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Abstract. In this note, we define a cryptosystem based on non-commutative

properties of groups. The cryptosystem is based on the hardness of the problem

of factoring over these groups. This problem, interestingly, boils down to
discrete logarithm problem on some Abelian groups. Further, we illustrate

this method in three different non-Abelian groups GLn(Fq), UTn(Fq) and the

Braid Groups.

1. Introduction

The discrete logarithm problem (DLP) in a group G is the following:

Given g ∈ G, gx ∈ G, find x.

Natural choices for G are cyclic subgroups of algebraic groups, for example, the
multiplicative group of a finite field, the set of rational points on an Abelian vari-
ety, or linear groups over finite fields. Investigations about the complexity of this
problem have been carried out in many contexts. The hardness of solving this
problem is the basis for many public key cryptosystems (see [6] ) .

The noticeable feature in all of these investigations is the absence of the use of
non-commutation properties. In this note, we demonstrate how to define a similar
“one-way” function (FACTOR) in a non-Abelian group. As examples we suggest
that one considers groups like GLn(Fq), UTn(Fq), Braid Groups.

Analysis of the FACTOR function in these groups show that it is an approximate
one-way function. This means that the inverse to the FACTOR is easy to compute,
while the function itself is hard to compute. This sets us up for a cryptographic
application.

Using FACTOR function as a primitive we therefore define a Public Key Cryp-
tosystem. We define an encryption/decryption mechanism which is comparable to
the El-Gamal system in cryptography using the discrete logarithm problem. The
El-Gamal system can be described as follows: Let G be a finite cyclic group with
generator g, and Let Alice have a public key which consists of G,g,gx where x is
Alice’s private key. To send a message m ∈ G, Bob picks an integer y and sends
the cipher text gy, gxym to Alice. To decrypt, Alice calculates (gy)x and inverts it
to retrieve m.

The El-Gamal cryptosystem is clearly easy to crack in any group where the DLP
can be solved easily, because the numbers x and y can be solved for. In current
practice, the El-Gamal system is used in the group of points of an Elliptic curve
over a finite field and jacobians of hyper elliptic curves. We remark that the DLP
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and related cryptosystems have been studied in cyclic subgroups of GLn of finite
fields, and have been shown to be computationally insecure (see [7]).

2. FACTOR and relations to the Discrete Logarithm Problem

Let G be any finite group with identity e. Let g ∈ G, h ∈ G and let the cyclic
subgroup generated by any element x ∈ G be denoted by < x > . In order to define
the FACTOR problem we assume that < g > ∩ < h >= {e}. Let f be a function
defined as follows:

f :< g > × < h >−→ G; f(gx, hy) = gx · hy ∈ G
We show that f is injective, because if not, then

f(gx, hy) = f(ga, hb) =⇒ gxhy = gahb

=⇒ gxg−a = hbh−y =⇒ gx = ga, hy = hb.

Since f is injective, given gxhy ∈ Imf , the image of f , it makes sense to ask for
f−1(gxhy). We define FACTOR as

FACTOR(gxhy) = f−1(gxhy)

We now show that if G is Abelian, the FACTOR in G reduces to the DLP in G
in some cases. Suppose the orders of g and h are known to be m and n respectively,
which are coprime. Raising gxhy to the power m yields:

(gxhy)m = gmxhmy = e · hmy = hmy.

The discrete logarithm of hmy would yield my, and one can retrieve y. This argu-
ment, of course, fails if n and m have common factors. In particular, if G is cyclic,
the problem reduces to the Discrete Logarithm Problem in the group G. To see this,
let α be a generator of G. Then g = αk and h = αl. Since < g > ∩ < h >= {e},
we see that the orders of g and h would have to be relatively prime.

In particular, if < g > is a normal subgroup of G, then computing FACTOR in
G is the same as computing the image of quotient map G −→ G/ < g >.

We remark here that a natural way to attack FACTOR problem can be described
as follows: If γ = αlβm is given with α and β non-commuting then one has to
multiply α−1 to γ i.e. α−1γ = αl−1βm and check if it is a member of the cyclic
group < β >. Hence if solving the membership problem is difficult, then solving
FACTOR problem will be difficult too and this happens in the case of infinite
groups. For finite groups if the choice of order of the group is very high, then this
process of finding l,m is not efficient as the order of complexity is a linear function
of l and m. Though this is a naive method there seems to be no better general
method for solving it in an arbitrary group.

3. A Public Key Cryptosystem based on FACTOR

Let G be a non-Abelian group and let g, h ∈ G be two non commuting elements
with orders m,n respectively. Throughout this note we shall suppose that Alice is
the recipient of the messages and Bob is communicating with Alice. Let m ∈ G be
the message.

Alice picks arbitrary integers (x, y) and sets a public key

PUBLIC KEY = (G, g, h, gxhy)
Alice has a private key for decryption
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PRIVATE KEY = (gx, hy)
To send the message m, Bob picks arbitrary integers (x′, y′) and sends

CIPHER TEXT = (gx+x′
hy+y′

, gx
′
hy

′
m) = (τ1, τ2)

To decipher the text, Alice uses her private key and performs the following
operations in G:

DECRYPTION : hyτ−11 gxτ2 = m
Analysis of this scheme shows that the security of the crypto system described

above reduces to solving FACTOR problem in the underlying group. The existing
crypto schemes based on non-Abelian groups ( see for example [3] ) rely on the
hardness of solving word problem or conjugacy problem. As the FACTOR problem
is more difficult than the DLP problem, we hope this new scheme will pave way for
a new range of possibilities in non-Abelian cryptography.

4. Sample Implementations

In this section we shall consider some non-Abelian groups and study the com-
plexity of implementing the proposed crypto scheme in these groups.

4.1. Implementation in the group GLn(Fq). .
Let G = GLn(Fq), where Fq is a finite field of order q. Let g, h ∈ G with orders

k, l respectively. Assume also that k = O(q), l = O(q), and that g and h do not
commute. Then Alice sets out the public keys and Bob communicates as follows:

Alice picks arbitrary integers (x, y) and an element c ∈ Fq, and sets a public key

PUBLIC KEY = (G, g, h, cgxhy)
Alice has a private key for decryption

PRIVATE KEY = (c, gx, hy)
To send the message m, Bob picks arbitrary integers (x′, y′) and an element

c′ ∈ Fq and sends

CIPHER TEXT = (cc′gx+x′
hy+y′

, c′gx
′
hy

′
m) = (θ1, θ2)

To decipher the text, Alice carries out the following operations in G:

DECRYPTION : chyθ−11 gxθ2 = m
It must be noted that the constants c, c′ ∈ Fq gives additional security to the

system.
In what follows, we will show how encryption and decryption can be carried out,

and also analyse the complexity of the operations involved.

4.1.1. Complexity of encryption in GLn(Fq). Encryption basically involves calcu-

lating two objects: gx
′

and hy
′
. Once both of these are calculated, the rest of the

operations involved just consist of multiplication in G, which is clearly fast.
Therefore, all that remains, is to understand the complexity of exponentiation

in G. This has been analysed ( see, for example [7]) in the context of the DLP in
G, and one knows that it can be carried out in polynomial time.

4.1.2. Complexity of decryption in GLn(Fq). Decryption involves inverting θ1. In
GLn(Fq), this can be carried out using row reduction extremely fast. The next step
is to carry out the sequence of multiplications, which are all fast. One concludes,
therefore, that decryption can also be carried out in polynomial time.
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4.1.3. Security of the system. We work with GLn(Fq) for a field Fq with q elements.
We calculate the complexity of a simple attack on the system described above as a
function of n and q.

The only attack is to crack the public key, i.e., to factorize gxhy. If both g and h
are chosen with orders approximately O(q), then, on the average, one would have to
calculate g−igxhy = gx−ihy for each i less that q. Moreover, one would have to test
for each gx−ihy if it lies in < h >. The simplest way to do this is to calculate the
eigenvalues and eigenspaces of g and h. If gx−ihy has the same eigenvalues/vectors
as h, then it is probable that x = i.

On the other hand, if both g and h have the same eigenvalues/vectors, then the
problem becomes even harder. In any case, this attack requires calculating at least
n2q quantities in Fq, and is therefore exponential in log(n2q).

It should be remarked that the security of this system lies in the non-commutativity
of g and h. A suitable choice of g and h could make all eigenvector calculations
ineffective, in which case the attacker would have to calculate q2 quantities. In
addition, increasing n would give more choices for such elements. In fact, one could
make this construction over any ring instead of a field.

4.2. Implementation in the group UTn(Fq). UTn(Fq) is a non-Abelian sub-
group of the group GLn(Fq) consisting of uni-triangular matrices. The elements in
UTn(Fq) are of the form 

1 ∗ ∗ . . . ∗
0 1 ∗ ∗
0 0 1 ∗

0 0 0
. . . ∗

0 0 0 . . . 1


We shall work with an automorphism subgroup of UTn(Fq). The analysis in [4]

suggests that solving DLP in UTn(Fq) reduces to solving DLP in Fq which is easy
in some cases (see for example [8]). This is the reason to consider automorphism
subgroup of UTn(Fq) rather than UTn(Fq).

The computations in UTn(Fq) are same as GLn(Fq). However, in some cases it
is much efficient to work in UTn(Fq), since explicit formulae can be worked out for
powers of the matrices.

The proposed crypto scheme in this case is as follows:
G = IUTn(Fq) (Inner-automorphism subgroup of UTn(Fq) and φ, ψ ∈ G.
Alice chooses c ∈ Fq and l,m ∈ Z to form

PUBLIC KEY=(G,φ, ψ, cφlψm)
Let ξ ∈ UTn(Fq) be the message to be communicated. Bob chooses c′ ∈ Fq and

l′,m′ ∈ Z and encrypts the message as :

ENCRYPTED MESSAGE = (µ1µ2(ξ) = k)

where µ1 = cc′φl+l′ψm+m′
and µ2 = c′φl

′
ψm′

(here clearly µ1, µ2 ∈ G).
The private key of Alice is:

PRIVATE KEY= (c, φl, ψm)

DECRYPTION (cψmµ−11 φl)(k) = m.
Here again the incorporation of the constants c, c′ in public key makes the system

more secure.
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Remark. As the group of inner automorphisms, IUTn(Fq), are isomorphic to the
underlying group, UTn(Fq), computations in both groups are same. Therefore,
encryption and decryption can be carried out as in GLn(Fq). However, we have to
perform only (n− 1)(n− 2)/2 operations as opposed to n2 operations in GLn(Fq).
This gives an advantage of better time complexity than GLn(Fq).

4.3. Implementation in Braid Groups. Braid groups have been introduced
by E.Artin in his classic paper “Theory of Braids” (see [1]). The Theory of Braid
groups has found many applications in combinatorics and Knot Theory which arose
interest in their practical implementations. Currently many efficient implementa-
tions exist for Braid groups. These being easily computable non-Abelian groups
could be an ideal choice for doing cryptography in a non-Abelian set up. Below we
briefly recall the definition (see [1], [4]) and demonstrate our cryptoscheme in this
group.

4.3.1. Braid Group: A Braid group Bn of order n with (Artin) generators σi, 1 ≤
i ≤ n is defined by

Bn =< σ1, σ2, . . . , σn|σiσj = σjσi, |i− j| > 2 and σiσi+1σi = σi+1σiσi+1 >

The proposed cryptoscheme works as follows : Alice chooses µ, ν ∈ Bn and
x, y ∈ N and publishes

PUBLIC KEY = (Bn, (µ), (ν), (µxνy)).

Alice’s private key is:

PRIVATE KEY = ((µx), (νy)).

Let the message be ω ∈ Bn. Bob chooses x′, y′ ∈ N and sends following ciphertext:

CIPHER TEXT = ((µx′
νy

′
), (µx+x′

νy+y′
ω)) = (θ1, θ2)

Alice decrypts it as

DECRYPTION : ν−yθ−11 (µx)−1θ2 = ω

Various implementations are possible for Braids and the complexity of operations
depend on the data structures we use to represent them. For current discussion
we shall adopt the representation used in [2]. Below we suggest one of the possible
way of encoding a message using this representation:

Let us suppose that our alphabet is of size l, then we choose the order of our
Braid group to be n = O(log(l)). Now, each alphabet is transformed as follows: to
each alphabet we assign a number less than l, and we take it’s binary representation
((j1j2 . . . jn)2) (some of the j’s may be zero). This binary number is mapped to the
following element of Bn

σi1
1 σ

i2
2 . . . σin

n

where ik =

{
1 , jk = 1
−1 , jk = 0

Note that this is already in the Artin canonical form

(see [2]). As the canonical form is unique for any given Braid, the encoding steps
are reversible to get back the original message.

4.4. Complexity of encryption and decryption. Encryption requires comput-
ing µx+x′

and νy+y′
and multiplying together with message w ∈ Bn which is already
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in Artin canonical form. This takes O((log(x′y′)n) time. Similarly decryption re-
quires O(n) operations as it involves three multiplications (since inverting µx and
νy is a one time operation).

4.5. Security of the system. The security of the existing Braid group based
crypto systems rely on the hardness of the conjugacy problem (for example see
[5]). In our proposed scheme, since the security of the system boils down to solving
the factor problem, we shall try to compute FACTOR(k = plqm). Following the
approach described in section 2, we repeatedly multiply p−1 to k, at each stage
analysing if (p−1)k ∈< q >. Note that if q is not an Artin generator, then it is
very difficult to solve and moreover, by choosing l and m large, we can make this
problem even more intractable. Hence, atleast, a naive attack does not seem to
work. We also remark here that the analysis in [3] shows that DLP is hard, this
suggests that FACTOR problem is much harder and therefore, Braid group can be
an ideal choice for this cryptosystem.

5. Generalized Discrete Logarithm Problems and Other Protocols

5.1. Generalized FACTOR problem. The definition of the FACTOR problem
uses only two subgroups < g > and < h >. One can extend this to many variables:
If g1, . . . gn ∈ G with < gi > ∩ < gi+1 . . . gn >= {e}, then Generalized FACTOR is
the inverse function to f , where f is defined as follows:

f :

n∏
i=1

< gi >−→ G; f(gx1
1 , . . . gxn

n ) =

n∏
i=1

gxi
i

The condition on the intersection of the groups ensures that f is injective.

5.2. Generalized public key cryptosystem. In any group N , let G and H be
two subgroups, and g and h be elements in the commutators of G and H respec-
tively. Let the Public key be (N,G,H, gh), and the private key be the factors(g, h).
Encryption of a message m ∈ N would be a pair of the form

(xghy, xym) = (Θ1,Θ2)

where x ∈ G, y ∈ H. Decryption would involve calculating hΘ−11 gΘ2.

5.3. Generalized DLP. In general, one can define a generalized discrete loga-
rithm problem in G: Let gi be as above. We have a function h with

h : Zn −→ G;h(x1, . . . xn) =

n∏
i=1

gxi
i

We define Generalized DLP as the inverse of h. In the situation n = 1, we recover
the usual discrete logarithm problem in G.

5.4. Key exchange protocol using FACTOR. One can define a key exchange,
analagous to the Diffie-Hellman key exchange protocol (see [6]) in a non-Abelian
setting using FACTOR. Suppose Alice and Bob want to exchange keys. Suppose
G, g, h are as in FACTOR. Let Alice pick two integers (xA, yA), and Bob pick two
integers (xB , yB). Let Alice send the element gxAhyA to Bob, and let Bob send
gxBhyB . Both Alice and Bob can recover the element gxA+xBhyA+yB . This is their
private key. An intruder would see gxAhyA and gxBhyB and would have to recover
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gxA+yAhxB+yB . If g and h do not commute, this problem looks hard. Of course, a
solution to FACTOR would break the security of this key exchange.

5.5. Further remarks. We hope one can construct an effective, implementable
and highly secure cryptosystem using non-Abelian groups in the directions sug-
gested in this paper. We conclude with the remark that one can define a non-
Abelian analogue of most of the protocols using the DLP in Abelian groups, using
either the Generalized DLP in this context, or FACTOR.
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