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Abstract

The scope of mobile phones has skyrocketed in recent years to such an extent that smartphone sales are

expected to surpass those of PCs by the end of 2011. Equipped with relatively powerful processors and fairly

large memory and storage capabilities, smartphones can accommodate increasingly complex interactive appli-

cations. As a result, the growing amount of sensitive information shared by smartphone users raises serious

privacy concerns and motivates the need for appropriate privacy-preserving mechanisms.

In this paper, we present a novel architecture geared for privacy-sensitive applications where personal in-

formation is shared among users and decisions are made based on given optimization criteria. Specifically,

we focus on two application scenarios: (i) privacy-preserving interest sharing, i.e., discovering shared interests

without leaking users’ private information, and (ii) private scheduling, i.e., determining common availabilities

and location preferences that minimize associate costs, without exposing any sensitive information. We pro-

pose efficient yet provably-private solutions, and conduct an extensive experimental analysis that attests to the

practicality of the attained privacy features.

1 Introduction

The increasing dependence on anywhere-anytime availability of information has made smartphones commen-

surably more influential in people’s computing ecosystems. Many tasks once performed exclusively on PCs have

now branched out to phones and have successfully accommodated device constraints, such as display, connectiv-

ity, and power [32]. Smartphone applications are progressively enabling sophisticated interactions among people.

Nowadays, users share information, for instance, for real-time social networking [39], to discover nearby friends

(e.g., using Google Latitude, Foursquare, Gowalla, etc.), to exchange recommendations [29], to build P2P net-

works [8], or even for work-related purposes [33].

Beneath the proliferation of information exchange lays an extremely rich source of data: mobile phones, typi-

cally accompanying users 24/7, learn significant amounts of information about their owners and their environment.

Business models behind many of today’s free web applications, such as social network websites or search en-

gines, heavily rely on data in the clear, collected from the users and later used to offer context-based services and

recommendations. Yet, as the amount (and sensitiveness) of shared information increases, so do related privacy

concerns.

In this paper, we focus on the design of collaborative applications involving participants—with limited recip-

rocal trust—willing to share sensitive information from their smartphones and use it to (cooperatively) perform

operations without endangering their privacy. Previous work has attempted to address this problem by using

distributed cryptographic primitives, such as generic Secure Multi-Party Computation [25] or Private Set Inter-

section (PSI) [21, 35, 15, 27, 31, 14, 3]. While some of these solutions are quite efficient for the two-party

∗A preliminary version of this paper appears in [13]. This version extends description and analysis of proposed techniques. Furthermore,

in Section 4.3.3, it discusses in more details how the PrivSched-v2 algorithm trades off some privacy guarantees (w.r.t. the server) for

increased efficiency, in comparison to the PrivSched-v1 counterpart.
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case, the multi-party variants are not practical enough for large-scale deployment. For instance, the most efficient

multi-party PSI, [35], incurs computational complexity—specifically, a number of long modular exponentiations—

quadratic in the size of participants’ inputs. Alternatively, statistical methods for protecting privacy have also been

used [30, 12], yet they do not achieve provable privacy guarantees and generally require a fully-trusted party to

produce privacy-preserving statistical digests. Such a trust assumption is often unrealistic, since all sensitive infor-

mation is concentrated at this party. Beyond its obvious privacy implications, this modus operandi imposes liability

issues with regard to participants’ private data and concerns about possible data loss, subpoena, etc.

We explore provably-secure (efficient) cryptographic techniques assisted by a semi-trusted server, which acts

as a bulletin board service. Observe that this entity is never trusted with participants’ data itself – i.e., it learns no

information about users’ inputs or outputs. The server only obtains (and processes) encrypted data and it is trusted

only not to collude with other parties. We envision that this entity may be implemented by public services, (e.g.,

Nokia Ovi [2] or Amazon EC2 [1]), without disclosing any data in the clear. (Users can select or set up their own

preferred servers). Note that the use of the server remarkably minimizes the overhead incurred by mechanisms for

privacy protection in smartphone applications, but does not sacrifice solid privacy guarantees.

1.1 Roadmap

Motivated by the arguments above, we introduce an appropriate architecture that involves several smartphone

users and a semi-trusted server (Section 2). We then present the design, implementation, and evaluation of several

privacy-enhanced applications. We guarantee privacy by modeling efficient cryptographic tools, which function as

privacy “shields” that protect users from disclosing more than the required minimum of their respective sensitive

information.

First, we address the generic problem of letting smartphone users share their interests, while maintaining their

privacy (Section 3). We overview several application examples, such as discovering matching locations, routes,

availabilities, etc., without exposing any other information beyond the matching interests, or calling “polls” to find

most popular preferences, without revealing anything about other preferences or single user’s choices. We present

a generic efficient cryptographic solution that addresses all these scenarios.

Next, we consider assigning costs to the various interests, and we focus on minimizing the overall aggregated

cost in a privacy-preserving way. We consider, as an example, the problem of Private Scheduling, where a group

of smartphone users want to schedule a meeting while preserving the privacy of their calendars (Section 4). We

are stimulated by ongoing projects aiming at automatically filling mobile phones’ calendars with users’ activities

(e.g., based on emails, text messages, routes). Also, widespread calendar applications, such as Apple iCal, Mi-

crosoft Outlook, and Google Calendar, currently provide software counterparts for smartphones. We propose three

solutions that target different scenarios, corresponding to different efficiency, privacy, and system requirements.

Finally, we analyze the performance of proposed constructs (Section 5), discuss related work (Section 6), and

conclude with some future work items (Section 7). Appendix A reviews the Paillier Cryptosystem [40], used in

two of our protocols, while Appendix B overviews the Private Set Intersection construction from [31], also used

by one of our techniques.

2 Preliminaries

In this section, we model our system, by describing players, privacy properties, and trust assumptions.

2.1 Players

Our system consists of:

2



• N smartphone users, P1, . . . , PN , called participants. Participants P1, . . . , PN hold private information,

denoted, resp., with x1, . . . , xN . In the rest of the paper, we assume that N > 2.

• A public server, S, that generates no input.

Participant P1 is called Initiator, to denote that she is starting the interaction. Depending on the application, P1

might be performing additional operations compared to other participants.

2.2 Privacy-preserving Computation

We assume that participants, P1, . . . , PN , wish to jointly compute some function f(x1, . . . , xN ), without re-

vealing any information about their private input, (x1, . . . , xN ), beyond what can be deduced by obtaining the

output of the function. Note that one or all parties may receive the output of the computation, depending on the

application. Server S assists the participants in the function computation, but learns no information about either

(x1, . . . , xN ) or f(x1, . . . , xN ). In other words, S receives and processes only encryptions of participants’ inputs.

Specifically, we define the following privacy requirements:

• Participant’s Privacy w.r.t. Server: Privacy of each participant Pi, running on input xi, is guaranteed w.r.t.

server S if no information about xi is leaked to S. Privacy is considered as the probabilistic advantage that

S gains from obtaining encrypted inputs toward learning participants’ actual inputs. Formally, we say that

the algorithm A is Private w.r.t. Server if no polynomially bounded adversary A can win the following

game with probability non-negligibly over 1/2. The game is between A (playing the role of the server) and

a challenger Ch:

1. Ch executes setup operations and computes public parameters (if any).

2. A, on input the public parameters, selects two inputs (w0, w1).

3. Ch picks a random bit b ← {0, 1} and interacts with A by following the computation on behalf of a

participant, on input the public parameters and private input wb.

4. A outputs b′ and wins if b′ = b.

We anticipate that, since S only receives encrypted inputs, privacy will be reduced to the security of the

encryption algorithm.

• Participant’s Privacy w.r.t. Other Participants: Privacy of each participant Pi, running on input xi, is

guaranteed w.r.t. other participants Pj( ∀j 6= i), if no information about xi is leaked to Pj , beyond what can

be inferred from f(x1, . . . , xN ). Privacy is considered as the probabilistic advantage that Pj gains from the

protocol execution in learning Pi’s input. Specifically, we define the advantage of Pj of identifying the input

of any Pi, i.e., wi (for Pi 6= Pj), in the algorithm A as

AdvPj (A;Pi) =

∣
∣
∣
∣
PrPj [w

′

i = wi]−
1

2

∣
∣
∣
∣

where w′

i is Pj’s guess of Pi’s input wi.

We say that the algorithm A is Private w.r.t. Other Participants if no polynomially bounded adversary A,

playing the role of Pj in A, has a non-negligible advantage AdvPj (A;Pi) for any Pi 6= Pj .

2.3 Trust Assumptions

We assume participants to be semi-honest, i.e., they faithfully follow protocol specifications and do not mis-

represent any information on their inputs, as per Goldreich’s definitions [23]. However, during or after protocol

execution, they try to infer additional information about other parties’ inputs. Also, we assume that participants

3



have a minimum degree of knowledge among each other, e.g., they belong to the same organization or community.

Thus, they do not have any incentive to deviate from the protocol.

The server is assumed to be semi-trusted, i.e., it follows protocol specifications and does not collude with any

participants. It is not trusted with any private data, thus, we require minimal trust in it.

3 Sharing Interests with Privacy

We start by considering the following application examples:

1. A smartphone application provides users with the possibility of calling privacy-preserving polls: a user

can request to a community of users to indicate their preferences on a topic of interest, in order to jointly

determine the most popular choice. Nothing should be revealed about a single user’s preferences or other

choices beyond the most popular one.

2. Members of a virtual community (e.g., AC Milan fans) want to share their location only to discover if there

is at least a given number of members around the same location (e.g., 10 fans in the same pub to watch a

given match).

3. A group of UC Irvine commuters want to find out common routes to join a carpooling program, i.e., they

agree on sharing rides from their homes (or from a meeting location) to a common destination, e.g., as a

work center. Nonetheless, information about their routes should be revealed only for matching commutes.

4. A group of Nokia employees are willing to share their availabilities, e.g., to discover times and locations at

which at least 75% of them are available (if any), but do not want to reveal whether or not they are free in

any other timeslots.

The four examples above exhibit some similar features: users are not willing to reveal their information whole-

sale, rather, they want to find only matching interests.

Motivated by these examples, in this section, we introduce the problem of Privacy-preserving Interest Sharing

(PIS). Note that we intentionally describe PIS as a broad notion and we present a generic efficient and provably-

private cryptographic construct that targets a diversified set of scenarios.

PIS employs a semi-trusted server—introduced in Section 2—to assist the computation. However, the server

is never trusted with any user data (as opposed to a non privacy-preserving approach requiring all users to submit

their interests and let the server find the matches). An additional trivial approach would require users to share

a symmetric key, use a (deterministic) symmetric-key encryption scheme, and let the server match ciphertexts.

However, establishing and managing secret keys is not viable in several settings, like in scenarios 1-3 above.

For instance, in (1) the user calling the poll does not even know who is participating. Moreover, if the key is

compromised, all interests of all participants would be revealed.

Clearly, deploying actual solutions for the aforementioned problems requires application developers to ad-

dress specific system technicalities, and additional (potential) security issues, such as authentication, anonymity,

DoS prevention, etc., using standard state-of-the-art techniques. Indeed, our efforts are currently focused on the

deployment of actual privacy-enhanced applications relying on PIS.

Informal Definition of PIS. We assume N participants, P1, . . . , PN , where P1 acts as the Initiator of the protocol.

Each participant Pi (for i ∈ [1, N ]) holds a list of interests of size mi. Without loss of generality, we assume that

∀i,mi = m (i.e., all lists are equal size) to ease presentation. The interests of each participant Pi are denoted as

{bi:1, . . . , bi:m} – i.e., participants’ inputs in the PIS protocol.

The goal of PIS is to find the interests that are shared among at least a threshold of τ participants. Participants’

privacy needs to be guaranteed by ensuring that, after protocol execution, the participants do not learn anything
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[Public Parameters: (p, q, g,H,H ′)]

Initiator P1 Server Participant Pi (i = 2, . . . , N)
(On input {b1:1, . . . , b1:m}) (On input {bi:1, . . . , bi:m})

α ∈R Zq For 1 ≤ j ≤ m

ri:j ∈R Zq

µi:j = H(bi:j)
ri:j

(relay)
{µi:1, . . . , µi:m}

oo

For 1 ≤ j ≤ m
{µi:1, . . . , µi:m}

oo

µ′

i:j = (µi:j)
α {µ′

i:1, . . . , µ
′

i:m}
// (relay)

For 1 ≤ j ≤ m
{µ′

i:1, . . . , µ
′

i:m}
// For 1 ≤ j ≤ m

t1:j = H ′(H(b1:j)
α) ti:j = H ′((µ′

i:j)
1/ri:j )T (1) = {t1:1, . . . , t1:m}

//

T (i) = {ti:1, . . . , ti:m}
oo

Match
(

T (1), . . . , T (N)
)

{t∗|t∗is in at least τ T (i)’s}
oo

{t∗|t∗is in at least τ T (i)’s}
//

∀t∗: Output associated b1:j ∀t∗: Output associated bi:j

Figure 1: Our Private Interest Sharing (PIS) Protocol.

beyond matching interests. Also, server S learns no information about any participant’s input. (Recall privacy

definitions from Section 2.2).

3.1 PIS Protocol Specification

Our PIS construction is illustrated in Figure 1 and works as follows:

[1. Setup] The server, S, publishes public parameters (p, q, g,H,H ′), where: p, q are prime numbers s.t. q|p− 1,

g is a generator of the subgroup of size q, H : {0, 1}∗ → Z
∗

p, and H ′ : {0, 1}∗ → {0, 1}γ (given a security

parameter γ) are cryptographic (i.e., collision-resistant) hash functions. The Initiator, P1, privately picks a random

α ∈R Zq. (Note that all computations below are performed mod p.)

[2. Interaction] Each participant Pi (for i ∈ [2, N ]), on input {bi:1, . . . , bi:m}, for each j ∈ [1,m]:

• Picks ri:j ∈R Zq

• Computes and sends S µi:j = H(bi:j)
ri:j

Next, S forwards all received µi:j’s to P1, who, in turn, responds to participants (via S) with µ′

i:j = (µi:j)
α.

Finally, each participant Pi (for i ∈ [2, N ]), upon receiving µ′

i:j (j ∈ [1,m]), computes and sends S:

T (i) =
{

ti:j | ti:j = H ′

[

(µ′

i:j)
1/ri:j

]}

j∈[1,m]

Observe that ti:j = H ′[H(bi:j)
α]. Also, note that, as opposed to µi:j’s, S does not forward ti:j’s to any participant.

[3. Matching] First, the Initiator P1, for j ∈ [1,m] sends S:

T (1) = {t1:j | t1:j = H ′ [H(b1:j)
α]}j∈[1,m]

Next, S identifies all the items t∗ which appear in at least τ different T (i) sets, and outputs them to the original

participants that contributed them.

Finally, these participants learn (threshold) interest matching by associating t∗ to values bi:j producing it.
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Remark. PIS can (straightforwardly) be applied to the application examples discussed above. For instance, a

user may call for a poll on the best bars in the city, e.g., using a social networking application on her smartphones.

Every participant in the poll would engage in a PIS computation as described above. At the end of the poll, the

server, e.g., the social network provider, outputs the value t∗ that appears most times to the participants, who can

then reconstruct the most “popular” bar.

Complexity of PIS. The computational complexity of the protocol amounts to (N ·m) exponentiations for the

Initiator, whereas, all other participants perform (2m) modular exponentiations. We pick p to be 1024-bit long,

and q of size 160-bit (with no loss of security). Thus, using short exponents (160-bit), modular exponentiations in

the protocol are very efficient. Communication overhead for the server and the Initiator amounts to (N ·m) group

elements (i.e., 1024-bit) and hash values (i.e., 160-bit using SHA-1 [18]), whereas, for the other participants, the

overhead amounts to m group elements and hash values.

3.2 Privacy of PIS

Our PIS construction provides provable-privacy guarantees. Specifically, Privacy w.r.t. Server is guaranteed

as the server S only receives outputs of the one-way functions H,H ′, whose inputs cannot be “forged” unless S
knows either α (secret to P1) or some ri:j (secret to Pi’s). Thus, if an adversary A violates Privacy w.r.t. Server,

then we can construct another adversary that violates the collision resistance of the hash functions H,H ′.

Next, Privacy w.r.t. Other Participants immediately stems from security arguments of the Private Set Intersec-

tion technique in [31], proven secure under the One-More-DH assumption [5], on which our PIS protocol is based.

In other words, if any participant Pj has a non-negligible advantage AdvPj (A) (defined in Section 2.2), then we

can construct an attack to the Private Set Intersection protocol in [31]. We review the [31] protocol in Appendix B.

Recall, however, that [31] only provides a two-party protocol, while our variant extends to multiple parties.

Remark that we minimize overall overhead using the semi-trusted public server: indeed, available multi-party PSI

techniques [35] require several rounds of computation and computational complexity at least quadratic in the size

of participants’ inputs.

4 Private Scheduling

In this section, we explore the concept of Private Scheduling for smartphones. Recall example (4) from Sec-

tion 3: a group of employees want to schedule a meeting and select a timeslot such that at least a given number

of users are free. We now go a step further: instead of assigning a binary value to time periods or to proposed

locations (i.e., available/busy, suitable/unsuitable), we consider non-binary costs. For instance, the smartphone

can calculate the carbon footprint or the gas cost required to reach a given destination, or how much the user is

tied to a busy timeslot. Such a flexibility is particularly appealing in the mobile environment, where users carry

their device anytime and anywhere. Thus, smartphones can infer their preferences, habits, routes, and assist them

in determining availabilities and preferred locations. Therefore, we assume that a cost, between 0 and cmax, is

assigned to each timeslot and/or location. (In the rest of the paper we refer to “timeslots” only, while referring to

timeslots and/or locations.)

Users’ calendars potentially contain a high volume of sensitive information. Exposed availabilities could be

misused to infer affiliation, religion, culture, or correlated to other users. Hence, our goal is to allow users to find the

most suitable timeslot — i.e., the one with the minimum sum of costs — while learning nothing about single users’

availabilities. Our solutions employ the semi-trusted server introduced in Section 2 to aggregate users’ encrypted

inputs, but prevent the server from learning any information about them. One user, denoted as the Initiator, initiates

the protocol. She accepts a slightly increased computational overhead — a reasonable assumption, considering she

is the one willing to schedule the meeting. In return, only the Initiator obtains the outcome of the protocol.

6



4.1 The Private Scheduling Problem

Private Scheduling involves N different participants, P1, . . . , PN . P1 is the Initiator of the protocol. Each Pi

(for i ∈ [1, N ]) maintains a private calendar, divided into m timeslots. Typical timeslot granularities are 30 or 60
minutes (but one can tune it according to users’ preferences). Each Pi assigns a cost ci:j (0 ≤ ci:j ≤ cmax), for

each timeslot j ∈ [1,m] (e.g., ranging from 0 to 10).

Definition 1 (Aggregated Cost.) For a given timeslot j, the aggregated cost acj =
∑N

i=1 ci:j denotes the sum of

all participants’ cost.

Definition 2 (Threshold.) A threshold value, τ , depending on cmax and N , denotes the maximum acceptable

aggregated cost to consider a timeslot to be suitable. We consider τ = f(cmax, N). A typical value could be

τ = cmax
2 ·N .

The goal of Private Scheduling is to output to the Initiator all timeslots with aggregated costs smaller than τ (if

any).

4.2 PrivSched-v1

We now present our first solution for Private Scheduling, PrivSched-v1. Before, we provide some technical

background.

Preamble. PrivSched-v1 relies on the Paillier Cryptosystem [40], a public-key probabilistic encryption scheme

that provides additive homomorphism – i.e., the product of two ciphertexts decrypts to the sum of the corresponding

plaintexts. We refer to Appendix A for a detailed description.

Following the intuition of [17], additively homomorphic cryptosystems, such as Paillier, can be used to compute

homomorphic minimization (or maximization), i.e., one can find the minimum of some integers while operating

on ciphertexts only, thus, without learning any information on those integers. We extend this technique to obtain

the homomorphic argmin, i.e., to additionally find which integer corresponds to the minimum. We use a tagging

system based on powers of 2. Observe that this extension is, to the best of our knowledge, the first attempt in this

direction, thus, it can be of independent interest.1

We encode integers in a unary system: to represent an integer X , we repeat X times encryptions of 0’s. Throughout

the rest of the paper, we denote this encoding technique as vector-based representation (vbr):

x −→
vbr

−→
X = [E(0), . . . , E(0)

︸ ︷︷ ︸

x times

, E(1), E(z), . . . , E(z)]

E(·) denotes encryption using Paillier, and z a random number in the Paillier setting. (This is used for padding).

Then, we raise each element of the vbr to the value of a tag – a power of 2. (The tagging is performed on cipher-

texts, rather than plaintexts, as it will become clear later in the paper). After tagging, E(0) remains E(0), while

E(1) becomes E(tag): this allows to identify which value corresponds to the minimum, after the homomorphic

minimization is performed. (Note that that E(·) denotes encryption using Paillier, and z a random number in the

Paillier setting).

Observe that vector
−→
X has to be large enough to contain each possible domain value. Finally, note that – since

the Paillier cryptosystem is probabilistic – the elements E(·) (and the vectors too) are mutually computationally

indistinguishable and do not reveal any information about plaintext values.

1 E.g., the computation of homomorphic argmin may be useful for privacy-preserving data aggregation in sensor networks or urban sensing

systems [43].
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4.2.1 PrivSched-v1 Protocol Specification

To compute the homomorphic argmin, we use a tagging system over a vector-based representation, performed

by each participant. First, the Initiator creates (and transfer to the server S) a vector-based representation of her

costs, for each timeslots. Then, S sequentially asks other participants to update vectors with their own costs.

(Recall that vectors do not reveal any information about the underlying inputs). Finally, S computes (and transfer

to the Initiator) the homomorphic argmin and the Initiator learns the suitable timeslots (if any) upon decryption.

One crucial goal is to minimize computation overhead on the smartphones. Note that vbr’s are relatively short, as

we deal with small integers if small costs are chosen (e.g., cmax = 10). Nonetheless, we still want to minimize the

number of exponentiations to compute the vbr. To this end, we compute single encryptions of 0, 1, z, and a random

rand = E(0), where encryption of 0 is performed using a random number w, chosen with the same size as the

Paillier modulus. We then re-randomize the first element in vbr with a multiplication by rand. Next, we update

rand← (rand)exp, where exp is a relatively small random exponent, and we continue with the next element. We

describe the details of PrivSched-v1 below. The protocol is also illustrated in Figure 2.

[1. Initialization] First, the Initiator P1 generates Paillier public and private keys, denoted with PK1 and SK1,

respectively. (In the rest of this section, all encryptions/decryptions are always performed using these keys, thus,

to ease presentation, we omit them in our notation. Note that, if we need to specify the randomness used by the

encryption algorithm, we use the following notation: E(M,R) to denote encryption of M under PK1 using the

random value R).

Next, P1 computes, for each time slot j ∈ [1,m], the vbr −→vj :
−→vj = [E(0), . . . , E(0)

︸ ︷︷ ︸

c1:j

, E(1), E(z), . . . , E(z)
︸ ︷︷ ︸

τ−c1:j

]

Finally, P1 sends {−→v1 , . . . ,
−→vm}, along with the identities of the other participants, to S.

[2. Aggregation] After receiving the initial input from P1, the server S sequentially forwards {−→v1 , . . . ,
−→vm} to

each participant involved in the protocol.

Next, each Pi (for i ∈ [2, N ]) adds her cost ci:j to each vector −→vj (for j ∈ [1,m]) by shifting the elements of each

vector ci:j positions right, and replacing them by E(0):
−→vj ←

−→vj >> ci:j
def
= [E(0), . . . , E(0)

︸ ︷︷ ︸

ci:j

, vj,1, . . . , vj,τ−ci:j ]

To mask her modifications, Pi re-randomizes the vectors −→vj ’s by multiplying the generic element vj,k by a random

E(0). Finally, she sends the updated {−→v1 , . . . ,
−→vm} back to S.

Remark that this phase is repeated, sequentially, for each participant, P2, . . . , PN : at the end S obtains the final

{−→v1 , . . . ,
−→vm} where, for j ∈ [1,m]:

−→vj = [E(0), . . . , E(0)
︸ ︷︷ ︸

acj

, E(1), E(z), . . . , E(z)
︸ ︷︷ ︸

τ−acj

]

[3. Minimization] Upon receiving the final {−→v1 , . . . ,
−→vm}, S computes the homomorphic argmin: first, S raises

each element of −→vj to 2j ; then, it computes a vector −→q . (The sum of all tags should not exceed the size of the

Paillier modulus):

−→
v′j = (−→vj )

2j = [(vj,1)
2j , (vj,2)

2j , ..., (vj,τ )
2j ]

−→q = [q1, q2, . . . , qτ ]
def
= [

m∏

j=1

v′j,1, . . . ,

m∏

j=1

v′j,τ ] =

= [E(0), . . . , E(0)
︸ ︷︷ ︸

min

, qmin+1, . . . , qτ ]
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[Public Parameters: (N,m, τ, PKi)]

Initiator P1 Server Participant Pi (i = 2, . . . , N)
(On input {c1:1, . . . , c1:m}) (On input {ci:1, . . . , ci:m})

0 ≤ c1:j ≤ cmax 0 ≤ c1:j ≤ cmax

For 1 ≤ j ≤ m
{P1, ..., PN}

//

−→vj = [vj,1, . . . , vj,τ ]

For 1 ≤ k ≤ τ

vj,k =











E(0) if k < c1:j

E(1) if k = c1:j

E(z) if k > c1:j

{−→v1 , . . . ,
−→vm}

// (relay)
{−→v1 , . . . ,

−→vm}
// P2:

For 1 ≤ j ≤ m

where z 6= 1, 0 ∈R Zn Add ci:j times E(0) at

the beginning of −→vj{−→v1 , . . . ,
−→vm}

oo

. . .
// do the same sequentially

. . .
oo for P3 . . . PN

For 1 ≤ k ≤ τ

qk =
∏τ

j=1(vj,k)
2j

{q1, ..., qτ}
ooFor 1 ≤ k ≤ τ

If (D(qk)! = 0)
min = k − 1
φ = D(qk)

binary decomp of φ

leads to suitable timeslots chosen suitable timeslot
//

Figure 2: Our PrivSched-v1 Protocol.

Next, S sends −→q to the Initiator P1, that decrypts each element of −→q using SK1. The minimum aggregated cost

corresponds to the number of consecutive 0’s in the first positions of −→q . Also, qmin+1 decrypts to the sum of

tags corresponding to the timeslot(s) producing the minimum aggregated cost. We denote this sum with φ. P1

retrieves the index of this timeslot by observing which bits are equal to 1 in the binary decomposition of φ. P1 may

additionally retrieve the 2nd minimum timeslot by subtracting (φ · z) from the non-null decrypted elements of −→q .

Iterating this method leads to retrieval of all timeslots with aggregated cost less than τ .

Observe that τ is a system parameter and can be tuned to meet different requirements. Smaller values of τ result

into a smaller −→q vector: this would reduce computations performed by participants and by the server, as well

as the total bandwidth overhead. Also, the knowledge of P1 on aggregated cost values will be limited to fewer

timeslots, while the likelihood that the protocol execution terminates with no suitable timeslot would be increased.

Therefore, an appropriate choice of τ depends on the specific setting and should be agreed on by the participants.

At the end of the protocol, only P1 learns the timeslots with aggregated cost smaller than the threshold, and takes

appropriate actions to schedule a meeting. Standard encryption techniques can be used by P1 to multi-cast the

meeting invitation to the other participants.

Complexity of PrivSched-v1. During each protocol execution, the Initiator performs 4 Paillier encryptions:

E(1), E(0), E(z) and rand = E(0, w), where w is a random value chosen with the same size as the Paillier

modulus. To create vector −→v1 , the Initiator selects the encryptions E(0), E(1) or E(z), and multiplies them by
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a different rand to perform re-randomization. Thus, the Initiator performs (m · τ) multiplications and small

exponentiations (to create {−→v1 , . . . ,
−→vm}), and at most τ decryptions (to retrieve suitable timeslots). Alternatively,

to create the vector, a pool of pre-computed E(0)’s can be used: in this case, the Initiator performs 3 encryptions

and (m · τ) multiplications with pre-computed E(0)’s. All other participants perform 2 encryptions (E(0) and

rand), and (m · τ) multiplications and small exponentiations (to update the vectors). If pre-computations are used,

they perform 1 encryption and (m · τ) multiplications. The server performs (m · τ) exponentiations for the tagging

and (m · τ) multiplications to create vector −→q . The communication overhead amounts to (m · τ) ciphertexts (i.e.,

2048-bit each) for all participants. Additionally, the Initiator receives τ ciphertexts (in −→q ).

4.2.2 Privacy of PrivSched-v1

All vectors are encrypted under the Initiator’s public key, thus, neither the participants nor the server can

violate the privacy requirements described in Section 2.2, by virtue of the CPA-security of the Paillier cryptosys-

tem [40]. In other words, if Privacy w.r.t. Server is not guaranteed, then one can construct an adversary violating

the Decisional Composite Residuosity assumption [40].

Then, Privacy w.r.t. Other Participants is straightforwardly guaranteed, since participants only get (from the

server) the minimum of the aggregated costs and no other information about other participants’ inputs.

Given that the server and the Initiator do not collude, the server computes the minimization, blindly, i.e., over

encrypted data. Collusion between the server and the Initiator may lead to violate other participants’ privacy, while

a collusion between the server and other participants would be irrelevant, as they could not decrypt. However,

if N − 1 participants colluded with the server against the Initiator, they could recover (potentially) valuable in-

formation from the output of the protocol. Collusions can be thwarted using Threshold Cryptography [42] and,

specifically, the threshold version of Paillier cryptosystem, presented in [19]. Recall that in a (t,N)-threshold

cryptosystem, the private key to decrypt is shared between all the participants. Hence, to decrypt a ciphertext, t
over N participants should agree and execute some computations to jointly perform the decryption. Using a thresh-

old version of Paillier cryptosystem ensures that the Initiator, even if colluding with the server, cannot maliciously

decrypt more information than she should. Note, however, that at this stage our protocol implementations do not

address collusion between participants.

4.3 PrivSched-v2

A potential slow-down in PrivSched-v1 may result from each participant computing or updating the vector-

based representation (vbr) of her costs. This increases the communication overhead and requires each participant

to compute operations sequentially, one after the other. Therefore, we introduce a new protocol variant, called

PrivSched-v2. Participants encrypt directly their costs without using the vbr, thus, we can perform the aggregation

in parallel, instead of sequentially, since we no longer use the vbr at each participant’s side. This modification

reduces server’s waiting time and improves the overall performance. The server relies on a mapping, pre-computed

by the Initiator, to transform each aggregated cost into its vbr and perform the homomorphic argmin. Again, our

improvements might be of independent interest in the context of homomorphic computation.

4.3.1 PrivSched-v2 Protocol Specification

We present our modified protocol—namely, PrivSched-v2—below. The PrivSched-v2 protocol is also illus-

trated in Figure 3.

[1. Setup] First, each participant Pi computes public/private keypairs (PKi, SKi). Public keys, PKi, are dis-

tributed, before protocol execution, using the server.

The Initiator P1 computes a mapping, MAP , and sends it to the server S. S will use it during aggregation to
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[Public Parameters: (N,m, τ, PKi,MAP )]

Initiator P1 Server Participant Pi (i = 2, . . . , N)
(On input {r1, a1, y1, c1:1, . . . , c1:m}) (On input {ri, ci:1, . . . , ci:m})

r1, a1, y1 ∈R Z
∗

n ri ∈R Z
∗

n

0 ≤ c1:j ≤ cmax 0 ≤ ci:j ≤ cmax

{P1, ..., PN}
//

For 2 ≤ i ≤ N Pick xi ∈R Zn

〈xi, E(0, y1)〉PKi
// (relay)

〈xi, E(0, y1)〉PKi
//

For 1 ≤ j ≤ m For 1 ≤ j ≤ m

ec1:j = E(c1:j , a1 · r
j
1 · y

c1:j
1 ) eci:j = E(ci:j , r

j
i · y

ci:j
1 )

{ec1:1, ..., ec1:m}
// For 1 ≤ j ≤ m

{eci:1, ..., eci:m}
oo

eacj =
∏N

i=1 eci:j

er1 = E(−
∑N

i=2 xi, r1) eri = E(xi, ri)
er1

// E(0, ar) =
∏N

i=1 eri
eri

oo

where ar =
∏N

i=1 ri mod n2

For 1 ≤ j ≤ m

Find eacj in MAP (1st column) · E(0, ar)j

and store corresponding mapping as −→vj

For 1 ≤ k ≤ τ

qk =
∏m

j=1(vj,k)
2j

{q1, ..., qτ}
oo

For 1 ≤ k ≤ τ

If (D(qk)! = 0)
min = k − 1
φ = D(qk)

binary decomp of φ

leads to suitable timeslots chosen suitable timeslot
//

Figure 3: Our PrivSched-v2 Protocol.

transform each aggregated cost into the corresponding vbr. Assuming Nmax is the maximum number of partici-

pants, τmax = f(cmax, Nmax), and (a1, y1) are random values in the Paillier setting generated by P1, MAP is

pre-computed by P1 as follows:

E(0, a1) −→ [E(1), E(z), E(z), E(z), . . . , E(z)]

E(1, a1y1) −→ [E(0)
︸ ︷︷ ︸

1

, E(1), E(z), E(z), . . . , E(z)]

... −→ ...

E(τmax, a1y
τmax
1 ) −→ [E(0), E(0), E(0), E(0), . . . , E(0)

︸ ︷︷ ︸

τmax

]

Note that y1 and a1 randomize the mapping and prevent S from learning any private information. y1 is raised to

the value of the aggregated costs in order to randomize the costs differently. Since (y1)
0 = 1, we add the random

value a1 to address the special case where an aggregated cost equals 0. In addition, a1 simplifies future updates:

Pi would only need to change this random value to re-randomize the mapping without performing exponentiations
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again. Finally, we let P1 shuffle the mapping to randomize the position of each aggregated cost. (Recall that

encryptions are again computed using PK1).

[2. Initialization] First, P1 picks a random r1, then, for each time slot j ∈ [1,m], computes and sends S the value

ec1:j :

ec1:j = E
(
c1:j , a1 · (r1)

j · (y1)
c1:j

)
=

= E(c1:j , a1) · (E(0, r1))
j · (E(0, y1))

c1:j

Next, P1 picks N − 1 random values, (x2, . . . , xN ). For each i ∈ [2, N ], P1 encrypts 〈xi, E(0, y1)〉 under the

public key PKi of each participant Pi and sends them to S, which forwards to the corresponding participant.

(Note that we need this encryption to hide these values from the server).

Finally,P1 computeser1=E(−(
∑N

i=2 xi), r1) andsendsittoS.

[3. Aggregation] First, each participant Pi generates a random value ri in the Paillier setting generated by P1.

Then, for each timeslot j ∈ [1,m], Pi encrypts her cost ci:j , using as randomness the decrypted E(0, y1):

eci:j = E (ci:j , ri · (y1)
ci:j )

= E(ci:j , 1) · (E(0, ri))
j · (E(0, y1))

ci:j

Then, Pi sends S {eci:1, . . . , eci:m} and E(xi, ri).
Next, S computes the (encrypted) aggregated cost of each timeslot j ∈ [1,m], using Paillier’s homomorphism:

eacj
def
=

∏N
i=1 eci:j = E

(
acj , (ar)

j · a1 · (y1)
acj

)

where ar
def
=

∏N
i=1 ri mod n2 (n being the public Paillier modulus of PK1). Finally, S reconstructs:

E(0, ar) = E(−(

N∑

i=2

xi), r1) · E(x2, r2) · . . . · E(xN , rN )

[4. Minimization] In this phase, the server S computes the (encrypted) minimum aggregated cost and sends it to

P1. To this end, S first transforms each encrypted aggregated cost (eacj) into its vbr. Next, S computes the vbr

using the mapping MAP and the value E(0, ar), namely, for each timeslot j ∈ [1,m], S:

(i) Multiplies the 1st column of MAP by E(0, ar) and gets: (recall that the position of each aggregated cost is

shuffled in the mapping stored by the server).

E(0, arja1) −→ [E(1), E(z), E(z), . . . , E(z)]

E(1, arja1 · y1) −→ [E(0)
︸ ︷︷ ︸

1

, E(1), E(z), . . . , E(z)]

E(2, arja1 · y
2
1) −→ [E(0), E(0)

︸ ︷︷ ︸

2

, E(1), E(z), . . . , E(z)]

... −→ ...

E(τmax, ar
ja1 · y1

τmax) −→ [E(0), E(0), E(0), . . . , E(0)
︸ ︷︷ ︸

τmax

]

(ii) Finds eacj in MAP and stores the right side of the mapping as −→vj .

(iii) Increments j and goes back to (i).
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Then, S starts the homomorphic argmin using vectors −→vj , i.e., the vbr of each aggregated cost, leveraging the

following tagging technique. The server raises each element of −→vj to 2j (for j ∈ [1,m]):

−→
v′j = (−→vj )

2j = [(vj,1)
2j , (vj,2)

2j , ..., (vj,τ )
2j ]

Next, the server computes the vector −→q and sends it to P1:

−→q = [q1, q2, . . . , qτ ]
def
=





m∏

j=1

v′j,1, . . . ,
m∏

j=1

v′j,τ





= [E(0), . . . , E(0)
︸ ︷︷ ︸

min

, qmin+1, . . . , qτ ]

Finally, P1 decrypts each element of −→q using SK1. As in PrivSched-v1, observe that the minimum aggregated

cost corresponds to the number of consecutive 0’s in the first positions of −→q . qmin+1 decrypts to the sum of tags

corresponding to the timeslot(s) producing the minimum aggregated cost. Again, we denote this sum with φ. P1

retrieves the index of this timeslot by observing which bits are equal to 1 in the binary decomposition of φ. P1 may

additionally retrieve the 2nd minimum timeslot by subtracting (φ · z) from the non-null decrypted elements of −→q .

Iterating this method leads to retrieval of all timeslots with aggregated cost smaller than τ .

At the end of the protocol, only P1 learns the timeslots with aggregated cost smaller than the threshold, and takes

appropriate actions to schedule the meeting. Again, standard encryption techniques can be used by P1 to multi-cast

meeting invitation to the other participants.

Complexity of PrivSched-v2. During each protocol execution, the Initiator performs, in the worst case, (cmax +
3) Paillier encryptions and (cmax+3m) multiplications to create ec1:j for j ∈ [1,m]. In addition, the Initiator needs

N − 1 Paillier encryptions to protect 〈xi, E(0, y1)〉 and at most τ decryptions to retrieve suitable timeslots. Each

participant performs one decryptions to get 〈xi, E(0, y1)〉, and (cmax+2) Paillier encryptions plus (cmax+3 ·m)
multiplications to create encrypted costs. The server performs (m · τ) exponentiations for tagging and (m · τ)
mults to create−→q . The communication overhead amounts to m ciphertexts (i.e., 2048-bit each) for all participants.

Additionally, the Initiator receives τ ciphertexts (in −→q ).

4.3.2 Privacy of PrivSched-v2

Participants only receive E(0, y1) and E(xi), encrypted under the Initiator’s public key, thus, similar to

PrivSched-v1, they cannot violate the privacy requirements described in Section 2.2, by virtue of the CPA-security

of the Paillier cryptosystem [40]. The Initiator gets the vector −→q containing only suitable timeslots (i.e., whose

aggregated cost is smaller than τ ). Considerations about possible collusion are the same as in PrivSched-v1, thus,

we do not repeat them here.

4.3.3 Potential Disclosure of Aggregated Costs

Compared to PrivSched-v1, PrivSched-v2 trades off some privacy guarantees (w.r.t. the server) for increased

efficiency. Since equal aggregated costs may appear at the same line of the mapping, the server could detect re-

peated aggregated costs. Considering that participants provide weekly or monthly calendar, the highest costs is

probably used for nights, weekends, holidays, and busy timeslots are most likely the ones appearing the most.

Therefore, the server could easily infer timeslots with the highest cost counting the number of collisions in the

mapping. One possible countermeasure is to use a secret permutation of the timeslots, known only to the par-

ticipants. This way, information obtained by the server is obfuscated and she cannot get any information about

date/time of repeated timeslots. Note that removing nights, weekends, or holidays, will also modify the distribution
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of busy timeslots which will tend to be closer to the most available ones, thus, reducing the probability of correctly

guessing which timeslots correspond to the highest cost.

We have already pointed out the above trade off in [13], nonetheless, in this version, we also discuss another

way that a malicious server could infer all aggregated costs. Note, in fact, that the ciphertexts in MAP , published

by P1, depend from each other; specifically, in (un-shuffled) MAP , all pairwise consecutive values have the same

ratio. Therefore, the server can attempt to un-shuffle MAP by trying all possible shuffling until it finds one where

all ratios are equal. Once, it has reversed the permutation, the server can identify aggregated costs for each timeslot.

While the above approach would require an exponential amount of work (i.e., try all possible shuffling), the server

could instead mount the following un-shuffling attack. Observe that, for each pair (ρi, ρj) in the un-shuffled vector

of aggregated costs, it holds ρi/ρj = (g ∗ y1
n)i−j mod n2 (due to Paillier encryption properties). There are

O(τ2max) of such pairs. When the server receives the shuffled vector, it can compute all pairs as described above.

Note that the server finds out that 2 values occur once (i−j = τmax or−τmax), 2 that occur twice (i−j = τmax−1
or 1 − τmax), and so on, up to 2 values that occur τmax times (i − j = 1 or −1). The server also recognizes that

pairs (ρ′i, ρ
′

j) in the shuffled vector whose quotients are a value occurring τmax times and for a chain such that

1 = ρ′j0ρ
′

i1 = ρ′j1/ρ
′

i2 = . . . = ρ′jτmax−1/ρ
′

iτmax
. Then, it either holds ρ′ik = ρk or ρ′ik = ρτmax−k (for

k ∈ [0, . . . , τmax]), thus, the server can identify either the permutation or its reverse. Again, note that a possible

countermeasure it to simply use a secret permutation of the timeslots, known only to the participants, so that the

server could only infer aggregated cost but not the corresponding timeslots.

4.4 Symmetric-Key Private Scheduling: S-PrivSched

The PrivSched-v1 and v2 protocols involve a limited yet non-negligible number of public-key cryptographic

operations. Although our experimental analysis (presented in Section 5) provides encouraging performance results

for PrivSched-v1 and v2, we now present yet another construction, S-PrivSched (Symmetric PrivSched), which

only involves symmetric-key operations, and reduces computational and communication overheads. Our intuition

is the following: Participants establish a shared secret, e.g., the Initiator broadcasts it using an “out-of-band”

channel, such as SMS, or she encrypts it using the public key of each of the other participants. Then, we use an

additively homomorphic symmetric-key cryptosystem (proposed in [10]) to perform cost aggregation.

Preamble. S-PrivSched leverages the cryptosystem in [10], a tailored modification of the Vernam cipher [44] to

allow plaintext addition to be done in the ciphertext domain, proven to achieve security (more precisely, indistin-

guishability) against chosen plaintext attacks (IND-CPA). Below, we review its algorithms:

• Encryption:

1. Represent the message msg as an integer m ∈ [0,M − 1], where M is the modulus. (See below).

2. Let k be randomly generated keystream, where k ∈ [0,M − 1].

3. Compute ct = Enck(m) = (m+ k) mod M .

• Decryption: Deck(ct) = (ct− k) mod M = m

• Addition of ciphertexts: Let ct1 = Enck1(m1), ct2 = Enck2(m2). Aggregated ciphertext: ct = ct1 +
ct2 mod M = Enck(m1 +m2) (where k = k1 + k2).

Observe that M needs to be sufficiently large: 0 ≤ msg < M , or
∑N

i=1mi < M if N ciphertexts are added.

Also note that, although above we assume k to be randomly generated at all times, one can generate a single master

key K and derive successive keys as the output of an appropriate pseudorandom function [24], or the output of a

length-preserving hash function (as shown in [10]).
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[Public Parameters: t,m, n,M ]

User Pi (i = 1, . . . , N) Server
(On input SK, {ci:1, . . . , ci:m})

For 1 ≤ j ≤ m

ki:j = H(SK||i||j||t)

eci:j = ki:j + ci:j
{ec1:1, . . . , ec1:m}

//

For 1 ≤ j ≤ m

eacj =
(

∑N
i=1 eci:j

)

mod M

P1: For 1 ≤ j ≤ m
{eac1, . . . , eacm}

oo

For 1 ≤ i ≤ N

ki:j = H(SK||i||j||t)

acj = eacj −
(

∑N
i=1 ki:j

)

Figure 4: Our S-PrivSched Protocol.

4.4.1 S-PrivSched Protocol Specification

We now present S-PrivSched (also illustrated in Figure 4). We use the same system model introduced for the

PrivSched-v1 and v2 constructs, thus, we do not repeat it here.

[1. Setup] The Initiator, P1, selects M > (cmax · Nmax), where cmax is the maximum cost participants may

associate to a timeslot and Nmax the maximum number of participants.

P1 also selects a random SK ∈ [0,M − 1] and broadcasts SK and a nonce t to participants P2, · · · , PN over an

out-of-band channel. In this version of the protocol, we assume that SK is sent over SMS, thus, we assume the

cellular network operator does not eavesdrop SMS traffic and collude with the (scheduling) service provider. One

can also relax this assumption by using the public keys of all other participants to encrypt SK and share it over

insecure channels. However, this comes at the cost of N − 1 additional asymmetric encryptions.

[2. Initialization] Each participant (Initiator included), Pi (for i ∈ [1, N ]), for each timeslot j ∈ [1,m], computes:

• ki:j = H(SK||i||j)

• eci:j = ki:j + ci:j

and sends {eci:1, . . . , eci:m} to the server S.

[3. Aggregation] Upon receiving {eci:j} i ∈ [1, N ], j ∈ [1,m], S aggregates the costs, i.e.:

• Computes eacj = (
∑N

i=1 eci:j) mod M ∀j ∈ [1,m]

• Sends {eac1, . . . , eacm} to P1

[4. Minimization] P1 obtains the aggregated costs upon decryption:

• ki:j = H(SK||i||j) ∀i ∈ [1, N ], j ∈ [1,m]

• acj = ecj − (
∑N

i=1 ki:j) ∀j ∈ [1,m]

Finally, P1 obtains aggregated costs for each timeslot: she computes the timeslot(s) with minimum cost and takes

appropriate actions to schedule the meeting.

Complexity of S-PrivSched. All the participants only perform symmetric key operations, specifically, (N ·m)
decryptions/subtractions (Initiator) and m encryptions/additions (participants). Communication overhead amounts
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to m ciphertexts for each participant and N ·m for the server.

4.4.2 Privacy of S-PrivSched

Privacy of S-PrivSched stems from the security of the cryptosystem in [10]. Privacy w.r.t. the Server S
is guaranteed as S only receives ciphertexts. Also, Privacy w.r.t. Other Participants is straightforward since

participants never receive other participants’ costs. Also, P1 only obtains aggregated costs. Compared to Paillier-

based PrivSched constructs, however, P1 obtains aggregated costs for all timeslots. Indeed, we do not know how to

let the server compute the minimization using the homomorphic symmetric-key cryptosystem. Considerations and

possible countermeasures about potential collusion are somewhat similar to PrivSched-v1, thus, we do not repeat

them here.

5 Performance Analysis

All proposed protocols were implemented on Nokia N900 smartphones. We developed a prototype application

for Private Scheduling, instantiating PrivSched-v1 and v2, S-PrivSched, and we used PIS to implement a threshold

binary version of Private Scheduling (see scenario (4) in Section 3). Recall that the four algorithms provide

(slightly) different privacy properties (reviewed below) and require somewhat different system settings (e.g., key

management), which lead to differing computational and communication costs. Thus, our goal is not to compare

their performance, rather, to assess their practicality for real-world deployment and to provide an indication of the

overhead experienced by users.

In our prototypes, we used the Qt framework [38] and the open-source cryptographic libraries libpaillier [6] and

libgmp [20], on several Nokia N900 devices (equipped with a 600 MHz ARM processor and 256 MB of RAM).

We also used a Dell PC with 2.27 GHz CPU (16 cores) and 50 GB of RAM to instantiate the semi-trusted server.

We ran tests with an increasing number of participants (ranging from 2 to 8) and a fixed number of timeslots,

i.e., 7 · 24 = 168 to cover one week with one-hour granularity, with randomly-generated calendars. We define

cmax = 10 and τ = cmax
2 ·N = 5N . In our tests, we used a local 802.11 Wi-Fi network.

For every algorithm, we measured the processing time of the server, the Initiator, and of a single participant.

The latter is computed as the average of processing times of all participants, excluding the Initiator. We also

evaluated the communication overhead. Results are averaged over 100 iterations. We also ran tests for a baseline

protocol providing no privacy (i.e., calendars were transmitted to the server, which computed the minimization in

the clear).

Results are plotted in Figure 5, 6, and 7. The top row measures bytes exchanged (using logarithmic scale),

bottom row – processing times in milliseconds. Confidence intervals were very small and omitted for visibility.

(Standard deviation was smaller than 282 bytes and 280ms).

We observe that:

1. As expected, PrivSched-v1, compared to its most similar counterpart (PrivSched-v2), incurs an increased

bandwidth overhead, that grows with the number of participants. Therefore, we recommend its use only in

settings where participants do not want the server to learn that some timeslots may have equal aggregated

costs.

2. PrivSched-v2 incurs a reasonable overhead and scales efficiently even when the number of participants is

increasing. Nonetheless, recall that the mapping creates a potential privacy degradation. Also, some limited

information has to be pre-exchanged among the participants.

3. S-PrivSched incurs very low computational and communication overhead — almost negligible compared to

the baseline protocol with no privacy. However, it always reveals aggregated costs of all timeslots to the

Initiator, and requires the distribution of a shared secret (e.g., via SMS).
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Figure 5: Initiator
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Figure 7: Server

4. PIS addresses several different applications beyond scheduling; nonetheless, it is worth observing that it

is practical enough for actual deployment. Indeed, the computational and communication overheads are

independent of the number of participants, and incur a constant overhead, except for the Initiator and the

server — a reasonable assumption considering that the Initiator is the one willing to start off the protocol.

We conclude that our implementations, though achieving different privacy properties in different system set-

tings, are practical enough for deployment. Indeed, even the most computationally demanding protocols, such as

PrivSched-v1-2, require only a few seconds in most realistic settings.

6 Related Work

In the analysis of related work, we first discuss related cryptographic constructs addressing multi-party com-

putation problems. Next, we analyze techniques employing third-party services, and, finally, solutions for the

problems of private scheduling and privacy-preserving interest sharing.

Related Cryptographic Primitives. Secure Multi-Party Computation (MPC) [25] allows several players, each

equipped with a private input, to compute the value of a public function f over all inputs. Players only learn the

output of f , and nothing else (beyond what revealed by the computation). Generic MPC would indeed solve all

the problems we consider, however, it is well-known that MPC involves several rounds of computations, as well

as computational and communication costs far too high to be deployed on smartphones, while special-purpose

protocols are generally much more efficient.2 Multi-party Private Set Intersection [35] allows several players to

privately compute the intersection of their private sets, such that they learn nothing beyond the intersection. Thus

far, however, only solutions limited to the two-party set intersection have achieved practical efficiency [21, 35, 27,

15, 31, 14]. Whereas, constructs for multiple players require a number of long exponentiations quadratic in the

2 For instance, remark that the communication complexity of MPC grows quadratically with the number of participants.
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size of the sets [35] – well beyond the requirements of our smartphone setting. Further, PSI constructs cannot be

used for the non-binary private scheduling problem. Finally, note that, to the best of our knowledge, there is no

known construct for a private threshold set-intersection problem, which would be relevantly close to PIS, but only

for threshold set-union [35].

Server-assisted Computations. Over the last years, semi-trusted third parties have been employed to assist

privacy-preserving computations. We do not consider naı̈ve solutions using fully trusted third parties (whereto

all players surrender their inputs), or requiring the existence of specific hardware or devices, such as a Trusted

Platform Modules. (Semi-trusted parties are only assumed not to collude with other players). Following Beaver’s

intuition [4], [9] introduces a semi-trusted third party to obliviously compare two numbers (e.g., to solve the

millionaire’s problem [45]). [16] uses the same intuition to solve the scalar product problem. Note, however, that

these solutions are only designed for two parties and it is not clear how to adapt them to a multi-party setting. Also,

to the best of our knowledge, there is no work exploring such intuition in the context of smartphone applications.

Private Scheduling. To the best of our knowledge, there is no solution targeting the private scheduling problem

in the setting of smartphone users. Prior work includes distributed constraint satisfaction in a fully-distributed

approach [49, 46, 36, 34, 28]. These solutions incur high computation and communication overhead and are

unpractical for mobile environments. Recently (and independently from our work), a solution to a binary Private

Scheduling problem (based on homomorphic encryption) has been presented for smartphone users leveraging a

semi-trusted server [7].

Private Interest Sharing. Besides primitives discussed above, several techniques have focused on problems

similar to Private Interest Sharing. The work in [48] proposes solutions to the nearby-friend problem, i.e., to let two

users learn whether their distance is smaller than a given radius. It uses homomorphic encryption [40] to compute

algebraic operations over encrypted data. One of the proposed solutions, Louis, relies on a third user to assist

computation and reduce overhead, i.e., it acts as a semi-trusted party. Thus, Louis appears very similar to applying

PIS to the nearby-friend problem. However, it is not clear how to extend Louis to a multi-party setting, e.g., to

learn whether (at least) τ friends are nearby. Next, although in Louis input locations are two-dimension coordinates,

while we only consider locations mapped to tags or cells, Louis involves more communication steps (four vs. two

in PIS) and more expensive cryptographic operations (Paillier encryptions vs 160-bit exponentiations). Solutions

that do not involve a semi-trusted party, such as Lester [48], incur much higher overhead and do not scale to

multiple users, even if locations are mapped to cells, such as in Pierre [48], Wilfrid [47], and NFP [11].

Also, the recent position paper in [41] discusses how Location-Based Social Applications (LBSAs) should

process friends’ location coordinates only in their encrypted form. Further, some recent results addressed location

privacy concerns in geo-aware social networks [22] and proximity-based services [37]. Finally, note that some

of the applications envisioned in the context of PIS or Private Scheduling (e.g., polls) also resemble e-voting

problems [26]. In reality, however, e-voting involves several different entities with specific roles and has very

different requirements.

7 Conclusion & Future Work

In this paper, we showed how privacy can be efficiently and effectively protected in smartphone applications

that deal with users’ personal information. We described an architecture that allows a number of users to perform

privacy-preserving computations assisted by a semi-trusted server and minimize related overhead. The server is

not trusted with the data and performs computation blindly over encrypted data.

We presented several application scenarios, and provided for each of them an appropriate solution. In doing so,

we encountered and addressed a number of challenges, which may be of independent interest (e.g., the computation

of homomorphic argmin). Experimental analysis attested to the practicality of our techniques and led to interesting

observations to design next generation’s privacy-enhanced smartphone applications.
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Our current and future research includes deployment of other applications beyond those discussed in this paper,

as well as the optimization of the cryptographic operations.
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Appendix

A The Paillier Cryptosystem

The Paillier Cryptosystem [40] relies on the decisional composite residuosity assumption. Given a number

n = pq (where p and q are two large prime numbers), we define z as a n-th residue modulo n2 if there exists

a number y ∈ Z
∗

n2 s.t. z = yn mod n2. The problem of deciding if z is a n-th residue is believed to be

computationally hard. The Paillier Cryptosystem involves the following algorithms:

• Key generation: Select n = pq where p and q are two random large prime numbers. Pick a random generator

g ∈ Z
∗

n2 s.t. µ = (L(gλ mod n2))−1 mod n exists, given that λ = lcm(p − 1, q − 1) and L(x) = (x−1)
n .

The public key is (n,g) and the private key is (λ,µ).

• Encryption: To encrypt a message m ∈ Zn, pick a random r ∈ Z
∗

n and compute the ciphertext: c =
Er(m) = gm · rn mod n2. The resulting ciphertexts are then elements of Zn2 .

• Decryption: Given a ciphertext c ∈ Zn2 , the decryption is performed by: m = D(c) = L(cλ mod n2) ·

µ mod n where L(x) = (x−1)
n .

Indistinguishable encryption. The Paillier Cryptosystem is a probabilistic encryption scheme. Consequently,

two encryptions (c1 = Er1(m) and c2 = Er2(m)) of the same value m encrypted with different random values

(r1 and r2) are computationally indistinguishable, i.e., one cannot tell whether or not they encrypt the same two

plaintexts (without decrypting them).

Homomorphic properties. Paillier is also additively homomorphic. Hence, given Er1(m1) = (g)m1 ·(r1)
n mod

n2 and Er2(m2) = (g)m2 · (r2)
n mod n2, one can easily compute:

Er1r2 mod n2(m1 +m2 mod n) = Er1(m1) · Er2(m2) mod n2 =

= (g)m1+m2 · (r1r2)
n mod n2
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It then follows that Paillier also allows the private multiplication. Given Er(m) = gm · rn mod n2 and z ∈ Zn,

we obtain:

Erz mod n2(m · z mod n) = Er(m)z mod n2 = gmz · rnz mod n2

B Private Set Intersection from [31]

We now review the Private Set Intersection (PSI) construction, recently proposed by Jarecki and Liu in [31],

on which our Private Interest Sharing protocol from Section 3 is based. This protocol is proven secure in the

Random Oracle Model (ROM), under the One-More Gap Diffie-Hellman (OMGDH) assumption [5], in presence

of malicious adversaries.

We present Jarecki and Liu’s PSI in Figure 8. Note that the protocol executes on public input p, q,H1(·), H2(·);
specifically, p is a large prime, q is a large divisor of p− 1, while H : {0, 1}∗ → Z

∗

p, and H ′ : {0, 1}∗ → {0, 1}γ

(given a security parameter γ) are two cryptographic hash functions. All computation is performed “mod p”.

Compared to Figure 2 in [31], we slightly modify some notation, to fit presentation of our Private Interest Sharing

protocol from Section 3.

Observe that our description of the PSI protocol is simplified, as we only need semi-honest security, while the

original protocol in [31] is geared for malicious adversaries. Specifically, to prevent the sender from maliciously

deviating from the protocol, [31] let sender and receiver interact in a zero-knowledge proof π = PoK{α|zi =
(yi)

α, i = 1, . . . , v}. If π does not verify, the receiver aborts execution. Also, to facilitate input extraction

during simulation (needed by the proofs in the malicious model), the protocol in [31] actually computes ts:j =
H2[H1(sj), H1(sj)

α] and tc:i = H2[H1(ci), (zi)
(1/ri)].

[Public Parameters: p, q,H1(·), H2(·)]

Sender (or Server) Receiver (or Client)
(On input S = {s1, . . . , sw}) (On input C = {c1, . . . , cv})

α ∈R Zq For 1 ≤ i ≤ v

hi = H1(ci)

ri ∈R Zq , yi = (hi)
ri{y1, . . . , yv}

oo

For 1 ≤ i ≤ v

zi = (yi)
α {z1, . . . , zv}

//

For 1 ≤ j ≤ w For 1 ≤ i ≤ v

ts:j = H2(H1(sj)
α) tc:i = H2((zi)

(1/ri))Ts = {ts:1, . . . , ts:w}
//

Let Tc = (tc:1, . . . , tc:v)

Output {ci|ci ∈ C ∧ tci ∈ Tc ∩ Ts}

Figure 8: Private Set Intersection Protocol by Jarecki and Liu [31].
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