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Abstract

We show how the study of the geometry of the nine flex tangerascubic produces pseudo-
parameterizations, including the ones given by Icart, K&man Lercier, Renault and Farashabhi,
and infinitely many new ones.

To Jean-Jacques Quisquater, on the occasion of his éméritat

1 Introduction

Much attention has been focused recently on the problem mipoting points on a given elliptic
curve over a finite field in deterministic polynomial time. i3 fproblem arises in a very natural man-
ner in many cryptographic protocols when one wants to encoegsages into the group of points
of an elliptic curve. A good example of the algorithmic angptologic motivations in finding these
parameterizations can be found in the identity-based etiory from [4]. The difficulty is to deter-
ministically find a field element such that some polynomial inis a square, see [14], Section 6.1.8.
For example, when the curve is given by a reduced Weiersaasationy? = z3 + ax + b, we
deterministically search such that:® + az + b is a square in the field.

In 2006, Shallue and Woestjine [20] proposed a first practieterministic algorithm. In 2009,
Icart [12] proposed another deterministic encoding fapgd curves over a field with ¢ elements,
wheng is congruent t@ modulo3. Icart’s algorithm has quasi-quadratic complexitylag q. Kam-
merer, Lercier and Renault [13] proposed a different emgpdinder the additional condition that
the elliptic curve has a rational point of ordgrand even for a special class of hyperelliptic curves.
Farashahi [8] found yet another parameterization for suigbtie curves too. A crucial point in
[12, 13, 8] is that the map — =z is bijective for a finite fieldk having cardinality congruent to
2 modulo 3. Its inverse map i — x° wheree mod ¢ — 1 is the inverse o mod ¢ — 1 and
0 < e < ¢ — 1. Exponentiation by: can be computed in deterministic tinleg ¢)>+°(") using the
fast exponentiation algorithm. So in order to determin@ty compute points on an elliptic cunée
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over such a finite field, one can afford the usual field openattogether with cubic roots. In other
words, one looks for a parameterization of the elliptic eupy cubic radicals. Such a parameteriza-
tion will be called apseudo-parameterizatioin this article. Finding such a pseudo-parameterization
is a special case of the problem of finding parameterizatidisirves by radicals [19].

We show how such pseudo-parameterizations can be obtamedte study of the dual curve of
the elliptic curveC'. In a nutshell, we produce points 6has intersection points betweéhand well
chosen lines. 1D is a line in the projective plane, then the intersectidrt’ consists of three points,
counting multiplicities. These three points can be comgine solving a cubic equation. We recall
in Section 2 how to derive the Tartaglia-Cardan formulaetifids purpose. Recall these formulae
run in two steps. One first has to compute a square root of #uinlinant. The three solutions are
then calculated using the field operations and cubic rodteeSubic roots are not a problem in our
context, the only remaining difficulty is computing the sopieoot of the discriminant. So we choose
the line D in such a way that the discriminant of the intersectiort' is a square, and we assume that
we have an algebraic formula for its square root. More pedgisve consider a lind; depending
on a rational formal parameter This means that the coefficients in the projective equaifab; are
polynomials in the indeterminate The discriminantA(t) of the intersectiori,.C' is then a rational
fraction int. We ask that this discriminant be a squaret{n). We compute once for all a formal
square root(t) of A(t). For every value of we can then produce a point 6husing only the field
operations and cubic roots.

We recall in Section 3 that the projective linesFirare parametrized by the dual plafeThe line
in P with projective equatio/ X + VY + W Z = 0 is represented by the poifit : V : W] € P. A
rational family of linest — D; thus gives rise to a rational curdeinsideP. Indeed, if the projective
equation ofD; isU (t) X +V ()Y + W (t)Z = 0 thenthe map — [U(t) : V(¢) : W (t)] parametrizes
a rational curve insid@®. The discriminantA(¢) vanishes wheneveb,.C' has a multiple root. This
happens if and only iD; is tangentto C'. Not every projective line is tangent (0. The subset of
[P corresponding to lines that are tangenttds a curve denoted’ and called thelual curve ofC.

So A(t) describes the intersection between the rational ciiremd the dual curve’. And A(t) is

a square if and only if every point in the intersection betw&eandC' has even multipicity. So we
will be interested in rational curvesin P that have even intersection with the dual curve to the cubic
curveC'. The connection between such curves and pseudo-pararatiters is detailed in Section 4.

Because the dual cun@ plays such an important role we will study it in Section 3. STbirrve
has genud and9 singularities, all cusps. Indeed the nine cuspg’aforrespond to the nine flex
tangents taC, while the smooth points o6 parametrize the tangent lines @that are not flexes.
These nine points in the dual plane form an interresting gardition that we study in Section 5. We
are particularly interested in rational curvBgassing through several among these nine points. We
will find that many such curveb have even intersection withl. We will show in Section 6 that these
curves give rise to all the known pseudo-parameterizatdiisfound by Icart, Farashahi, Kammerer,
Lercier, Renault, and to several new ones. It is then nator@$k how many rational curves éirhave
even intersection witl'. We shall see in Section 7 that there are infinitely many satibral curves,
giving rise to infinitely many inequivalent pseudo-paraenations. These curves lift to rational
curves on the degree two coveridyof the dual plane ramified along. This will lead us to the
classical and beautiful topic of rational curves &1 surfaces.

Throughout the paper, we denote by field with characteristic different fromand3, by k& > k
an algebraic closure df, and by(s € k a primitive third root of unity. We se{/—3 = 2¢3 + 1.

The Maple [17] code for the calculations in this article carfdund on the authors’ web pages.



2 Solving cubic equations

In this section we recall the Tartaglia-Cardan formulaedolving cubic equations by radicals. A
modern treatment can be found in [6]. We believe it is wordtisy) these equations in an unambiguous
form, that is well adapted to our context, and does not makessive use of radicals and roots of unity.
In other words we need regular and generic formulae.hlle} = x3 — s122 + sox — s3 be a degree

3 separable polynomial ik[z]. Callrg, 7; andr, the three roots ofi(z) in k. Set

5: \/—_3(’1“1 —7“0)(7“2 —T’l)(T’Q—T‘Q)

andA = §%. Note thatA is the usual discriminant multiplied by3. We call it thetwisted discrimi-
nant Since it is a symmetric function of the roots, it can be egpeel as a polynomial iy, s, and
s3. Indeed

A = 8153 — 5dszs159 — 35755 + 125753 + 1255,

In particularA lies ink. Letl = k((3,0) C k be the field obtained by adjoiningand a primitive
third root of unity tok. We setm = [(r1,72,70).

If the extensioni C m is non-trivial then it is a cyclic cubic extension. Sincgontains a primitive
third root of unity, this cubic extension is a Kummer extemsiit is generated by the cubic root of
some element in. Let o be the generator of the Galois group that sends ;.1 for i € {0,1, 2},
with the convention that indices make sense moduld/e set

p=ro+ (3 + (3 0r

and we check that(p) = (3p. We setR = p* and we check thaR is invariant byo. So R is an
invariant for the alternate group acting ény,r2, 73} and it can be expressed as a polynomiatiin
s2, s3 andd. Indeed we find
27 9 3
R = p3 = 5:1)’ + 753 — 58182 — 55.
Similarly we set
P =ro+ (3 + Gra
and we check that or 9 5
R = p/?’ = s‘z’ + 753 — 58182 + 55.
We note thapp’ = r¢ + r? + 13 — ror1 — r1r9 — o1y is invariant by the full symmetric group
and is indeed equal t& — 3s,. So bothp andy’ are computed by extracting a single cubic root.
Finally, the three roots, r1, 72 can be expressed in termsmby solving the linear system:

ro+r1+ro = S
ro+ G i+ Gsra = p
ro+Gri+Glre = pf
In particular the formula for the root
s1+p+p
ro= 2L E (1)

does not involves.



3 The dual curve of a cubic

In this section we review the properties of the dual of a culiove. A thorough treatment of the
duality for plane curves can be found in [9] , [11] and [10].t & = k3 and letE be the dual of
E. LetU = (1,0,0), V = (0,1,0) andW = (0,0,1). So(U,V,W) is the canonical basis df.
Let (X,Y, Z) be the dual basis iU, V, W). LetP = Proj(E) = Projk[X,Y, Z] be the projective
plane overk. LetP = Proj(E) = Proj k[U, V, W] be the dual projective plane. The main idea of
projective dualy is that points i parametrize lines if?, and conversely. The poif/ : V : W]in
[P corresponds to the line with equati6hX + VY + WZ = 0 in P. And the poin{X : Y : Z]inP
parametrizes the lIn&U + YV + ZW = 0in IP.

Now let C' C P be an absolutly integral curve with equatiéi{ X,Y, Z) = 0. Let Fx = g—fg,
Fy = g—g, Fy; = g—‘; be the three partial derivatives éf. The tangent ta”' at a smooth point
P =[Xp:Yp,Zp| has equation

F}(()(p7 Yp, ZP)U + F&/()(p7 Yp, ZP)V + Fz(Xp,Yp, ZP)W =0.

The corresponding point it is [Fx(Xp,Yp,Zp) : Fy(Xp,Yp,Zp) : Fz(Xp,Yp,Zp)|. The
Zariski closure of the set of all such points is theal C' of C'. SoC is the closure of the image of the
so called Gauss morphism

we Csmo

>

(X :Y:Z—— [Fx(X,Y,2),Fyv(X,Y,Z),Fz(X,Y, Z)],

whereC*™¢ is the locus of smooth points dri.

We assume that the characteristickas odd, and that not every point on the cu/es a flex or
a singular point (in particulaf’ is not a line). Ther( is an absolutely integral curve. And the dual of
C'is C. This is the biduality theorem [11, Theorem 5.91]. Dual&yery useful because it translates
properties ofC' into properties of”' and conversely. In particular the Gauss mapis a birational
map fromC to C. It maps the flexes af’ onto the cusps of .

The first non-trivial example of duality concerns conics ¢sitih plane projective curves of degree
2). The dual of conic is a conic.

We now assume that' is a smooth cubic. The@' has degre and to each of the nine flexes
of C there corresponds an ordinary cusp@nSinceC' has geometric genusand arithmetic genus
10 = (6 — 1)(6 — 2)/2 we deduce that there is no other singularity on it than thése cusps. For
example, ifC' has equatio'(X,Y, Z) = 0 where

F(X,Y,Z)=X>4+Y3+ 273 - 3aXY Z, 2)
then the dual curve has equati6itU, V, W) = 0 where

GU,V,W)=US+ VS + W° —6a®>(UVW + UVW + UVW?) -
+(4a® = 2)(UBV3 + UPW3 + V3W?3) + (120 — 3a*) U VW2,

The equation of the dual is found by eliminatiig Y, andZ in the system

U = Fx(X,Y,Z2)
V = Iy(X,Y,2)
W = Fy(X,Y,2)

4



The real loci of the two curve§’ and (' are represented in Figure 1 and Figure 2 respectively in the
caseq = 0.

Figure 1: The cubic with equatiok® + Y3 + Z3 =0

Figure 2: The dual curve with equatidrf + V¢ + W6 —2U3V3 — 2V3W3 — 2U3W3 = 0

The equation of the dual curve arises naturally when ondesutie intersection of the cubic
with a projective lineD. Indeed such a lind C P meetsC in exactly three points unless it is a
tangent line taC' (in which case we have one simple point and one double poirgyen a flex (in
which case we have one triple point). Assume thas the line with equation

UX+VY +WZ=0. (4)

The intersectionD.C' is described by the homogeneous system consisting of Bquét) and the
equation of the cubi€. We can use Equation (4) to eliminate one of the three vagakl, YV, Z
in the equation of”. We obtain a binary cubic homogeneous form in the two remginariables,
whose twisted discriminanh (U, V, W) is the equation of the dual curég (up to a square). This is
because this discriminant cancels exactly when the irtBoseD.C' has multiplicities.

4 Pseudo-parameterizations

Let C be an absolutely integral plane projective curve over a field parameterizatiorof C is a
non-constant map from!' ontoC. In more concrete terms we have a paipt= [X (t) : Y(¢) : Z(t)]

on C, depending on one formal parametethe three projective coordinates beeing polynomials in
klt]. Itis well known [19, theorem 4.11.] that a necessary camdlifor such a parameterization to
exist is thatC' has geometric genus zero. In particular this never happeranfelliptic curve. One
may relax the condition that the coordinat&st), Y (¢t) and Z(¢) should lye ink[z] and allow for
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more general algebraic functions. A typical restrictionudobe to ask thatX (¢), Y (¢) and Z(t)
should belong to a radicial extension/gft). In other words they should be rational fractiong and
¢/ R(t) for some positive integer and someR(t) in k(t). As explained in the introduction we will
be interested in the case whéhis a smooth cubick is a field with characteristic different fro
and3, ande = 3. We want to parametrize plane cubics by cubic radicals. @ugarameterization
will be called apseudo-parameterizatioto avoid any confusion with rational parameterizationg tha
do not exist for genus one curves. We will assume @hgt) is non-empty. This is not a restriction if
k is a finite field. We will even assume th@thas ak-rational flexO. This is not a restriction either,
because every cubic with a rational poinkigssomorphic to a plane cubic with a rational flex.

We sketched in the introduction how we claim to find pseud@ipaterizations. We consider a
line

D U)X +VR)Y +W({t)Z=0

in P, depending on one rational parameteSince every line i corresponds to a point it we can
associate to the familp, a rational curve. C P which is the image of the map

t [U() : V(L) : W) (5)

We saw in Section 3 that the intersecti@h.C' is described by a cubic form whose twisted
discriminantA(t) is, up to a square, equal @(U(t), V (t), W(t)) whereG(U,V,W) = 0 is the
projective equation of the dual. So we look for polynomiald/(t), V(t) and W (t) such that
G(U(t),V (t),W(t)) is a square irk(t). A geometric interpretation of the latter condition is that
the rational curvel, meets the dual’ with all even multiplicities. So we look for a rational curve
L c P that intersects the dual curéé with even multiplicities. Such a rational curve may be given
by its projective equation, or as the image of a parametéizas in (5).

One may wonder if every pseudo-parameterization occutsintay. We briefly explain why this
is essentially the case. A pseudo-parameterization P; is a surjective map from a cyclic covering
of P! ontoC. So we have two conjugated poin® and P/’. SinceC has a rational flex), we have
a chord and tangent group law, denotedon it. We consider the su®); = P, & P/ ® P/’. This
is a point onC' defined overk(t), or equivalently a map — Q;. We saw that such a map must be
constant becaus@ has genud. SoP, @ P/ @ P/ is a constant pointl € C(k). If A is the origin
O then for every value of the parameterthe three pointd’;, P/ and P/’ are colinear. They lye on
a line D; with equationU (t)X + V(t)Y + W (t)Z = 0 whereU (t), V(t) andW (¢) are ink[t]. So
the pseudo-parameterization— P; is of the type studied above. K is not O, we may look for
a pointB € C(k) such thatB @ B @ B = A. Such a point always exists if is a finite field and
#C' (k) is not divisible by3. Then we sef?; = P, © B and check thak; & R, ® R/ = O. So the
pseudo-parameterizatiagn— P; is of the type studied above, up to translation by a constarof. In
general, we sek; = P, & P, & P; © A and check thak; + R, + R/ = O. Sot — P, is of the type
studied above, up to a translation and a multiplicatior3 igogeny.

We will say that two pseudo-parameterizatians> P, andt — (@, areequivalentf there exists
a birational fraction(t) such tha); = Py ;). We may wonder if two different families of projective
linest — D; andt — F; can give rise to equivalent pseudo-parameterization P, andt¢ — Q;. In
that casel;;) = @ lies in the intersection oD, ;) and E;. If these two lines are distinct then their
intersection consists of a single poiRt,) = Q; defined overk(t). Since everyk(t)-rational point
onC is constant we deduce th&t andQ; are constant. A contradiction. 99, = E; and the two
families correspond by a change of variable. In particuter tivo associated rational curves in the
dual plane are the same.



The conclusion is that finding pseudo-parameterizatiorils Hdown to finding rational curves
in the dual plané® having even intersection with'. It is natural to study first rational curves going
through several cusps 6f, because the multiplicity intersection at a singular piimreater than and
generically equal t@. In the next section we look for such rational curves withwva ttegree.

5 The geometry of flexes

Let C C P be a smooth plane projective cubic. The nine flex point€'afefine a configuration in
the planeP. More interestingly, the nine flex tangents correspond e mioints in the dual plani.

We study the latter configuration. We are particularly ies¢ed in low degreeational curves going
through many of these nine cusps@f Remind arational curve is a curve with geometric genus
0 and a rational point. This is equivalent to the existenca adtional parameterization, see [19],
theorem 4.11. We will first assume th@tis the Hessian plane cubic given by Equation (2). Indeed,
any smooth plane cubic can be mapped onto such an Hessianbguliprojective linear transform,
possibly after replacing by a finite extension of it. The modular invariant@fis

() = 27a3(a + 2)%(a® — 2a + 4)3

N = G 1B (@ +at 1)?

The nine flexes of” are the three points in the orbit 6f = (0 : —1 : 1) under the action ofs, plus
the six points in the orbit of—1 : 3 : 0) under the action afs. Let

wo: (X:Y:2)—= (X?—aYZ:Y?—aXZ:2%—aXY)

be the Gauss map associated withThe images bw¢ of the nine flexes are the three points in the
orbit of (a : 1 : 1) under the action af; plus the six points in the orbit ¢t : (3 : @) under the action
of Ss. Figure 3 lists these flexes and their images by the GaussWapgetO = Ap = (0: —1: 1)
andO =By = (a:1:1).

Flex of C Cusp onC
Ap=(0:-1:1) | By=(a:1:1)
A =(-1:1:0) Bi=(1:1:a)
Ay =(1:0:-1) By=(1:a:1)
A3 =(-1:G:0) | B3=((3:¢3:a)
Ay=(G:0:=1) | By=(G:a:¢3)
A5 =(0:-1:¢3) | Bs=(a:(2:(3)
Ag=(¢3:—=1:0) | Bs=(¢:¢5: a)
A7 =(-1:0:G) | Br=(¢:a:()
Ag—(O:Cg —1) BgZ(a'Cgtcg)

Figure 3: Flexes of” and the corresponding cusps on its dual

These nine points in the dual plane form an interesting cordigpn, depending on the single
parameter..

Position with respect to lines One can first check, e.g. by exhaustive search, that no timeag
these nine cusps in the dual plane are colinear unless thalanadvariant is zero. See the proof of
Proposition 1 in Section 7.2 of [5]. So the nine points in thalglane corresponding to the nine flex
lines are in general position with respect to lines. We dedbe following lemma by duality.
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Lemma 1 A smooth plane projective cubic over a field with prime to &iaracteristic has no three
concurrent tangent flexes, unless its modular invarianeie .z

Position with respect to conics We now consider the configuration of the nine flex tangentsifro
the point of view of pencils of conics. Remember that six poin general position do not lie on any
conic. Six pairwise distinct points lying on a conic are daidhecoconic Six pairwise distinct lines
are said to beoconicif they all are tangent to a smooth conic.

Lemma 2 Consider a smooth plane projective cubic over a field witlngrito six characteristic and
assume that its modular invariant is not zero. Remdeelinear flex points. The six tangents at the
six remaining flexes are coconic. There are twelve such amatigns of six coconic flex tangents.

Note that we claim that the six flex tangents are coconic. Nesix flex points. Equivalently we
claim that the six points in the dual plane correspondindnéosix flex tangents are coconic.

We first note that the conic with equati@flV’ — aV2 = 0 meetsC at(a : 1 : 1), (1 : 1 : a),
(3:¢:a)(a:¢3:(),(¢:¢:a)and(a: 3: ¢3). The three remaining flexes ik are
(1:0:—1),(¢3:0:—1)and(1:0: ¢3) and they lie on the line with equatidri = 0. The action of
S3 produces two more similar conics.

The conic with equatio/? + V2 + W2 + (a + 1)(UV + UW + VW) = 0 meetsC at the
six points in the orbit of¢2 : (3 : a) under the action 0f3. The three remaining flexes ih are
(0:=1:1),(—1:1:0),and(1:0: —1). They lie on the line with equatioX + Y + Z = 0.

The conic with equatiol/2 + (3V2 + (W2 + (a + 1)(GUV + GUW + VW) = 0 meetsC
at the three points in the orbit ¢& : 1 : 1) under the action ofs. And also at the three points in
the orbit of (¢2 : (3 : a) under the action of3. The three remaining flexes ihare (0 : (3 : —1),
(¢3: —1:0),and(—1:0 : (3). They lie on the line with equatioX + (3Y + ¢3Z = 0. The action
of S3 produces one more such conic.

The conic with equatiogzU? + V2 4 W2 + (a + 3)(UV + GUW + VW) = 0 meetsC' at
(@a:1:1),(1:1:a),(3:a:¢3),(a:¢3:¢),(G:¢3a)(¢3:a: (). The three remaining
flexesinPare(1: 0: —1), (—1 : {3 : 0), and(0 : {3 : —1). They lie on the line with equation
(3X +Y + (3Z = 0. The action ofS3 produces five more conics.

We thus obtain twelve smooth conics that cross the dual aliraesix out of its nine cusps. Each
of these conics is associated with one of the twelve tripleplinear flexes. O

Four among these twelve conics are especially interestigguse their equations do not involve
(3. We note that three among these four conics are clearlynaltaverk(a) because they have an evi-
dentk(a) rational point. The last one is rational also because itsiguicby the evident automorphism
of order3 is P! overk(a).

Position with respect to cubics Next we study the pencil of cubics going through the nine {aim
the dual plane associated with the nine flex tangents. It tigsgtive dimension zero in general. The
cubic with equation

a(U3 + V3 4+ W3) = (a® +2)UVW

goes through all these nine points in the dual plane. Thigdslin general non-singular. So it is not
particularly interesting for our purpose.



Position with respect to quartics We now consider curves of degrdein the dual plane. The
projective dimension of the space of plane quarticddis So we can force a quartic to meet the
9 points we are interested in and there remdindegrees of freedom. Since we are particularly
interested in rational curves we use these remaining degfdeeedom to impose a big singularity at
O = By = (a:1:1). Indeed, two degrees of freedom suffice to cancel the degpa& in the Taylor
expansion aD. And three more degrees of freedom suffice to cancel the eégart also. We find

a rational quartiaQ in P passing through the nine cusps@fand having intersection multiplicity at
least two at each of them (because they are cusps) and asileasthe cusg). The equation of this
rational quartia is

U+ a(VE+ WH = 2a(UPV + UPW + VW + VIV?) — (a® + DU (V? + W)
+3a2U2(V2+ W) + (a* + 20) VW2 + (1 — Y UVW(V + W) = 0.
This quartic is irreducible as soon as the modular invaridr® is non-zero, which we assume

from now on. Computing the intersection with all lines thgbwO we find the following parameteri-
zation of this quartic

Ut) = at* —2at® + (a® +2)t* — 2%t + a,
V() = a*t'+ (1 —3a®)t® + 3d*t — 2at + 1,
W) = at*—(a®+ 1)t2 + 3d*t* — 2at + 1.

SubstitutingU, V, andW by U(t), V (t), andWW (¢) in the equation of”' we find the degree4
polynomial

O+ 12t —t+1)%(at —2)*((a + Dt — D?((a® —a + 1)t2 + (1 — 2a)t + 1)*(a®*t* + 1 — at)?.

We check that) has two branches &. One branch corresponds to= 0, and it has intersection
multiplicity 6 with C. The other branch correspondstte- 2/a, and it has intersection multiplicity
with C. This is illustrated by Figure 4 where the real locug’bis in black and the real locus 6f is
in red. So the total multiplicity 0€).C atO is 8. And the intersection)).C' only consists of cusps of
C; one with multiplicity 8 and the eight others with multiplicit. The real part of this intersection
locus is visible on Figure 4.

Lemma 3 Consider a smooth plane projective culdgicover a field with prime to six characteristic
and assume that its modular invariant is not zero. Lebe the dual ofC. Let O be one of the
nine cusps of’. There exists a rational quarti€) in the dual plane, such that the intersectiGhC
has multiplicity8 at O and 2 at each of the eight remaining cusps. In particutgrC is an even
combination of cusps af.

We stress that the definition of the quargcinvolves one flex on the one hand, and the eight
remaining flexes on the other hand. So we can define this qudartany cubic having a rational flex,
that is for any elliptic curve (and this makes a differencéhwine four conics constructed earlier, that
distinguish a triple of colinear flexes, and therefore camhways be defined over the base field.)

So we can take fof” an elliptic curve with Weierstrass equation

F(X,Y,2)=Y%Z - X3 —aXZ* - bZ3 (6)



Figure 4: The real part of the intersection@fandQ.

We assume # 0, so the modular invariant is non-zero either. The image®btiginO = (0: 1 : 0)
by the Gauss map @ = (0 : 0 : 1), and the quartic) given by Lemma 3 has equation
U —3Vi 46UV =0,

and parameterization
Ui = 6t (7)

6t3,
W(t) = 3at?—1.

<
—~
~
~—

6 Intersecting a cubic with lines

In this section we assume that the map- a3 from k to k is surjective. This is the caseffis the
field of real numbers for example. This is also the cadeisf a finite field withg elements whey is
congruent t® modulo3. For every element in k£ we choose once and for all a cubic ra@t of a.
This way we define a map/ : £k — k. We will use the general recipe in Section 4 and the rational
curves exhibited in Section 5 to produce several pseudanpeterizations of a plane culit

6.1 Intersecting the dual curve with a conic

We may first takel. to be one of the twelve conics in Lemma 2. So we assumethaithe Hessian
cubic given by Equation (2) for somesuch that® # 1. Four conics, among the twelve conics given
in Lemma 2, are rational ovér(a). The intersectior..C' has degreé2 and contains six among the
nine cusps of”', each with multiplicity2. So this intersection is exactly twice the sum of these six
cusps. If we take fol the conic with equatiod W — aV? = 0 then a convenient parameterization
is given byU (t) = 1, V(t) = —t andW (t) = at®. The corresponding lin®; has equation

X —tY +at*Z =0.
We substituteX by tY — at?>Z in the Hessian Equation (2) and find the deggderm in Y andZ

3+ 1)Y3 = 3at(t® + 1)Y2Z + 3a*t* (3 + )Y Z2 + (1 — at%) 23

10



describing the intersectiof.D;. We divide by (¢3 + 1)Z3 and we obtain a cubic polynomial in
y =Y /Z whose twisted discriminant is

3131\ 2

We use the formulae and notation in Section 2. We have

s1 = 3dat,
So = 3a2t2,
adts —1
s3 = Bl
9(1+a3t3)
o= SN
1+13
adtd +1
R = —277153_’_1,
R =0

So we find the solution

. sladt3 +1

= at — _—

Yy ESERE
ast3 + 1

=X/Z =ty —at® = —t{| ———

=X/ y—a Bl

This is the pseudo-parameterization found by Farashahi [8]

and we deduce

6.2 Intersecting the dual curve with a quartic

Assume now that we také to be the rational quarti€) in Lemma 3. All the multiplicities in the
intersection).C are even. So we expect the twisted discriminant to be a sqUikigtime we may as
well take forC the Weierstrass cubic in Equation (6). The parameterizati@) given in Equation (7)
provides a one parameter family of lin€s,), with equation

6t°X +6t°Y + (3at* —1)Z = 0.

We divide byZ, we setr = X/Z, y = Y/Z and we substitutg by 1/(6t3) — at/2 — =/t in the
Weierstrass Equation (6). We find a cubic equatidn- s122 + sox — s3in x = X/Z, where

s1 = 1/t2,
sy = 1/(3th),
s3 = (1/t% — 6a/t* — 36b + 9a*t?)/36.

Using the formulae and notation in Section 2 we find

§ = (=1/t° —108b — 18a/t* + 27a*t*)/12,
R = 0,
R = (=1/t® —108b — 18a/t* + 27a*t?) /4.

11



So we find the solution

1 2¢2 1

3t 4 1086 62

and

y=Y/Z ="z —at/2—z/t.

1
613
This is the pseudo-parameterization found by Icart [12}aufne change of variable— —1/t.

6.3 Intersecting the dual curve with a line

Assume finally that we take fat a line passing through two rational cuspstaf So we assume that
C is the Hessian cubic given by Equation (2) for somie# 1. AssumelL is the unique line passing
through the two cuspBy = (a : 1: 1) andBy = (1 : a : 1) of C. The intersectior..C' has degree
6. Since(a : 1: 1) and(1 : a : 1) each have intersection multiplicity 2, there remains at most two
intersection points. An illustration of this situation imetreal projective plane is given on Figure 5.

Figure 5: The intersection &f and L

Not all the multiplicities in the intersectioh.C' are even, but only two multiplicities are odd. So
we expectA(t) to be a square times a degr2eolynomial in¢. Points onL C PP represent a linear
pencil of lines inP generated by the tangentsd@bat (0 : —1 : 1) and(1 : 0 : —1). The first tangent
has equatiom X + Y + Z = 0. The second tangent has equati®rt+ aY + Z = 0. So lett be a
formal parameter and consider the libe with equation(at + 1) X + (t +a)Y + (¢t +1)Z = 0. The
tangent a0 : —1 : 1) corresponds to the value= co. The tangent atl : 0 : —1) corresponds to the
valuet = 0. The line D; meets the fixed pointl : 1 : —a — 1) and the moving poinfl, —¢,¢ — 1).
So a parametric description @f, is given by

i—(i+1:i—t:t—1—(a+1)i).

We substituteX by i+ 1, Y byi —tandZ byt — 1 — (a + 1) in Equation (2) and divide by the
leading coefficient. We find the degree three polynomial

3t(a + 2)i 3t(1 —t)
a?+a+1 a?2+a+1

defining the intersectio®,.C. The twisted discriminant of is

h(i) =i + (8)

a2 +a+ D2 +22a+1D)(a®+a+ 7t +9a®+a+1)
(a>+a+1)3

A(t) = 81t29( . (9)

12



This is not quite a square ik(a)(t). However, it only has two roots with odd multiplicity. So
if we substitutet by a well chosen rational fraction, we can tutninto a square. So we look for a
parameterization of the plane projective conic with ecurati

(> +a+1)S?=9(a®+a+1)T? +22a +1)(a®> +a+7)TK +9(a* +a+1)K?.  (10)

This conic has two evideri-rational points, namely3 : 1 : 0) and(3 : 0 : 1). The line through
these two points has equation
—S+3T+3K =0.

The tangent at3 : 0 : 1) has equation
3@ +a+1)S—(2a+1)(a®> +a+7)T —9a*+a+1)K =0.
The generic line in the linear pencil generated by these itvas Ihas equation
(B@*+a+1)—)S+Bji—Q2a+1)(a*+a+ )T+ (3§ —9a* +a+1)j)K=0 (11)

wherej is a formal parameter.
Intersecting the conic in Equation (10) with the line in Etjpia (11) we find the parameterization

S() = 352-2(a+2)3+3(a+2)3(a®+a+1),
T() = i —3(a* +a+1)),
K(j) = (a® +a+1)((a+2)% - 37).

We now substitute by 7'(j) /K (j) in Equation (8) and find a cubic polynomial with coefficients
in the fieldk(a)(j). If we substitutet by 7'(5) /K (5) in Equation (9) we find thaf\ = §2(5) where
5(j) = 95(35%2 = 2(a+2)%j +3(a®* +a+1)(a +2)*)(3(a®* + a + 1) — j)
o (@ +27°=8jP(@+a+1)°
We use the formulae and notation in Section 2. The polynomialEquation (8) has coefficients
1, —sq, s9 and—53 with

S1 = 0
3j(a+2)(3(a® +a+1)—j)
(@2t a+1)2((a+2)° - 3j)
3j(3(a®* +a+1)—j)((a®> +a+1)(a+2)3 - j2)
(@® +a+1)%((a+2)° - 35)? '
We deduce the following pseudo-parameterization of thécotib

52

53

275°(3(a® +a+1) —j)
((a+2)3 —3j)(a?2 +a+1)3
p(j) = /R(>)

9j(a+2)(3(a® +a+1) —j)
(a* +a+1)*((a +2)* = 35)p(4)
o opl) +0'0)
i(j) = —

i(3(a® +a+1) —j)

(a®+a+1)((a+2)3 —3j5)
P(G) = (i(J)+1:i() —t() : t(4) — 1 = (a+ 1)i(4)).

13



whereP(5) is the point onC' associated with the parameter
We illustrate this situation on Figure 6 in the case- 2. The red segment corresponds to the
parametey taking values in the interval-4, —0.3]. We also note that the computation in Section 3.1

of [13] hides a similar geometric situation.

Figure 6: A pseudo-parameterization

7 Classifying pseudo-parameterization

We have seen many different pseudo-parameterizations laina gubic, each associated with a ra-
tional curve inP having even intersection with the dual cur¢ein Equation (3). We may wonder
if there exist more such rational curves, leading to moreigegarameterizations. We may also try
to put some structure on the set of such curves. This is oymogerof this section. We assume that
the reader has some familiarity with algebraic surfacesresepted in [22, 1], and particularly with
elliptic and K3 surfaces [18, 7, 3]. We shall not enter inte thetails. Any rational curvé having
even intersection witk! lifts to a rational curve on the degree two coverlgf I branched along.
To defineX we consider the function field(a)(U/W, V/W) of P overk(a). We define a quadratic
extension of this field by adding a square rqatf G(U, V, W)/W° whereG(U, V, W) is the equa-
tion of C. The normal closure dP inside k(a)(U/W, V/W,~) is £. It has nine singularities. One
above each of the nine cusps@f In order to obtain a smooth model &, we first blow upP at
each of the cusps @f. We callIl the resulting surface. The inverse image’oby II — P consists
of one smooth genus one curve ghrational curves tangent to it. We c@lthe normal closure dfl
in k(a)(U/W,V/W,~). This is a smooth surface, the minimal modebbf

We call o; the automorphism dP that mapgU : V : W] onto [V, W, U]. We callo, the auto-
morphism ofP that mapgU : V : W] onto[U, 3V, (3W]. We callos the automorphism of that
maps[U : V : W] onto[V, U, W]. We extend these three automorphismé () (U/W,V/W,~) by
sendingy to itself. The resulting automorphisms are callegdo, andos also. They induce automor-
phisms ofll, ¥ and.S denoteds, 02 andos again. We calb, the unique non-trivial automorphism
of k(a)(U/W,V/W,~) overk(a)(U/W,V/W). It induces automorphisms &f and.S denotedo,.
The action ofrq, 03, o3 on theB; is given by the following three permutations of the indices

or = (0,1,2)(3,4,5)(6,7,8),
oy = (0,5,8)(1,3,6)(2,4,7),
03 = (072)(1)(376)(478)(577)'

The group generated lay andos has order nine. It acts simply transitively on the nine cuapd
also on the nine corresponding rational curves on the blolM.u@/e choose one of the two rational
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curves onS above By and call it Ey. Forl < i < 9 we call F; the image ofE, by the unique
automorphism in< o1, oo > that mapsB, onto B;. We call F; the image ofE; by o4. We thus obtain
eighteen rational curves of. Let H be the inverse image h§ — P of any line inP. The lattice
generated by thé;, I; and H in the Néron-Severi group has ram, and discriminan®.3”. The
intersection indices are

E,.F;, = 1,
E? = -2
F} = -2,
E;.E; = O0fori# j,
E;.F; = 0fori#j,
E,.H = 0,
F,.H = 0,
H?> = 2

Let D be a generic line if® throughB,. The intersection ob.C is 2B, plus an effective degree
four divisor. So the inverse image 6fin S is the union ofEy, Fy and a genus one curve with at least
two rational points : the intersection points witly and . Thus the inverse image b — P of the
pencil of lines throughB, defines an elliptic fibratiorf : S — P! of S, with two sectionsE, and
Fy, soS is an elliptic K3 surface. The following lemma [15, 2.3] iseigll when looking for rational
curves on a K3 surface.

Lemma 4 LetD be a class with self-intersection2 in the Néron-Severi group of a K3 surface. Then
either D or — D contains an effective divisor. If this divisor is irredulgtihen it is a smooth rational
curve.

We may also look for singular rational curves in classes ywihitive self-intersection. One can
even count rational curves in such classes [2, 16, 21]. Siere are many of them, they are unlikely
to be defined over the base field. Indeed, all the rationalesuiv Section 5 lift to smooth rational
curves onS having self-intersection-2. For example the conic i passing througtB, B;, Bs, Bs,
By, Bs lifts to a rational curvelyiazss on S. We haveH . Igi9345 = 2, Eo.Ip19345 = E1.1g12345 =
Fo.Ip19345 = 1 and F5.1p19345 = Fy.1p19345 = F5.1012345 = 1 andlyi2345 has zero intersection with
the remainingt; and F;. We deduce the following identity in the Néron-Severi group

3lo12345 =3H —2(Eg+ E1 + E3) — (F1 + Fo+ F3) — (B3 + Ex + Es) — 2(F3 + Fy + Fy),
andly 1 2.3 45 has self-intersection-2. We find similarly, and with evident notation,

3lp13478 =3H —2(Eg+ E3+ E7) — (Fo + F3 + Fr) — (Ey + Eq + Eg) — 2(Fy + Fy + Fy),
and

3lo1,3568 = 3H — 2(Eo + E5 + Eg) — (Fo + F5 + Fy) — (E1 + B3 + Eg) — 2(F1 + I3 + Fg).

The action of< o1, 09, 03, 04 > produces24 similar smooth rational curves aghwith self intersec-
tion —2. This is the contribution of conics in Lemma 2.
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Now consider the quartic given by Lemma 3. It lifts to a radibourveJy on S, such that/y. H =
4, Jo.Eg =2, Jo.Fy =1, Jo.E; = 1, Jy.F; = 0 for 1 < i < 8. We have the following identity in the
Néron-Severi group

3Jo=6H —5Ey —4Fy — Y (2E; + F).
1<i<8

The action of< o1,09,04 > producesl8 such rational curves with self intersectier2. The
lattice generated by{, the nineE;, the nineF;, and the24 + 18 classes coming from conics and
quartics, has dimensiot® and discriminant4. This is the full Néron-Severi group & whenk
has characteristic zero amdis a transcendental. Using the knowledge of this Néron+sgveup
we can prove that there are infinitely many rational curves pleading to infinitely many pseudo-
parameterizations of the cub. We consider an elliptic-fibration of, for example the fibration
f : S — P!introduced above. We choose the sectignas origin. The generic fiber of is an
elliptic curve over the function fiel&(¢) of P'. Fibers of f map onto lines througtB in P. The
height singular fibers of map onto the lined3yB; for 1 < ¢ < 8. Each of them has Kodaira type
I3, the three irreducible components beifRg F;, and a third rational curvé&’; crossingE, and Fy.
LetT" C NS(S) be the group generated by the zero secfigrand the fiber components;, F;, G;
for 1 < ¢ < 8. The Mordell-Weil group of the generic fiber is isomorphi@[Theorem 6.3] to the
quotientNS(S)/T. SinceE;+ F;+G; = H— Ey— Fy does not depend arfor 1 < i < 8, the rank of
T is 18 and the rank oNS(.S) is one. So we have infinitely many sectionsfofThe images of these
sections all are rational curves with self intersectie?y We draw one of these rational curves (rather
its image inP) on Figure 7. In cas€ is the Weierstrass cubic in Equation (6), a parameterizatfo
this rational curve is

S
—~
~
S~—

4at® 4 4t /27, (12)
V() = t(4at® +4t%/27),
W(t) = at®+ 2at*/27 + 4bt® + 1/81.

Figure 7: One more rational curve having even intersectiith @.
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