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Abstract

We provide a simple and exact formula for the minimum Miller loop length in Atei pairing
based on Brezing-Weng curves, in terms of the involved parameters, under a mild condition
on the parameters. It will be also shown that almost all cryptographically useful/meaningful
parameters satisfy the mild condition. Hence the simple and exact formula is valid for them.
It will also turn out that the formula depends only on two parameters, providing freedom to
choose the other parameters to address the design issues other than minimizing the loop length.

1 Introduction

Pairing plays an important role in cryptography because it enables many protocols for security
services [2, 3, 11, 15]. During last 10 years, several pairings have been proposed such as Eta, EtaT ,
Ate, Atei, R-ate, optimal Ate pairing [7, 1, 10, 18, 12, 17]. This paper focuses on Ate i pairing
because other pairings such as R-ate, optimal Ate pairing are variants of Atei. The parings are
built on elliptic curves. Brezing-Weng [4] provided a general method for constructing infinitely many
“pairing friendly” elliptic curves by simply choosing a few parameter values, such as embedding
degree, etc. Hence each choice of the parameter values yields a particular Ate i pairing.

One important factor to consider while choosing the parameters is the time taken for computing
the paring. The computation essentially consists of calls to Miller’s algorithm [13]. The time-
complexity of Miller’s algorithm is captured by the number of iterations in a loop in the algorithm,
namely “Miller Loop Length”. In the context of Atei pairing, one chooses the i value so that the
Miller loop length is minimum.

Naturally we are interested in determining the minimum loop length for given parameters.
One could, in principle, do this by tracing the Brezing-Weng/Atei method (See Notation 1), in
brute-force manner. However, it involves long, tedious and complicated computations such as
evaluating polynomial functions, polynomial divisions (remaindering), square root operation in
a ring of algebraic integers, finding minimums over potentially large sets, etc. As the result, it is
virtually impossible to do any “reasoning” on the relation between the minimum loop length and the
parameters, making it quite inconvenient for designing cryptosystems . It would be nice to have a
simple formula (in terms of the parameters). Unfortunately, as usual, there is no simple formula that
holds for all values of the parameters. One could, as typically done, carry out asymptotic analysis
(the big-O analysis) where one tries to obtain a simple formula by assuming that the parameter
values are “sufficiently” large and by allowing “unknown” constant factors. However, such a result
is not so useful for cryptosystem design, because it is not clear how large is sufficient enough

1



and the unknown constant factor can make significant differences in the practical performance of
cryptosystems.

The main contribution of this paper is to provide a simple and exact formula for the minimum
loop length, under a mild condition on the parameters (See Theorem 1). It will be also shown that
almost all cryptographically useful parameters satisfy the mild condition (See Remark 3). Hence
the simple and exact formula is valid for them. It also turns out that the formula depends only
on two parameters, providing freedom to choose the other parameters to address the design issues
other than minimizing the loop length (See Remark 4).

In order to obtain the formula, we had to overcome several technical challenges: (a) finding out
when polynomial remaindering commutes with evaluation, (b) finding out when a smaller degree
implies a smaller value upon evaluation, (c) determining the minimum degree over i of xi modulo
a cyclotomic polynomial Φn(x), etc. Usually one would try to tackle the problems (a) and (b) by
estimating root bounds of involved polynomials, which requires finding (a bound on) the coefficients.
Unfortunately, the coefficients of the involved polynomials are very difficult to bound, hence the
challenge. The problem (c) was challenging because there seemed to be no discernable relationship
between the degree of xi modulo Φn(x) and the parameters (i, n).

The crucial idea for overcoming the challenges was that the problems become more manageable
when they are suitably recast in terms of inverse cyclotomic polynomials [14]. Once so recast, the
problems (a) and (b) amounts to bounding the coefficients of inverse cyclotomic polynomials (Lem-
mas 13 and 11), which can be done by direct computation on moderate parameter values, or using
the recent number theoretic results in [14, 5] on large parameter values. The problem (c) amounts
to studying a certain sparsity structure (maximum gap between consecutive exponents) of inverse
cyclotomic polynomials (Lemmas 6 and 7), which can be done again by direction computation on
moderate parameter values, or using the recent number theoretic results in [9] for large parameter
values.

The next section (Section 2) state the problem and the main result (Theorem 1) precisely.
The following section (Section 3) provides a proof of the main result. We tried to make the
proof as self-contained as possible. However, it might be helpful if the reader is familiar with the
basic notations of Atei pairing [18], Brezing-Weng elliptic curves [4], and the basic properties of
cyclotomic polynomials. We also suggest that the reader gets familiar with the properties of inverse
cyclotomic polynomials given in [14].

2 Main Result

The problem is to find a simple and exact formula for the minimum Miller loop length in Atei

pairing based on Brezing-Weng curves, in terms of the Brezing-Weng parameters. We begin by
fixing all the notations needed for a precise definition of the minimum Miller loop length. The
notations are taken mainly from [8, 18].

Notation 1 (Minimum Miller loop length in Atei pairing based on Brezing-Weng curves).
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Parameters:
a, k, d, η, x0 : positive integers satisfying the condition given below (Assumption 1)

Brezing-Weng curves:
Φak(x) = the ak-th cyclotomic polynomial

ζ(x) = xaη mod Φak(x) [ f(x) mod g(x) stands for the remainder of f(x)/g(x) ]

t(x) = ζ(x) + 1

s(x) = the representation of
√
−d as an element of Q[x]/(Φak(x))

y(x) = (ζ(x) − 1)
s(x)
−d

mod Φak(x)

Q(x) =
t(x)2 + dy(x)2

4
r = Φak(x0)

q = Q(x0)

Atei pairing:
μi = qi smod r [ a = b smod c ⇐⇒ c|(a − b) and −c/2 < a ≤ c/2 ]

Minimum Miller loop length:

L =






min
0<i<k

log2 |μi| if k is odd

min
0<i< k

2

log2 |μi| if k is even

Remark 1. A few remarks on the intended meaning of the notations: The integer r is the size of
a large cyclic subgroup of E(Fq). The integer k is the embedding degree of r and q, that is, the
smallest integer such that r|(qk − 1). The polynomial ζ(x) represents a k-th primitive root of unity
as an element of Q[x]/(Φak(x)). The integer η indicates the particular choice of a k-th primitive
root of unity. The integer d is a CM discriminant. The operation smod stands for the signed
remainder.

Remark 2. In Atei pairing, we use ‘smod’ instead of ‘mod’ because it is known to be more efficient
(one less loop). In Minimum Miller loop length, when k is even we optimize over 0 < i < k

2 because
μk/2 = −1 (trivial Atei pairing) and μi+ k

2
= −μi (symmetric).

For the above quantities to be well-defined and meaningful, one needs to impose certain conditions
on the parameters such as the following.

Assumption 1 (Global). From now on, throughout the paper, we will assume that the parameters
k, a, d, η, x0 satisfy the following conditions. Hence, whenever the above parameters appear in
theorems, lemmas and proofs, one must remember that the conditions are implicitly assumed.

A1 : k ≥ 3

A2 : gcd(η, k) = 1

A3 : d is squarefree and
√
−d ∈ Q(ζak) where ζak is an ak-th primitive root of unity.

A4 : r is an odd prime number.

A5 : q is a prime or a power of prime number.
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We will also need the following additional notations in order to state the main result.

Notation 2 (Notations used in stating the main result).

ϕ(n) = Euler-phi function, i.e. deg(Φn)

g(f) = The maximum of the differences of two consecutive exponents in a polynomial f,

g(f) = 0 when f is a monomial

H(f) = the height of a polynomial f, i.e., the maximum of the absolute values of the coefficients

Ψn(x) = the n-th inverse cyclotomic polynomial, i.e.,
xn − 1
Φn(x)

gn =






g(Ψn) if n is odd

g(Ψn mod xn/2) if n is even

Note that the minimum Miller loop length L could depend on the parameters a, k, d, η, x0. In order
to make this potential dependence explicit, we will sometimes write L(a, k, d, η, x0). Now we are
ready to state the main result (Theorem 1).

Theorem 1 (Main Result ). For all (a, k, d, η, x0) satisfying the following conditions

C1 :






ϕ(n) − gn ≥
n

3
if n is odd

ϕ(n) − gn ≥
n

6
if n is even and k 6= 4

ϕ(n) >
n

4
if n is even and k = 4

C2 : x0 > 2 H(Ψn) + 2

C3 : d < Φn(x0)

where n = ak, we have

L(a, k, d, η, x0) =






log2(x
a/2
0 − 1) if k = 3 and a is even

log2(x
a/2
0 ) if k > 3 is odd and a is even

log2(x
a
0 − 1) if k = 6

log2(x
a
0) else

(1)

Example 1. We will illustrate the above Theorem 1 by applying it on a small example taken
from [8] where a = 4, d = 1 and k > 3 is an odd prime. Note n = 4k. Note

ϕ(n) = ϕ(22 ∙ k) = (22 − 2)(k − 1) = 2(k − 1)

From the basic properties of inverse cyclotomic polynomials [14], we immediately have

Ψn(x) = x2k+2 + x2k − x2 − 1
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Since n is even, we inspect Ψn mod x2k, namely −x2 − 1, obtaining gn = 2 − 0 = 2. Note

ϕ(n) − gn = 2(k − 1) − 2 =
4k

6
+

8(k − 3)
6

≥
4k

6
=

n

6

Thus the condition C1 is satisfied by every odd prime k > 3. All the coefficients of Ψn are one
of 1, 0,−1 and so H(Ψn) = 1. We can satisfy C2 by simply choosing x0 > 2 ∙ 1 + 2 = 4. Recall
that Φn(x0) = r is intended to be the size of a large cyclic group. Hence d = 1 � r. Thus the
condition C3 is also satisfied by every “eligible” x0 value (that makes r a large prime). Then, from
Theorem 1, the minimum loop length L is given exactly by

L = log2(x
2
0)

Note that L does not depend on the value of k at all. It says the minimum loop length is essentially
twice the bit length of x0.

Remark 3. We observe that almost all cryptographically useful values of a, k, x0 satisfy the con-
ditions in Theorem 1. Hence the exact formula (1) in Theorem 1 applies to them. We elaborate on
this observation.

• In cryptography, typically a ∈ [1, 100] and k ∈ [3, 100]. Direct computation shows

a ∈ [1, 100] and k ∈ [3, 100] =⇒ C1

In fact, it also holds for much larger values of n = ak. For instance, it holds for every n
which has up to 3 distinct odd prime factors, except when k = 4 and the radical of n is
2 ∙ 3 ∙ 5 ∙ 7, 2 ∙ 3 ∙ 5 ∙ 11 or 2 ∙ 3 ∙ 5 ∙ 13 [9].

• Direct computation shows that H(Ψn) ≤ 9 for n ≤ 104. Thus

n ≤ 104 and x0 > 20 =⇒ C2

Direct computation also shows that H(Ψn) ≤ 1 for n ≤ 104 and ϕ(n) ≤ 100. Thus

n ≤ 104 and ϕ(n) ≤ 100 and x0 > 4 =⇒ C2

Typically n is chosen so that ϕ(n) ≤ 100 for efficiency reason and x0 is chosen to be much
larger than 4, satisfying the condition C2.

If needed, one can estimate H(Ψn) for very large values of n. See [14, 5] where an upper
bound for H(Ψn) is expressed in terms of the prime factors of n.

• The subgroup size r = Φn(x0) should be at least 2160 for security reasons. On the other hand,
the CM discriminant d is at most 1013 ≈ 244 for efficiency reasons [16]. Thus we see that
d � r, satisfying the condition C3.

Remark 4. Note that the minimum Miller loop length L(a, k, d, η, x0) does not depend on the
values of k, d and η as long as they satisfy the conditions in Theorem 1. Hence one can choose the
values of k, d, η to address other design issues (other than minimizing the Miller loop length).
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Theorem 1

Lemma 11 Lemma 10 Lemma 9 Lemma 8 Lemma 14

Lemma 7 Lemma 6 Lemma 13 Lemma 2

Lemma 5 Lemma 12

Lemma 4 Lemma 1

Lemma 3

Figure 1: Dependency among Lemmas

3 Proof

In this section, we prove the main theorem given in the previous section. The proof is a bit long and
technical. Thus we divided it into many lemmas, that are interesting on their own. For the sake
of easy navigation among the lemmas, we provide a dependency diagram among them in Figure 1.
We begin by listing all the additional notations that will be used throughout the proofs without
explicit references.

Notation 3 (Notations used in the proof).

lc(f) = the leading coefficient of a univariate polynomial f

Ik =

{
{1, . . . , k − 1} if k is odd

{1, . . . , k
2 − 1} if k is even

ψ(n) = deg Ψn(x)

B(f) = max
x∈C: f(x)=0

|x|

Λi(x) = xai mod Φak(x)

dn(i) = deg(xi mod Φn(x))

tn = the number of exponents (terms) occurring in Ψn(x).

en,j = the j-th smallest exponent occurring in Ψn(x).

gn,j = en,j+1 − en,j
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Lemma 1. We have

• Q(x)i mod Φak(x) = xaηi mod Φak(x)

• Q(x)i mod Φak(x) ∈ Z[x].

Proof. From the definition of Q in Notation 1, we have, modulo Φak(x),

Q(x) ≡
(ζ(x) + 1)2 + d(ζ(x) − 1)2s(x)2 1

d2

4
≡

(ζ(x) + 1)2 − (ζ(x) − 1)2

4
≡ ζ(x) ≡ xaη

Hence Q(x)i mod Φak(x) = xaηi mod Φak(x). Since xaηi, Φak(x) ∈ Z[x] and Φak(x) is monic, we
immediately see that Q(x)i mod Φak(x) ∈ Z[x].

Lemma 2. For every η such that gcd(η, k) = 1 we have

{
∣
∣(xaηi mod Φak(x)

)
(x0)

∣
∣ : i ∈ Ik } = {

∣
∣(xai mod Φak(x)

)
(x0)

∣
∣ : i ∈ Ik }

Proof. Immediate from the fact that the following map is one-to-one and onto.

σ : Ik −→ Ik

i 7−→ ηi mod k when k is odd

i 7−→ ηi mod
k

2
when k is even

Lemma 3. Let Ψn =
∑tn

j=1 cn,j xen,j . We have

(xi mod Φn) ∙ Ψn =
tn∑

j=1

cn,j x(i+en,j) mod n

In particular, the set of non-zero coefficients of (xi mod Φn) ∙ Ψn are the same as those of Ψn.

Proof. We only need to note

(xi mod Φn) ∙ Ψn = (xi ∙ Ψn) mod (Φn ∙ Ψn)

= (xi ∙ Ψn) mod (xn − 1)

=



xi
tn∑

j=1

cn,j xen,j



 mod (xn − 1)

=




tn∑

j=1

cn,j xi+en,j



 mod (xn − 1)

=
tn∑

j=1

cn,j x(i+en,j) mod n
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Lemma 4. For 0 ≤ i < n, we have

dn(i) = i − ψ(n) + max
en,j<n−i

en,j

Proof. Let
hi = (xi mod Φn) ∙ Ψn

Then we have
deg(hi) = dn(i) + ψ(n)

Thus we can determine dn(i) from deg(hi). So we try to determine deg(hi).
From Lemma 3, we have

hi =
tn∑

j=1

cn,j x(i+en,j) mod n

Since i < n, we have
i + en,j < 2n

Thus
hi =

∑

i+en,j<n

cn,j xi+en,j +
∑

n≤i+en,j<2n

cn,j xi+en,j−n (2)

The first sum is a non-zero polynomial, since it contains the term cn,1x
i due to the fact that en,1 = 0.

Note that every exponent in the first sum is at least i. Note also that every exponent in the second
sum is at most i − 1, since en,j < n. Hence

deg(hi) = deg




∑

i+en,j<n

cn,j xi+en,j



 = max
i+en,j<n

i + en,j = i + max
en,j<n−i

en,j

Thus
dn(i) = deg(hi) − ψ(n) = i − ψ(n) + max

i+en,j<n
en,j

Lemma 5. For 1 ≤ j < tn, we have

min
n−en,j+1≤i<n−en,j

dn(i) = ϕ(n) − gn,j

Proof. From Lemma 4, we have

min
n−en,j+1≤i<n−en,j

dn(i) = min
n−en,j+1≤i<n−en,j

(

i − ψ(n) + max
en,`<n−i

en,`

)

= min
n−en,j+1≤i<n−en,j

i − ψ(n) + en,j

= n − en,j+1 + en,j − ψ(n)

= ϕ(n) − en,j+1 + en,j

= ϕ(n) − gn,j
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Lemma 6. We have
min

ϕ(n)≤i<n
dn(i) = ϕ(n) − gn

Proof. Note

∃i [ ϕ(n) ≤ i < n ∧ n − en,j+1 ≤ i < n − en,j ]

⇐⇒ max{ϕ(n), n − en,j+1} < n − en,j

⇐⇒ max{n − en,tn , n − en,j+1} < n − en,j

⇐⇒ n − min{en,tn , en,j+1} < n − en,j

⇐⇒ min{en,tn , en,j+1} > en,j

⇐⇒ 1 ≤ j < tn

From Lemma 5, we have

min
ϕ(n)≤i<n

dn(i) = min
1≤j<tn

min
n−en,j+1≤i<n−en,j

dn(i)

= min
1≤j<tn

ϕ(n) − gn,j

= ϕ(n) − max
1≤j<tn

gn,j

= ϕ(n) − gn

Lemma 7. Let n be an even number such that ϕ(n) < n/2. Then we have

min
ϕ(n)≤i<n/2

dn(i) = ϕ(n) − gn

Proof. Since n is an even number, we have n = 2α ∙ s where α ≥ 1 and 2 - s. Since ϕ(n) < n/2, we
have s ≥ 3. From the basic properties of inverse cyclotomic polynomials [14], we have

Ψn(x) = Ψs(−x2α−1
) − xn/2Ψs(−x2α−1

)

and there will be no accumulation/cancellation of terms across the first part and the second part.
Note

∃i [ ϕ(n) ≤ i < n/2 ∧ n − en,j+1 ≤ i < n − en,j ]

⇐⇒ max{ϕ(n), n − en,j+1} < min{n/2, n − en,j}

⇐⇒ max{n − en,tn , n − en,j+1} < min{n − en,ts+1, n − en,j}

⇐⇒ n − min{en,tn , en,j+1} < n − max{en,ts+1, en,j}

⇐⇒ min{en,tn , en,j+1} > max{en,ts+1, en,j}

⇐⇒ ts + 1 ≤ j < tn
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From Lemma 5, we have

min
ϕ(n)≤i<n/2

dn(i) = min
ts+1≤j<tn

min
n−en,j+1≤i<n−en,j

dn(i)

= min
ts+1≤j<tn

ϕ(n) − gn,j

= ϕ(n) − max
ts+1≤j<tn

gn,j

= ϕ(n) − max
tn
2

+1≤j<tn

gn,j

= ϕ(n) − gn by the symmetry of Ψn

Lemma 8. Let a be odd and k be odd such that ϕ(ak) − gak > a. Then

• Λ1 = xa

• ∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

Proof. Since ϕ(ak) > a, we have

Λ1 = xa mod Φak(x) = xa

Let i ∈ Ik = {1, . . . , k − 1}. Assume that i 6= 1. We consider the two cases:

Case 1: 2 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi) = deg
(
xai mod Φak(x)

)
= deg(xai) = ai > a = deg(Λ1)

Case 2: ϕ(ak)
a ≤ i ≤ k − 1.

From Lemma 6, we have

deg(Λi) ≥ ϕ(ak) − gak > a = deg(Λ1)

Thus
∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

Lemma 9. Let a be even and k be odd such that ϕ(ak) − gak > a
2 . Then

• Λ k+1
2

= −x
a
2

• ∀i ∈ Ik i 6= k+1
2 =⇒ deg(Λi) > deg(Λ k+1

2
)

Proof. Since ϕ(ak) > a
2 , we have

Λ k+1
2

= xa k+1
2 mod Φak(x) = x

ak
2 x

a
2 mod Φak(x) = −x

a
2 mod Φak(x) = −x

a
2

Let i ∈ Ik = {1, . . . , k − 1}. Assume that i 6= k+1
2 . We consider the three cases:
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Case 1: 1 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi) = deg
(
xai mod Φak(x)

)
= deg(xai) = ai >

a

2
= deg(Λ k+1

2
)

Case 2: ϕ(ak)
a ≤ i ≤ k−1

2 .
From Lemma 7, we have

deg(Λi) ≥ ϕ(ak) − gak >
a

2
= deg(Λ k+1

2
)

Case 3: k+3
2 ≤ i ≤ k − 1.

From Lemma 7, we have

deg(Λi) = deg(xai mod Φak(x))

= deg(x
ak
2 xai−ak

2 mod Φak(x))

= deg(−xai−ak
2 mod Φak(x))

≥ min{
3a

2
, ϕ(ak) − gak}

>
a

2
= deg(Λ k+1

2
)

Thus

∀i ∈ Ik i 6=
k + 1

2
=⇒ deg(Λi) > deg(Λ k+1

2
)

Lemma 10. Let k be even such that ϕ(ak) − gak > a. Then

• Λ1 = xa

• ∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

Proof. Since ϕ(ak) > a, we have

Λ1 = xa mod Φak(x) = xa

Let i ∈ Ik = {1, . . . , k
2 − 1}. Assume that i 6= 1. We consider the two cases:

Case 1: 2 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi) = deg
(
xai mod Φak(x)

)
= deg(xai) = ai > a = deg(Λ1)

Case 2: ϕ(ak)
a ≤ i ≤ k

2 − 1.
From Lemma 7, we have

deg(Λi) ≥ ϕ(ak) − gak > a = deg(Λ1)
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Thus
∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

Lemma 11. For all (a, k, x0) satisfying the following condition:

C2 : x0 > 2 H(Ψak) + 2

we have
deg(Λj) > deg(Λi) =⇒ |Λj(x0)| > |Λi(x0)|

Proof. Let
S± = σjΛj ± Λi

where σj = sign(lc(Λj)). Let
W± = S± ∙ Ψak

Note that lc(S±) ≥ 1 and lc(Ψak) = 1. Thus we have

lc(W±) ≥ 1

Note
W± = σjΛj ∙ Ψak ± Λi ∙ Ψak

From Lemma 3, we have

H(W±) ≤ H(Λj ∙ Ψak) + H(Λi ∙ Ψak) = 2H(Ψak)

By applying Cauchy’s root bound formula [6], we have

B(W±) ≤
H(W±)
|lc(W±)|

+ 1 ≤
2H(Ψak)

1
+ 1 = 2H(Ψak) + 1

Since B(S±) ≤ B(W±), we have

B(S±) ≤ 2H(Ψak) + 1

Assume that x0 > 2H(Ψak) + 1. Since lc(S±) > 0, we have S±(x0) > 0, that is,

σjΛj(x0) > Λi(x0) > −σjΛj(x0)

Hence
|Λj(x0)| > |Λi(x0)|

Lemma 12. For all (a, k, x0) satisfying the following condition:

C2 : x0 > 2H(Ψak(x)) + 2

we have
Φak(x0)

2
> |Γi(x0)|

where
Γi(x) = Q(x)i mod Φak(x)
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Proof. Let

S± =
Φak

2
± Γi

W± = S± ∙ Ψak

Note that lc(S±) = 1/2 and lc(Ψak) = 1. Thus we have

lc(W±) = 1/2

Note

W± =
Φak

2
∙ Ψak ± Γi ∙ Ψak =

xak − 1
2

± Γi ∙ Ψak

Thus
H(W±) ≤ 1/2 + H(Γi ∙ Ψak)

From Lemmas 1 and 3, we have
H(Γi ∙ Ψak) = H(Ψak)

Thus
H(W±) ≤ 1/2 + H(Ψak)

By applying Cauchy’s root bound formula [6], we have

B(W±) ≤
H(W±)
|lc(W±)|

+ 1 ≤
1/2 + H(Ψak)

1/2
+ 1 = 2H(Ψak) + 2

Since B(S±) ≤ B(W±), we have
B(S±) ≤ 2H(Ψak) + 2

Assume that x0 > 2H(Ψak) + 2. Since lc(S±) > 0, we have S±(x0) > 0, that is,

Φak(x0)
2

> Γi(x0) > −
Φak(x0)

2

Hence
Φak(x0)

2
> |Γi(x0)|

Lemma 13. For all (a, k, d, η, x0) satisfying the following conditions:

C2 : x0 > 2 H(Ψak(x)) + 2

C3 : d < Φak(x0)

we have
Q(x0)

i smod Φak(x0) =
(
Q(x)i mod Φak(x)

)
(x0)

13



Proof. Let Γi(x) = Q(x)i mod Φak(x). Then we have for some P (x) ∈ Q[x]

Q(x)i = P (x)Φak(x) + Γi(x)

Thus we have
Q(x0)

i = P (x0)Φak(x0) + Γi(x0)

We claim that Q(x0), P (x0), Φak(x0) and Γi(x0) are all integers. First, Q(x0) is an integer due
to Assumption 1. Second, Φak(x0) is an integer because Φak(x) ∈ Z[x]. Third, Γi(x0) is an integer
due to Lemma 1. It remains to show that P (x0) is an integer. We will do so by contradiction.
Assume P (x0) is not an integer. Since Φak(x) ∈ Z[x] and monic, obviously ζ(x), t(x), s(x) ∈ Z[x]
and thus

Q(x)i = Q̃(x)i/(4d)i

for some Q̃(x) ∈ Z[x]. Since Φak(x) is monic, we have

P (x) = P̃ (x)/(4d)i

for some P̃ (x) ∈ Z[x]. Hence
P (x0) = p̃/(4d)i

for some p̃ ∈ Z. Note that P (x0)Φak(x0) is an integer. Thus the denominator of P (x0) should
be a factor of Φak(x0). Note that the denominator of P (x0) is a factor of (4d)i. Hence (4d)i and
Φak(x0) should have a common factor. According to Assumption 1, r = Φak(x0) is an odd prime.
This means that Φak(x0) | d, contradicting C3. So we have shown that P (x0) is an integer.

Since Q(x0), P (x0), Φak(x0) and Γi(x0) are all integers, we have

Q(x0)
i smod Φak(x0) = Γi(x0) smod Φak(x0)

From Lemma 12 and C2, we have
Φak(x0)

2
> |Γi(x0)|

Hence
Γi(x0) smod Φak(x0) = Γi(x0)

Therefore
Q(x0)

i smod Φak(x0) = Γi(x0)

Finally we have
Q(x0)

i smod Φak(x0) =
(
Q(x)i mod Φak(x)

)
(x0)

Lemma 14. For all (a, k, d, η, x0) satisfying the following conditions:

C2 : x0 > 2 H(Ψak(x)) + 2

C3 : d < Φn(x0)

we have
L = log2 min

i∈Ik

|Λi(x0)|

14



Proof. Note

L = log2 min
i∈Ik

∣
∣Q(x0)

i smod Φak(x0)
∣
∣ from Notation 1

= log2 min
i∈Ik

∣
∣(Q(x)i mod Φak(x)

)
(x0)

∣
∣ from C2, C3 and Lemma 13

= log2 min
i∈Ik

∣
∣(xaηi mod Φak(x)

)
(x0)

∣
∣ from Lemma 1

= log2 min
i∈Ik

∣
∣(xai mod Φak(x)

)
(x0)

∣
∣ from Lemma 2

= log2 min
i∈Ik

|Λi(x0)| from Notation 3

Proof of Theorem 1(Main Result). From C2, C3 and Lemma 14, we have

L = log2 min
i∈Ik

|Λi(x0)|

We consider several cases.

Case 1: a is odd, k > 3 is odd. From C1 we have

ϕ(ak) − gak ≥
ak

3
>

ak

k
= a

From Lemma 8, we have

• Λ1 = xa

• ∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

From Lemma 11, we have
L = log2 (xa

0)

Case 2: a is even, k > 3 is odd. From C1 we have

ϕ(ak) − gak ≥
ak

6
>

ak

2k
=

a

2

From Lemma 9, we have

• Λ k+1
2

= −x
a
2

• ∀i ∈ Ik i 6= k+1
2 =⇒ deg(Λi) > deg(Λ k+1

2
)

From Lemma 11, we have
L = log2 (xa/2

0 )
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Case 3: a is odd, k > 6 is even. From C1 we have

ϕ(ak) − gak ≥
ak

6
>

ak

k
= a

From Lemma 10, we have

• Λ1 = xa

• ∀i ∈ Ik i 6= 1 =⇒ deg(Λi) > deg(Λ1)

From Lemma 11, we have
L = log2 (xa

0)

Case 4: a is even, k > 6 is even. Using the same reasoning as in Case 3, we have

L = log2 (xa
0)

Case 5: a is odd, k = 3. From C1 we have

ϕ(a ∙ 3) − ga∙3 ≥
a ∙ 3
3

= a

Since ga∙3 ≥ 1, we have ϕ(a ∙ 3) > a. Note

Φa∙3(x) | Φ3(x
a∙3/3) = x2a + xa + 1

Thus

• Λ1(x) = xa∙1 mod Φa∙3(x) = xa

• Λ2(x) = xa∙2 mod Φa∙3(x) = (−xa − 1) mod Φa∙3(x) = −xa − 1

Hence we have
L = log2 (xa

0)

Case 6: a is even, k = 3. From C1 we have

ϕ(a ∙ 3) − ga∙3 ≥
a ∙ 3
6

=
a

2

Since ga∙3 ≥ 1, we have ϕ(a ∙ 3) > a
2 . Since a is even, we have

Φa∙3(x) | Φ2∙3(x
a∙3/(2∙3)) = xa − xa/2 + 1

Thus

• Λ1(x) = xa∙1 mod Φa∙3(x) = (xa/2 − 1) mod Φa∙3(x) = xa/2 − 1

• Λ2(x) = xa∙2 mod Φa∙3(x) = (xa/2 − 1)2 mod Φa∙3(x) = −xa/2

Hence we have
L = log2 (xa/2

0 − 1)
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Case 7: a is odd, k = 4. From C1 we have

ϕ(ak) >
ak

4
= a

Thus

• Λ1 = xa

Hence we have
L = log2 (xa

0)

Case 8: a is even, k = 4. Using the same reasoning as in Case 7, we have

L = log2 (xa
0)

Case 9: a is odd, k = 6. From C1 we have

ϕ(a ∙ 6) − ga∙6 ≥
a ∙ 6
6

= a

Since ga∙6 ≥ 1, we have ϕ(a ∙ 6) > a. Note

Φa∙6(x) | Φ6(x
a∙6/6) = x2a − xa + 1

Thus

• Λ1(x) = xa∙1 mod Φa∙6(x) = xa

• Λ2(x) = xa∙2 mod Φa∙6(x) = (xa − 1) mod Φa∙6(x) = xa − 1

Hence we have
L = log2 (xa

0 − 1)

Case 10: a is even, k = 6. Using the same reasoning as in Case 9, we have

L = log2 (xa
0 − 1)

Summarizing the cases above, we have

L =






log2 (xa
0) if a is odd and k > 3 is odd.

log2 (xa/2
0 ) if a is even and k > 3 is odd.

log2 (xa
0) if a is odd and k > 6 is even.

log2 (xa
0) if a is even and k > 6 is even.

log2 (xa
0) if a is odd and k = 3.

log2 (xa/2
0 − 1) if a is even and k = 3.

log2 (xa
0) if a is odd and k = 4.

log2 (xa
0) if a is even and k = 4.

log2 (xa
0 − 1) if a is odd and k = 6.

log2 (xa
0 − 1) if a is even and k = 6.
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Combining related cases, we have

L =






log2(x
a/2
0 − 1) if k = 3 and a is even

log2(x
a/2
0 ) if k > 3 is odd and a is even

log2(x
a
0 − 1) if k = 6

log2(x
a
0) else

Finally Theorem 1 (Main Result) has been proved.
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