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Abstract

Ciet et al. proposed a very elegant method for trading inversions
for multiplications when computing 2P + Q from given points P and
Q on elliptic curves of Weierstrass form. In this paper we extend
their method and present a fast algorithm for computing 4P with only
one inversion in affine coordinates. Our algorithm is faster than two
repeated doublings whenever the cost of one field inversion is more
expensive than the cost of four field multiplications plus three field
squarings (i.e. I > 4M+ 4S). It saves one filed multiplication and one
field squaring in comparison with Sakai-Sakurai’s method. We also
show that on particular curves (i.e. a = 0 or b = 0), our algorithm
gains better results.

Keywords: Elliptic curve cryptography, fast arithmetic, affine co-
ordinates.

1 Introduction

The use of elliptic curve in cryptography was suggested independently by
Miler in [1] and Koblitz in [2] in 1985. Since then, Elliptic Curve Cryptog-
raphy (ECC) have received a lot of attention due to the fast group law on
elliptic curves and because there is no subexponential attack on the discrete
logarithm problem defined over elliptic curves. Thus, it can provide the
same security level as RSA (or Diffie-Hellman) but with much shorter keys.
In particular, this is mainly relevant for small embedded devices.

Recently, Ciet et al. [3] introduced a fast algorithm trading one inversion
for some multiplications, to compute 2P + Q from given points P and Q
on an elliptic curve. Their algorithm is faster previous if the cost of one
field inversion is more expensive than the cost of six field multiplications.
This was achieved as follows: Eisentrager et al. in [4] first observed that
by performing two additions (P + (P + Q)) instead of one doubling and
then one addition when computing 2P +Q, we can omit the y-coordinate of
(P +Q) and thus eliminate one field multiplication. From this observation,
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Ciet et al. [3] went further and showed that the x-coordinate of the point
(P + Q) can also be omitted and two divisions from calculation of λ1 and
λ2 can obtained by one inversion.

The idea of trading field inversions for field multiplications when com-
puting 4P has been appeared in [5], where the authors presented a general
formulas for computing 2kP in both of affine and projective coordinates. In
affine coordinates, their method requires one field inversion, (4k + 1) field
multiplications and (4k + 1) field squarings. For k = 2, the cost of their
algorithm is one inversion, 9 multiplications and 9 squarings.

In this paper, due to the Ciet et al.’s method, we present new formulas for
quadrupling of point on elliptic curves over finite fields of odd characteristic
p > 3 in affine coordinates. Our algorithm requires one field inversion, 8 field
multiplications and 8 field squarings on general curves. Thus, the algorithm
saving one field multiplication and one field squarings from the results of
Sakai-Sakurai [5] is faster than two repeated doublings if the cost of one
field inversion is more expensive than the cost of four field multiplications
plus four field squarings.

We also present new quadrupling formulas for special curves with a = 0
or b = 0 which are even faster than that on general curves.

The rest of the paper is organized as follows. We briefly recall definitions
elliptic curve cryptography in Section 2. Section 3 presents our algorithms.
We also give some analysis in this section. The conclusion will be given in
Section 4.

2 Preliminaries

In this section, we first recall some basic definitions in elliptic curve cryp-
tography. For much more material on elliptic curve cryptography we refer
to [6]. Then we review the algorithm of Ciet al et. [3] for tripling a point.

2.1 Elliptic curves over finite fields

For p prime and p > 3, an elliptic curve defined over Fp in short Weierstrass
form is the set of solutions (x, y) to the following equation:

E : y2 = x3 + ax+ b, (1)

together with an extra point O which is called the point at infinity.
Where a, b ∈ Fp such that the discriminant ∆ = −16(4a3 + 27b2) is non-
zero.

We usually use the notation E(Fq) for the set of points (x, y) with coor-
dinates in the field Fq together with the point O, the identity element of the
group. Points on an elliptic curve can be represented in several coordinate
systems, such as affine coordinates (A), and projective (P) coordinates.
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We usually use the notation E(Fp) for the set of points (x, y) with coor-
dinates in the field Fp. The set of points on an elliptic curve forms a group
under a certain addition rule.

The set of points on an elliptic curve forms a group under a certain ad-
dition rule. The negative of the point P = (x1, y1) is given −P = (x1,−y1).
Let P1 = (x1, y1) and P2 = (x2, y2) be two points on elliptic curve E with
P1 6= −P2. Then the coordinates of P3 = P1+P2 = (x3, y3) can be computed
as follows:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, where

λ =
3x21 + a

2y1
if P1 = P2, λ =

y2 − y1
x2 − x1

if P1 6= P2.

The doubling and addition costs are 1I+ 2M+ 2S and 1I+ 2M+ 1S re-
spectively in affine coordinates, where I, M and S denote field inversion, field
multiplication and field squaring, respectively.

2.2 Ciet et al.’s Algorithm

In [3], the authors gave formulas to directly compute 2P + Q from given
points P and Q on elliptic curves with one field inversion, 2 field squarings
and 9 field multiplications. The algorithm is described as in Table 1.

Input: P = (x1, y1) 6= O,Q = (§∈, †∈) 6= O
Output: T = 2P +Q = (x4, y4)

if (x1 = x2) then
if (y1 = y2) then return 3P else return P

A← (x2 − x1)
2;B = (y2 − y1)

2 2S
d← A(2x1 + x2)−B 1M

if (d = 0) then return O
D = (x2 − x1)d; I = D−1 1I+ 1M
λ1 ← dI(y2 − y1) 2M
λ2 ← 2y1A(x2 − x1)I − λ1 3M
x4 ← (λ2 − λ1)(λ2 + λ1) + x2; y4 ← λ2(x1 − x4)− y1 2M

return (x4, y4)
1I+ 2S+ 9M

Table 1: (2P + Q) algorithm, for Weierstrass elliptic curves over a prime
field GF (p)

3



3 The Algorithm

Our algorithm performs a quadrupling 4P on an elliptic curve E in affine
coordinates using only one field inversion, 8 field multiplications, and 8 field
squarings.

3.1 Description of the Algorithm

Let P = (x1, y1), we need to compute 4P = (x4, y4). Let

d = (3x21 + a)(12x1y
2
1 − (3x21 + a)2)− 8y41. (2)

we see that d = 8y31y3, where y3 is y-coordinate of the point 2P . The
computation of the value d requires 1M+ 5S. If a and b are small, d can be
computed by 4S as follows:

d = y41 + 3ax41 − 6a2x21 + 18by21 − 24abx1 − a3 − 27b2. (3)

Defining D = (2y1)d and I = D−1, we have:

1

2y1
= dI and

1

2y3
= 8y41I.

The algorithm works as in Table 2.

Input: P = (x1, y1) 6= O
Output: T = 4P = (x4, y4)

if (y1 = 0) then return P
A← x21;B ← 3x21 + a 1S
C ← 2y21;D ← C2 2S
E ← (x1 +B)2 −A−D 1S
d← B(3E −B2)− 2D 1M+ 1S

if (d = 0) then return O
F ← (2y1)d; I ← F−1 1I+ 1M
λ1 ← dIB 2M
x3 ← λ2

1 − 2x1; y3 ← λ1(x1 − x3)− y1 1M+ 1S
H ← 3x23 + a 1S
λ2 ← 2DIH 2M
x4 ← λ2

2 − 2x3; y4 ← λ2(x3 − x4)− y3 1M+ 1S
return (x4, y4)

1I+ 8M+ 8S

Table 2: Quadrupling algorithm of a point on elliptic curves with the short
Weierstrass form
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Quadrupling on curves with b = 0 In the case of b = 0, d should be
set to

d = (x21 − a)((x21 + a)2 + 4ax21).

That is because, in this setting, y3 = (x21 − a)((x21 + a)2 + 4ax21)/(8y
3
1).

Thus, we need 2M+ 2S to compute the value of d. By performing similarly
as in Table 2, the quadrupling computation of a point on an elliptic curve
requires 1I+ 5S+ 9M.

Quadrupling on curves with a = 0 In the case of a = 0, the slopes
λ1 = 3x21/2y1 and λ2 = 3x31/2y3 are particularly simple. The value d in the
Eq. (2) can be replaced by

d = y41 + 18by21 − 27b2,

which requires only two squarings. We save one multiplication and two
squarings for computing d.

In this setting, x3 = λ2
1 − 2x1 = x1(y

2
1 − 9b)/(4y21), which will be used

for computing λ2. We have:

λ2 =
3x23
2y3

=
3x21(y

2
1 − 9b)2

32y41y3

=
3x21(y

4
1 − 18by21 + 81b2)

2D

=
3

2
(x21(y

4
1 − 18by21 + 81b2)I),

where D = (2y1)d = 16y41y3 and I = D−1.
The following formulas compute a quadrupling in 1I+ 5S+ 6M.

3.2 Analyze

From the operation count we see that the algorithm is faster than two re-
peated doublings if one field inversion is more expensive than 4M+ 4S on
general curves. In comparison with the Sakai-Sakurai [5] algorithm, our
method saves one field multiplication and two field squarings.

The advantage of a method depends on I/M ratios and S/M-ratios over
prime fields. In this analysis, the ratio of a field squaring to a field mul-
tiplication is set to be S = 0.8M as commonly used in the literature, see
[7]. The I/M-ratios deeply depend on many factors such as the implemen-
tations, hardware architecture, the prime characteristic of finite fields, the
size of finite fields, etc. For example, the inversion-to-multiplication (I/M)
ratio is bigger than 100 on smart cards (see [8]). On workstations, for
NIST-recommended elliptic curves over prime fields chosen to either be a
Mersenne prime, or a Mersenne-like prime for fast modular reduction and
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Input: P = (x1, y1) 6= O
Output: T = 4P = (x4, y4)

if (y1 = 0) then return P
A← y21;B ← A2 2S
C ← 3x21 1S
d← B + 18bA− 27b2 −

if (d = 0) then return O
D ← 2y1d; I ← D−1 1I+ 1M
I ′ = CI; λ1 ← I ′d 2M
x3 ← λ2

1 − 2x1; y3 ← λ1(x1 − x3)− y1 1M+ 1S

λ2 ←
I′(y41−18by21+81b2)

2 1M
x4 ← λ2

2 − 2x3; y4 ← λ2(x3 − x4)− y3 1M+ 1S
return (x4, y4)

1I+ 5S+ 6M

Table 3: Quadrupling algorithm of a point on elliptic curves with the short
Weierstrass form

multiplication, this ratio is roughly 80 (see benchmarks reported in [7]). In
the cases when the Mersenne prime cannot used (e.g. pairing-based cryptog-
raphy), the I/M-ratio is often reported to be 13 on 32-bits Intel processors
(see benchmarks reported in [9]).

In this setting, our algorithm is better than two repeated doubling in
the case 1I > 7.2M.

On special elliptic curves, our algorithms are even better. For curves
with b = 0, our algorithm requires only 1I+ 5S+ 9M, it is faster than two
repeated doublings if 1I > 5.8M. In particular, for curves with a = 0, our
algorithm requiring only 1I+ 5S+ 6M is faster than two repeated doublings
if 1I > 2.8M.

4 Conclusion

In this paper, we presented the fast algorithms for quadrupling of point on
three forms of elliptic curves that offer a better performance than a repeated
doubling if 1I > 7.2M, 1I > 5.8M, and 1I > 2.8M, respectively. This can be
helpful to speedup the scalar multiplication in elliptic curve cryptography
as indicated in [5, 3].
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