj .

PROOF: Let Pi be the first honest party to broadcast the mes-
sage Reconstruct Enabled. Then let M be the set of
parties Pk, who belongs to the set Gl of at least t+ 1 parties
Pl, who are present in the set Si, when Pi broadcasted the
Reconstruct Enabledmessage. We claim that this set
M has all the properties as stated in the lemma.

It is clear that M ⊆ Hi. Thus the party Pi must have re-
ceived the message (Attach Tj to Pj) from the broadcast
of every Pj ∈M . So this proves the first part of the lemma.

An honest Pj broadcasts the message Reconstruct
Enabled only when Sj contains 2t + 1 parties. Now note

that Pk ∈ M implies that Pk belongs to Gl of at least t + 1

parties Pl, who are present in Si. This ensures that there is
at least one such Pl who belongs to Sj , as well as Si. Now
Pl ∈ Sj implies that Pj had ensured that Gl ⊆ Gj . This im-
plies that Pk ∈ M belongs to Gj before the party Pj broad-
casted the Reconstruct Enabled message. Since Hj

is the instance of Gj at the time when Pj broadcasted the
Reconstruct Enabledmessage, it is obvious thatPk ∈
M belongs to Hj also. Using similar argument, it can be
shown that every Pk ∈ M also belongs to Hj , thus proving
the second part of the lemma.

To complete the lemma, it remains to show that |M | ≥
n
3 , for which we use a counting argument. Let m = |Si| at
the time whenPi broadcasted the Reconstruct Enabled
message. So we havem ≥ 2t+1. Now consider an n×n ta-
ble Λi (relative to party Pi), whose lth row and kth column
contains 1 for k, l ∈ {1, . . . , n} if and only if the following
holds: (a) Pi has received the message (Pl Accepts Gl)
from the broadcast of Pl and included Pl in Si before broad-
casting the Reconstruct Enabledmessage and (b)Pk ∈
Gl. The remaining entries (if any) of Λi are left blank. Then
M is the set of parties Pk such that the kth column in Λi
contains 1 at least at t + 1 positions. Notice that each row
of Λi contains 1 at n − t positions. Thus Λi contains 1 at
m(n− t) positions.

Let q denote the minimum number of columns in Λi that
contain 1 at least at t+1 positions. We will show that q ≥ n

3 .
The worst distribution of 1 entries in Λi is letting q columns
to contain all 1 entries and letting each of the remaining n−q
columns to contain 1 at t locations. This distribution requires
Λi to contain 1 at no more than qm + (n − q)t positions.
But we have already shown that Λi contains 1 at m(n − t)
positions. So we have

qm+ (n− q)t ≥ m(n− t).

This gives q ≥ m(n−t)−nt
m−t . Sincem ≥ n−t and n ≥ 3t+1,

we have

q ≥ m(n− t)− nt
m− t

≥ (n− t)2 − nt
n− 2t

≥ (n− 2t)2 + nt− 3t2

n− 2t
≥ n− 2t+

nt− 3t2

n− 2t

≥ n− 2t+
t

n− 2t
≥ n

3

This shows that |M | = q ≥ n
3 2

Lemma 16 Let ε ≤ 0.2 and assume that all the honest par-
ties have terminated the protocol MCC. Then for every pos-
sible value σ ∈ {(0, . . . , 0(` times)), (1, . . . , 1(` times))},
with probability at least 1

4 all the honest parties output σ,
where ` = (n− 2t).

PROOF: By Lemma 14, for every Pi that is included in the
Gj of some honest party Pj , there exists some fixed (yet un-
known) n− 2t unique values, say Vi1, . . . , Vi(n−2t), that are
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distributed uniformly and independently over [0, . . . , u] and
all the honest parties will associate Vi1, . . . , Vi(n−2t) with
Pi. Since the parties have terminated the protocol MCC, this
implies that the event E occurs. This further implies that
with probability at least (1 − ε), all the honest parties will
agree on the values associated with every party, as this de-
pends upon whether the instances of Sh and Rec have com-
pleted properly. Now we consider two cases:

– We show that the probability of outputting σ = (0, . . . , 0

(` times)) by all the honest parties is at least 1
4 . Let M

be the set of parties guaranteed by Lemma 15. Clearly if
Vjl = 0 for some Pj ∈ M and some l ∈ {1, . . . , `} and
if all the honest parties associate Vjl (as the lth value)
with Pj , then clearly all the honest parties will output
(0, . . . , 0(` times)). The probability that for at least one
party Pj ∈ M , Vjl = 0 for some l ∈ {1, . . . , `} is
1 − (1 − 1

u )
`|M |. Now u = d0.87n(n − 2t)e and ` =

(n − 2t). Also |M | ≥ n
3 . Therefore for all n > 4, we

have 1 − (1 − 1
u )
`|M | ≥ 0.316. So, the probability that

all the honest parties output σ = (0, . . . , 0(` times)) is
at least ≥ 0.316× (1− ε) ≥ 0.25 = 1

4 .
– We show that the probability of outputting σ = (1, . . . , 1

(` times)) by all the honest parties is at least 1
4 . It is obvi-

ous that if no party Pj has Vjl = 0 for any l ∈ {1, . . . , `}
and if all honest parties associate Vjl with Pj , then all the
honest parties will output 1. As u = d0.87n(n − 2t)e
and ` = (n− 2t), the probability of this event is at least
(1− 1

u )
`n · (1− ε) ≥ e−1.15 · 0.8 ≥ 0.25 = 1

4 . 2

Theorem 7 For every ε, where 0 < ε ≤ 0.2, protocol MCC is
a (1 − ε)-completing, t-resilient, 1

4 -multibit common coin
protocol, with (n − 2t) = Θ(n) bits output. Conditioned
on the event that all the honest parties terminate the pro-
tocol, they do so in constant time. The protocol requires a
private communication of O(n4 log 1

ε ) bits and broadcast
of O(n4 log 1

ε ) bits.

PROOF: In the protocol MCC, each party executes an in-
stance of Sh to share n secrets and the corresponding in-
stance of Rec is executed to reconstruct the n secrets. So
the communication complexity of MCC follows from Theo-
rem 6 by substituting ` = n. The theorem now follows from
Lemma 12-16. 2

We end this section by comparing the protocols CC and
MCC.

Comparison of CC and MCC : The protocol CC is a com-
mon coin protocol with one bit output. If we use our Sh and
Rec protocols of the AVSS scheme AVSS−Multiple (which
is the most efficient AVSS scheme) in the protocol CC, then
it would require a private communication, as well as broad-
cast communication of O(n5 log 1

ε ) bits. This is because
there will be Θ(n2) instances of Sh and Rec, each dealing

with a single secret (i.e. ` = 1). This further implies that if
we execute t + 1 independent instances of the protocol CC,
we can get a t + 1 bit output common coin protocol, where
the private as well as the broadcast communication will be
O(n6 log 1

ε ) bits. Now comparing this with the complexity
figures in Theorem 7, we see that we get a saving of Θ(n2)

by using the protocol MCC, instead of executing t + 1 in-
stances of CC. The saving comes by asking every party to
use a single instance of Sh to share n secrets concurrently
and then associating n − 2t values with a party from the
n− t values attached to the party.

7 Existing Voting Protocol

In this section, we recall the existing vote protocol from [8],
which will be required for the construction of our ABA pro-
tocol. For the sake of completeness, the proofs of the prop-
erties of the protocol are presented in APPENDIX B.

Informally, the voting protocol does “whatever can be
done deterministically” to reach agreement. In a Voting pro-
tocol, every party has a single bit as input. The protocol tries
to find out whether there is a detectable majority for some
value among the inputs of the parties. In the protocol, each
party’s output can have five different forms:

1. For σ ∈ {0, 1}, the output (σ, 2) stands for “overwhelm-
ing majority for σ”;

2. For σ ∈ {0, 1}, the output (σ, 1) stands for “distinct ma-
jority for σ”;

3. The Output (Λ, 0) stands for “non-distinct majority”.

The voting protocol will have the following properties:

1. If all the honest parties have the same input σ, then all
the honest parties will output (σ, 2);

2. If some honest party outputs (σ, 2), then every other hon-
est party will output either (σ, 2) or (σ, 1);

3. If some honest party outputs (σ, 1) and no honest party
outputs (σ, 2) then each honest party outputs either (σ, 1)
or (Λ, 0).

The voting protocol consists of three “stages”, each having
a similar structure. The protocol called VOTE is presented
in Fig 11. In the protocol, party Pi has the input bit xi.

The properties of the protocol VOTE are stated in the
following lemmas, whose proofs are available in [8]. For the
sake of completeness, the proofs are recalled in APPENDIX
B.

Lemma 17 ([8]) All the honest parties terminate the proto-
col VOTE in constant time.

Lemma 18 ([8]) If all the honest parties have the same in-
put σ, then all the honest parties will output (σ, 2).
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Fig. 11 Existing vote protocol.

Protocol VOTE

For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. On input xi, broadcast (input, Pi, xi).
2. Create a dynamic set Ai, which is initially ∅. Add (Pj , xj) to Ai if (input, Pj , xj) is received from the broadcast of Pj .
3. Wait until |Ai| = n− t. Assign Ai = Ai. Set ai to the majority bit among {xj | (Pj , xj) ∈ Ai} and broadcast (vote, Pi, Ai, ai).
4. Create a dynamic set Bi, which is initially ∅. Add (Pj , Aj , aj) to Bi if (vote, Pj , Aj , aj) is received from the broadcast of Pj ,

Aj ⊆ Ai, and aj is the majority bit of Aj .
5. Wait until |Bi| = n − t. Assign Bi = Bi. Set bi to the majority bit among {aj | (Pj , Aj , aj) ∈ Bi} and broadcast

(re-vote, Pi, Bi, bi).
6. Create a set Ci. Add (Pj , Bj , bj) to Ci if (re-vote, Pj , Bj , bj) is received from the broadcast of Pj , Bj ⊆ Bi, and bj is the

majority bit of Bj .
7. Wait until |Ci| ≥ n− t. If all the parties Pj ∈ Bi had the same vote aj = σ, then output (σ, 2) and terminate.

Otherwise, if all the parties Pj ∈ Ci have the same re− vote bj = σ, then output (σ, 1) and terminate.
Otherwise, output (Λ, 0) and terminate.

Lemma 19 ([8]) If some honest party outputs (σ, 2), then
every other honest party will eventually output either (σ, 2)
or (σ, 1).

Lemma 20 ([8]) If some honest party outputs (σ, 1) and no
honest party outputs (σ, 2) then every other honest party will
output either (σ, 1) or (Λ, 0).

The communication complexity of the protocol VOTE is
stated in the following theorem.

Theorem 8 Protocol VOTE requires a broadcast of O(n2
log n) bits.

PROOF: In the protocol, each party may broadcast A,B and
C sets, each containing the identity of n − t parties. Since
the identity of each party can be represented by log(n) bits,
clearly the protocol requires broadcast of O(n2 log n) bits.
2

2

8 Multi-Bit ABA Protocol

Once we have the (n−2t) bit common coin protocol MCC and
the VOTE protocol, we can design our multi-bit ABA pro-
tocol to reach agreement on (n − 2t) bits concurrently, by
extending the idea used in [8]. We first informally discuss
the underlying idea used in [8] for reaching agreement on
a single bit by using the CC protocol along with the proto-
col VOTE; the same idea is extended in a “natural” way in
our protocol for reaching agreement on (n−2t) bits concur-
rently.

The Underlying Idea for Agreement on a Single Bit :
The ABA protocol (for a single bit) proceeds in “iterations”,
where in each iteration every party computes a “modified
input” value. In the first iteration, the modified input of a
party Pi is his private input bit (for the ABA protocol) xi. In

each iteration, the parties execute an instance of the proto-
col VOTE and CC sequentially, that is, a party participates
in the instance of CC only after terminating the instance
of VOTE (the reason for this provision will be clear while
proving the properties of the ABA protocol). If a party out-
puts (σ, 1) in the instance of the VOTE protocol, implying
that he finds a “distinct majority” for the value σ, then he sets
his modified input for the next iteration to σ, irrespective of
the value which is going to be output in the instance of CC;
otherwise, he sets his modified input for the next iteration to
be the output of the CC protocol, which is invoked by all the
parties in each iteration, irrespective of whether the output
of the CC protocol is used or not by the parties for setting
the modified inputs for the next iteration. Once a party out-
puts (σ, 2) in an instance of the VOTE protocol, implying
that he finds an “overwhelming majority” for the value σ,
then he broadcasts σ. Finally, once a party receives σ from
the broadcast of t+ 1 parties, he outputs σ and terminates.

Extending the Idea for (n−2t) Bits : In our multi-bit ABA
protocol, we extend the above idea as follows: during the
first iteration, the “modified input” for each party will con-
sists of his private (n − 2t) input bits, so each party will
have (n−2t) modified input bits. Then in each iteration, the
parties execute (n− 2t) parallel instances of the VOTE pro-
tocol (one instance on behalf of each bit), followed by a
single instance of the MCC protocol (on behalf of all the
(n − 2t) bits). Note that a party participates in the instance
of MCC only after terminating all the (n − 2t) instances of
the VOTE protocol. The way a party sets his modified bits
for the next iteration, depending upon the outcome of the
VOTE and MCC protocol is exactly the same as explained
above, the only difference being that now this is done paral-
lely for (n− 2t) bits, instead of a single bit.

More specifically, after completing the iteration k, each
party sets the lth bit of his modified input for the (k + 1)th
iteration as follows, for each l ∈ {1, . . . , n − 2t}: if (σl, 1)
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Fig. 12 Multi-bit ABA protocol to reach agreement on (n− 2t) = t+ 1 bits.

MABA(ε)

Each instance of MCC in the following protocol is executed with an error parameter ε′ = ε
4

to bound the error probability of the protocol
by ε. For i = 1, . . . , n, each party Pi ∈ P executes the following code:

1. Set r = 0. On having the input (xi1, . . . , xi(n−2t)), set v1l = xil, for l = 1, . . . , n− 2t and set the flagl = 0a.
2. Repeat until terminating:

(a) Set r = r + 1. Participate in (n − 2t) instances of the VOTE protocol, with vrl as the input for the lth instance of the VOTE
protocol, for l = 1, . . . , (n− 2t). Set (yrl,mrl) as the output of the lth instance of the VOTE protocol.

(b) Wait to terminate all the (n− 2t) instances of the VOTE protocol, executed in the previous step. Then invoke MCC(ε′) and wait
until its termination with output (cr1, . . . , cr(n−2t)).

(c) For every l ∈ {1, . . . , n− 2t}, such that flagl = 0, do the following:
i. Ifmrl = 2, then set v(r+1)l = yrl, broadcast (Terminate with output v(r+1)l, l) and participate in only one more

instance of VOTE protocol corresponding to the lth bit with v(r+1)l as the inputb.
Participate in only one more instance of MCC if (Terminate with output v(r+1)l, l) is broadcasted for all l =

1, . . . , n− 2tc.
ii. If mrl = 1, set v(r+1)l = yrl.

iii. Otherwise, set v(r+1)l = crl.
(d) Upon receiving (Terminate with output σl, l) from the broadcast of at least t+ 1 parties, for some value σl, output σl

as the lth bit, terminate all the computation regarding lth bit and set flagl = 1.
(e) If flagl = 1 for every l = 1, . . . , n− 2t then terminate the protocol with output (σ1, . . . , σn−2t).

a Here flag1, . . . , flagn−2t are the (local) Boolean flags to indicate whether the agreement on the lth bit has been achieved.
b, c The purpose of these restrictions is to prevent the parties from participating in an unbounded number of iterations before enough
(Terminate with output σl, l) broadcasts are completed.

is obtained as the output of the lth instance of VOTE dur-
ing the kth iteration, then the lth bit is set as σl; otherwise
the lth bit is set as the lth output bit obtained at the end of
MCC protocol during the kth iteration. This process is re-
peated till (σl, 2) is obtained as the output of the lth instance
of VOTE during some iteration, in which case, a party stops
all computations related to the lth bit and broadcasts σl. Our
multi-bit ABA protocol, called MABA, is presented in Fig
12.

We now proceed to prove the properties of the protocol
MABA; most of the proofs follow from the properties of the
single bit ABA protocol provided in [8], but for the sake of
completeness we provide them here.

Lemma 21 In the protocol MABA, if all the honest par-
ties have the same input (σ1, . . . , σn−2t), then all the honest
parties terminate and output (σ1, . . . , σn−2t).

PROOF: The proof follows from the fact that if all the honest
parties have the same input (σ1, . . . , σn−2t), then by Lemma
18, during the first iteration every honest party will output
(y1l,m1l) = (σl, 2) upon terminating the lth instance of the
VOTE protocol and will consequently broadcast (Terminat
e with output σl, l). 2

Lemma 22 If some honest party terminates the protocol MA
BA with output (σ1, . . . , σn−2t), then all the honest parties
will eventually terminate MABA with output (σ1, . . . , σn−2t).

PROOF: To prove the lemma, it is enough to show that for ev-
ery l = 1, . . . , n−2t, if an honest party outputs σl as the lth
bit, then all the honest parties will also eventually output σl
as the lth bit. We first claim that if an honest party broadcasts

(Terminate with output σl, l), then eventually ev-
ery other honest party will also do the same. Let k be the first
iteration when an honest party Pi broadcasts (Terminate
with output σl, l); we show that every other honest party
will broadcast the same either in the kth iteration or in the
(k + 1)th iteration. Since the honest Pi has broadcasted
(Terminate with output σl, l) during the kth iter-
ation, it implies that ykl = σl and mkl = 2, which fur-
ther implies that Pi has obtained (σl, 2) as the output of
the lth instance of the VOTE protocol, invoked during the
kth iteration. So by Lemma 19, every other honest party
Pj will output either (σ, 2) or (σ, 1) during this instance
of the VOTE protocol. In case Pj outputs (σ, 2), the it will
broadcast (Terminate with output σl, l) during the
kth iteration itself. Furthermore every honest Pj will execute
the lth instance of the VOTE during the (k + 1)th iteration
with input v(k+1)l = σl. So clearly, during the (k + 1)th
iteration, every honest party will have the same input σl
for the lth instance of VOTE. Therefore by Lemma 18, ev-
ery honest party will output (σl, 2) during this instance of
the VOTE protocol. Thus all the honest parties broadcast
(Terminate with output σl, l) either during the kth
iteration or during the (k + 1)th iteration.

Now suppose that an honest party outputs σl as the lth
bit, so at least one honest party must have broadcasted (Ter
minate with output σl, l). Consequently, all the hon-
est parties will also broadcast the same. So eventually, every
honest party will receive (Terminate with output σl,
l) from the broadcast of (n − t) parties and (Terminate
with output σl, l) from the broadcast of at most t cor-
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rupted parties. Therefore every honest party will output σl
as the lth bit. 2

Lemma 23 If all the honest parties have initiated and com-
pleted some iteration k, then with probability at least 1

4 ,
all the honest parties will have the same modified inputs
{v(k+1)l : l ∈ {1, . . . , n − 2t} and flagl = 0} for the
(k + 1)th iteration13.

PROOF: For every l ∈ {1, . . . , n− 2t} where flagl = 0, the
modified input v(k+1)l for the (k+1)th iteration is set based
on the outcome of either the lth instance of the VOTE proto-
col (during the kth iteration) or the outcome of the MCC pro-
tocol (during the kth iteration). For all such v(k+1)ls, we
have two possible cases:

– For all ls for which all the honest parties executed step
2(c)-(iii) in iteration k for setting v(k+1)l, it holds that
v(k+1)l is set to the lth bit of the (local) output obtained
in the instance of MCC. The property of MCC ensures
that with probability at least 1

4 all the honest parties ob-
tain the same ((n−2t) bit) output after completing MCC
and hence with the same probability, all the honest par-
ties will have the same value for all the v(k+1)ls, which
are set to the lth bit of the output of MCC.

– For all ls for which some honest party has set v(k+1)l =

σl for some σl ∈ {0, 1}, either in step 2(c)-(i) or step
2(c)-(ii) of iteration k, it holds that no honest party will
set v(k+1)l = σl in step 2(c)-(i) or step 2(c)-(ii) (this
follows from Lemma 20). Moreover, the probability that
for all such ls, all the honest parties have σl as the lth bit
of their (local) output of MCC is the same as the proba-
bility that all the honest parties have the same ((n− 2t)

bit) output at the end of MCC, which is at least 1
4 . Now

the parties start executing MCC, only after the termina-
tion of VOTE. Hence the outcome of VOTE is fixed, be-
fore MCC is invoked. Thus the corrupted parties can not
force the output of VOTE to prevent agreement. Hence
with probability at least 1

4 , all the honest parties will set
v(k+1)l = σl. 2

Now before proceeding further, let us define the following
event Ck: let Ck be the event that each honest party com-
pletes all the iterations it initiated, up to (and including) the
kth iteration. That is, for each iteration 1 ≤ r ≤ k and
for each party P , if P initiated iteration r then it computes
v(r+1)l, for every l ∈ {1, . . . , n − 2t}, for which flagl = 0.
Let C denote the event that Ck occurs for all k.

Lemma 24 Conditioned on the event C, all the honest par-
ties terminate the protocol MABA in constant expected time.

PROOF: First notice that in order to terminate MABA, each
honest party must set flagl = 1, for all l ∈ {1, . . . , n −

13 Note that here the probability 1
4

is not for the each individual l, but
instead for all ls simultaneously.

2t}. We first claim that for each l ∈ {1, . . . , n − 2t}, all
the honest parties will set flagl = 1 within constant time,
after the first instance when some honest party broadcasts
(Terminate with output σl, l), for some σl ∈ {0, 1}.
So let the first instance when an honest party broadcasts
(Terminate with output σl, l) occurs during the it-
eration rl. This implies that all the honest parties partici-
pated in the lth instance of the VOTE and in the instance
of MCC of all the iterations upto iteration rl + 1. From the
proof of Lemma 22, it follows that all the honest parties will
broadcast (Terminate with output σl, l) by the end
of iteration rl + 1. All these instances of broadcast com-
plete in constant time. Moreover, each honest party will set
flagl = 1 after completing t + 1 of these broadcasts and
thus, after the first instance when some honest party broad-
casts (Terminate with output σl, l), all the honest
parties will set flagl = 1 in constant time.

Now let rmax be the maximum among r1, . . . , rn−2t. It
is easy to see that all the honest parties will set flagl = 1, for
all l ∈ {1, . . . , n − 2t} in constant time after the iteration
rmax + 1. This is because by the iteration rmax + 1, all the
honest parties must have broadcasted (Terminate with
output σl, l), for every l ∈ {1, . . . , n − 2t} (this follows
from the definition of rmax) and all these broadcasts will
terminate in constant time.

Let the random variable τmax count rmax; if τmax =

∞, then the honest parties will not terminate MABA, as the
honest parties will wait to set flagmax to 1. Conditioned on
the event C, all the honest parties terminate each iteration in
constant time. To complete the proof, it is enough to show
that E(τmax|C) is constant. We have

Prob(τmax > k|Ck) ≤ Prob(τmax 6= 1|Ck)× . . .×
Prob(τmax 6= k|Ck ∩ τmax 6= 1

. . . ∩ τmax 6= k − 1).

From Lemma 23, after completing an iteration k, all the hon-
est parties will have the same modified inputs for the (k +

1)th iteration, except with probability at most 3
4 . This im-

plies that each of the k multiplicands on the right hand side
of the above equation is at most 3

4 and thus Prob(τmax >
k|Ck) ≤ ( 34 )

k. Now it follows via a simple calculation that
E(τmax|C) ≤ 16. 2

Lemma 25 In the protocol MABA, Prob(C) ≥ (1− ε).

PROOF: As in Lemma 24, let rmax be the maximum among
r1, . . . , rn−2t. We have

Prob(C) ≤
∑
k≥1

Prob(τmax > k ∩ Ck+1|Ck)

≤
∑
k≥1

Prob(τmax > k|Ck) · Prob(Ck+1|Ck ∩ τmax > k).

From the proof of Lemma 24, we haveProb(τmax > k|Ck) ≤
( 34 )

k. We will now bound the term Prob(Ck+1|Ck∩τmax ≥
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k). If all the honest parties execute the kth iteration and com-
plete the instance of MCC during the kth iteration, then all
the honest parties complete the kth iteration (as the instances
of VOTE will always complete in each iteration). Now the
instance of MCC is invoked with error parameter ε′ = ε

4 .
Thus with probability at least 1 − ε

4 , all the honest par-
ties complete the instance of MCC during the kth iteration.
Therefore, for each k, Prob(Ck+1|Ck∩τmax ≥ k) ≤ ε

4 . So
we get

Prob(C) ≤
∑
k≥1

ε

4
(
3

4
)k = ε. 2

Theorem 9 (Multi-Bit ABA) Let n = 3t+ 1. Then for ev-
ery 0 < ε ≤ 0.2, protocol MABA is a (1 − ε)-terminating,
multi-bit ABA protocol with (n − 2t) bit output. The proto-
col requires a private communication as well as broadcast
of O(Rn4 log 1

ε ) bits, where R is the expected running time
of the protocol. Given that the parties terminate, they do so
in constant expected time (i.e. R = O(1)).

PROOF: In each iteration of the protocol MABA, one in-
stance of MCC and (n−2t) instances of VOTE are executed,
which requires a total private as well as broadcast commu-
nication of O(n4 log 1

ε ) bits. Moreover, from the proof of
Lemma 24, there will be (expected) constant number of such
iterations. The theorem now follows from Lemma 21-25. 2

9 Conclusion and Open Problems

We have presented a (1−ε)-terminating unconditional ABA
protocol with optimal resilience, which significantly improves
the communication complexity of the best known (1 − ε)-
terminating ABA protocol of [9]. Our protocol also improves
the communication complexity of the almost surely termi-
nating ABA protocol of [1] (though the ABA protocol of [1]
has a stronger property of being almost surely terminating).
The key factors that have contributed to the gain in the com-
munication complexity of our ABA protocol are

– Using a shorter route AICP → AWC → AVSS to get our
AVSS scheme and to introduce the new primitive AWC,
which can be designed more efficiently that AWSS, the
commonly used primitive in the AVSS of [9] and in the
SVSS of [1].

– Improving each of the underlying building blocks, so as
to deal with multiple values concurrently.

– Modifying the existing common coin protocol to make
it compatible to use our AVSS scheme (sharing multi-
ple secrets concurrently) and to generate Θ(n) common
coins concurrently.

An interesting open problem is to further improve the com-
munication complexity of the ABA protocols. Also one can

try to provide an almost surely terminating, optimally re-
silient, constant expected time ABA protocol whose com-
munication complexity is less than the ABA protocol of [1].

Acknowledgements: We would like to sincerely thank the
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significantly improve the overall presentation of the paper.
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eralized privacy amplification. IEEE Transactions on Information
Theory, 41(6):1915–1923, 1995.

5. C. H. Bennett, G. Brassard, and J. Robert. Privacy amplification
by public discussion. SIAM J. Comput., 17(2):210–229, 1988.

6. P. Berman, J. A. Garay, and K. J. Perry. Towards optimal dis-
tributed consensus (extended abstract). In Proceedings of 30th An-
nual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, 30 October - 1 November 1989,
pages 410–415. IEEE Computer Society, 1989.

7. G. Bracha. An asynchronous b(n−1)/3c-resilient consensus pro-
tocol. In Proceedings of the Third Annual ACM Symposium on
Princiles of Distributed Computing, Vancouver, B. C., Canada,
August 27-29, 1984, pages 154 – 162. ACM Press, 1984.

8. R. Canetti. Studies in Secure Multiparty Computation and Appli-
cations. PhD thesis, Weizmann Institute, Israel, 1995.

9. R. Canetti and T. Rabin. Fast asynchronous Byzantine
Agreement with optimal resilience. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Comput-
ing, pages 42–51. ACM Press, 1993. Full version available at
http://citeseerx.ist.psu/viewdoc/summary?doi=10.1.1.8.8120.

10. B. A. Coan and J. L. Welch. Modular construction of a Byzantine
Agreement protocol with optimal message bit complexity. Infor-
mation and Computation, 97(1):61–85, 1992.
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APPENDIX A: Communication Complexity Analysis of
the AVSS and ABA of [9]

The communication complexity analysis of the AVSS and
ABA protocol of [9] was not reported anywhere so far. So
we have carried out the same at this juncture. To do so, we
have considered the detailed description of the AVSS pro-
tocol of [9] given in Canetti’s Thesis [8]. To bound the er-
ror probability by ε, all the communication and computation
in the protocol of [9] is done over a finite field F, where
|F| = GF (2κ) and ε = 2−Ω(κ). Thus each field element
can be represented by κ = O(log 1

ε ) bits.
To begin with, in the ICP protocol of [9], Signer gives

O(κ) field elements to INT andO(κ) field elements to Verifier.
Though the ICP protocol of [8] is presented with a single
Verifier, it is executed with n verifiers in the protocol A-RS.
In order to execute ICP with n verifiers, Signer givesO(nκ)
field elements to INT andO(κ) field elements to each of the
n verifiers. So the communication complexity of ICP of [8]
when executed with n verifiers is O(nκ) field elements and
hence O(nκ2) bits.

Now by incorporating their ICP protocol with n verifiers
in Shamir secret sharing [30], the authors in [9] designed
an asynchronous primitive called A-RS, which consists of
two sub-protocols, namely A-RS-Share and A-RS-Rec. In
the A-RS-Share protocol, D generates n shares (Shamir
shares) of a secret s and for each of the n shares, D exe-
cutes an instance of ICP protocol with n verifiers. So the
A-RS-Share protocol of [9] involves a private communica-
tion of O(n2κ2) bits. In addition to this, the A-RS-Share
protocol also involves broadcast of O(log(n)) bits. In the
A-RS-Rec protocol, the IC signatures given by D in A-RS-
Share are revealed, which involves a private communica-
tion of O(n2κ2) bits. In addition, the A-RS-Rec protocol
involves broadcast of O(n2 log(n)) bits.

Proceeding further, the authors in [9] designed an AWSS
scheme using their A-RS protocol. The AWSS protocol con-
sists of two sub-protocols, namely AWSS-Share and AWSS-
Rec. In the AWSS-Share protocol, D generates n shares
(Shamir shares [30]) of the secret and instantiate n instances
of the ICP protocol for each of the n shares. Now each in-
dividual party A-RS-Share (as a D) all the values that it
has received in the n instances of the ICP protocol. Since
each individual party receives a total of O(nκ) field ele-
ments in the n instances of ICP, the above step incurs a
private communication of O(n4κ3) bits and broadcast of
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O(n2κ log(n)) bits. In the AWSS-Rec protocol, each party
Pi tries to reconstruct the values which are A-RS-shared by
each party Pj in a set Ei. Here Ei is a set which is defined
in the AWSS-Share protocol. In the worst case, the size of
each Ei is O(n). So in the worst case, the AWSS-Rec pro-
tocol requires a private communication ofO(n5κ3) bits and
broadcast O(n5κ log(n)) bits.

The authors in [9] then further extended their AWSS-
Share protocol to Two&Sum AWSS-Share protocol, where
each party Pi has to A-RS-Share O(nκ2) field elements.
So the communication complexity of Two&Sum AWSS-
Share isO(n4κ4) bits of private communication andO(n2κ2
log(n)) bits of broadcast communication.

Finally using their Two&Sum AWSS-Share and AWSS-
Rec protocol, the authors in [9] have deigned their AVSS
scheme, which consists of two sub-protocols, namely AVSS-
Share and AVSS-Rec. In the AVSS-Share protocol, the
most communication expensive step is the one where each
party has to reconstructO(n3κ) field elements by executing
instances of AWSS-Rec. So in total, the AVSS-Share pro-
tocol of [9] involves a private communication of O(n9κ4)
bits and broadcast of O(n9κ2 log(n)) bits. The AVSS-Rec
protocol involves n instances of AWSS-Rec, resulting in
a private communication of O(n6κ3) bits and broadcast of
O(n6κ log(n)) bits.

Now in the common coin protocol, each party in P acts
as a dealer and invokes n instances of AVSS-Share to share
n secrets. So the communication complexity of the com-
mon protocol of [9] isO(n11κ4) bits of private communica-
tion andO(n11κ2 log(n)) bits of broadcast communication.
Now in the ABA protocol of [9], common coin protocol is
called for R = O(1) expected time. Hence the ABA pro-
tocol of [9] involves a private communication of O(n11κ4)
bits and broadcast of O(n11κ2 log(n)) bits. As mentioned
earlier, κ = O(log 1

ε ). Thus the ABA protocol of [9] in-
volves a private communication of O(n11 log( 1ε )

4) bits and
broadcast of O(n11 log( 1ε )

2 log(n)) bits.

APPENDIX B: Proofs for the Protocol VOTE

Lemma 17 [8] All the honest parties terminate the protocol
VOTE in constant time.

PROOF (SKETCH): Every honest party Pi will broadcast his
input xi. As there are at least n− t honest parties, from the
properties of broadcast, every honest Pi will eventually have
|Ai| = n− t and then will eventually have |Bi| = n− t and
finally will eventually have |Ci| = n− t. Consequently, ev-
ery honest Pi will terminate the protocol in constant time. 2

Lemma 18 [8] If all the honest parties have the same input
σ, then all the honest parties will output (σ, 2).

PROOF: Consider an honest party Pi. If all the honest par-
ties have the same input σ, then at most t (corrupted) parties
may broadcast σ as their input. Therefore, it is easy to see
that every Pk ∈ Bi must have broadcasted his vote bk = σ.
Hence the honest Pi will output (σ, 2). 2

Lemma 19 [8] If some honest party outputs (σ, 2), then ev-
ery other honest party will output either (σ, 2) or (σ, 1).

PROOF: Let an honest Pi outputs (σ, 2). This implies that
every Pj ∈ Bi had broadcasted vote aj = σ. As |Bi| =
2t + 1, it implies that for every other honest party Pj , it
holds that |Bi ∩ Bj | ≥ t + 1 and so Pj is bound to broad-
cast re− vote bj = σ and hence will output either (σ, 2) or
(σ, 1). 2

Lemma 20 [8] If some honest party outputs (σ, 1) and no
honest party outputs (σ, 2) then every other honest party will
output either (σ, 1) or (Λ, 0).

PROOF: Assume that an honest party Pi outputs (σ, 1). This
implies that all the parties Pj ∈ Ci had broadcasted the same
re− vote bj = σ. Since |Ci| ≥ n − t, in the worst case
there are at most t parties (outside Ci) who may broadcast
re− vote = σ. Thus it is clear that no honest party will
output (σ, 1). Now since the honest parties in Ci had re-
voted as σ, there must be at least t + 1 parties who have
broadcasted their vote as σ. Thus no honest party can output
(σ, 2) for which at least n−t = 2t+1 parties are required to
broadcast their vote as σ. So we have proved that no honest
party will output from {(σ, 2), (σ, 1)}. Therefore the honest
parties will output either (σ, 1) or (Λ, 0). 2


