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Abstract

We study the problem of authentication based on a weak key in the information-
theoretic setting. A key is weak if its min-entropy is an arbitrary small fraction of its
bit length. This problem has recently received considerable attention, with different
solutions optimizing different parameters. We study the problem in an extended
setting, where the weak key is a one-time session key that is derived from a public
source of randomness with the help of a (potentially also weak) long-term key. Our
goal now is to authenticate a message by means of the weak session key in such a way
that (nearly) no information on the long-term key is leaked. Ensuring privacy of the
long-term key is vital for the long-term key to be re-usable. Previous work has not
considered such a privacy issue, and previous solutions do not seem to satisfy this
requirement.

We propose a new four-round protocol for message authentication. The session
key that is used to perform authentication is allowed to be weak. Given a secure
look-ahead extractor, we prove that our protocol satisfies security against an active
adversary and long-term-key privacy, which means that the protocol avoids significant
information leakage about the long-term key. For the setting where the adversary’s
side information about the session key is classical, we can use an existing construction
for a secure look-ahead extractor. For the general case, in which this side information
is a quantum state, we were not able to show the existence of a secure look-ahead
extractor, and leave this as an open problem.
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1 Introduction

We consider the problem of message authentication based on a weak key over a public
channel that might be under the control of an active adversary. A key is weak if its
min-entropy is an arbitrary small fraction of its bit length. We study this problem in
the information-theoretic setting, i.e. we assume the adversary to be computationally
unbounded.

In a setting where a sender transmits a message to a receiver, the goal of message
authentication is to convince the receiver that the received message is identical to the
transmitted message, i.e. that it has not been modified by an adversary during transmission.
A related problem that can also be solved by message authentication is where the sender
has not transmitted any message, but the adversary injects a message into the channel
instead.

For information-theoretically secure authentication, the sender and receiver need to
share a common secret key K. To authenticate a message m using the classic approach
for message authentication [CW77], the sender computes a tag T := f(K,m), where f
is some function, and sends the tag T along with the message. Note that the function f
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is usually called message authentication code (MAC). The receiver then applies f to K
and the received message m′ and compares this with the tag. For the classic approach
to be secure, the authentication key needs to be strong (unformly distributed), and may
generally be used only once.

As mentioned above, we consider a scenario where the key is weak. Because we are
dealing with an active adversary, the standard approach of using a randomness extractor to
turn the weak key into a strong one (which can then be used to perform standard message
authentication) will not work, since the adversary can tamper with the extractor’s seed.

Specifically, we consider the following scenario. Alice and Bob share a long-term key W .
When needed, Alice and Bob can extract a weak session key XW from an auxiliary source
of randomness with the help of W . It should be guaranteed by the property of the auxiliary
source that a potential adversary Eve who does not know W has limited information on
the weak session key XW . This is formalized by requiring that Hmin(XW |WE) ≥ k for
some parameter k, where E denotes Eve’s side information. This scenario occurs naturally
in e.g. Maurer’s bounded-storage model [Mau90], where W determines which part of the
huge string to read, as well as in the quantum setting, where W determines in which basis
to measure some quantum state.

The goal is to authenticate a message µ from Alice to Bob with the help of the weak
session key XW , while guaranteeing security, in that if Eve tampers with µ then this will
be detected, and privacy, in that Eve cannot learn information about the long-term key
W . We stress that the privacy property is vital for Alice and Bob to be able to re-use W .
Note that once Alice and Bob can do message authentication with a weak key, then they
can also do key agreement, simply by doing standard randomness extraction where the
seed for the extractor is communicated in an authentic way.

We want to emphasize that, by assumption, every new session key XW for the same
long-term key W contains fresh randomness, provided by the auxiliary source. Therefore,
the goal above does not contradict the well-known impossibility result of re-using an
authentication key without refreshing. Also note that we do not specify how exactly the
auxiliary source of randomness produces XW from W ; on the contrary, we want security
no matter how XW is obtained, as long as XW contains enough min-entropy (given the
adversary’s information and W ).

1.1 Related Work

With regard to the security property from above, the problem of authentication from a
weak key in the presence of an active adversary is a fairly well-studied problem. On the
contrary, and to the best of our knowledge, we are the first to study the special case where
the weak key is obtained from a long-term key and where privacy of the long-term key
needs to be guaranteed. In particular, the works that we will mention below do not address
this case, and moreover they all fail to satisfy the privacy property.

In the following discussion, let n be the bitsize of the key (in our case, the session
key) and k its min-entropy (in bits). It was proved by Dodis and Wichs [DW09] that
non-interactive authentication is impossible when k ≤ n/2, even when the parties have
access to local non-shared randomness, which we will assume. For a good overview of
earlier work on the case where k > n/2, we refer to [DW09].

The first protocol for interactive authentication from arbitrarily weak keys is due to
Renner and Wolf [RW03]. It requires Θ(`) rounds of interaction to authenticate an `-bit
message. In [DW09], an authentication protocol from arbitrarily weak keys is described that
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only needs two rounds of interaction, which is optimal (in terms of the number of rounds).
Chandran et al. [CKOR10] focus on minimizing entropy loss and describe a privacy
amplification protocol that is optimal with respect to entropy loss (up to constant factors).
Their construction needs a linear number of rounds (linear in the security parameter).

The case where Alice and Bob share highly-correlated, but possibly unequal keys—the
“fuzzy” case—is addressed in [RW04] and improved upon by Kanukurthi and Reyzin [KR09],
but also covered by [DW09] and [CKOR10].

1.2 Motivation

The main motivation for the work in this chapter comes from password-based identification
in the bounded-quantum-storage model (BQSM). Damg̊ard et al. [DFSS07] propose two
identification protocols: QID, which is only secure against dishonest Alice or Bob, and
QID+, which is also secure against a man-in-the-middle (MITM) attack. However, only
QID is truly password-based; in QID+, Alice and Bob, in addition to the password, also
need to share a high-entropy key.

Now, the observation is that with the help of an authentication protocol with long-term-
key privacy, the protocol QID+ can be turned into a truly password-based identification
protocol in the BQSM with security against MITM attacks.

Based on QID+, Damg̊ard et al. also propose an authenticated quantum key distribution
protocol in the BQSM, which, in contrast to standard quantum key distribution protocols,
does not require authenticated communication but has the authentication “built in.”
Furthermore, in contrast to using standard quantum key distribution in combination
with standard authentication, in the authenticated quantum key distribution protocol the
authentication keys can be re-used. By making QID+ truly password-based, Damg̊ard et
al.’s authenticated QKD protocol will become truly password-based as well.

1.3 Contributions

We propose a new four-round protocol for message authentication with a weak session
key XW . The protocol is an extension of the two-round protocol by Dodis and Wichs
[DW09], which is based on look-ahead extraction. Given a secure look-ahead extractor,
we prove that our protocol satisfies security and long-term-key privacy, meaning that the
adversary Eve cannot tamper with the authenticated message without being detected, nor
does she learn a non-negligible amount of information on the long-term key W .

For the case where Eve’s side information about XW is classical, we can use the
construction for a look-ahead extractor that is given in [DW09]. Contrary to what we
have claimed in [BF11] (see Section 6.2 for a more detailed explanation), it remains an
open problem to construct a look-ahead extractor that is secure against quantum side
information, or, to prove that the construction given in [DW09] (which is secure in the
presence of classical side information) is also secure against quantum side information.
Hence, we cannot yet construct an authentication protocol that is secure in the quantum
setting, which would be needed for our envisioned application, i.e. truly password-based
identification in the BQSM with security against MITM attacks.
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1.4 The Fuzzy Case

We will also discuss the “fuzzy case,” i.e. where there are some errors between Alice’s
and Bob’s weak session key. If Eve’s side information is classical, then our techniques are
known to be secure in the fuzzy case; in the quantum setting, however, this remains to
be shown. Precisely this latter case—the quantum setting—is relevant for our password-
based-identification application.

2 Notation and Preliminaries

We prove security of our scheme in the presence of a quantum adversary with quantum
side information, and below we introduce some suitable notations. However, we stress
that most of the notation and the proofs can also be understood from a purely classical
information-theoretical point of view.

The state of a quantum system X is given by a density matrix ρX , i.e., a positive-
semidefinite trace-1 matrix acting on some Hilbert space HX . We denote the set of all
such matrices, acting on HX , by P(HX). In the special case where ρX is diagonal, X is
called classical, and in this case we can understand X as a random variable, where its
distribution PX is given by the diagonal entries of ρX . In this case, we tend to slightly
abuse notation and write X ∈ X to indicate that the range of the random variable X is X .

If X is part of a bi-partite system XE, then X is called classical if the density matrix
ρXE of XE is of the form ρXE =

∑
x PX(x)|x〉〈x| ⊗ ρE|X=x, where PX is a probability

distribution, {|x〉}x forms an orthonormal basis of HX , and ρE|X=x ∈ P(HE). In this case,
X can be understood as random variable, and system E is in state ρE|X=x exactly if X
takes on the value x. We therefore sometimes also speak of a random variable X and a
quantum system E. To simplify notation, we often write ρxE instead of ρE|X=x. Readers
that are unfamiliar with quantum information can safely think of E as being classical as
well, in which case the ρE|X=x’s are all diagonal, with the probabilities of the conditional
distributions PE|X(·|x) as diagonal entries.

The distance between two states ρX , σX ∈ P(HX) is measured by their trace distance
1
2‖ρX − σX‖1, where ‖ · ‖1 is the L1 norm.1 In case of classical states, i.e., ρX and σX
correspond to distributions PX and QX , the trace distance coincides with the statistical
distance 1

2

∑
x |PX(x)−QX(x)|.

We write x
R←X to denote that the element x is picked independently and uniformly at

random from the set X . N denotes the set of strictly positive integers. For any n ∈ N, we
write [n] for the set {1, . . . , n}. Fq, F∗q denote respectively the finite field of order q ∈ N,
where q = pn for p a prime and n ∈ N, and the multiplicative group of Fq. In particular,
F2 := ({0, 1},⊕, ·), where ⊕ and · respectively denote addition and multiplication modulo
2. We also use ⊕ and · to denote addition and multiplication in F2 extension fields.
Furthermore, we use the ⊕ symbol for vector addition in an F2 vector space.

In the following definitions, we consider a bi-partite system XE with classical X. X is
said to be random and independent of E if ρXE = ρU ⊗ ρE , where ρU is the fully mixed
state on HX (i.e., U is classical and - as random variable - uniformly distributed). In case of
classical E, this is equivalent to PXE = PU ·PE (in the sense that PXE(x, e) = PU (x) ·PE(e)
∀x, e). The following definition measures how far away XE is from such an ideal situation.

1Defined by ‖A‖1 := trace(
√
A†A), where A† denotes the Hermitian transpose.
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Definition 1 (Distance to Uniform). The distance to uniform of X given E is defined as

d(X|E) := 1
2‖ρXE − ρU ⊗ ρE‖1.

If also E is classical, then d(X|E) simplifies to

d(X|E) = 1
2

∑
x,e

|PXE(x, e)− PU (x)PE(e)| =
∑
e

PE(e) 1
2

∑
x

∣∣PX|E(x|e)− PU (x)
∣∣.

It is not too hard to show that for a tri-partite system XY E with classical X and Y

d(X|Y E) =
∑
y∈Y

PY (y) d(X|E, Y =y).

From this, the following lemma follows immediately.

Lemma 2. For any y: d(X|E, Y =y) ≤ d(X|Y E)/Pr[Y = y].

Definition 3 (Guessing Probability). The guessing probability of X given E is defined as

pguess(X|E) := sup
{Mx}x

∑
x

PX(x)tr(Mx ρ
x
E),

where the supremum is over all POVMs {Mx}x on HE .

In case also E is classical, pguess(X|E) simplifies to the standard average guessing
probability

pguess(X|E) =
∑
e

PE(e) max
x

PX|E(x|e).

Definition 4 (Min-Entropy). The min-entropy of X given E is defined as

Hmin(X|E) := − log pguess(X|E).

This definition coincides with the definition introduced by Renner [Ren05], as shown
by [KRS09]; in case of a classical E, it coincides with the definition of average conditional
min-entropy (see e.g. [DORS08]).

Definition 5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong extractor, if
for any bipartite quantum system XE with classical X and with Hmin(X|E) ≥ k, and for
a uniform and independent seed Y , we have

d
(
Ext(X,Y )

∣∣Y E) ≤ ε .
Note that we find “extractor against quantum adversaries” a too cumbersome terminol-

ogy; thus we just call Ext a (strong) extractor, even though it is a stronger notion than the
standard notion of a (strong) extractor. When necessary, we distinguish between the two
notions by saying that an extractor is or is not secure against quantum side information.

A well-known example of a strong extractor (that is secure against quantum side
information) is a two-universal hash function h : {0, 1}n × {0, 1}d → {0, 1}q. Indeed, for
any XE with classical X, and for Y an independent seed, uniformly distributed on {0, 1}d
privacy amplification [RK05] guarantees that

d(h(X,Y )|Y E) ≤ 1

2

√
2q−Hmin(X|Y E) =

1

2

√
2q pguess(X|Y E).
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2.1 Security Definition

In this paper, an authentication protocol is understood as a classical protocol between
two parties Alice and Bob. Alice inputs a message µ and a weak session key XW , and
Bob inputs a message µ′ and the same session key XW . At the end of the protocol, Bob
announces a Boolean decision whether to “accept” or “reject.” The weak session key XW

may depend arbitrarily on a long-term key W . During the execution of the protocol, an
adversary Eve has full control over the communication between Alice and Bob.

We require the protocol to fulfill the following formal definition.

Definition 6. Let E◦, E denote Eve’s respective a priori and a posteriori quantum systems,
where the latter includes Bob’s decision on whether to accept or reject. A (n, k,m, δ, ε)
message-authentication protocol with long-term-key privacy is defined to satisfy the
following properties:

1. Correctness If there is no adversary Eve present, then for any message µ ∈ {0, 1}m
and µ′ = µ, and for any (distribution of the) key XW ∈ {0, 1}n, Bob accepts with
certainty.

2. Security If Hmin(XW |WE◦) > k, then for any µ, µ′ ∈ {0, 1}m with µ 6= µ′, the
probability that Bob accepts is at most δ.

3. Long-Term-Key Privacy If ρWE◦ = ρW ⊗ ρE◦ and Hmin(XW |WE◦) > k, then

1

2
‖ρWE − ρW ⊗ ρE‖1 ≤ ε .

3 Dodis and Wichs’ Authentication Protocol

In this section, we describe a slightly modified version of the two-round message-authentication
protocol due to Dodis and Wichs [DW09]. We will use this protocol later as a “start-
ing point” to construct our message-authentication protocol. We start by giving a few
definitions that are crucial for the understanding of the protocol by Dodis and Wichs.

Definition 7 (Epsilon Look-Aheadness). Let t, ` be positive integers. Let A := (A1, . . . , At)
and B := (B1, . . . , Bt) be random variables over ({0, 1}`)t, and let E be a quantum system.
For all i ∈ {0, . . . , t− 1} let εi be defined as

εi := dunif
(
Ai+1 . . . At

∣∣B1 . . . BiE
)
.

The ordered pair (A,B) is ε-look-ahead conditioned on E if ε ≥ maxi εi.

Definition 8 (Look-Ahead Extractor). laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t is called a
(k, ε)-look-ahead extractor if for any random variable X ∈ {0, 1}n and quantum system E
with Hmin(X|E) ≥ k the following holds. Let S ∈ {0, 1}d be an independent and uniformly
distributed seed, and let S̃ ∈ {0, 1}d be adversarially chosen given S and E; this may
involve a (partial) measurement of E, resulting in the new state E′. Then, the ordered
pair (R, R̃) where R = (R1, . . . , Rt) := laExt(X;S) and R̃ = (R̃1, . . . , R̃t) := laExt(X; S̃) is
ε-look-ahead conditioned on S, S̃ and E′.

Informally, a look-ahead extractor has the property that even if the adversary is allowed
to modify the seed, when given the first i blocks of the key that is extracted using the
modified seed, the remaining blocks of the key that is extracted using the correct seed still
look random.
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Definition 9 (Look-Ahead-Secure MAC). A family of functions

{MACκ : {0, 1}m → {0, 1}s},

indexed by keys κ ∈ ({0, 1}`)t is an (ε, δ) look-ahead-secure MAC if for any pair of fixed
and distinct messages µA, µB ∈ {0, 1}m, µA 6= µB, and any ordered pair of random variables
(K,K ′) ∈ ({0, 1}`)2t satisfying the look-ahead property with parameter ε conditioned on
quantum system E,

pguess
(
MACK(µB)

∣∣MACK′(µA)E
)
< δ .

We are now ready to present the Dodis and Wichs message-authentication protocol
DWMAC. The protocol we present here is slightly modified in that we assume that Alice
has already sent her message µA to Bob, who has received it as µB (possibly 6= µA).
This modification is for simplicity, and because we do not aim at minimizing the number
of rounds. XW is the weak key, known to both Alice and Bob. The function laExt :
{0, 1}n × {0, 1}d → ({0, 1}`)t is a (k, ε)-look-ahead extractor and MACκ : {0, 1}m → F2s is
a (ε, δ) look-ahead-secure MAC.2

Protocol DWMAC: When Alice wants to authenticate the message µA to Bob, then Bob
first sends a random seed R to Alice, upon which Alice replies with the tag TA.

Alice(XW , µA) Bob(XW , µB)

R
R←{0, 1}d

R�

K := laExt(XW ;R) K := laExt(XW ;R)
TA := MACK(µA) TB := MACK(µB)

TA -

accept if: TA = TB
else: abort

Security of DWMAC follows immediately from the definitions of the underlying building
blocks: laExt ensures that Alice and Bob’s versions of the key K satisfy the look-ahead
property, and in this case it is guaranteed that MAC acts as a secure MAC, even when
Alice’s key was modified.

However, in our setting where we additionally want to maintain privacy of the long-term
key W , which may arbitrarily depend on XW , DWMAC does not seem to be good enough,
unless Eve remains passive. Indeed, if Eve does not manipulate the communicated seed
R, then by the assumed lower bound on Hmin(XW |WE) it follows that the extracted K
on Bob’s side is close to random and independent of W (and E), and thus T leaks no
information on W . However, if Eve manipulates the seed R (for instance replaces it by
a value of her choice), then there is no guarantee anymore that K, and thus T , does not
leak information on W .

Another and more subtle way for Eve to (potentially) learn information on W is by
not manipulating the message, i.e., have µA = µB, but manipulate the seed R and try to
obtain information on W by observing if Bob accepts or not.

2 It will become clear later why we require the range of the MAC to be the field F2s . Note that by
fixing a basis for this field, we can associate every vector in Fs2 with a unique field element in F2s , and vice
versa. Hence, via this induced vector-space isomorphism, MACκ is an instance of Definition 9. Finally, we
want to emphasize that this vector-space isomorphism Fs2 → F2s is not a natural one; it depends on the
chosen basis.
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3.1 Towards Achieving Key-Privacy

We give here some intuition on how we overcome the above privacy issues of DWMAC with
respect to the long-term key W . Similarly to our notation TA and TB to distinguish
between the tag computed by Alice and by Bob, respectively, we write RA and RB etc.
to distinguish between Alice and Bob’s values of R etc., which may be different if Eve
actively manipulates communicated messages.

A first approach to prevent leakage through TA is to one-time-pad encrypt TA. Let
Ext : {0, 1}n×{0, 1}k → F2s a strong extractor (since we merely give a high-level explanation
here, we do not specify all parameters of this extractor here). The key for the one-time pad
is extracted by means of a strong extractor Ext from XW , where Alice chooses the seed:

Alice Bob
R�

S
R←{0, 1}k

Z := Ext(XW ;S)
Q := TA ⊕ Z S,Q -

Z := Ext(XW ;S)
accept if: Q = TB ⊕ Z

In the above protocol (and also below), we understand TA and TB to be computed as in
DWMAC. Note that since it is Alice who chooses the seed S and since Hmin(XW |WE) is lower
bounded, ZA is guaranteed to be (close to) random and independent of W (and E), and
thus hides all information that TA might leak on W . However, this modification renders
the security of the protocol invalid. For instance, we cannot exclude that by modifying the
seed S appropriately, Eve can enforce ZB = TB, so that she only needs to send Q = 0 to
have Bob convinced.

In order to restore security while still preventing information to leak through TA, we
let Bob choose a random non-zero “multiplier” for the one-time pad key Z:

Alice Bob
R�

S
R←{0, 1}k C

R←F∗
2k

Z := Ext(XW ;S)
S -
C�

abort if C = 0
Q := T ⊕ C · Z Q -

Z := Ext(XW ;S)
accept if: Q = TB ⊕ C · Z

Leakage through TA is still prevented since a non-zero multiple of a good one-time-pad
key is still a good one-time-pad key. Furthermore, for security, we can intuitively argue as
follows. Consider a snapshot of an execution of the protocol after S has been communicated.
We give Eve the value TA for free; this only makes her stronger. By the security of the
underlying DWMAC protocol, we know that it is hard for Eve to guess TB. Now, assuming
that there exist two distinct values for C for which Eve can predict the corresponding value
QB = TB⊕C ·ZB, it follows immediately that Eve can actually predict TB; a contradiction.
Hence, there can be at most one value for Bob’s choice of C for which Eve can guess QB

reasonably well.
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We point out that the above intuitive reasoning involves rewinding ; this is fine in
the classical setting, but fails when quantum information is involved due to no-cloning
(see e.g. [VDG98]). Thus, in our formal security proof where we allow Eve to maintain
a quantum state, we have to reason in a different way. As a consequence, in the actual
protocol, Q is computed in a slightly different way.

One issue that we have not yet addressed is that Bob’s decision to accept or reject may
also leak information on W when µA = µB and Eve modifies one (or both) of the seeds R
and S. Note that this is not an issue if µA 6= µB because then, by the security property,
Bob rejects with (near) certainty. For instance it might be that changing the first bit of S
changes Z or not, depending on what the first bit of XW is. Thus, by changing the first
bit of S and observing Bob’s decision, Eve can learn the first bit of XW , which may give
one bit of information on W . The solution to overcome this problem is intuitively very
simple: we use MAC not only to authenticate the actual message, but also to authenticate
the two seeds R and S. Then, like in the case µA 6= µB, if Eve changes one of the seeds
then Bob’s will reject. Note that this modification introduces a circularity: the key K,
which is used to authenticate the seed R (as well as the message and S) is extracted from
XW by means of the seed R. However, it turns out that we can deal with this.

4 Our Construction

We now turn to our construction for the message-authentication protocol with long-
term-key privacy (Definition 6). Let laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t be a (kK , εK)
look-ahead extractor. Let Ext : {0, 1}n × {0, 1}v → F2q be a (kZ , εZ)-strong extractor. Let
MAC : ({0, 1}`)t × ({0, 1}m × {0, 1}d × {0, 1}v) → F2s be a (ε, λ + ε) look-ahead-secure
MAC for any ε > 0. Let XW be the session key, shared among Alice and Bob, and satisfy
Hmin(XW |WE◦) ≥ max(kK + q, kZ), and recall from Definition 6 that E◦ denotes Eve’s a
priori quantum system. For all n ∈ N where n ≥ 1 and all t ∈ [n] we let

[·]t : F2n → F2t

be an arbitrary but fixed linear surjective function.
Protocol AUTH is shown below.
In Section 6, we show how to instantiate the building blocks to obtain a protocol

with reasonable parameters that can be used in a scenario where Eve has classical side
information. For the quantum setting, we cannot yet instantiate protocol AUTH: we
currently do not have a construction for a look-ahead extractor that is provably secure
against quantum side information.

Depending on the parameters of an instantiation of AUTH and on the bitsize of µA, it
might be better (or even necessary) to authenticate a hash of the tuple (µA, R, S), instead
of authenticating the tuple itself. In this case, we let Alice choose a small seed for an
almost universal hash function and apply MACK to this seed and the hash of the the tuple
(µA, R, S) (with respect to this seed). We will actually make use of this idea in Section 6.

Before going into the security proof for protocol AUTH, we resolve here the circularity
issue obtained by authenticating the seed R that was used to extract the authentication
key K.

Lemma 10. Consider a family of functions MACκ (indexed by keys κ ∈ ({0, 1}`)t) that
is a (ξ, λ + ξ)-look-ahead-secure MAC for any ξ. Let K, K ′, MA and MB be arbitrary
random variables and E a quantum state, and let the ordered pair (K,K ′) ∈ ({0, 1}`)2t
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Protocol AUTH (XW , µA;XW , µB)

Alice(XW , µA) Bob(XW , µB)

R
R←{0, 1}d

R�

K := laExt(XW ;R) K := laExt(XW ;R)
S

R←{0, 1}v
S -

Z := Ext(XW ;S) Z := Ext(XW ;S)
TA := MACK((µA, R, S)) TB := MACK((µB, R, S))

U
R←F2s , V

R←F∗2q
U,V�

if V = 0: abort
Q := [U · TA]q ⊕ V · Z

Q -

accept if: Q = [U · TB]q ⊕ V · Z
else: abort

satisfy the look-ahead property with parameter ε conditioned on MA, MB, E and the event
MA 6= MB. Then,

pguess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA 6= MB

)
< λ+ tε.

Note that in the lemma above the messages may depend on the keys, whereas Definition 9
considers fixed messages.

Proof. We condition on MA = mA and MB = mB where mA 6= mB. Because (K,K ′) may
depend on (MA,MB), conditioning on fixed values for the latter implies that (K,K ′) is
not necessarily ε-look-ahead anymore. Let εmA,mB be the maximum over i ∈ [t] of the
following expression,

εmA,mB,i := dunif(Ki+1 . . .Kt

∣∣K ′1 . . .K ′iE,MA=mA,MB=mB).

Hence, by Definition 7, (K,K ′) is εmA,mB-look-ahead conditioned on E and the events
MA = mA and MB = mB. Note that averaging εmA,mB,i over mA and mB (conditioned on
them being distinct) results in

εi = dunif(Ki+1 . . .Kt|K ′1 . . .K ′iMAMBE,MA 6=MB

)
≤ ε .

Furthermore, note that by conditioning on fixed and distinct values for MA and MB,
we fulfill the requirements for MAC look-ahead security from Definition 9. I.e. we can
conclude that

pguess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB

)
< λ+ εmA,mB .

11



It now follows that

pguess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA 6= MB

)
=

∑
mA,mB

PMAMB|MA 6=MB
(mA,mB)

· pguess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB

)
<

∑
mA,mB

PMAMB|MA 6=MB
(mA,mB) (λ+ max

i∈[t]
εmA,mB,i)

≤ λ+
∑

mA,mB

PMAMB|MA 6=MB
(mA,mB)

∑
i∈[t]

εmA,mB,i

= λ+
∑
i∈[t]

∑
mA,mB

PMAMB|MA 6=MB
(mA,mB) εmA,mB,i

= λ+
∑
i∈[t]

εi ≤ λ+
∑
i∈[t]

ε = λ+ tε.

This concludes the proof.

5 Proofs of Security and Privacy

In this section we show that protocol AUTH fulfills the properties listed in Definition 6.
First of all, note that it is easy to see from the protocol description that the correctness
property is satisfied, we do not elaborate further on this here.

Throughout the proofs, let E◦ be Eve’s quantum side information before executing
AUTH. Ei, where i ∈ {1, . . . , 4}, represents Eve’s (quantum) side information after the
ith round of communication, and hence includes the communicated random variables up
to this ith round. E represents Eve’s side information after executing AUTH, including
Bob’s decision to accept or reject (E4 does not include this decision). Furthermore, like in
Section 3.1, we write RA and RB etc. for Alice and Bob’s respective values for R etc.

Theorem 11 (Security). If Hmin(XW |WE◦) ≥ kK + q, then Protocol AUTH fulfills the
security property defined in Definition 6 with

δ ≤ 3 · 2−q +
1

2

√
2q(λ+ t εK).

In fact, we will prove a slightly stronger statement than the security statement, which
will be of use also in the proof of the key privacy statement. Let MA := (µA, RA, SA) and
MB := (µB, RB, SB). We will prove that in protocol AUTH, if Hmin(XW |WE◦) ≥ kK + q,
and conditioned on the event MA 6= MB, Bob rejects except with probability

δ′ ≤ 3 · 2−q +
1

2

√
2q(λ+ t εK/Pr[MA 6= MB]).

Note that this expression reduces to the simpler expression of Theorem 11 when proving
security, because in that case µA 6= µB (by Definition 6) which implies that Pr[MA 6=
MB] = 1.

Proof. Consider the phase in protocol AUTH after the second round of communication.
Assume that ZA and TA are given to the adversary (this will only make her stronger). Let
KA := laExt(XW ;RA) and KB := laExt(XW ;RB).
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From the chain rule, and by subsequently using that RB and SA are sampled indepen-
dently, it follows that

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE2)− q ≥ Hmin(XW |WE◦)− q.

By assumption on the parameters, i.e. Hmin(XW |WE◦) ≥ kK+q, it follows that (KB,KA) is
εK-look-ahead conditioned on ZA,W and E2. In order to apply Lemma 10, we additionally
condition on the event MA 6= MB. By Lemma 2, it is guaranteed that εK grows at most
by a factor 1/Pr[MA 6= MB] as a result of this conditioning. We now apply Lemma 10 and
conclude that

pguess(TB|TAZAWE2,MA 6= MB) ≤ λ+ t εK/Pr[MA 6= MB].

The next step is to view QB := [UB · TB]q ⊕ VB ·ZB as the output of a strong extractor,
with seed (UB, VB). Indeed, it is straightforward to verify that h : {0, 1}s × {0, 1}q ×
{0, 1}s × {0, 1}q → {0, 1}q, which maps (t, z, u, v) to [u · t]q ⊕ v · z, is a universal hash
function (with random seed (u, v)). Thus, we can apply privacy amplification. One subtlety
is that in protocol AUTH, VB is random in F∗2q , rather than in F2q . Nonetheless, the overall
state will be 2−q-close in trace distance to a state where VB would be random over F2q ,
and hence, by the triangle inequality, the distance-to-uniform increases by an additive
term of at most 2 · 2−q:

dunif(QB|UBVBTAZAWE2,MA 6= MB)

≤ 1
2

√
2qpguess(TBZB|TAZAWE2,MA 6= MB) + 2 · 2−q

≤ 1
2

√
2qpguess(TB|TAZAWE2,MA 6= MB) + 2 · 2−q

≤ 1
2

√
2q(λ+ t εK/Pr[MA 6= MB]) + 2 · 2−q.

Finally, we have that

δ′ = pguess
(
QB

∣∣QAWE3,MA 6= MB

)
≤ pguess

(
QB

∣∣UBVBTAZAWE2,MA 6= MB

)
≤ 2−q + dunif(QB|UBVBTAZAWE2,MA 6= MB)

≤ 3 · 2−q + 1
2

√
2q(λ+ t εK/Pr[MA 6= MB]).

Theorem 12 (Long-Term-Key Privacy). If Hmin(XW |WE◦) ≥ max(q + kK , kZ), then
Protocol AUTH fulfills the long-term-key privacy property defined in Definition 6 with

ε ≤ 6 · 2−q +
√

2q
(
λ+ t εK

)
+ εK + 2 εZ .

Proof. We first prove that none of the messages exchanged during the protocol leaks
information about W . Then, we show that in our protocol Bob’s decision on whether to
accept or reject neither leaks information about W .

In the first three rounds of AUTH, Alice and Bob solely exchange independent randomness,
so these rounds trivially leak no information about W . The aim in this part of the proof is
to show that the fourth message, Q = [U · TA]q ⊕ V · Z, where TA could depend on W ,
indeed keeps W private.
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Because RB is sampled independently of XW , and by the chain rule, it follows that
Hmin(XW |WE1[UA · TA]q) ≥ Hmin(XW |WE◦) − q. By assumption on the parameters in
the statement of the theorem, i.e. Hmin(XW |WE◦) ≥ q + kZ , and by the properties of Ext
it follows that

dunif(ZA|WE2[UA · TA]q) ≤ dunif(ZA|SAWE1[UA · TA]q) ≤ εZ .

By the fact that UB and VB are sampled independently, the following also holds

dunif(ZA|WE3[UA · TA]q) ≤ εZ .

Then, by security of the one-time pad, by the fact that Eve cannot gain information on W
by computing QB, and by assumption that ρWE◦ = ρW ⊗ ρE◦ ,

1
2‖ρWE4 − ρW ⊗ ρE4‖1 ≤ 1

2‖ρWE3QA
− ρW ⊗ ρE3QA

‖1 ≤ εZ .

This completes the first part of the proof.
It remains to show that Bob’s decision to accept or reject cannot leak (a substantial

amount of) information about W . To show this, we make the following case distinction.
In case µA 6= µB, the security proof applies and Bob rejects except with probability
δ ≤ 3 · 2−q + 1

2

√
2q(λ+ t εK). It now immediately follows that

1
2‖ρWE4 − ρWE‖1 ≤ δ, and 1

2‖ρW ⊗ ρE4 − ρW ⊗ ρE‖1 ≤ δ.

Hence, in case µA 6= µB (by the triangle inequality),

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ εZ + 2δ.

We now turn to the case µA = µB and we analyze for two disjoint events. Conditioned on
MA 6= MB, the strengthened version of the security statement applies, i.e.

δ′ ≤ 3 · 2−q + 1
2

√
2q
(
λ+ t εK/Pr[MA 6= MB]

)
,

and again by applying the triangle inequality, we obtain

1
2‖ρWE|MA 6=MB

− ρW ⊗ ρE|MA 6=MB
‖1 ≤ εZ + 2δ′.

Secondly, we analyze for the event MA = MB. Nevertheless, we start this analysis
without conditioning on MA = MB. (We’ll condition on this event later in the proof.) Since
SA is sampled at random and independently of XW , and since Hmin(XW |WE◦) > kZ , it
follows that

dunif(ZA|SAWE◦) < εZ .

By the chain rule (and the independent choice of SA),

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE◦)− q > kK ,

and thus
dunif(KB|RBZASAWE◦) < εK .

From the above, and the independent choices of RB and SA, it follows that

1
2‖ρKBZARBSAWE◦ − ρU ⊗ ρU ′ ⊗ ρRB

⊗ ρSA
⊗ ρW ⊗ ρE◦‖1 ≤ εK + εZ .
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where ρU is the fully mixed state on HKB
and ρU ′ is the fully mixed state on HZA

, and
therefore that

1
2‖ρKBZAWE2 − ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2‖1 ≤ εK + εZ .

We now condition on MA = MB. Note that conditioned on this event, KA = KB and
ZA = ZB, and therefore, from here on, we omit the subscripts for these random variables
and simply write K and Z. From Lemma 2 (noting that whether the event MA = MB

holds is determined by E2), we get

1
2‖ρKZWE2|MA=MB

− ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2|MA=MB
‖1 ≤

εK + εZ
Pr[MA = MB]

.

UB and VB are chosen uniformly at random and independent of the rest (and also indepen-
dently of the event MA = MB). Furthermore, since E is computed from (KZE4) alone, it
follows that

1
2‖ρWE|MA=MB

− ρW ⊗ ρE|MA=MB
‖1 ≤

εK + εZ
Pr[MA = MB]

.

We now combine the analyses for the two disjoint events, and conclude that in case
µA = µB,

1
2‖ρWE − ρW ⊗ ρE‖1
≤ Pr[MA 6= MB] 1

2‖ρWE|MA 6=MB
− ρW ⊗ ρE|MA 6=MB

‖1
+ Pr[MA = MB] 1

2‖ρWE|MA=MB
− ρW ⊗ ρE|MA=MB

‖1
= Pr[MA 6= MB] (εZ + 2δ′) + εK + εZ

≤ Pr[MA 6= MB]

[
εZ+6·2−q+

√
2q
(
λ+ t εK/Pr[MA 6= MB]

)]
+εK+εZ

≤ 6 · 2−q +
√

2q
(
λ+ t εK

)
+ εK + 2 εZ .

Note that we have computed two upper bounds on 1
2‖ρWE − ρW ⊗ ρE‖1, for two distinct

cases: µA 6= µB and µA = µB. Obviously, the weaker (larger) upper bound holds in both
cases, and we finally conclude that

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ 6 · 2−q +

√
2q
(
λ+ t εK

)
+ εK + 2 εZ .

6 Instantiating the Building Blocks

6.1 Look-Ahead Extractors against Classical Side
Information

Dodis and Wichs [DW09] propose a construction for look-ahead extractors based on
alternating extraction [DP07]. The construction uses two strong extractors, which are
applied in an alternating fashion (we will explain the construction in detail later in this
section). The following theorem due to [DW09] states for this construction how the
parameters of the two extractors lead to the parameters of the constructed look-ahead
extractor.
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Wendy: W Quentin: (Q,S1)

S1�

R1 := Extw(W ;S1) R1 -
S2� S2 := Extq(Q;R1)

R2 := Extw(W ;S2)
...

St� St := Extq(Q;Rt−1)
Rt := Extw(W ;St)

Figure 1: Alternating extraction explained.

The security definition of a look-ahead extractor, Definition 8, considers quantum
side information, represented by E. In this section, we consider the case where the side
information E is purely classical. To avoid confusion, we will throughout this section write
Z (instead of E) for the adversary’s classical side information. Note that Z has arbitrary
range.

Theorem 13 (cf. Theorem 10 in [DW09]). Given an (kw − 2t`, εw)-extractor Extw :
{0, 1}nw×{0, 1}` → {0, 1}` and an (nq−2t`, εq)-extractor Extq : {0, 1}nq×{0, 1}` → {0, 1}`,
the construction in [DW09] yields an (kw, t

2(εw + εq))-look-ahead extractor

laExt : {0, 1}nw × {0, 1}nq+` → ({0, 1}`)t

Recently, we, and independently, Reyzin [RWY11] discovered that the proof given in
[DW09] of Theorem 13 is not fully correct, due to a problem with Lemma 1 in [DP07].3

Fortunately, the proof (of Theorem 13) could be fixed as shown in lecture notes by Reyzin
[RWY11]. In the remainder of this section, we will explain the alternating extraction
construction and reprove it for the case in which the side information is classical. Our
proof of Theorem 14 (which is then used to prove Theorem 13) is inspired by Reyzin’s
proof [RWY11], but is more extensive (we consider auxiliary classical side information and
we give formal min-entropy analyses, which are omitted in [RWY11]). Furthermore, our
proof uses our Lemma 15, which we think is simpler than the corresponding Lemma 6 in
[RWY11].

Look-Ahead Extractors from Alternating Extraction

The look-ahead extractor construction is easy to explain. Following [DP07], we identify
two parties, Quentin and Wendy. With these parties, we associate the two extractors
from Theorem 13, Extq and Extw, as well as two random variables, Q ∈ {0, 1}nq and
W ∈ {0, 1}nw , respectively. Quentin and Wendy perform alternating extraction as follows
(see also Figure 1). Quentin begins by sending a string S1 ∈ {0, 1}` to Wendy. Wendy then
uses S1 as seed for her extractor: she computes R1 := Extw(W ;S1) and sends R1 back to
Quentin. Quentin then uses R1 as seed and computes S2 := Extq(Q;R1), and sends this to
Wendy again, etc. The procedure stops after Wendy has computed Rt.

3In [DW09], this lemma is called Lemma 31 and is used in the proof of Lemma 41.
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The alternating extraction procedure is a construction for the look-ahead extractor in
the following way: W is the weakly random source, the tuple S := (Q,S1) acts as seed,
and Wendy’s output values {Ri}i∈[t] form the output, i.e. (R1, . . . , Rt) = laExt(W ;S).

Definition 8 considers two instances of a look-ahead extractor: the one at Bob’s side4,
which is provided with the original seed, and the one at Alice’s side, which is provided
with the adversarially modified seed. In terms of our alternating extraction explanation,
Quentin and Wendy as described above reside on Bob’s side. On Alice’s side, we will
call the corresponding parties Q̃uentin and W̃endy. Q̃uentin’s initial view consists of
(Q̃, S̃1, Z) (where (Q̃, S̃1) equals S̃ from Definition 8) and W̃endy’s initial view consists

of (W,Z). Q̃uentin and W̃endy exchange `-bit messages which we denote as S̃i and
R̃i respectively. These messages are computed from their views in iteration i, which
each consist of the party’s initial view concatenated with the messages exchanged during
alternating extraction.

To prove Theorem 13, we let Quentin and Wendy as well as Q̃uentin and W̃endy
perform alternating extraction synchronously. In particular, we need Theorem 14 as an
ingredient, which informally states that the ith message produced by Wendy looks random
from the combined view of Quentin and Q̃uentin, and vice versa. Note that the combined
view of Quentin and Q̃uentin equals the view of the (implicit) adversary in Definition 8.

We will use the following notation for collections of random variables Si and Ri (as
well as S̃i and R̃i),

S[i] := (S1, . . . , Si) ∀i ∈ N \ {0},

and likewise for R[i], S̃[i] and R̃[i]. Furthermore, S[i] for any i < 1 denotes the empty list,
and likewise for R[i], etc.

Theorem 14. Let εq and εw as in Theorem 13 and let W , Q, Q̃, Si, Ri, S̃i, R̃i and Z be
as described above. If PS1QWZ = PUPU ′PWZ , where PU and PU ′ are uniform distributions
on {0, 1}` and {0, 1}nq respectively and if Hmin(W |Z) ≥ kw, then the following inequalities
hold for all i ∈ [t]:

dunif(Si|WS[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≤ (εq + εw)(i− 1) (1)

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw, (2)

Note that we require Q to be uniformly distributed; this stems from the parameters of
Extq, which we adopt from Theorem 13. By adapting the parameters of Extq appropriately,
alternating extraction also works when Q does not have full min-entropy (cf. [DW09,
RWY11]). Nevertheless, since we anyway do not need this more general case, we find it
simpler to state it as above.

As in [RWY11], the proof is based on the conditional independence of Q and W (when
conditioned on the messages exchanged in the alternating-extraction protocol). This
independence is crucial for inequalities (1) and (2) to hold because Si (Ri) is extracted
from Q (W ) via a seed that is computed from W (Q), and it is well known that for an
extractor to work properly the seed must be (essentially) independent from the source.

Consider the general setting where two parties, holding independent random variables
X and Y respectively, interact by exchanging messages, where each message is computed

4We consider a setting where Alice wants to use the look-ahead extractor to authenticate a message to
Bob. Recall that in such a setting Bob samples the seed.
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from the sender’s random variable (i.e., either X or Y ) and previously exchanged messages.
Then, it is well known (and straightforward to prove) that X ↔M ↔ Y holds, where M
represents the collection of the exchanged messages. Observe that alternating extraction
(when viewing Wendy and W̃endy as a single party and Quentin and Q̃uentin as well) is a
particular instance of the above general setting. Note that the (classical) side information
Z should be treated as being part of M ; it can be thought of an initial message that is
sent from W̃endy to Q̃uentin.

To prove Theorem 14 we will use the following lemma, which is a corrected and extended
version of Lemma 1 from [DP07].

Lemma 15. Let A,B,C be arbitrary random variables over respectively A,B, C such that
A↔ B ↔ C. Then, for any function f : A× C → Z it holds that

dunif(f(A,C)|BC) ≤ dunif(f(A,U)|BU) + dunif(C|B)

where U is an independent random variable uniformly distributed over C.

Proof.

dunif(C|B) = 1
2‖ρCB − ρU ⊗ ρB‖1

= 1
2‖ρCBA − ρU ⊗ ρBA‖1

≥ 1
2‖ρf(A,C)BC − ρf(A,U)BU‖1

where the first equality is by definition of the trace distance to uniform, the second equality
follows from the Markov property, and the inequality is by the fact that the trace distance
cannot increase under quantum operations. Finally, the claim follows by applying triangle
inequality.

Proof of Theorem 14. We prove the statement by induction on i. Inequality (1) obviously
holds for i = 1,

dunif(Si|WS[i−1]R[i−1]S̃[i−1]R̃[i−1]Z)
∣∣
i=1

= dunif(S1|WZ) = 0.

The first half of the induction step is to show that, if (1) holds for i (the induction
hypothesis), then (2) must hold for i, i.e.

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw.

The (trace) distance to uniform cannot increase when applying the same operation to
both states (in this case: removing W )

dunif(Si|S[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≤ dunif(Si|WS[i−1]R[i−1]R̃[i−1]S̃[i−1]Z)

≤ (εq + εw)(i− 1). (3)

The following bound holds on the conditional min-entropy of W ,

Hmin(W |S[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≥ Hmin(W |S[i−1]R[i−1]R̃[i−1]S̃[i−1]QZ)

= Hmin(W |S1R[i−1]R̃[i−1]QZ)

≥ Hmin(W |S1QZ)−Hmax(R[i−1]R̃[i−1])

= Hmin(W |Z)− 2(i− 1)`

≥ kw − 2(t− 1)`,
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where the first inequality holds by strong subadditivity, the first equality holds because
W ↔ R[i−1]R̃[i−1]S1QZ ↔ S̃[i−1]S[i−1] \ {S1} (which holds because of the way the Si and

S̃i are computed), the second inequality is the chain rule and the second equality holds
because PWZS1Q = PWZPUPQ. The definition of Extw then guarantees that

dunif(Extw(W ;U)|US[i−1]R[i−1]S̃[i−1]R̃[i−1]Z) ≤ εw, (4)

for an independent and uniform seed U .
Given that W ↔ S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z ↔ Q is a Markov chain (as explained before

Lemma 15), it follows that W ↔ S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z ↔ Si holds as well, since Si is
a function of Q and Ri−1. Now, given the latter Markov chain and (3) and (4), we can
apply Lemma 15 with A = W , B = S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z, C = Si and U = U , which
guarantees that

dunif(Extw(W ;Si)|R[i−1]S[i]S̃[i−1]R̃[i−1]Z) ≤ (εq + εw)(i− 1) + εw.

Because it holds that Q↔ S[i]R[i−1]S̃[i−1]R̃[i−1]Z ↔W , we may additionally condition on
Q in the expression above without increasing the trace distance to uniform. Furthermore,
since both Q̃ and S̃i can be computed from the random variables that are already being
conditioned on, we can also condition on them “for free.” Since Ri := Extw(W ;Si) we
obtain

dunif(Ri|QR[i−1]S[i]Q̃S̃[i]R̃[i−1]Z) ≤ (εq + εw)(i− 1) + εw,

which is (2) for i and concludes the proof of the first half of the induction step.
The second half of the induction step is to take the expression above as the induction

hypothesis and show that if hypothesis is true, then (1) must hold for i+ 1, i.e.

dunif(Si+1|WS[i]R[i]S̃[i]R̃[i]Z) ≤ (εq + εw)i.

This second part is essentially a “mirror image” of the above part.
By an elementary property of the trace distance, the distance to uniform cannot increase

when applying a function to both states (it this case: removing systems Q and Q̃):

dunif(Ri|R[i−1]S[i]R̃[i−1]S̃[i]Z) ≤ dunif(Ri|QR[i−1]S[i]Q̃S̃[i]R̃[i−1]Z) (5)

≤ (εq + εw)(i− 1) + εw.

The following bound holds on the conditional min-entropy of Q,

Hmin(Q|R[i−1]S[i]R̃[i−1]S̃[i]Z) ≥ Hmin(Q|WR[i−1]S[i]R̃[i−1]S̃[i]Z)

= Hmin(Q|WZS[i]S̃[i])

≥ Hmin(Q|WZS1)−Hmax(S̃[i]S[i] \ {S1})
= nq − (2i− 1)`

≥ nq − (2t− 1)`,

where the first inequality holds by strong subadditivity, the first equality holds because
Q↔WZS[i]S̃[i] ↔ R[i−1]R̃[i−1], the second inequality is the chain rule, the second equality
holds because PWZS1Q = PWZPUPU ′ and the last inequality follows because i ≤ t. The
definition of Extq then guarantees that

dunif(Extq(Q;U)|UR[i−1]S[i]R̃[i−1]S̃[i]Z) ≤ εq, (6)
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for an independent and uniform seed U .
Note that from the fact that Q ↔ R[i−1]S[i]R̃[i−1]S̃[i]Z ↔ W , it follows that Q ↔

R[i−1]S[i]Z ↔ Ri since Ri is a function of W and Si. Given this latter Markov chain and

(5) and (6), we can apply Lemma 15 with A = Q, B = S[i]R[i−1]S̃[i]R̃[i−1]Z, C = Ri and
U = U , which guarantees that

dunif(Extq(Q;Ri)|R[i]S[i]R̃[i−1]S̃[i]Z) ≤ (εq + εw)i.

Because it holds that Q↔ S[i]R[i]S̃[i]R̃[i−1]Z ↔W , we may additionally condition on W

without increasing the distance to uniform. Furthermore, we may condition on R̃i as well
since it is computed as a function of W and S̃i,

dunif(Extq(Q;Ri)|WR[i]S[i]R̃[i]S̃[i]Z) ≤ (εq + εw)i.

Finally, we obtain (1) for i + 1 by noting that Si+1 := Extq(Q;Ri) and this proves the
second half of the induction step.

Finally, we prove the main claim. The proof below is essentially the same as the proof
of Theorem 9 in [DW09], but then adapted to our notation.

Proof of Theorem 13. We need to prove that

dunif(Ri+1 . . . Rt|R̃[i]SS̃Z) ≤ t2(εq + εw).

Note that Definition 8 already requires that S1 and Q are uniformly distributed and
independent of W and Z and that Hmin(W |Z) ≥ kw, so Theorem 14 applies.

Consider (2) from Theorem 14, i.e.

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw,

Let us remove the conditioning on S[i] and S̃[i] except for S1 and S̃1, by elementary
properties of the trace distance this cannot increase the distance. As mentioned on page 17,
S := (Q,S1) and similarly S̃ := (Q̃, S̃1), so we replace (Q,S1, Q̃, S̃1) by (S, S̃). Furthermore,
we may obviously append independent uniform randomness without increasing the distance-
to-uniform:

dunif(RiU`(t−i)|R[i−1]R̃[i−1]SS̃Z) ≤ (εq + εw)(i− 1) + εw, (7)

We will evaluate (7) using the substitutions i→ i+ 1 up to i→ t:

dunif(Ri+1U`(t−i−1)|R[i]R̃[i]SS̃Z) ≤ (εq + εw)i+ εw,

dunif(Ri+2U`(t−i−2)|R[i+1]R̃[i+1]SS̃Z) ≤ (εq + εw)(i+ 1) + εw,

...

dunif(Rt|R[t−1]R̃[t−1]SS̃Z) ≤ (εq + εw)(t− 1) + εw.

By recursively applying the triangle inequality to these expressions (a “hybrid argument”)
we may conclude that

dunif(Ri+1 . . . Rt|R[i]R̃[i]SS̃Z) ≤ 1
2 t(t− 1)(εq + εw) + (t− 1)εw ≤ t2(εq + εw)

Finally, we obtain the claim simply by removing the conditioning on R̃[i]
5.

5we thus actually prove a slightly stronger statement, i.e. that the claim still holds when conditioning
additionally on R[i]
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Parameters of an Explicit Look-Ahead Extractor

Dodis and Wichs use the explicit strong extractor from [GUV09] to instantiate the extractor
in Theorem 13, and achieve the following parameters.

Theorem 16 (Theorem 11 in [DW09]). For all integers n ≥ k and all ε > 0 there exist
(k, ε)-look-ahead extractors Ext : {0, 1}n × {0, 1}d → ({0, 1}`)t as long as

k ≥ 2(t+ 2) max(`, O(log(n) + log(t) + log(1/ε)))

≥ O(t(`+ log(n) + log(t) + log(1/ε))),

and d ≥ O(t(`+ log(n) + log(t) + log(1/ε))).

I.e., when neglecting logarithmic terms, k and d are both of order t`, the bit-size of the
range of the extractor.

6.2 Look-Ahead Extractors and Quantum Side
Information?

In a preliminary version of this paper presented at Eurocrypt [BF11], we claimed that
one can obtain a look-ahead extractor that is secure against quantum side information
simply by replacing the classical strong extractors in the original construction by extractors
against quantum side information, and furthermore that the original proof strategy can
also be used in the quantum setting. Unfortunately, we recently noticed that we have
overlooked a subtle issue that renders the original proof strategy invalid for the quantum
case. Although the alternating-extraction construction could still work in the quantum
setting, we currently do not have a proof for it. We leave it as an important open problem.

Let us briefly explain here why the proof strategy for the classical setting does not
apply in the quantum setting. Recall that according to Definition 8 the adversary creates
S̃ = (Q̃, S̃1) given S = (Q,S1) and E, and that this process may involve a measurement
on E, which then collapses to the state E′. This latter state E′ may in particular include
Q, and it typically depends on W as well. It is not clear how to generalize Lemma 15 to
include this quantum side information. Moreover, the proof for the classical case makes
statements about a probability space in which Z and S̃, which is computed from Z, exist
simultaneously. In the quantum setting, however, the original quantum state E does not
exist anymore after it is measured (to produce S̃); it collapses to the post-measurement
state E′, which is not guaranteed to have the necessary properties (like independence of
Q).

6.3 Security and Instantiation of the MAC

To construct a MAC with look-ahead security, we adopt the construction given in [DW09].
Because our look-ahead security definition, Definition 9, is slightly weaker than the one
given in [DW09] (in that both µA and µB are fixed), we obtain a better security parameter,
as argued below.

With respect to a different aspect, the requirement on the MAC for constructing
our protocol AUTH is somewhat stronger, because we need a “universal” MAC which is
(ε, λ+ ε)-look-ahead secure for any ε ≥ 0 (and some λ). (This requirement stems from the
proof of Lemma 10.) It turns out that the construction from [DW09] satisfies this property.
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Proposition 17. For any positive integers m and `, there exists a family of functions
{MACκ : {0, 1}m → {0, 1}s}, indexed by keys κ ∈ ({0, 1}`)t, that is (ε, 2−` + ε) look-ahead
secure for any ε > 0, where t = 4m and s = 2m`.

For completeness, we very briefly describe the idea of the construction here. The
function MACκ(µ) outputs some of the blocks κi of the key κ = (κ1, . . . , κt); where the
choice of this subset is determined by µ. Furthermore, the construction guarantees that for
any two distinct messages µ and µ′, there exists an index i◦ < t such that MACκ(µ) outputs
more blocks κi with i > i◦ than MACκ(µ′) does. From the look-ahead property, it follows
that given κ′1, . . . , κ

′
i◦ , the remaining blocks κi◦+1, . . . , κt are (ε-close to) random. Then,

from the choice of i◦ and from the chain rule we conclude that when given MACκ′(µ
′), the

tag MACκ(µ) still contains at least (nearly) ` bits of min-entropy.
Since the security of the MAC follows more or less directly from the look-ahead property

(and an application of the chain rule), this construction is secure in the presence of quantum
side information when the underlying look-ahead extractor is secure against quantum side
information.

When comparing our Proposition 17 with Lemma 15 in Appendix E.3 of [DW09], our
modification of fixing both µA and µB before executing DWMAC overcomes the need for a
union bound over all possible messages µB and hence saves us a factor of 2m.

6.4 Instantiating Protocol AUTH

We will instantiate protocol AUTH for the case of classical side information. Before doing
so, we first need to slightly modify the protocol. Because the alternating-extraction
construction that we use to instantiate laExt requires a relatively large seed, we cannot let
Alice authenticate the tuple (µA, R, S) directly. Instead, Alice will sample a seed and for
an almost universal hash function, and authenticates the seed and the hash of (µA, R, S).
We will make use of the well-known polynomial construction for an almost universal hash
function (see e.g. [TSSR10]); for some field F and b a positive integer, let

h : Fb × F → F
(x1, . . . , xb;α) 7→

∑b
i=1 xiα

b−i.

For α, the seed, randomly chosen from F, the probability that two distinct inputs x, x′ ∈ Fb
collide is pcol := (b− 1)/|F|.

This hashing-modification to AUTH will affect its security and privacy. We take care
of this simply by adding pcol to the security and 2 pcol to the privacy upper bound. The
latter factor of two comes from the triangle inequality, which appears because privacy (as
defined in Definition 6) is a distance between two states.

We now combine Theorem 11, Theorem 12, Theorem 16 and Proposition 17 and make
use of the hashing modification explained above in order to obtain a lower bound on k, the
min-entropy required by AUTH, in terms of desired security and privacy parameters and
the bitsize of the message to be authenticated.

Corollary 18. For any integers n ≥ k, m and any ε > 0 and any 0 < δ ≤ ε/8, we
can construct an efficient four-round (n, k,m, δ, ε) message-authentication protocol with
long-term-key privacy as long as (asymptotically)

k = O
(

log(1/ε) +
(

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
,
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where

m′ = m+O
(

log(1/ε) +
(

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

Proof. We start by computing suitable parameters for the almost universal hash function.
Let F := GF(2c) for a positive integer c, and let m′ be the bitsize of the tuple (µ,R, S), i.e.
m′ = m+ d+ v. Hence, b = m′/c,6 and pcol = 2−c(m′/c− 1) ≤ 2−cm′.

As required by the security and privacy proofs, k > max(q + kK , kZ). We first
analyze kK . Let δ′ := 3 · 2−q + 1

2

√
2q(2−` + t εK) + 2−cm′ (this expression originates from

combining Theorem 11, Proposition 17 and pcol). To simplify matters, we choose q = `/2,
c = `/2 + logm′ and εK = 2−`/t and we obtain

δ′ = 3 · 2−`/2 +
1

2

√
2`/2(2 · 2−`) + 2−(`/2+logm′)m′

= 3 · 2−`/2 + 2−
1
2
− `

4 + 2−`/2 / 2−`/4 (for large enough `).

Because δ′ is an upper bound for the security of AUTH, a sufficient condition to achieve the
desired security level δ is when δ′ ≤ δ. Hence, we choose

` ≥ 4 log(1/δ).

The actual message to be authenticated consists of the seed and the hash value and therefore
has bit-length 2c. Then, by Proposition 17 we have that t = 4(2c) = 4` + 8 logm′ ≥
16 log(1/δ) + 8 logm′. We substitute this into the expression for εK :

εK ≤ δ4/(16 log(1/δ) + 8 logm′).

Next, we plug this into the bound for k from Theorem 16. This yields

kK = O
((

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

We now analyze kZ . Let

ε′ := 6 · 2−q +
√

2q(2−` + t εK) + εK + 2 εZ + 2−c+1m′

= 2δ′ + δ′4/t+ 2εZ + 2−c+1m′

be the upper bound on the privacy of AUTH (the expression follows from combining
Theorem 12, Proposition 17 and pcol). To achieve the desired privacy ε, it suffices that
ε′ ≤ ε. By substituting δ′ = δ and solving for εZ , we obtain εZ ≤ 1

2ε− δ −
1
2tδ

4 − 2−`/2 ≤
1
2ε− δ −

1
2tδ

4 − δ2. From the latter expression, we see why we cannot choose δ arbitrarily
large, compared to ε, because an upper bound for εZ should of course not be negative.
Note that this parameter-dependency is not surprising; it stems from the fact that the
privacy proof makes use of the security proof. Therefore, we choose 0 < δ ≤ ε/8, such that

εZ ≤ ε
2 −

ε
8 −

ε4

213t
− ε2

64 . Lower bounding the RHS yields the simpler expression

εZ ≤ ε/4.

Substituting this into the bound for k from Theorem 16 gives

kZ = O
(

log(1/δ) + log(n) + log(1/ε)
)

6Here, we assume that m′ is an integer multiple of c. Note that this can always be achieved by
zero-padding m′.
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We upper-bound max(q + kK , kZ) by the sum q + kK + kZ :

k ≥ 2 log 1/δ + kK + kZ

= O
(

log(1/ε) +
(

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

Remember that m′ = (m+d+v), where v = O
(

log(n)+log(1/εZ)
)

= O
(

log(n)+log(1/ε)
)

and

d = O
((

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

7 The Fuzzy Case

Up to here, we assumed a scenario where Alice and Bob share identical copies of the session
key XW . Let us now consider the “fuzzy” case, where Alice and Bob hold keys that are
only close in some sense, but not necessarily equal. This kind of scenario naturally arises
when Alice and Bob obtain their session keys in the presence of noise. For simplicity
and with our application (Section 8) in mind, we use the Hamming distance to measure
closeness between keys.

Consider the following simple approach. Let Bob’s key be called XW . Before executing
the authentication protocol, Bob sends some error-correcting information (like the syndrome
of XW with respect to some error-correcting code) to Alice, so that she can correct the
errors in her key, X ′W . Since Eve has full control over the communication channel, she
can also modify this error-correction information. In this case Alice might not correct
X ′W successfully, in which case our protocol is not guaranteed to be secure. However,
as stated in Theorem 22 in [DW09], this approach is secure (in the classical setting) if
one uses alternating-extraction-based instantiations of look-ahead extractors. (Note that
the parameters change slightly compared to the non-fuzzy case, to take into account the
min-entropy loss due to the error correction information.) For this solution to work it is
important that XW has sufficient min-entropy when given Eve’s (classical) side information,
and that Bob sends the error-correcting information to Alice (i.e. the error-correction
information must be sent in the same direction as the seed for the look-ahead extractor).

Because we currently do not have a provably secure construction for a look-ahead
extractor against quantum side information, we cannot say whether the approach above
also works in the setting where Eve is allowed to have quantum side information. This
remains an open question that needs to be solved before protocol AUTH can be used to
improve the quantum protocol QID+.

One subtlety is that the error-correcting information must not leak information about
W , to preserve the privacy property. Exactly this problem is addressed in [DS05], and
is generalized to the quantum setting in [FS09]. Note that it is straightforward to upper
bound the min-entropy loss in XW due to error correction: by the chain rule this is at
most the bitsize of the error-correction information.

Finally, we want to make a remark about how this min-entropy loss (caused by sending
the error-correction information) is incorporated in the parameters of Theorem 22 in
[DW09]: Extq needs to be an (nq − (2`+ α)t, εq)-extractor,7 where α is the bitsize of the

7For comparison: in Theorem 13, the non-fuzzy case, Extq is a (nq − 2`t, εq)-extractor.
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error-correction information. In words, there is a loss of αt in the first parameter, where
one would expect only a loss of α. To us it seems that the factor t in front of α is not
necessary; it is merely a consequence of the proof strategy of Theorem 22, which uses the
alternating-extraction theorem (Theorem 9 in [DW09]) as a black box.

Furthermore, it seems that the requirement on the conditional min-entropy of WA in
Theorem 22 (from [DW09]) is not necessary; it is also not used in the proof.

8 Application: Password-Based Identification

We sketch here how an instantiation of protocol AUTH that a) is secure when Eve has
quantum side information about the weak key, and b) is still secure in the fuzzy case,
would lead to a truly password-based identification protocol in the bounded quantum
storage model with security against man-in-the-middle attacks. We want to stress that
to achieve a) and to be able to verify b), we still miss one building block, i.e. look-ahead
extractors against quantum side information. Damg̊ard et al. proposed in [DFSS07] two
password-based identification schemes, QID and QID+. The former is truly password based
but does not protect against a man-in-the-middle attack, whereas the latter is secure
against a man-in-the-middle attack but is not truly password-based, because the “user” U
and “server” S need to additionally share a secret high-entropy key.8 This high-entropy
key in QID+ is used to authenticate all classical communication by means of an extractor
MAC.

Our idea of obtaining security against man-in-the-middle attacks without a high-entropy
key is now simply to do the authentication of the classical communication by applying
protocol AUTH when using xIw as weak session key. Our privacy property guarantees that
the authentication does not leak information on the password w. We stress that previous
protocols for authentication based on weak keys would (potentially) leak here information
on w.

If the quantum communication is noisy (which it is in realistic scenarios) or if the
man-in-the-middle attacker modifies some of the qubits (but few enough so that he is not
detected) or θ, then U’s and S’s version of xIw are not identical. Thus, we indeed require
that AUTH is secure in the fuzzy case.

If the analysis of the fuzzy case for the case of classical side information would more
or less directly carry over to the quantum setting, then this would mean that we need a
lower bound on the min-entropy of S’s version of xIw (when given the adversary’s side
information). Although the analysis of Damg̊ard et al. only guarantees min-entropy in U’s
version, we can slightly modify the protocol to also guarantee lower-bounded min-entropy
on S’s side. Instead of measuring the BB84 qubits in basis c(w), S measures them in
a random basis θ̂ and announces the difference r = c(w) ⊕ θ̂. Then, U and S update
the code c by shifting every code word by r, so that with respect to the updated code
c′, S has actually measured the BB84 qubits in basis c′(w). This trick has also been
used in [DFL+09], though for a different reason, and has no real effect on the analysis of
the protocol. However, since S now also measures in a random basis, we can apply the

8The high entropy key is only needed to protect against a man-in-the-middle attack, security against
dishonest U and S only relies on the password and holds even if the dishonest party knows the high entropy
key.
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uncertainty relation of [DFR+07] to get a lower bound on the min-entropy on S’s side.

9 Open Problem

The main open problem of this chapter is showing the existence of (efficient) look-ahead
extractors that are secure against quantum side information, by means of coming up with
an efficient construction. It remains possible that the alternating-extraction construction
also works against quantum side information, but it might also be the case that totally
different techniques are needed.
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