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Abstract

In this work, we present HIBE and ABE schemes which are “unbounded” in the sense
that the public parameters do not impose additional limitations on the functionality of the
systems. In all previous constructions of HIBE in the standard model, a maximum hierarchy
depth had to be fixed at setup. In all previous constructions of ABE in the standard model,
either a small universe size or a bound on the size of attribute sets had to be fixed at setup.
Our constructions avoid these limitations. We use a nested dual system encryption argument
to prove full security for our HIBE scheme and selective security for our ABE scheme, both
in the standard model and relying on static assumptions. Our ABE scheme supports LSSS
matrices as access structures and also provides delegation capabilities to users.

1 Introduction

Hierarchical Identity-Based Encryption (HIBE) systems [29, 26] and Attribute-Based Encryp-
tion (ABE) systems [39] offer users more levels of flexibility in sharing and managing sensitive
data than are provided by Identity-Based and Public Key Encryption systems. In a hierarchical
identity-based encryption scheme, user identities are arranged in an organizational hierarchy.
Anyone can encrypt a message to any identity in the system using the public parameters. An
identity at level k in the hierarchy can use its secret key to delegate secret keys to its subordi-
nates, but cannot decrypt any messages which are intended for recipients other than itself and
its subordinates. In a Key-Policy Attribute-Based Encryption (KP-ABE) system [28], users
have secret keys which are associated with access policies over a universe of attributes and
ciphertexts are associated with sets of attributes. A user can decrypt a message encrypted to a
set of attributes S only if S satisfies the access policy of the user’s key.

Both HIBE and ABE systems are designed to accommodate certain changes in the needs of
users over time, but current constructions have some inherent limitations. For instance, new
users can enter an HIBE system and collect secret keys without requiring any change to the
public parameters or the keys of users already present. However, for all previous constructions in
the standard model, the identities of new users must fit within the hierarchy depth specified by
the public parameters. More precisely, the size of the public parameters grows linearly with the
maximum depth of the hierarchy, and it is impossible to add new levels to the hierarchy once the
public parameters are fixed. In the ABE setting, the particular access policies and attribute sets
employed by users may change over time, but current constructions in the standard model do
not allow complete versatility in the choice of attributes and policies once the public parameters
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have been set. In “small universe” constructions (e.g. [28, 31]), a polynomially sized universe of
attributes must be fixed at setup, and the size of the public parameters grows linearly with the
size of the chosen attribute universe. In “large universe” constructions (e.g. [28]), the attribute
universe is exponentially large, but the size of a set S used for encryption is bounded by a
parameter n which is fixed at setup. The size of the public parameters grows linearly with n.

This places an undesirable burden on someone wishing to deploy an HIBE or ABE system
to be used in practice. If the setup parameters are chosen to be too small, the system will not
achieve the desired longevity and will need to be completely re-initialized when users exhaust its
overly restrictive structure. If the setup parameters are chosen to be too large, then the public
parameters of the system will be needlessly large and this will cause unnecessary inefficiency.

Removing these restrictions from previous approaches appears to be quite challenging. For
example, many standard model HIBE constructions employ structures similar to the Boneh-
Boyen HIBE in [9] (e.g. [11, 10, 44, 33] fall roughly into this framework). At a high level,
these systems all rely on hash functions H which map identity vectors to group elements in a
particular way. More specifically, we suppose that a user at level j in the hierarchy is associated
with an identity vector (I1, . . . , Ij). The hash function H uses d fixed group elements u1, . . . , ud
in a bilinear group G of order p (for example). Upon receiving an identity vector (I1, . . . , Ij)
as input, H somehow chooses k vectors ~v1 = (v1
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In forming the secret keys or ciphertexts, these group elements are typically each raised to the
same random exponent in Zp.

If we try to apply this approach without bounding the maximum depth of the hierarchy,
then for some identity vectors, we will need to produce ≥ d samples of the form above, and each
will be raised to the same exponent s ∈ Zp. This causes insecurity - since our vectors ~v1, . . . , ~vk

reside in a d-dimensional space, most collections of d of them will be linearly independent, and
will span Zdp. This will allow an attacker to create a new sample(
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)s
for any vector (v∗1, . . . , v

∗
d) that it wants, by taking its received samples, raising them to appro-

priate powers, and multiplying the results. For this reason, achieving unbounded HIBE systems
by relying on these sorts of hash functions seems unlikely.

Our Contribution Using new techniques, we obtain “unbounded” HIBE and ABE schemes.
Our HIBE scheme can accommodate arbitrary hierarchy depths from public parameters which
consist of only a constant number of group elements. This eliminates the need to decide max-
imum hierarchy depth at setup and reduces the size of the public parameters. We prove our
scheme fully secure in the standard model, relying on static, generically secure assumptions in
composite order bilinear groups. Our ABE scheme has a large attribute universe and imposes
no bound on the size of attribute sets used for encryption. It also has public parameters which
are a constant number of group elements. It supports LSSS matrices as access structures, and
additionally provides delegation capabilities to users. Our ABE scheme is proven selectively
secure1 from the same static, generically secure assumptions in composite order bilinear groups.

1This is a weaker model of security where the attacker must specify what it will be challenged on before seeing
the public parameters.
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Our Techniques We overcome the limitations of previous constructions by employing a
secret-sharing technique and introducing fresh “local” randomness at each level of the keys
and ciphertexts. Thus, instead of needing to create too many samples from a bounded dimen-
sional vector space with the same randomness, we will be creating many samples which each
have new randomness. This avoids the insecurity of the previous approach described above.

To create a secret key for a user in our HIBE and ABE systems, we first split the master
secret into shares that will be associated with the components of the user’s identity vector or
the rows of its access matrix. Each share is then blinded by randomness which is freshly chosen
for each share and links the share to its corresponding identity or attribute.

The main obstacle to proving the security of our schemes is the low amount of entropy
provided by the short public parameters. This poses a challenge for both partitioning proof
techniques and the more recently introduced technique of dual system encryption [44]. To
successfully execute a partitioning proof, we would need to program the public parameters
to allow cancelations when the simulator attempts to make a certain key or keys. However,
the small number of degrees of freedom available in the public parameters make it difficult to
program in keys of arbitrary depth. To use a dual system encryption proof, we must execute an
information-theoretic argument in a low entropy context - this is a challenge, but a surmountable
one. We ultimately accomplish this by introducing a nested dual system encryption approach
which allows us to make our information-theoretic argument in a very localized context, where
the limited entropy of the public parameters is sufficient.

In a dual system encryption scheme, ciphertexts and keys can take two forms: normal and
semi-functional. Normal keys can decrypt both normal and semi-functional ciphertexts, while
semi-functional keys can only decrypt normal ciphertexts. Security is proven through a hybrid
argument over a sequence of games, where first the challenge ciphertext is changed to semi-
functional, and then the keys are changed to semi-functional one by one. At the end of this
process, the simulator does not need to produce keys and ciphertexts which decrypt properly,
and now security can be proven directly. However, we must avoid a potential paradox: at the
point in the game sequence where a key is being changed to semi-functional, the simulator
should not be able to test the nature of the key for itself by testing decryption on a semi-
functional ciphertext. This can be enforced with nominal semi-functionality, meaning that if
the simulator tries to make a semi-functional ciphertext which can be decrypted by the key
of unknown type, then the key, ciphertext pair will actually be correlated so that decryption
will succeed regardless of semi-functionality. In other words, even if semi-functional terms are
present, they will cancel out upon decryption with the semi-functional ciphertext and hence
be undetectable to the simulator. This nominal semi-functionality should be hidden from an
attacker who cannot request keys capable of decrypting the ciphertext it receives.

The limited entropy of the public parameters in our systems does not enable us to hide nomi-
nal semi-functionality from the attacker if we try to change a key from normal to semi-functional
in a single step. To overcome this, we introduce the concept of ephemeral semi-functionality for
keys and ciphertexts. Ephemeral semi-functionality for keys is a temporary state which serves
as an intermediate step between normalcy and semi-functionality. Ephemeral semi-functionality
for ciphertexts is a temporary state of enhanced semi-functionality - ephemeral semi-functional
keys can still decrypt semi-functional ciphertexts, but ephemeral semi-functional ciphertexts
can only be decrypted by normal keys. Our proof employs a nested hybrid structure, where
first the ciphertext is changed to semi-functional, then one key at a time is first changed to
ephemeral semi-functional, then the ciphertext is changed to ephemeral semi-functional, and
then the single key and ciphertext are both changed to semi-functional.

We note that a key first becomes incapable of decrypting ciphertexts when both are ephemeral
semi-functional, and there is only one ephemeral semi-functional key at a time. This allows us
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to employ a information-theoretic argument to hide nominality in a more local context, where
we need only be concerned with a single key. Even with this nested approach, accomplishing
the game transitions with low entropy is still an intricate process - we employ additional inner
hybrid steps to gradually change the distributions of keys and ciphertexts. In the KP-ABE
setting, we also change to the selective security model.

1.1 Related Work

Identity-Based Encryption was conceived by Shamir in [40] and first constructed by Boneh and
Franklin [12] and Cocks [23]. These were proven secure in the random oracle model. Canetti,
Halevi, and Katz [16] and Boneh and Boyen [9] then provided systems which were proven
selectively secure in the standard model. Fully secure solutions in the standard model were
later provided by Boneh and Boyen [10] and Waters [43]. The Waters system was efficient
and proven from the well-established decisional Bilinear Diffie-Hellman assumption, but had
public parameters consisting of O(λ) group elements, where λ is the security parameter. The
system provided by Gentry [24] had short public parameters and was proven secure in the
standard model, but relied on a “q-type” assumption (meaning that the number of terms in the
assumption depending on the number of queries q made by an attacker). Using dual system
encryption, Waters [44] provided an efficient IBE system with short public parameters proven
fully secure under the decisional linear and decisional bilinear Diffie-Hellman assumptions. In
the random oracle model, additional schemes were provided by Boneh, Gentry, and Hamburg
[13] under the quadratic residuosity assumption and by Gentry, Peikert, and Vaikuntanathan
[25] under lattice-based assumptions.

Hierarchical Identity-Based Encryption was first introduced by Horwitz and Lynn [29] and
constructed by Gentry and Silverberg [26] in the random oracle model. Selectively-secure con-
structions in the standard model were then provided by Boneh and Boyen [9] and Boneh, Boyen,
and Goh [11]. The scheme of Boneh, Boyen, and Goh achieved short ciphertexts (ciphertext
size independent of the hierarchy depth). Gentry and Halevi gave a fully secure construction
for polynomial depth, relying on a complex assumption. Waters [44] provided a fully secure
scheme from the decisional linear and decisional bilinear Diffie-Hellman assumptions. Lewko
and Waters [33] provided a construction with short ciphertext, also achieving full security from
static assumptions. Lattice-based HIBE systems were constructed by Cash, Hofheinz, Kiltz,
and Peikert [17] and Agrawal, Boneh, and Boyen [1]. Agrawal, Boneh, and Boyen [2] con-
structed a lattice HIBE scheme where the dimension of the delegated lattices does not grow
with the levels of the hierarchy. The lattice systems are proven either secure in the random
oracle model or selectively secure in the standard model. Chatterjee and Sarkar [20] defined a
couple of new security models for HIBE, and also suggested an HIBE system in a new, much
weaker security model which can support arbitrary depths (i.e. a maximum depth is not fixed
at setup). However, this system does not achieve even selective security - the authors point out
that there is a simple attack against it in the standard selective security model.

Attribute-Based Encryption was introduced by Sahai and Waters [39]. Subsequently, Goyal,
Pandey, Sahai, and Waters [28] defined two forms of ABE: Key-Policy ABE (where keys are asso-
ciated with access policies and ciphertexts are associated with sets of attributes) and Ciphertext-
Policy ABE (where ciphertexts are associated with access policies and keys are associated with
sets of attributes). Several constructions of selectively secure KP-ABE and CP-ABE systems
followed (e.g. [8, 21, 27, 28, 37, 38, 45]). Fully secure constructions were recently provided by
Lewko, Okamoto, Sahai, Takashima, and Waters [31] and Okamoto and Takashima [36]. The
works of Chase [18] and Chase and Chow [19] considered the problem of ABE in a setting with
multiple authorities. The related concept of Predicate Encryption was introduced by Katz,
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Sahai and Waters [30] and further studied in [31, 35, 36, 41]. Other works have considered
related problems without addressing collusion resistance [3, 4, 5, 15, 34, 42].

The methodology of dual system encryption was introduced by Waters [44] and later used
in [33, 31, 36, 22, 32] to obtain adaptive security (and also leakage resilience in [22, 32]) for
IBE, HIBE, and ABE systems. The abstractions we provide for dual system encryption in the
HIBE and ABE settings are similar to the abstractions provided in [32], except that we do not
consider leakage resilience and also provide only selective security in the ABE case.

1.2 Organization

In Section 2, we provide the necessary background for HIBE schemes and define dual system
encryption HIBE schemes as an abstraction. We also provide the necessary background on
composite order bilinear groups and state our complexity assumptions. In Section 3, we present
our HIBE construction. In section 4, we prove its security. In section 5, we present our KP-ABE
construction. The relevant background and proof of security for the KP-ABE scheme appears
in the Appendix.

2 Background

2.1 Hierarchical Identity-Based Encryption

A Hierarchical Identity-Based Encryption (HIBE) scheme has five algorithms: Setup, Encrypt,
KeyGen, Decrypt, and Delegate.

Setup(λ) → PP,MSK The setup algorithm takes the security parameter λ as input and
outputs the public parameters PP and the master secret key MSK.

Encrypt(M, ~I,PP) → CT The encryption algorithm takes a message M , an identity vector
~I, and the public parameters PP as input and outputs the ciphertext CT.

KeyGen(MSK, ~I,PP) → SK~I The key generation algorithm takes the master secret key
MSK, an identity vector ~I, and the public parameters as input and outputs a secret key SK~I
for that identity vector.

Decrypt(CT,PP, SK~I) → M The decryption algorithm takes a ciphertext CT, the public
parameters PP, and a secret key SK~I as input. If the identity vector of the secret key, ~I, is a
prefix of the identity vector used to encrypt the ciphertext, the decryption algorithm outputs
the message M .

Delegate(SK~I , I
′,PP)→ SK~I:I′ The delegation algorithm takes a secret key SK~I for identity

vector ~I, an identity I ′, and the public parameters PP as input. It outputs a secret key SK~I:I′

for the identity vector ~I : I ′, which denotes the concatenation of ~I and I ′.

Security Definition We use the complete form of the security definition (given in [41]), which
keeps track of how keys are generated and delegated. Security is defined through the following
game between a challenger and an attacker. We call the Game HIBE.
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Setup The challenger runs the Setup algorithm to generate the public parameters PP and
master secret key MSK. It gives PP to the adversary. We let S denote the set of private keys
that the challenger has created but not yet given to the adversary. We initialize S = ∅.

Phase 1 The adversary makes Create, Delegate, and Reveal key queries. To make a Create
query, the attacker specifies an identity vector ~I. In response, the challenger creates a key for
this vector by calling the key generation algorithm, and places this key in the set S. It only
gives the attacker a reference to this key, not the key itself. To make a Delegate query, the
attacker specifies a key SK~I in the set S and specifies an identity I ′. In response, the challenger
appends I ′ to ~I and makes a key for this new identity by running the delegation algorithm
on SK~I and I ′. It adds this key to the set S and again gives the attacker only a reference
to it, not the actual key. To make a Reveal query, the attacker specifies an element of the set
S. The challenger gives this key to the attacker and removes it from the set S. We note that
the attacker need no longer make any delegation queries for this key because it can run the
delegation algorithm on the revealed key for itself.

Challenge The adversary gives the challenger two messages M0 and M1 and a challenge
identity vector ~I∗. This identity vector must satisfy the property that no revealed identity in
Phase 1 was a prefix of it. The challenger sets β ∈ {0, 1} randomly, and encrypts Mβ under ~I∗.
It sends the ciphertext to the adversary.

Phase 2 This is the same as Phase 1, with the added restriction that any revealed identity
vector must not be a prefix of ~I∗.

Guess The adversary must output a guess β′ for β.
The advantage of an adversary A is defined to be AdvHIBEA (λ) = Pr[β′ = β]− 1

2 .

Definition 1. A Hierarchical Identity Based Encryption scheme is secure if all PPT adversaries
achieve at most a negligible advantage (with respect to λ) in the above security game.

2.2 Dual System Encryption HIBE

We now define a Dual System Encryption HIBE scheme. (This is similar to the abstraction
given in [32], but things are simpler in our case because we do not consider leakage resilience.) In
addition to the five algorithms defined above (Setup, Encrypt, KeyGen, Decrypt, and Delegate),
a Dual System Encryption HIBE scheme also has algorithms KeyGenSF and EncryptSF, which
produce semi-functional keys and ciphertexts, respectively. Unlike the Setup, Encrypt, KeyGen,
Decrypt, and Delegate algorithms, the KeyGenSF and EncryptSF algorithms need not run in
polynomial time (given only their input parameters), since they are used only for the proof of
security and are not used in the normal operation of the system. Notice that decryption will
work as before unless both the secret key and ciphertext are semi-functional, in which case
decryption will always fail.

Setup(λ) → PP,MSK The setup algorithm takes the security parameter λ as input and
outputs the public parameters PP and the master secret key MSK.

Encrypt(M, ~I,PP) → CT The encryption algorithm takes a message M , an identity vector
~I, and the public parameters PP as input and outputs the ciphertext CT.
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EncryptSF(M, ~I,PP)→ C̃T The semi-functional encryption algorithm takes a message M ,
an identity vector ~I, and the public parameters PP as input. It produces a semi-functional
ciphertext C̃T.

KeyGen(MSK, ~I,PP) → SK~I The key generation algorithm takes the master secret key
MSK, an identity vector ~I, and the public parameters as input and outputs a secret key SK~I
for that identity vector.

KeyGenSF(MSK, ~I,PP) → S̃K~I The semi-functional key generation algorithm takes the
master secret key MSK, an identity vector ~I, and the public parameters as input. It produces
a semi-functional secret key S̃K~I for ~I.

Decrypt(CT,PP, SK~I) → M The decryption algorithm takes a ciphertext CT, the public
parameters PP, and a secret key SK~I as input. If the identity vector of the secret key ~I is a
prefix of the identity vector used to encrypt the ciphertext and the key and ciphertext are not
both semi-functional, the decryption algorithm outputs the message M .

Delegate(SK~I , I
′,PP)→ SK~I:I′ The delegation algorithm takes a secret key SK~I for identity

vector ~I, an identity I ′, and the public parameters PP as input. It outputs a secret key SK~I:I′

for the identity vector ~I : I ′, which denotes the concatenation of ~I and I ′.

2.3 Security Properties for Dual System Encryption HIBE

We define four security properties for a dual system encryption HIBE. We will show that a
system which has these four properties is secure (in the sense of Definition 1). To define these
properties, we define the following variations of the Game HIBE described above.

We first define Game HIBEWD to be the same as Game HIBE, except without delegation.
More precisely, instead of making Create, Delegate, and Reveal queries, the attacker simply
makes KeyGen queries - i.e. it provides the challenger with an identity vector, the challenger
creates a secret key for this identity vector by calling KeyGen, and then gives the secret key
to the attacker. The only restriction is that no queried identity vectors can be prefixes of the
challenge identity vector provided for the challenge ciphertext.

We next define Game HIBEC to be the same as Game HIBEWD, except that the challenge
ciphertext is generated by a call to EncryptSF instead of Encrypt (i.e. a semi-functional cipher-
text is given to the attacker). We also define Game HIBESF to be the same as Game HIBEC ,
except that the challenger replaces all KeyGen calls with calls to KeyGenSF. In other words,
the challenge ciphertext and all the secret keys given to the attacker will be semi-functional.

Delegation Invariance We say a dual system encryption HIBE scheme ΠD = (Setup, En-
crypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has delegation invariance if for any
PPT algorithm A, there exists another PPT algorithm A′ such that the advantage of A in Game
HIBE is negligibly close to the advantage of A′ in Game HIBEWD. (Here, A makes Create,
Delegate, and Reveal queries, while A′ makes KeyGen queries.) We denote this by:∣∣∣AdvHIBEA (λ)−AdvHIBEWD

A′ (λ)
∣∣∣ = negl(λ).
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Semi-functional Ciphertext Invariance We say a dual system encryption HIBE scheme
ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has semi-functional
ciphertext invariance if for any PPT algorithm A, the advantage of A in Game HIBEWD is neg-
ligibly close to its advantage in Game HIBEC . We denote this by:∣∣∣AdvHIBEWD

A (λ)−AdvHIBECA (λ)
∣∣∣ = negl(λ).

Semi-functional Key Invariance We say a dual system encryption HIBE scheme ΠD =
(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has semi-functional key
invariance if for any PPT algorithm A, the advantage of A in Game HIBEC is negligibly close
to its advantage in Game HIBESF . We denote this by:∣∣∣AdvHIBECA (λ)−AdvHIBESFA (λ)

∣∣∣ = negl(λ).

Semi-functional Security We say a dual system encryption HIBE scheme ΠD = (Setup,
Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has semi-functional security if
for any PPT algorithm A, the advantage of A in Game HIBESF is negligible. We denote this
by:

AdvHIBESFA (λ) = negl(λ).

Theorem 2. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt, EncryptSF,
KeyGen, KeyGenSF, Decrypt, Delegate) has delegation invariance, semi-functional ciphertext
invariance, semi-functional key invariance, and semi-functional security, then Π = (Setup,
Encrypt, KeyGen, Decrypt, Delegate) is a secure HIBE scheme.

Proof. We let A denote any PPT algorithm. We first note that in the real HIBE game, there
are no calls to the semi-functional algorithms EncryptSF and KeyGenSF of ΠD. Hence, from
A’s perspective, playing the HIBE game with ΠD is the same as playing the HIBE game with
Π. By delegation invariance, we have that:∣∣∣AdvHIBEA (λ)−AdvHIBEWD

A′ (λ)
∣∣∣ = negl(λ).

By semi-functional ciphertext invariance, we have that:∣∣∣AdvHIBEWD
A′ (λ)−AdvHIBECA′ (λ)

∣∣∣ = negl(λ).

By semi-functional key invariance, we have that:∣∣∣AdvHIBECA′ (λ)−AdvHIBESFA′ (λ)
∣∣∣ = negl(λ).

Thus, by the triangle inequality, we may conclude that∣∣∣AdvHIBEA (λ)−AdvHIBESFA′ (λ)
∣∣∣ = negl(λ).

By semi-functional security, we know that the quantity AdvHIBESFA′ (λ) is negligible, hence
AdvHIBEA (λ) must be negligible as well. Thus, the HIBE scheme Π is secure.
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2.4 An Alternative Security Property

The semi-functional key invariance property can be difficult to prove directly. For this reason,
we define an alternative property, one semi-functional key invariance, which is more convenient
to work with and which implies semi-functional key invariance through a hybrid argument.

To define one semi-functional key invariance, we must define an additional game, Game
HIBEb (where b represents a bit that can take value 0 or 1). In this game, when the attacker
requests a key, it specifies whether it wants a normal or semi-functional key. If the attacker
requests a normal key, the challenger makes a call to KeyGen to generate the key and returns
it to the attacker. If the attacker requests a semi-functional key, the challenger makes a call
to KeyGenSF to generate the key and returns it to the attacker. At some point, the attacker
specifies a challenge key. In response, the challenger provides a normal key if b = 0 and a
semi-functional key if b = 1. When the attacker requests the challenge ciphertext, it is given a
semi-functional ciphertext (under the usual restriction that no key given to the attacker can be
for an identity vector which is a prefix of the identity vector of the ciphertext). Note that the
only difference between Game HIBE0 and Game HIBE1 is the nature of a single key specified
by the attacker.

One Semi-functional Key Invariance We say a dual system encryption HIBE scheme
ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has one semi-
functional key invariance if for any PPT algorithm A, the advantage of A in Game HIBE0 is
negligibly close to its advantage in Game HIBE1. We denote this by:∣∣∣AdvHIBE0

A (λ)−AdvHIBE1
A (λ)

∣∣∣ = negl(λ).

Theorem 3. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt, EncryptSF,
KeyGen, KeyGenSF, Decrypt, Delegate) has one semi-functional key invariance, then it has
semi-functional key invariance.

Proof. We suppose there exists a PPT attacker A which achieves a non-negligible difference in
advantage between Game HIBEC and Game HIBESF . Then we will show there must exist a
PPT algorithm B which has a non-negligible difference in advantage between Game HIBE0 and
Game HIBE1, contradicting one semi-functional key invariance. We let q denote the number
of key queries that A makes. For k from 0 to q, we define Game HIBESFk as follows: the
attacker receives a semi-functional ciphertext, semi-functional keys in response to the first k
key requests, and normal keys in response to the remaining key requests. We note that Game
HIBESF0 is Game HIBEC and that Game HIBESFq is Game HIBESF .

Since A has a non-negligible difference in advantage between Game HIBEC and Game
HIBESF and q is polynomial, there must exist some value of k from 0 to q − 1 such that∣∣∣AdvHIBESFkA (λ)−AdvHIBESFk+1

A (λ)
∣∣∣

is non-negligible. Now, B works as follows. When it receives the public parameters from its
challenger, it forwards these to A. For the first k key requests that A makes, B forwards these
to its challenger as requests for semi-functional keys, and returns the resulting semi-functional
keys to A. For the k + 1 key request from A, B forwards this to its challenger as the challenge
key, and returns the resulting key to A. For the remaining key requests from A, B forwards
these to its challenger as requests for normal keys, and returns the resulting keys to A. B
outputs whatever A outputs. Now, if B is playing Game HIBE0, then A is playing Game
HIBESFk. If B is playing Game HIBE1, then A is playing Game HIBESFk+1. Hence, since A
has a non-negligible difference in advantage between these two games, B has a non-negligible
difference in advantage between Game HIBE0 and Game HIBE1.
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2.5 Composite Order Bilinear Groups

We will construct our system in composite order bilinear groups, first introduced in [14]. We
let G denote a group generator, i.e. an algorithm which takes a security parameter λ as input
and outputs a description of a bilinear group G. In our case, we will define G’s output as
(N,G,GT , e), where N = p1p2p3 is a product of three distinct primes, G and GT are cyclic
groups of order N , and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

The group operations in G and GT and the map e are computable in polynomial time with
respect to λ, and the group descriptions of G and GT include a generator of each group. We
let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2, and p3 in G respectively. We note
that these subgroups are “orthogonal” to each other under the bilinear map e: i.e. if hi ∈ Gpi
and hj ∈ Gpj for i 6= j, then e(hi, hj) is the identity element in GT . If g1 generates Gp1 , g2
generates Gp2 , and g3 generates Gp3 , then every element h of G can be expressed as gx1g

y
2g
z
3 for

some values x, y, z ∈ ZN . We will refer to gx1 as the “Gp1 part of h”, for example.

2.6 Complexity Assumptions

In the assumptions below, we let Gp1p2 denote the subgroup of order p1p2 in G, for example.

We use the notation X
R←− S to express that X is chosen uniformly randomly from the finite

set S. We note that except for Assumption 2, all of these assumptions are special cases of
the General Subgroup Decision Assumption defined in [7]. Informally, the General Subgroup
Decision Assumption can be described as follows: in a bilinear group of order N = p1p2 . . . pn,
there is a subgroup of order

∏
i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote two such

subsets. It should be hard to distinguish a random element from the subgroup corresponding
to S0 from a random element of the subgroup corresponding to S1, even if one is given random
elements from subgroups corresponding to other sets Si which satisfy either that S0 ∩ Si = ∅ =
S1 ∩ Si or S0 ∩ Si 6= ∅ 6= S1 ∩ Si. The formal statements of our precise assumptions are below.
Assumption 1 here is a slightly weaker form of Assumption 1 in [33], and Assumptions 2 and 4
here also appeared in [33]. In our proofs, we will also invoke Assumption 4 with the roles of p2

and p3 reversed.

Assumption 1 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 ,

D = (G, g),

T1
R←− Gp1p2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ for any PPT

algorithm A.
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Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , g2, X2, Y2

R←− Gp2 , g3
R←− Gp3 , α, s

R←− ZN

D = (G, g, g2, g3, gαX2, g
sY2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ for any PPT

algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , g2

R←− Gp2 , X3
R←− Gp3

D = (G, g, g2, X1X3),

T1
R←− Gp1 , T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ for any PPT

algorithm A.

Assumption 4 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , g3, Y3
R←− Gp3

D = (G, g, g3, X1X2, Y2Y3),

T1
R←− Gp1p3 , T2

R←− G.

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible function of λ for any PPT

algorithm A.
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3 Our HIBE Construction

We now present our dual system encryption HIBE scheme. Our system is constructed in a
composite order bilinear group whose order N is the product of three distinct primes. We
assume that our identity vectors have components which are elements of ZN . In the semi-
functional algorithms below, we let g2 denote a generator of Gp2 and g3 denote a generator of
Gp3 .

We will assume that identity vectors are encoded such that if identity vector ~I is not a prefix
of identity vector ~I∗, then the last component of ~I is not equal to any component of ~I∗. In other
words, when ~I = (I1, . . . , Ij) is not a prefix of ~I∗ = (I∗1 , . . . , I∗` ), we assume that Ij 6= I∗k for
all k ∈ {1, . . . , `}. A simple scheme to achieve this encoding is to replace an arbitrary vector of
component identities, (I1, . . . , Ij) by concatenating in each entry with all the previous entries:
(I1, I1||I2, . . . , I1||I2|| · · · ||Ij). This creates entries which grow in length, but we can avoid this
by applying a collision-resistant hash function to each of them.

The main idea of our construction is to employ a secret-sharing approach across the levels
of our secret keys. A user’s secret key involves a sharing of the master secret key α as a sum
of exponents, where each piece of the sum is additionally blinded by a random term which is
unique to that piece. In other words, each share of α is blinded by randomness which is “local”
to that share. To successfully decrypt, a user must effectively unblind each share, which can
only be accomplished by a user with a jth level identity vector which matches the ciphertext
identity vector in all of the components one through j. If a user’s identity vector fails to match
in component k ≤ j, then the user will fail to recover the kth share needed, thus preventing
successful decryption. In essence, each level of the key and ciphertext closely resembles an
instance of the Boneh-Boyen IBE scheme [9] with an added layer of local randomness between
the shares of the master secret key and the terms involving the identities. These instances share
the same public parameters, which we are able to accommodate by using fresh local randomness
in the levels of the key and ciphertext.

3.1 Construction

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and chooses a
bilinear group G of order N = p1p2p3, where p1, p2, p3 are distinct primes. We let Gpi denote
the subgroup of order pi in G. The algorithm then chooses g, u, h, v, w uniformly randomly from
Gp1 , and α uniformly randomly from ZN . It sets the public parameters as:

PP := {N,G, g, u, h, v, w, e(g, g)α}.

The master secret key is α.

Encrypt(M, (I1, . . . , Ij),PP),→ CT The encryption algorithm chooses s, t1, . . . , tj uniformly
randomly from ZN . It creates the ciphertext as:

C := Me(g, g)αs, C0 := gs,

Ci,1 := wsvti , Ci,2 := gti , Ci,3 := (uIih)ti ∀i ∈ {1, . . . , j}.

EncryptSF(M, (I1, . . . , Ij),PP) → C̃T The semi-functional encryption algorithm first calls
the Encrypt algorithm to obtain a normal ciphertext, CT = {C ′, C ′0, C ′i,1, C ′i,2, C ′i,3 ∀i}. It then
chooses random values γ, δ ∈ ZN . It forms the semi-functional ciphertext C̃T as:

C := C ′, C0 := C ′0 · g
γ
2 ,
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Ci,1 := C ′i,1 · gδ2, Ci,2 := C ′i,2, Ci,3 := C ′i,3 ∀i ∈ {1, . . . , j}.

Notice that the additional term gδ2 on Ci,1 is the same for each value of i.

KeyGen((I1, . . . , Ij),MSK,PP)→ SK~I The key generation algorithm chooses uniformly ran-
dom values r1, . . . , rj , y1, . . . , yj from ZN . It also chooses random values λ1, . . . , λj ∈ ZN subject
to the constraint that α = λ1 + λ2 + · · ·+ λj . The secret key is created as:

Ki,0 := gλiwyi , Ki,1 := gyi , Ki,2 := vyi(uIih)ri , Ki,3 := gri ∀i ∈ {1, . . . , j}.

KeyGenSF((I1, . . . , Ij),MSK,PP)→ S̃K~I The first time this algorithm is called, it chooses
random values σ, ψ ∈ ZN . These values will be stored and used on each invocation of the
algorithm.

To create a semi-functional key, the semi-functional key generation algorithm first calls the
KeyGen algorithm to obtain a normal key, SK~I = {K ′i,0,K ′i,1,K ′i,2,K ′i,3 ∀i}. It then chooses a
random value ỹj ∈ ZN and creates the semi-functional key as:

Ki,0 := K ′i,0, Ki,1 := K ′i,1, Ki,2 := K ′i,2, Ki,3 := K ′i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′j,0 · (g2g3)ψỹj , Kj,1 := K ′j,1 · (g2g3)ỹj , Kj,2 := K ′j,2 · (g2g3)σỹj , Kj,3 := K ′j,3.

We note that the ỹj terms are chosen to be freshly random for each key, while the values
σ, ψ are shared by all semi-functional keys. We also note that the exponents modulo p3 here
are uncorrelated from the exponents modulo p2 by the Chinese Remainder Theorem. It is also
important to observe that the semi-functional components (the added terms in Gp2 and Gp3)
only appear in the last level of the key.

Delegate(PP,SK, Ij+1)→ SK′ The delegation algorithm takes in a secret key
SK = {Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a level j+ 1 identity Ij+1. It
produces a secret key SK′ for (I1, . . . , Ij+1) as follows. It chooses y′1, . . . , y

′
j+1 and r′1, . . . , r

′
j+1 ∈

ZN uniformly at random, λ′1, . . . , λ
′
j+1 ∈ ZN randomly up to the constraint that λ′1+· · ·+λ′j+1 =

0 and computes:

K ′i,0 := Ki,0·gλ
′
i ·wy′i , K ′i,1 := Ki,1·gy

′
i , K ′i,2 := Ki,2·vy

′
i(uIih)r

′
i , K ′i,3 := Ki,3·gr

′
i ∀i ∈ {1, . . . , j+1},

where Kj+1,1,Kj+1,2,Kj+1,3 are defined to be the identity element in G.

Decryption(CT,SK)→M The decryption algorithm takes in a secret key
SK = {Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a ciphertext CT encrypted
to (I1, . . . , I`). Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , I`), the message is decrypted as
follows. The decryption algorithm computes:

B :=
j∏
i=1

e(C0,Ki,0)e(Ci,2,Ki,2)
e(Ci,1,Ki,1)e(Ci,3,Ki,3)

.

The message is then computed as:

M = C/B.
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3.2 Correctness

We observe that:

B =
j∏
i=1

e(g, g)sλie(g, w)syie(g, v)tiyie(g, uIih)tiri

e(w, g)syie(v, g)tiyie(uIih, g)tiri
,

which is equal to:

=
j∏
i=1

e(g, g)sλi = e(g, g)sα,

since
∑j

i=1 λi = α. Thus, M = C/B.

Relation to Attribute-Based Encryption We note that our HIBE construction can be
reinterpreted as a Key-Policy Attribute-Based Encryption scheme, where the policies are re-
stricted to be AND’s of attributes. Identities now play the role of attributes, and the identity
vector of the ciphertext can now be seen as a set of attributes. It is crucial to note that in
the above construction, there is no mechanism of the construction requiring that the ith level
terms of the key be used with the ith level terms of the ciphertext. This is instead imposed by
the assumed properties of identity vectors. In our proof of security, we will leverage that the
last level identity of a key which cannot decrypt will not match any component of the identity
vector for the challenge ciphertext.

4 Security

We will prove that our dual system encryption HIBE scheme has delegation invariance, semi-
functional ciphertext invariance, one semi-functional key invariance, and semi-functional secu-
rity. By theorems 2 and 3, this implies that our HIBE system is secure. More formally, we will
prove the following theorem:

Theorem 4. Under Assumptions 1-4, our HIBE system is fully secure.

Proving delegation invariance, semi-functional ciphertext invariance, and semi-functional
security will be relatively straightforward. The truly challenging part of the proof will be
proving one semi-functional key invariance, and this is where we introduce our key technical
innovations. We give the relatively simpler proofs first.

4.1 Delegation Invariance

We first prove that our dual system encryption HIBE scheme has delegation invariance.

Lemma 5. Our system has delegation invariance.

Proof. Since our delegation algorithm additively rerandomizes each of the random exponents
y1, . . . , yj , r1, . . . , rj , λ1, . . . , λj in a secret key, the distribution of a secret key obtained through
any sequence of delegations is the same as the distribution of a secret key for the same identity
vector generated by a direct call to KeyGen. Thus, for any PPT algorithm A in Game HIBE,
we can define a PPT algorithm A′ in Game HIBEWD that achieves exactly the same advantage.
A′ essentially runs the same as A, except when A makes a Create or Delegate query, A′ makes
no query. When A makes a Reveal query, A′ makes a KeyGen query for the same identity
vector. Since the keys that A′ receives come from the same distribution as the keys that A
receives, their advantages are identical.
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4.2 Semi-functional Ciphertext Invariance

We now prove that our dual system encryption HIBE scheme has semi-functional ciphertext
invariance.

Lemma 6. Under Assumption 1, our system has semi-functional ciphertext invariance.

Proof. We assume there is a PPT attacker A such that A achieves a non-negligible difference
in advantage between Game HIBEWD and Game HIBEC . We will create a PPT algorithm B
which breaks Assumption 1 with non-negligible advantage. B is given g ∈ Gp1 and T . B chooses
a, b, c, d, α randomly from ZN . It gives the public parameters

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}

to A. Since B knows the master secret key α, it can respond to A’s key requests by calling the
key generation algorithm and giving A the resulting keys.

At some point, A provides two messages M0,M1 and requests the challenge ciphertext for
some identity vector, denoted by (I∗1 , . . . , I∗` ). B forms the ciphertext as follows. It chooses
t1, . . . , t` randomly from ZN and β randomly from {0, 1} and sets:

C = Mβe(g, T )α, C0 = T,

Ci,1 = T dvti , Ci,2 = gti , Ci,3 = (uI
∗
i h)ti ∀i ∈ {1, . . . , `}.

This implicitly sets gs equal to the Gp1 part of T . If T ∈ Gp1 , then this is a well-distributed
normal ciphertext, and B has properly simulated Game HIBEWD. If T ∈ Gp1p2 , then this is a
well-distributed semi-functional ciphertext (since the value of d modulo p2 is uncorrelated from
its value modulo p1 by the Chinese Remainder Theorem). Hence, B has properly simulated
Game HIBEC in this case. Thus, B can use the output of A to achieve an non-negligible
advantage against Assumption 1.

4.3 Semi-functional Security

We now prove that our dual system encryption HIBE scheme has semi-functional security.

Lemma 7. Under Assumption 2, our system has semi-functional security.

Proof. We suppose there exists a PPT attacker A who achieves a non-negligible advantage in
Game HIBESF . We will create a PPT algorithm B which has a non-negligible advantage against
Assumption 2.
B receives g, g2, g3, gαX2, g

sY2, T . It chooses a, b, c, d randomly from ZN and sets the public
parameters as:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, gαX2)}.

It gives these to A. We note that B does not know the master secret key α.
In response to a KeyGen query for (I1, . . . , Ij), B will create a semi-functional key as follows.

It chooses r1, . . . , rj ∈ ZN randomly, y1, . . . , yj−1, y
′
j ∈ ZN randomly, and λ1, . . . , λj−1, λ

′
j ∈ ZN

randomly up to the constraint that λ1 + · · ·+ λj−1 + λ′j = 0. It will implicitly set λj = α+ λ′j
modulo p1 and yj equal to α + y′j modulo p1. It also chooses a random value f ∈ ZN . The
semi-functional key is formed as:

Ki,0 = gλiwyi , Ki,1 = gyi , Ki,2 = vyi(uIih)ri , Ki,3 = gri ∀i ∈ {1, . . . , j − 1},
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Kj,0 = (gαX2)d+1 · gλ
′
j · wy

′
j · (g2g3)f(d+1), Kj,1 = (gαX2) · gy

′
j · (g2g3)f ,

Kj,2 = (gαX2)c · vy
′
j · (uIjh)rj · (g2g3)fc, Kj,3 = grj .

This is a well-distributed semi-functional key with ψ = d+ 1 and σ = c modulo p2 and p3,
and ỹj is equal to f plus the discrete log of X2 base g2 modulo p2 and equal to f modulo p3.
Notice that ỹj is freshly random modulo p2 and p3 for each key, while σ, ψ are the same for all
keys, as specified by the KeyGenSF algorithm.

At some point, A provides B with two messages M0,M1 and a challenge identity vector,
(I∗1 , . . . , I∗` ). B creates the challenge ciphertext as follows. It chooses t1, . . . , t`, δ′ randomly
from ZN and chooses β randomly from {0, 1}. It sets:

C = MβT, C0 = gsY2,

Ci,1 = (gsY2)d · vti · gδ′2 , Ci,2 = gti , Ci,3 = (uIih)ti ∀i ∈ {1, . . . , `}.

If T = e(g, g)αs, this is a well-distributed semi-functional encryption of Mβ with γ equal to
the discrete log of Y2 base g2 and δ equal to d times this discrete log plus δ′. Notice that δ′

randomizes this so that there is no correlation with d modulo p2. Hence this is uncorrelated from
the exponents modulo p2 of the semi-functional keys. In this case, B has properly simulated
Game HIBESF .

If T is a random element of GT , then this is a semi-functional encryption of a random
message, and hence the ciphertext contains no information about β. In this case, the advantage
of A must be zero. Since we have assumed the advantage of A is non-negligible in Game
HIBESF , B can use the output of A to obtain a non-negligible advantage against Assumption
2.

4.4 One Semi-functional Key Invariance

The primary challenge in proving one semi-functional key invariance for our system is that
the repetition of the same public parameters for each level of the keys and ciphertexts severely
limits our ability to simulate properly distributed semi-functional keys and ciphertexts as we are
changing the form of the challenge key. In a typical dual system encryption argument, we must
ensure as we are changing the form of one key that the simulator cannot determine the nature of
the key for itself. Since the simulator must be prepared to make a semi-functional ciphertext for
any identity vector and also must be prepared to use any identity vector for the challenge key, it
seems that a simulator could learn for itself whether or not the challenge key is semi-functional
by trying to decrypt a semi-functional ciphertext. This potential paradox can be avoided by
ensuring that a simulator can only make a nominally semi-functional key, meaning that even if
semi-functional terms are present on the challenge key, they will be correlated with the semi-
functional ciphertext and cancel out upon decryption. We would then argue that nominality is
hidden from an attacker who cannot request keys capable of decrypting.

If we attempt to change the challenge key in our system from normal to semi-functional
in a single or very small number of steps using generalized subgroup decision assumptions,
then the very limited entropy available in the public parameters seems to prevent us from
maintaining the proper distributions of the semi-functional keys and semi-functional ciphertext
without revealing nominality. In other words, it appears to be difficult for the simulator to
prevent information-theoretic exposure of unwanted correlations between the semi-functional
components of the keys and ciphertext it creates.
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To overcome this difficulty, we employ a nested dual system encryption approach and in-
troduce the concept of ephemeral semi-functionality2. Instead of trying to directly change the
challenge key from normal to semi-functional, we will first change it from normal to ephemeral
semi-functional. An ephemeral semi-functional key will come from a new distribution which
serves as an intermediary stage between the normal and semi-functional distributions. We note
that an ephemeral semi-functional key can still correctly decrypt semi-functional ciphertexts,
and that its form only differs from a normal key on its last level.

After changing the challenge key from normal to ephemeral semi-functional, we will then
change the ciphertext to also be ephemeral semi-functional. Ephemeral semi-functional cipher-
texts will come from a new distribution of ciphertexts, and will not be decryptable by ephemeral
semi-functional keys. This is where we confront the potential paradox of dual system encryp-
tion: we will make sure that the simulator can only make challenge key and ciphertext pairs
which are nominally ephemeral semi-functional, meaning that the distributions of the challenge
key and ciphertext will be correlated so that even if the ephemeral semi-functional terms are
present in both the key and ciphertext, they will cancel out upon decryption. This correlation
will be hidden from an attacker who cannot request a key capable of decrypting the ciphertext.

To accomplish this information-theoretic hiding with such low entropy in our public param-
eters, we will make a hybrid argument in which we change the ciphertext form one level at a
time. Since there are only ephemeral semi-functional terms on one level of one key, it is now
sufficient to hide a correlation between one level of the ciphertext and one level of one key: this
can be accomplished with the use of a pairwise independent function. Once we have obtained
an ephemeral semi-functional challenge key and an ephemeral semi-functional ciphertext, we
are able to change the challenge key to be semi-functional in the usual sense and also return
the ciphertext to its usual semi-functional state.

Essentially, using ephemeral semi-functionality helps us overcome the challenge presented
by low entropy in the public parameters because it allows us to move the information-theoretic
argument that nominality is hidden from the attacker to a setting where we are really only
concerned with one key. Since the other semi-functional keys come from a different distribution,
we can prevent them from leaking information about the simulated ephemeral distribution that
would break the information-theoretic argument.

We now define the distributions of ephemeral semi-functional keys and ciphertexts. We
do this by defining two new algorithms, EncryptESF and KeyGenESF. Like the algorithms
EncryptSF and KeyGenSF, these do not need to run in polynomial time (given only their
input parameters). We note that the EncryptESF algorithm takes in an additional parameter
σ: this is because the ciphertexts it produces will share the value σ with the semi-functional
keys created by KeyGenSF. As in the original semi-functional algorithms, we let g2 denote a
generator of Gp2 and g3 denote a generator of Gp3 .

EncryptESF(M, (I1, . . . , Ij),PP, σ) → C̃TE The ephemeral semi-functional encryption al-
gorithm first calls the Encrypt algorithm to obtain a normal ciphertext
CT = {C ′, C ′0, C ′i,1, C ′i,2, C ′i,3 ∀i ∈ {1, . . . , j}}. It then chooses random values γ, δ, a′, b′, t1, . . . , tj ∈
ZN and forms the ephemeral semi-functional ciphertext C̃TE as:

C := C ′, C0 := C ′0 · g
γ
2 ,

Ci,1 := C ′i,1 · gδ2 · g
σti
2 , Ci,2 := C ′i,2 · g

ti
2 , Ci,3 := C ′i,3 · g

(a′Ii+b′)ti
2 ∀i ∈ {1, . . . , j}.

2We choose not to include this concept in our abstraction for dual system encryption HIBE, because its use
here is motivated by the particular challenge of short public parameters and we imagine dual system encryption
HIBE as a broader framework.
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KeyGenESF((I1, . . . , Ij),MSK,PP, σ) → S̃KE The ephemeral semi-functional key genera-
tion algorithm first calls the KeyGen algorithm to obtain a normal key
SK = {K ′i,0,K ′i,1,K ′i,2,K ′i,3 ∀i ∈ {1, . . . , j}}. It chooses random values r̃1, r̃2 ∈ ZN and forms
the ephemeral semi-functional key S̃KE as:

Ki,0 := K ′i,0, Ki,1 := K ′i,1, Ki,2 := K ′i,2, Ki,3 := K ′i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′j,0, Kj,1 = K ′j,1, Kj,2 := K ′j,2 · (g2g3)r̃1 , Kj,3 := K ′j,3 · (g2g3)r̃2 .

We note that an ephemeral semi-functional key can decrypt a semi-functional ciphertext,
but cannot decrypt an ephemeral semi-functional ciphertext. We note that an ephemeral semi-
functional ciphertext can only be decrypted by normal keys.

4.4.1 Sequence of Games

We will prove one semi-functional key invariance of our dual system encryption HIBE scheme
via a hybrid argument over the following sequence of games. We begin with Game HIBE0,
where the ciphertext is semi-functional and the challenge key is normal. We will end with
Game HIBE1, where the ciphertext is semi-functional and the challenge key is semi-functional.
We define the following intermediary games. In these games, the distributions of the challenge
key and ciphertext vary, while the distribution of the requested normal and semi-functional keys
are the same as in Games HIBE0 and HIBE1.

Game HIBE′0 This game is exactly like Game HIBE0, except for the added restriction that
the last component of the challenge key identity vector cannot be equal to any of the components
of the challenge ciphertext identity vector modulo p3 (note that we were already requiring this
moduloN - now we make the stronger requirement that the identities must remain unequal when
we reduce modulo p3). (This added restriction will be needed to apply pairwise independence
arguments in Zp3 .)

Game EK In Game EK, the ciphertext is still semi-functional, and the challenge key is now
ephemeral semi-functional. We retain the added restriction on the identities modulo p3.

Game EC In Game EC, both the ciphertext and challenge are ephemeral semi-functional.
We retain the added restriction on the identities modulo p3.

Game HIBE′1 This game is exactly like the Game HIBE1, but with the added restriction on
the identities modulo p3.

We will prove that we can transition from Game HIBE0 to Game HIBE′0, to Game EK,
to Game EC, to Game HIBE′1, and finally to Game HIBE1 without the attacker’s advantage
changing by a non-negligible amount. Our proofs for the transitions from Game HIBE′0 to
Game HIBE′1 will rely on helpful lemmas about the computational indistinguishability of various
oracles which dispense group elements, and these lemmas will be proven with additional inner
hybrids over intermediate oracles. We present these lemmas in the next subsection. We organize
our proof this way because it allows us to place most of the technical work in lemmas which
can be directly reused in the ABE setting.
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4.4.2 Oracle Lemmas

We now define four oracles which answer queries from an attacker by sampling various distribu-
tions of group elements from a composite order bilinear group. The definitions of these oracles
are motivated by the following relationships with keys and ciphertexts in our HIBE scheme. The
outputs of Oracle O0 will allow a simulator to produce semi-functional keys, a semi-functional
ciphertext, and a normal challenge key. The outputs of Oracle O1 will allow a simulator to
produce a semi-functional ciphertext, semi-functional keys, and an ephemeral semi-functional
challenge key. The outputs of Oracle O2 will allow a simulator to produce semi-functional
keys, an ephemeral semi-functional ciphertext, and an ephemeral semi-functional challenge key.
Finally, the outputs of Oracle O3 will allow a simulator to produce semi-functional keys, a
semi-functional ciphertext, and a semi-functional challenge key.

We will show that under our generalized subgroup decision assumptions, these oracles cannot
be distinguished by an attacker. All oracles will be defined with respect to a bilinear group G
of order N = p1p2p3. All of our four oracles initially choose random elements g, u, v, w ∈ Gp1 ,
g2 ∈ Gp2 , and g3 ∈ Gp3 , as well as random exponents ψ, σ, a′, b′, s, δ, γ ∈ ZN . They provide the
attacker with a description of the group G, as well as the group elements

g, u, h, v, w, gsgγ2 , w
y(g2g3)yψ, gy(g2g3)y, vy(g2g3)yσ.

The attacker can then query the oracles in two ways. It can make one “challenge key-type”
query for an identity I ∈ ZN , which will return four group elements. It can make an arbitrary
number of “ciphertext-type” queries for different identities I∗ ∈ ZN , and each will return three
group elements. It can make these queries in any order - the only limitations being that there
cannot be more than one challenge key-type query, and the identity of the challenge key-type
query cannot equal the identity of any ciphertext-type query modulo p3. (These are called
challenge key-type and ciphertext-type queries because they essentially return the challenge key
and ciphertext distributions of our HIBE system, respectively.)

Oracle O0 The first oracle, which we will denote by O0, responds to queries as follows. Upon
receiving a challenge key-type query for I ∈ ZN , it chooses r, y′ ∈ ZN randomly and returns
the group elements

(wy
′
, gy

′
, vy

′
(uIh)r, gr)

to the attacker. Upon receiving a ciphertext-type query for I∗ ∈ ZN , it chooses t ∈ ZN randomly
and returns the group elements

(wsgδ2v
t, gt, (uI

∗
h)t)

to the attacker.

Oracle O1 The next oracle, which we will denote by O1, responds to queries as follows. Upon
receiving a challenge key-type query for I ∈ ZN , it chooses r, y′ ∈ ZN randomly, and also
chooses X2, Y2 ∈ Gp2 , X3, Y3 ∈ Gp3 randomly. It returns the group elements

(wy
′
, gy

′
, vy

′
(uIh)rX2X3, g

rY2Y3)

to the attacker. It responds to a ciphertext-type query in the same way as O0.

Oracle O2 The next oracle, which we will denote by O2, responds to queries as follows. Upon
receiving a challenge key-type query, it responds in the same way as O1. Upon receiving a
ciphertext-type query for I∗ ∈ ZN , it chooses t ∈ ZN randomly and returns the group elements

(wsgδ2v
tgσt2 , g

tgt2, (u
I∗h)tgt(a

′I∗+b′)
2 )
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to the attacker.

Oracle O3 The last oracle, which we will denote by O3, responds to ciphertext-type queries
in the same way as O0, and responds to a challenge key-type query for I ∈ ZN by choosing a
random y′, r ∈ ZN and returns the group elements

(wy
′
(g2g3)y

′ψ, gy
′
(g2g3)y

′
, vy

′
(g2g3)y

′σ(uIh)r, gr)

to the attacker.
We define the advantage of an attacker A in distinguishing between Oi and Oj to be:

|Pr[A(Oi) = 1]− Pr[A(Oj) = 1]|.

Here, we assume that A interacts with either Oi or Oj , and then outputs a bit 0 or 1 encoding
its guess of which oracle it interacted with. Relying on our generalized subgroup decision
assumptions, we will show that the advantage of any PPT attacker in distinguishing between
these oracles must be negligible. More precisely, we will prove the following lemmas:

Lemma 8. Under Assumptions 3 and 4, no PPT attacker can distinguish between O0 and O1

with non-negligible advantage.

Lemma 9. Under Assumptions 3 and 4, no PPT attacker can distinguish between O1 and O2

with non-negligible advantage.

Lemma 10. Under Assumptions 3 and 4, no PPT attacker can distinguish between O2 and O3

with non-negligible advantage.

We will prove these lemmas by going through several intermediary oracles. The main prop-
erties of our oracles are summarized in Table 1. The descriptions in the table are imprecise
because they only specify what subgroups are present and do not specify the distributions. We
will give complete definitions for each of our oracles as we encounter them, and we intend this
table to be used only as a quick reference guide, not as a definition.

In the following proofs, we will often use the fact that if a value c ∈ ZN is chosen uniformly
at random, then values of c modulo p1, p2, and p3 are also uniformly random in Zp1 , Zp2 , and
Zp3 respectively, and are independent from each other (this follows from the Chinese Remainder
Theorem). We start by proving Lemma 8 in two steps. First, we define an intermediary oracle
O1/2.

Oracle O1/2 This oracle initializes in the same way as O0, O1 and provides the attacker with
initial group elements from the same distribution. O1/2 responds to ciphertext-type queries
in the same way as oracles O0,O1. It responds to a challenge key-type query for I ∈ ZN by
choosing a random y′, r ∈ ZN , and also random X3, Y3 ∈ Gp3 . It returns the group elements

(wy
′
, gy

′
, vy

′
(uIh)rX3, g

rY3)

to the attacker.

Lemma 11. Under Assumption 3, no PPT attacker can distinguish between O0 and O1/2.

Proof. We assume there exists a PPT attacker A such that A distinguishes O0 from O1/2 with
non-negligible advantage. We will create a PPT algorithm B which attains a non-negligible
advantage against Assumption 3.
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Table 1: Summary of Oracles

Oracle CT-Type Responses CK-Type Response

O0 Gp2 term on first element all group elements in Gp1

O1 same as O0 Gp2p3 terms on last 2 elements

O2 all elements in Gp1p2 same as O1

O3 same as O0 Gp2p3 terms on first 3 elements

O1/2 same as O0 Gp3 terms on last 2 elements

O∗i first i like O2 same as O1,O2

rest like O1

O′i like O∗i except ith has same as O1,O2

first term in G, rest in Gp1p3

O′′i like Oi except ith has same as O1,O2

all terms in G

O2.1 same as O2 like O2 with extra Gp3 terms on first 2 elements

†O2.2 all elements in G same as O2.1

†O2.3 same as O2.2 all terms in G

Õ∗i like O∗i like O2.3

Õ′i like O′i like O2.3

Õ′′i like O′′i like O2.3

Õ1/2 like O3 Gp2p3 terms on first 3 elements,

Gp3 term on last element

Note: oracles marked with † initialize with an extra Gp3 term on gsgγ2 .

B receives g, g2, X1X3, T . B will simulate either O0 or O1/2 with A, depending on the value
of T (which is either in Gp1 or Gp1p3). B picks values a, b, c, d ∈ ZN uniformly at random and
sets u = ga, h = gb, v = gc, w = gd. It additionally chooses s, γ, δ, y2 ∈ ZN randomly, and gives
the attacker the group elements:

g, u, h, v, w, gsgγ2 , (X1X3)dgy2d2 , (X1X3)gy22 , (X1X3)cgcy22 .

We note that these are properly distributed, with y modulo p1 implicitly set to the discrete
logarithm of X1 base g modulo p1, ψ equal to d modulo p2 and p3, and σ equal to c modulo
p2 and p3. Note that the values of c modulo p1, p2, p3 are uncorrelated from each other by the
Chinese Remainder Theorem, and v = gc only involves the value of c modulo p1.

When A makes a ciphertext-type query for some identity I∗, B responds by choosing a
random t ∈ ZN and returning (wsgδ2v

t, gt, (uI
∗
h)t) to A. When A makes its one challenge

key-type query for some I, A chooses a random y′ ∈ ZN and returns

(wy
′
, gy

′
, vy

′
T aI+b, T )

to A. This implicitly sets gr to be the Gp1 part of T . If T ∈ Gp1 , then this matches the
distribution of O0 (since there are no Gp3 terms here). If T ∈ Gp1p3 , then this matches the
distribution of O1/2 (note that a, b modulo p2 are uniformly random and do not occur elsewhere
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- so there are random Gp3 terms attached to the last two group elements). Hence, B can use
the output of A to gain a non-negligible advantage against Assumption 3.

Lemma 12. Under Assumption 4, no PPT attacker can distinguish between O1/2 and O1.

Proof. We assume there exists a PPT attacker A such that A distinguishes O1/2 from O1 with
non-negligible advantage. We will create a PPT algorithm B which attains a non-negligible
advantage against Assumption 4.
B receives g, g3, X1X2, Y2Y3, T . B will simulate either O1/2 or O1 with A, depending on

the value of T (which is either in Gp1p3 or G). B chooses a, b, c, d, α ∈ ZN randomly and sets
u = ga, h = gb, v = gc, w = gd. It chooses y, ψ, σ ∈ ZN randomly and gives the attacker the
group elements:

g, u, h, v, w, X1X2, w
y(Y2Y3)yψ, gy(Y2Y3)y, vy(Y2Y3)yσ.

These are properly distributed with gs implicitly set to be X1.
When A makes a ciphertext-type query for some identity I∗, B responds by choosing a

random t ∈ ZN and returning ((X1X2)dvt, gt, (uI
∗
h)t) to A. (Note that this implicitly sets

gδ2 = Xd
2 , which is uniformly random because the value of d modulo p2 does not occur elsewhere.)

WhenAmakes its challenge key-type query for some I, A chooses a random y′ ∈ ZN and returns

(wy
′
, gy

′
, vy

′
T aI+b, T )

to A. As in the previous lemma, this implicitly sets gr to be the Gp1 part of T . We note that a, b
modulo p2, p3 are uniformly random and do not appear elsewhere. Thus, when T ∈ Gp1p3 , these
last two terms will have random elements of Gp3 attached (matching the distribution of O1/2),
and when T ∈ G, these last two terms will have random elements in both Gp3 and Gp2 attached
(matching the distribution of O1). Hence, B can use the output of A to gain a non-negligible
advantage against Assumption 4.

If some PPT attacker could distinguish between O0 and O1 with non-negligible probability,
than it would also distinguish either between O0 and O1/2 or between O1/2 and O1 with non-
negligible probability. This shows that Lemmas 11 and 12 imply Lemma 8.

We now prove Lemma 9 in a hybrid argument using polynomially many steps. We let
q denote the number of ciphertext-type queries made by a PPT attacker A. We will define
additional oracles O∗i for each i from 0 to q, O′i for each i from 1 to q, and O′′i for each i from
1 to q.

Oracle O∗i This oracle initializes in the same way as O1, O2 and provides the attacker with
initial group elements from the same distribution. It also responds to challenge key-type queries
in the same way as O1, O2. It keeps a counter of ciphertext-type queries which is initially equal
to one. It increments this counter after each response to a ciphertext-type query. In response
to the jth ciphertext-type query for some I∗j , if j ≤ i, it responds exactly like O2. If j > i, it
responds exactly like O1. In particular, O∗0 is identical to O1 and O∗q is identical to O2.

Oracle O′i This oracle acts the same as O∗i except in its response to the ith ciphertext-type
query. For the ith ciphertext-type query, it chooses a random t ∈ ZN and random elements
X3, Y3 ∈ Gp3 and responds with:

(wsgδ2v
tXσ

3 , g
tX3, (uI

∗
j h)tY3).

22



Oracle O′′i This oracle acts the same as O′i,O∗i except in its response to the ith ciphertext-
type query. For the ith ciphertext-type query, it chooses a random t ∈ ZN and random elements
X3, Y3 ∈ Gp3 and responds with:(

wsgδ2v
tgσt2 X

σ
3 , g

tgt2X3, (uI
∗
j h)tg

t(a′I∗j+b′)

2 Y3

)
.

We will transition from O1 = O∗0 to O′1, then to O′′1 , then to O∗1, O′2, and so on, until we
arrive at O∗q = O2. We prove computational indistinguishability for each transition along the
way in the following lemmas.

Lemma 13. Under Assumption 3, no PPT attacker can distinguish between O∗i and O′i+1 with
non-negligible advantage for all i = 0, . . . , q − 1.

Proof. We assume there exists a PPT attacker A who distinguishes between O∗i and O′i+1 with
non-negligible advantage. We will create a PPT algorithm B which achieves non-negligible
advantage against Assumption 3.
B receives g, g2, X1X3, T . B will simulate either O∗i or O′i+1 with A, depending on the

value of T (which is either in Gp1 or Gp1p3). B chooses a, b, c, d, α ∈ ZN randomly and sets
u = ga, h = gb, v = gc, w = gd. It also chooses s, γ, δ, y2, a

′, b′ ∈ ZN randomly and gives A the
group elements:(

g, u, h, v, w, gsgγ2 , (X1X3)d(g2)y2d, (X1X3)gy22 , (X1X3)c(g2)y2c
)
.

These are properly distributed with y implicitly set to the discrete logarithm of X1 base g
modulo p1, ψ equal to d modulo p2, p3, and σ = c modulo p2, p3.

When A makes its challenge key-type query for I, B responds as follows. It chooses
y′, r, r1, r2 ∈ ZN randomly and responds with:

(wy
′
, gy

′
, vy

′
(X1X3)r(aI+b)gr12 , (X1X3)rgr22 ).

When A makes its jth ciphertext-type query for I∗j where j ≤ i, B chooses t ∈ ZN randomly
and responds with: (

wsgδ2v
tgct2 , g

tgt2, (uI
∗
j h)tg

t(a′I∗j+b′)

2

)
.

This is identically distributed to a response from O2 (recall the σ = c modulo p2).
When A makes ciphertext type query i+ 1 for I∗i+1, B responds with:(

wsgδ2T
c, T, T aI

∗
i+1+b

)
.

When A makes its jth ciphertext-type query for I∗j where j > i + 1, B chooses t ∈ ZN
randomly and responds with: (

wsgδ2v
t, gt, (uI

∗
j h)t

)
.

This identically distributed to a response from O1.
We must now argue that the challenge key-type query and i + 1 ciphertext-type query

responses are properly distributed. If T ∈ Gp1 , then the response to the i + 1 ciphertext-
type query is identically distributed to a response from O1, and the values a, b modulo p3 only
appear in the response to the challenge key-type query, hence the Gp3 parts on the last two group
elements here appear random in Gp3 . This means that the responses of B properly simulate
the responses of O∗i . If T ∈ Gp1p3 , then we must argue that aI + b and aI∗i+1 + b both appear
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to be uniformly random modulo p3: this follows from pairwise independence of the function
aI + b modulo p3, since we have restricted the adversary to choose I and I∗i+1 so that I 6= I∗i+1

modulo p3. This means that the Gp3 components on the last two group elements of the challenge
key-type query response and on the i+ 1 ciphertext-type query response are uniformly random
in the attacker’s view. Thus, B has properly simulated the responses of O′i+1. Hence, B can use
the output of A to achieve a non-negligible advantage against Assumption 3.

Lemma 14. Under Assumption 4, no PPT attacker can distinguish between O′i and O′′i with
non-negligible advantage for all i = 1, . . . , q.

Proof. We assume there exists a PPT attacker A who distinguishes between O′i and O′′i with
non-negligible advantage. We will create a PPT algorithm B which achieves non-negligible
advantage against Assumption 4.
B receives g, g3, X1X2, Y2Y3, T . B will simulate either O′i or O′′i with A, depending on the

value of T (which is either in Gp1p3 or G). B chooses a, b, c, d, α ∈ ZN randomly and sets
u = ga, h = gb, v = gc, w = gd. It also chooses ψ, y ∈ ZN randomly gives A the group elements:(

g, u, h, v, w, X1X2, w
y(Y2Y3)ψ, gy(Y2Y3), vy(Y2Y3)c

)
.

These are properly distributed, with gs = X1 and gγ2 = X2. Note that this sets σ equal to c
modulo p2 and p3.

When A makes it challenge key-type query for I, B chooses y′, r, r1, r2 ∈ ZN randomly, and
responds with:

(wy
′
, gy

′
, vy

′
(uIh)r(Y2Y3)r1 , gr(Y2Y3)r2).

This has uniformly random terms in Gp2 and Gp3 on the last two elements, since r1, r2 are both
uniformly random modulo p2 and p3.

When A makes ciphertext-type query j for I∗j where j < i, B chooses t′ ∈ ZN randomly
and responds with: (

(X1X2)d(X1X2)ct
′
, (X1X2)t

′
, (X1X2)

′t(aI∗j+b)
)
.

This sets Xd
2 = gδ2, which is uniformly random because the value of d modulo p2 will not appear

elsewhere. It implicitly sets gt = Xt′
1 . This is identically distributed to a response from O2, with

a′, b′ equal to a, b modulo p2, and σ = c modulo p2. We note that this is in the only context in
which the values of a, b modulo p2 appear, so this is equivalent to choosing a′, b′ independently
at random.

When A makes ciphertext-type query i for I∗i , B responds with:(
(X1X2)dT c, T, T (aI∗i +b)

)
.

This implicitly sets gt = T . We note that the Gp3 terms here are properly distributed, since
the Gp3 part of T is random, and the values of a, b modulo p3 do not appear elsewhere.

When A makes ciphertext-type query j for I∗j where j > i, B chooses t ∈ ZN randomly and
responds with: (

(X1X2)dvt, gt, (uI
∗
j h)t

)
.

This is identically distributed to a response from O1.
If T ∈ Gp1p3 , then the response for ciphertext-type query i is identically distributed to

a response from O′i. If T ∈ G, then this response additionally has terms in Gp2 which are
appropriately distributed with c = σ, a = a′, b = b′ modulo p2. Thus, the response is identically
distributed to a response from O′′i . Hence, B can use the output of A to achieve non-negligible
advantage against Assumption 4.
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Lemma 15. Under Assumption 3, no PPT attacker can distinguish between O′′i and O∗i with
non-negligible advantage for all i = 1, . . . , q.

Proof. We assume there exists a PPT attacker A who distinguishes between O′′i and O∗i with
non-negligible advantage. We will create a PPT algorithm B which achieves non-negligible
advantage against Assumption 3.
B receives g, g2, X1X3, T . B will simulate either O′′i or O∗i with A, depending on the value

of T (which is either in Gp1 or Gp1p3). B chooses a, b, c, d, α ∈ ZN randomly and sets u =
ga, h = gb, v = gc, w = gd. It also chooses s, γ, δ, y2, a

′, b′ ∈ ZN randomly and gives A the group
elements: (

g, u, h, v, w, gsgγ2 , (X1X3)d(g2)y2d, (X1X3)gy22 , (X1X3)c(g2)y2c
)
.

These are properly distributed with y implicitly set to the discrete logarithm of X1 base g
modulo p1, ψ equal to d modulo p2, p3, and σ = c modulo p2, p3.

When A makes a challenge key-type query for I, B chooses y′, r, r1, r2 ∈ ZN randomly and
responds with:

(wy
′
, gy

′
, vy

′
(X1X3)r(aI+b)gr12 , (X1X3)rgr22 ).

We note that the Gp2 parts here are uniformly random.
When A makes ciphertext-type query j for I∗j where j < i, B chooses t ∈ ZN randomly and

responds with: (
wsgδ2v

tgct2 , g
tgt2, (uI

∗
j h)tg

t(a′I∗j+b′)

2

)
.

This is identically distributed to a response from O2.
When A makes ciphertext-type query i for I∗i , B chooses t2 ∈ ZN randomly and responds

with: (
wsgδ2T

c · gct22 , T gt22 , T
aI∗i +bg

t2(a′I∗i +b′)
2

)
.

We note that the Gp2 parts here are properly distributed, since σ = c modulo p2.
When A makes ciphertext-type query j for I∗j where j > i, B chooses t ∈ ZN randomly and

responds with: (
wsgδ2v

t, gt, (uI
∗
j h)t

)
.

This is identically distributed to a response from O1.
When T ∈ Gp1 , the values of a, b modulo p3 only appear in the response to the challenge

key-type query, which means that the Gp3 terms on the last two group elements there are
uniformly random. Also, the response to the ith ciphertext-type query is distributed exactly
like a response from O2. In this case, B has properly simulated the responses of O∗i .

When T ∈ Gp1p3 , we must argue that the values aI+b and aI∗i +b appear uniformly random
modulo p3: this follows by pairwise independence of aI + b as a function of I modulo p3, since
I 6= I∗i modulo p3 and a, b modulo p3 only appear in these two values. Hence, B has properly
simulated the response of O′′i in this case. We have thus shown that B can use the output of A
to achieve non-negligible advantage against Assumption 3.

Since O∗0 = O1 and O∗q = O2, the existence of an attacker who can distinguish O1 from
O2 with non-negligible probability would violate one of Lemmas 13, 14, 15 (since q must be
polynomial). Thus, Lemmas 13, 14, and 15 imply Lemma 9.

Finally, we will prove Lemma 10, again using a hybrid argument over a polynomial number
of steps. We must first define several new intermediary oracles.
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Oracle O2.1 This oracle initializes in the same way as O2 and provides the attacker with initial
group elements from the same distribution. It answers ciphertext-type queries in the same as
O2. To answer a challenge key-type query for I, it chooses y′, r ∈ ZN randomly, X2, Y2 ∈ Gp2
randomly, and X3, Y3 ∈ Gp3 randomly. It responds with:(

wy
′
gy
′ψ

3 , gy
′
gy
′

3 , v
y′(uIh)rX2X3, g

rY2Y3

)
.

Notice that the Gp2 and Gp3 components on the last two elements are still random like for O2,
but there are now additional Gp3 components on the first two terms sharing the value ψ modulo
p3 with the initial group elements given to the attacker.

Oracle O2.2 This oracle initializes a bit differently from the other oracles. It fixes ran-
dom elements g, u, h, v, w ∈ Gp1 , g2 ∈ Gp2 , and g3 ∈ Gp3 . It chooses random exponents
s, γ, δ, y, ψ, σ, a′, b′, t3, t

′
3, t
′′
3 ∈ ZN . It initially provides the attacker with the group elements:(

g, u, h, v, w, gs(g2g3)γ , wy(g2g3)yψ, gy(g2g3)y, vy(g2g3)yσ
)
.

What differs from the previous oracles here is the added gγ3 and term: notice that this is
uniformly random in Gp3 , since γ is random modulo p3 (and uncorrelated from its value modulo
p2). This oracle answers the challenge-key type query in the same way as O2.1. To answer a
ciphertext-type query for I∗, it chooses random values t ∈ ZN and responds with:(

wsgδ2v
tgσt2 g

t3
3 , g

tgt2g
t′3
3 , (uI

∗
h)tgt(a

′I∗+b′)
2 g

t′′3
3

)
.

It is crucial to note that these Gp3 terms are the same for each ciphertext-type query response.

Oracle O2.3 This oracle initializes in the same way as O2.2 and provides the attacker with
the same initial elements as O2.2. It responds to ciphertext-type queries in the same was as
O2.2. To answer a challenge key-type query for I, it chooses y, r ∈ ZN randomly, X2, Y2 ∈ Gp2
randomly, and X3, Y3 ∈ Gp3 randomly. It responds with:(

wy
′
(g2g3)y

′ψ, gy
′
(g2g3)y

′
, vy

′
(uIh)rX2X3, g

rY2Y3

)
.

Once we have gone from O2 to O2.1, to O2.2, and then to O2.3, we have arrived at an oracle
which is very similar to O3, except that it produces additional random terms in Gp2 and Gp3
for the challenge key-type query and ciphertext-type queries. Essentially, we can think of the
challenge key-type response of O2.3 as having the same underlying structure as the response
of O3, but with additional random components in the Gp2 and Gp3 subgroups on the last two
group elements (terms from Gp2 and Gp3 do appear on the second to last group element in O3’s
response, but these are not fully randomized as they are for O2.3). To get rid of the unwanted
components here and on the ciphertext-type responses, we “unwind” the oracle transitions
above, stripping off the excess terms and finally arriving at O3. This unwinding is accomplished
by traversing through the following intermediary oracles.

Oracles Õ∗i , Õ′i, Õ′′i These oracles are like O∗i , O′i and O′′i respectively, except that the
challenge key-type response for all of them is identically distributed to the response of O2.3

(meaning that there are Gp2 , Gp3 terms on the first two group elements which are distributed
as (g2g3)y

′ψ, (g2g3)y
′
).
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Oracle Õ1/2 This oracle is like O3, except that the challenge key-type response has additional
random terms in Gp3 on its last two group elements.

We will transition from O2.3 to Õ∗q (this strips off the unwanted Gp3 terms in the ciphertext-
type responses). We then move to Õ′′q , then to Õ′q, then to Game Õ∗q−1, and so on, until we
arrive at Õ∗0. Now all of the excess terms on the ciphertext-type responses are gone, and we are
left with ciphertext-type responses that are identical to O3. Next, we transition to Õ1/2 and
finally to O3.

We now show that under our assumptions, no PPT attacker can detect any of the transitions
between O2 and O3 with non-negligible advantage. This will prove Lemma 10.

Lemma 16. Under Assumption 3, no PPT attacker can distinguish between O2 and O2.1 with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A who distinguishes between O2 and O2.1 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 3 with
non-negligible advantage.
B receives B receives g, g2, X1X3, T . It will simulate either O2 or O2.1 with A, depending

on the value of T (which is either in Gp1 or Gp1p3). B chooses a, b, c, d ∈ ZN randomly, and sets
u = ga, h = gb, v = gc, w = gd. It also chooses random values s, γ, δ, y2, a

′, b′ ∈ ZN and gives the
attacker the following group elements:(

g, u, h, v, w, gsgγ2 , (X1X3)dgy2d2 , (X1X3)gy22 , (X1X3)cgy2c2

)
.

These are properly distributed, with ψ equal to d modulo p2 and p3 and σ equal to c modulo
p2 and p3. This implicitly sets gy = X1.

When A makes its challenge key-type request for I, B chooses r, r1, r2 ∈ ZN randomly and
responds with: (

T d, T, T c(X1X3)r(aI+b)gr12 , (X1X3)rgr22

)
.

We note that the Gp3 terms on the last two elements are uniformly random, since the values of
a and b modulo p3 do not appear elsewhere.

When A makes a ciphertext-type request for I∗, B chooses t ∈ ZN randomly and responds
with: (

wsgδ2v
tgct2 , g

tgt2, (uI
∗
h)tga

′I∗+b′
2

)
.

This is identically distributed to a response from O2.
Now, if T ∈ Gp1 , then the first two elements of the challenge key-type response are in Gp1 ,

and the last two elements have uniformly random components in Gp2 and Gp3 . In this case, B
has properly simulated O2. If T ∈ Gp1p3 , then the distribution of the Gp3 components on the
first two group elements of the challenge key response match the value of ψ = d modulo p3,
and B has properly simulated O2.1. Hence, B can use the output of A to attain non-negligible
advantage against Assumption 3.

Lemma 17. Under Assumption 4, no PPT attacker can distinguish between O2.1 and O2.2 with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A who distinguishes between O2.1 and O2.2 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 4 with
non-negligible advantage. We will invoke the assumption with the roles of p2 and p3 reversed.
B receives g, g2, X1X3, Y2Y3, T . It will simulate either O2.1 or O2.2, depending on the value

of T (which is either in Gp1p2 or G). It chooses random values a, b, c, d ∈ ZN and sets u =
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ga, h = gb, v = gc, w = gd. It chooses random values σ, y, t3 ∈ ZN and gives the attacker the
following group elements:(

g, u, h, v, w, T, wy(Y2Y3)d, gy(Y2Y3), vy
′
(Y2Y3)σ

)
.

We note that this sets ψ = d modulo p2 and p3. It implicitly sets gs to be the Gp1 part of T .
If T ∈ Gp1p2 , this is distributed identically to the initial elements provided by O2.1. If T ∈ G,
this is distributed identically to the initial elements provided by O2.2.

WhenAmakes its challenge key-type request for I, B chooses random values y′, r, r1, r2 ∈ ZN
and responds with:(

(X1X3)dy
′
, (X1X3)y

′
, (X1X3)cy

′
(uIh)r(Y2Y3)r1 , gr(Y2Y3)r2

)
.

This is identically distributed to a response from O2.1 or O2.2. We note that the random term
Y r1

3 means that the value of c modulo p3 is not revealed here - it remains completely hidden
from the attacker’s view.

When A makes a ciphertext-type request for I∗, B chooses t′ ∈ ZN and responds with:(
T dT ct3vt

′
gσt
′

2 , T t3gt
′
gt
′

2 , T
t3(aI∗+b)gt

′(aI∗+b)g
t′(aI∗+b)
2

)
.

This implicitly sets gt equal to gt
′

times the Gp1 part of T t3 . We let gτ2 denote the Gp2 part of
T . We argue that the Gp2 terms here are properly distributed as gδ2g

σt′′
2 , gt

′′
2 , g

t′′(a′I∗+b′)
2 , where

a = a′, b = b′, t′′ = t′ + τt3, and δ = τ(d+ ct3 − σt3). Since the values of a, b modulo p2 do not
appear in any other context, a′ and b′ are random modulo p2. Since t′ is random modulo p2, t′′

is also random modulo p2, and since the value of c modulo p2 does not appear elsewhere, δ is
also random modulo p2. Hence, the Gp2 terms here are properly distributed.

If T ∈ Gp1p2 , this B has properly simulated O2.1. If T ∈ G, then the Gp3 terms attached
to the ciphertext-type response are uniformly random, since t3 is uniformly random modulo p3,
the value of c modulo p3 is uniformly random and is not revealed elsewhere, and the values of
a, b modulo p3 are also uniformly random and do not appear elsewhere. In this case, B has
properly simulated O2.2. Thus, B can use the output of A to attain non-negligible advantage
against Assumption 4.

Lemma 18. Under Assumption 4, no PPT attacker can distinguish between O2.2 and O2.3 with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A who distinguishes between O2.2 and O2.3 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 4 with
non-negligible advantage.
B receives g, g3, X1X2, Y2Y3, T . It will simulate either O2.2 or O2.3, depending on the value

of T (which is either in Gp1p3 or G). It chooses random values a, b, c, d ∈ ZN and sets u =
ga, h = gb, v = gc, w = gd. It also chooses random values s, γ, δ, y, t3, t′3 ∈ ZN and gives the
attacker the group elements:(

g, u, h, v, w, gs(Y2Y3)γ , wy(Y2Y3)d, gy(Y2Y3), vy(Y2Y3)c
)
.

We note that this is properly distributed and sets ψ = d modulo p2 and p3 and σ = c modulo
p2 and p3.

When A makes its challenge key-type request for I, B chooses random values r, r1, r2 ∈ ZN
and responds with: (

T d, T, T c(uIh)r(Y2Y3)r1 , gr(Y2Y3)r2
)
.
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This implicitly sets gy
′

equal to the Gp1 part of T . We note that this matches the value d = ψ
modulo p2, and also modulo p3 if T has a Gp3 component.

When A makes a ciphertext-type request for I∗, B chooses a random value t′ ∈ ZN and
responds with: (

ws(Y2Y3)δ(X1X2)ct
′
, (X1X2)t

′
gt33 , (X1X2)aI

∗+bg
t′3
3

)
.

This implicitly sets gt = Xt′
1 . It also sets a′ = a and b′ = b modulo p2, which are properly

distributed because a, b modulo p2 do not appear elsewhere.
If T ∈ Gp1p3 , the challenge key-type response is identically distributed to a response from

O2.2. If T ∈ G, then the challenge key-type response is identically distributed to a response from
O2.3. Thus, B can use the output of A to obtain a non-negligible advantage against Assumption
4.

We now go through our “unwinding steps” to get to O3. We let q denote the number of
queries the attacker makes. We note that q must be polynomial.

Lemma 19. Under Assumption 4, no PPT attacker can distinguish between O2.3 and Õ∗q with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A who distinguishes between O2.3 and Õ∗q with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 4 with
non-negligible advantage. We will invoke the assumption with the roles of p2 and p3 reversed.
B receives g, g2, X1X3, Y2Y3, T . It will simulate either O2.3 or Õ∗q , depending on the value of

T (which is either in Gp1p2 or G). It chooses random values a, b, c, d ∈ ZN and sets u = ga, h =
gb, v = gc, w = gd. It chooses random values σ, y, t3 ∈ ZN and gives the attacker the following
group elements: (

g, u, h, v, w, T, wy(Y2Y3)d, gy(Y2Y3), vy(Y2Y3)σ
)
.

We note that this sets ψ = d modulo p2 and p3. If T ∈ Gp1p2 , then this matches the initial
elements provided by Õ∗q . If T ∈ G, then this matches the initial elements provided by O2.3.

When A makes its challenge key-type request for I, B chooses y′, r, r1, r2 ∈ ZN randomly
and responds with:(

(X1X3g2)dy
′
, (X1X3g2)y

′
, (X1X3g2)cy

′
(uIh)r(Y2Y3)r1 , gr(Y2Y3)r2

)
.

When A makes a ciphertext-type request for I∗, B chooses t ∈ ZN and responds with:(
T dT ct3vtgσt2 , T

t3gtgt2, T
t3(aI∗+b)gt(aI

∗+b)g
t(aI∗+b)
2

)
.

We note that this is very similar to the way B behaves in the proof of Lemma 17. The
only difference is the gdy

′

2 , gy
′

2 , g
cy′

2 terms which have been added to the challenge key. As in the
proof of Lemma 17, we have that if T ∈ G, the Gp3 components of the challenge ciphertext are
properly distributed as in a response from O2.3, since the value of c modulo p3 is not revealed
by the challenge key-type response (it is hidden by the random term Y r1

3 ). Also as in the proof
of Lemma 17, we have that the Gp2 components of the ciphertext-type responses are properly
distributed. Thus, if T ∈ Gp1p2 , B has properly simulated the responses of Õ∗q , and when T ∈ G,
B has properly simulated the responses of O2.3. Hence, B can use the output of A to achieve
non-negligible advantage against Assumption 4.

Lemma 20. Under Assumption 3, no PPT attacker can distinguish between Õ∗i and Õ′′i with
non-negligible advantage, for each i from 1 to q.
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Proof. We assume there exists a PPT attacker A who distinguishes between Õ∗i and Õ′′i with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 3 with
non-negligible advantage.
B receives g, g2, X1X3, T . It will simulate either Õ∗i or Õ′′i , depending on the value of

T (which is either in Gp1 or Gp1p3). We note that the responses of Õ∗i are exactly like the
responses of O∗i , except for the challenge key-type response, and the responses of Õ′′i are exactly
like the responses of O′′i , except for the challenge key-type response. So B will behave like the
simulator in the proof of Lemma 15, except for the key-type response. We describe the full
behavior of B here for completeness.
B chooses a, b, c, d, α ∈ ZN randomly and sets u = ga, h = gb, v = gc, w = gd. It also chooses

s, γ, δ, y2, a
′, b′ ∈ ZN randomly and gives A the group elements:(

g, u, h, v, w, gsgγ2 , (X1X3)d(g2)y2d, (X1X3)gy22 , (X1X3)c(g2)y2c
)
.

These are properly distributed with ψ = d modulo p2, p3, and σ = c modulo p2, p3.
When A makes a challenge key-type query for I, B chooses y′, r, r1, r2 ∈ ZN randomly and

responds with:(
(X1X3g2)dy

′
, (X1X3g2)y

′
, (X1X3g2)cy

′
(X1X3)r(aI+b)gr12 , (X1X3)rgr22

)
.

We note that the Gp2 parts here are uniformly random.
When A makes ciphertext-type query j for I∗j where j < i, B chooses t ∈ ZN randomly and

responds with: (
wsgδ2v

tgct2 , g
tgt2, (uI

∗
j h)tg

t(a′I∗j+b′)

2

)
.

This is identically distributed to a response from O2.
When A makes ciphertext-type query i for I∗i , B chooses t2 ∈ ZN randomly and responds

with: (
wsgδ2T

c · gct22 , T gt22 , T
aI∗i +bg

t2(a′I∗i +b′)
2

)
.

We note that the Gp2 parts here are properly distributed, since σ = c modulo p2.
When A makes ciphertext-type query j for I∗j where j > i, B chooses t ∈ ZN randomly and

responds with: (
wsgδ2v

t, gt, (uI
∗
j h)t

)
.

This is identically distributed to a response from O1.
Now, we note that aI∗i + b and aI + b appear uniformly random modulo p3 by pairwise

independence, since I 6= I∗i modulo p3. Thus, when T ∈ Gp1p3 , B has properly simulated the
responses of Õ′′i . When T ∈ Gp1 , the ith response to a ciphertext-type query does not contain
any Gp3 components, and so B has properly simulated the responses of Õ∗i . Thus, B can use
the output of A to achieve non-negligible advantage against Assumption 3.

Lemma 21. Under Assumption 4, no PPT attacker can distinguish between Õ′′i and Õ′i with
non-negligible advantage, for each i from 1 to q.

Proof. We assume there exists a PPT attacker A who distinguishes between Õ′′i and Õ′i with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 4 with
non-negligible advantage.
B receives g, g3, X1X2, Y2Y3, T . B will simulate either Õ′′i or Õ′i with A, depending on the

value of T (which is either in Gp1p3 or G). B operates very similarly to the simulator in the
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proof of Lemma 14, except for its challenge key-type response. We describe its full behavior
below for completeness.
B chooses a, b, c, d, α ∈ ZN randomly and sets u = ga, h = gb, v = gc, w = gd. It also chooses

ψ, y ∈ ZN randomly gives A the group elements:(
g, u, h, v, w, X1X2, w

y(Y2Y3)ψ, gy(Y2Y3), vy(Y2Y3)c
)
.

These are properly distributed, with gs = X1 and gγ2 = X2. Note that this sets σ equal to c
modulo p2 and p3.

When A makes it challenge key-type query for I, B chooses y′, r, r1, r2 ∈ ZN randomly, and
responds with:

(wy
′
(Y2Y3)y

′ψ, gy
′
(Y2Y3)y

′
, vy

′
(uIh)r(Y2Y3)r1 , gr(Y2Y3)r2).

This has uniformly random terms in Gp2 and Gp3 on the last two elements, and the Gp2 , Gp3
terms on the first two elements match the proper distribution in terms of ψ.

When A makes ciphertext-type query j for I∗j where j < i, B chooses t ∈ ZN randomly and
responds with: (

(X1X2)d(X1X2)ct, (X1X2)t, (X1X2)t(aI
∗
j+b)

)
.

This sets Xd
2 = gδ2, which is uniformly random because the value of d modulo p2 does not appear

elsewhere. This is identically distributed to a response from O2, with a′, b′ equal to a, b modulo
p2, and σ = c modulo p2. We note that this is in the only context in which the values of a, b
modulo p2 appear, so this is equivalent to choosing a′, b′ independently at random.

When A makes ciphertext-type query i for I∗i , B chooses t ∈ ZN randomly and responds
with: (

(X1X2)dT c, T, T t(aI
∗
i +b)

)
.

We note that the Gp3 terms here are properly distributed, since the Gp3 part of T is random,
and the values of a, b modulo p3 do not appear elsewhere.

When A makes ciphertext-type query j for I∗j where j > i, B chooses t ∈ ZN randomly and
responds with: (

(X1X2)dvt, gt, (uI
∗
j h)t

)
.

This is identically distributed to a response from O1.
If T ∈ Gp1p3 , then the response for ciphertext-type query i is identically distributed to

a response from Õ′i. If T ∈ G, then this response additionally has terms in Gp2 which are
appropriately distributed with c = σ, a = a′, b = b′ modulo p2. Thus, the response is identically
distributed to a response from Õ′′i . Hence, B can use the output of A to achieve non-negligible
advantage against Assumption 4.

Lemma 22. Under Assumption 3, no PPT attacker can distinguish between Õ′i and Õ∗i−1 with
non-negligible advantage, for each i from 1 to q.

Proof. We assume there exists a PPT attacker A which distinguishes between Õ′i and Õ∗i−1 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 3 with
non-negligible advantage.
B receives g, g2, X1X3, T . B will simulate either Õ′i or Õ∗i with A, depending on the value

of T (which is either in Gp1 or Gp1p3). B acts very similarly to the simulator in the proof of
Lemma 13, except for its challenge key-type response. We describe its full behavior below for
completeness.
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B chooses a, b, c, d, α ∈ ZN randomly and sets u = ga, h = gb, v = gc, w = gd. It also chooses
s, γ, δ, y2, a

′, b′ ∈ ZN randomly and gives A the group elements:(
g, u, h, v, w, gsgγ2 , (X1X3)d(g2)y2d, (X1X3)gy22 , (X1X3)c(g2)y2c

)
.

These are properly distributed with ψ equal to d modulo p2, p3, and σ = c modulo p2, p3.
When A makes its challenge key-type query for I, B responds as follows. It chooses

y′, r, r1, r2 ∈ ZN randomly and responds with:(
(X1X3g2)dy

′
, (X1X3g2)y

′
, (X1X3g2)cy

′
(X1X3)r(aI+b)gr12 , (X1X3)rgr22

)
.

When A makes its jth ciphertext-type query for I∗j where j < i, B chooses t ∈ ZN randomly
and responds with: (

wsgδ2v
tgct2 , gtg

t
2, (uI

∗
j h)tg

t(a′I∗j+b′)

2

)
.

This is identically distributed to a response from O2 (recall the σ = c modulo p2).
When A makes ciphertext type query i for I∗i , B responds with:(

wsgδ2T
c, T, T aI

∗
i +b
)
.

When A makes its jth ciphertext-type query for I∗j where j > i, B chooses t ∈ ZN randomly
and responds with: (

wsgδ2v
t, gt, (uI

∗
j h)t

)
.

This identically distributed to a response from O1.
We note that aI + b and aI∗i + b both appear to be uniformly random modulo p3: this

follows from pairwise independence and that I 6= I∗i modulo p3. If T ∈ Gp1 , then B has
properly simulated the responses of Õ∗i−1. If T ∈ Gp1p3 , then B has properly simulated the
responses of Õ′i. Hence, B can use the output of A to obtain non-negligible advantage against
Assumption 3.

Lemma 23. Under Assumption 4, no PPT attacker can distinguish between Õ∗0 and Õ1/2 with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A which distinguishes between Õ∗0 and Õ1/2 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 4 with
non-negligible advantage.
B receives g, g3, X1X2, Y2Y3, T . It will simulate either Õ∗0 or Õ1/2, depending on the value

of T (which is either in Gp1p3 or G). B’s behavior will be the same as the simulator in the proof
in Lemma 12, except for its challenge key-type response. We describe its full behavior below
for completeness.
B chooses a, b, c, d, α ∈ ZN randomly and sets u = ga, h = gb, v = gc, w = gd. It chooses

y, ψ, σ ∈ ZN randomly and gives the attacker the group elements:

g, u, h, v, w, X1X2, w
y(Y2Y3)yψ, gy(Y2Y3)y, vy(Y2Y3)yσ.

These are properly distributed with gs implicitly set to be X1.
When A makes a ciphertext-type query for some identity I∗, B responds by choosing a

random t ∈ ZN and returning ((X1X2)dvt, gt, (uI
∗
h)t) to A. (Note that this implicitly sets

gδ2 = Xd
2 , which is uniformly random because the value of d modulo p2 does not occur elsewhere.)
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When A makes its challenge key-type query for some I, A chooses a random y′ ∈ ZN and
responds with: (

wy
′
(Y2Y3)ψy

′
, gy

′
(Y2Y3)y

′
, vy

′
(Y2Y3)σy

′
T aI+b, T

)
.

This implicitly sets gr to be the Gp1 part of T . We note that a, b modulo p2, p3 are uniformly
random and do not appear elsewhere. Thus, when T ∈ Gp1p3 , these last two terms will have
random elements of Gp3 attached (matching the distribution of Õ1/2, and when T ∈ G, these last
two terms will have random elements in both Gp3 and Gp2 attached (matching the distribution
of Õ∗0). Hence, B can use the output of A to gain a non-negligible advantage against Assumption
4.

Lemma 24. Under Assumption 3, no PPT attacker can distinguish between Õ1/2 and O3 with
non-negligible advantage.

Proof. We assume there exists a PPT attacker A which distinguishes between Õ1/2 and O3 with
non-negligible advantage. We will create a PPT algorithm B which breaks Assumption 3 with
non-negligible advantage.
B receives g, g2, X1X3, T . It will simulate either Õ1/2 or O3, depending on the value of

T (which is either in Gp1 or Gp1p3). B will behave much like the simulator in the proof of
Lemma 11, except for its challenge key-type response. We describe its full behavior below for
completeness.
B selects values a, b, c, d ∈ ZN uniformly at random and sets u = ga, h = gb, v = gc, w = gd.

It additionally chooses s, γ, δ, y2 ∈ ZN randomly, and gives the attacker the group elements:

g, u, h, v, w, gsgγ2 , (X1X3)dgy2d2 , (X1X3)gy22 , (X1X3)cgcy22 .

We note that these are properly distributed, with ψ equal to d modulo p2 and p3, and σ equal
to c modulo p2 and p3.

When Amakes its challenge key-type query for I, A chooses a random y′ ∈ ZN and responds
with: (

(X1X3g2)dy
′
, (X1X3g2)y

′
, (X1X3g2)cy

′
T aI+b, T

)
.

This implicitly sets gr to be the Gp1 part of T .
When A makes a ciphertext-type query for some identity I∗, B responds by choosing a

random t ∈ ZN and returning (wsgδ2v
t, gt, (uI

∗
h)t) to A.

If T ∈ Gp1p3 , the B has properly simulated the responses of Õ1/2. If T ∈ Gp1 , then B
has properly simulated the responses of O3. Hence, B can use the output of A to gain a
non-negligible advantage against Assumption 3.

When we put this all together, we see that Lemmas 16-24 imply Lemma 10, since we
successfully transitioned from O2 to O3 with a polynomial number of intermediary steps, each
of which is computationally indistinguishable to the attacker. This concludes our proof that
oracles O0, O1, O2, and O3 are computationally indistinguishable.

4.4.3 Proof of One Semi-Functional Key Invariance

With the aid of Lemmas 8, 9, 10, we now prove our dual system encryption HIBE scheme has
one semi-functional key invariance. This completes our proof of its security. We employ the
games outlined in Section 4.4.1.

Lemma 25. Under Assumptions 3 and 4, for any PPT attacker A, the difference in A’s
advantage between Game HIBEβ and Game HIBE′β for β = 0, 1 is negligible.
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Proof. We suppose there exists a PPT attacker A and a value of β ∈ {0, 1} such that A’s
advantage changes non-negligibly between Game HIBEβ and Game HIBE′β. We will either
create a PPT algorithm B that breaks Assumption 3 with non-negligible advantage or a PPT
algorithm B that breaks Assumption 4 with non-negligible advantage.

Because A’s advantage differs non-negligibly, it must be that while playing Game HIBEβ,
A produces two values I, I ′ ∈ ZN which are unequal modulo N but are equal modulo p3, with
non-negligible probability. We let A denote the g.c.d. of I − I ′ and N , and we let B denote
N/A. We then have that p3 divides A, and B 6= 1. We consider two possible cases: 1) p1

divides B and 2) A = p1p3, B = p2. At least one of these cases must occur with non-negligible
probability.

If case 1) occurs with non-negligible probability, we can create a B which breaks Assumption
3 with non-negligible advantage. B receives g, g2, X1X3, T . It can use these terms to simulate
Game HIBEβ with A as follows. It chooses α, a, b, c, d ∈ ZN randomly, and gives A the following
public parameters:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}.

We note that B knows the master secret key α, so it can easily make normal keys. Since B also
knows g2, it can easily make semi-functional ciphertexts.

To make semi-functional keys, B uses X1X3 and g2. More precisely, to make a semi-
functional key for (I1, . . . , Ij), B chooses random values λ1, . . . , λj ∈ ZN up to the constraint
that λ1 + · · ·+ λj = α. It also chooses random values y1, . . . , yj−1, y

′
j , r1, . . . , rj ∈ ZN . It forms

the key as:

Ki,0 = gλiwyi , Ki,1 = gyi , Ki,2 = vyi(uIih)ri , Ki,3 = gri ∀i ∈ {1, . . . , j − 1},

Kj,0 = gλj (X1X3g2)dy
′
j , Kj,1 = (X1X3g2)y

′
j , Kj,2 = (X1X3g2)cy

′
j (uIjh)rj ,Kj,3 = grj .

This makes properly distributed semi-functional keys with ψ = d modulo p2, p3 and σ = c
modulo p2, p3.

Now, if A fails to produce I, I ′ such that gcd(I−I ′, N) = A is divisible by p3 and p1 divides
B = N/A, then B guesses randomly. However, with non-negligible probability, A will produce
such an I, I ′. B can detect this by computing A = gcd(I −I ′, N) and B = N/A, checking that
gB is the identity element (this will occur only if p1 divides B since g has order p1 in G) and
checking that (X1X3)B 6= 1 (this confirms that p3 does not divide B, hence it must divide A).
When B detects this situation, it can test whether T ∈ Gp1 or T ∈ Gp1p3 by testing if TB is 1.
If TB = 1 holds, then T ∈ Gp1 . If TB 6= 1, then T ∈ Gp1p3 . Thus, B achieves non-negligible
advantage in breaking Assumption 3.

If case 2) occurs with non-negligible probability, we can create a B which breaks Assumption
4 with non-negligible advantage. B receives g, g3, X1X2, Y2Y3, T . It can use these terms to
simulate Game HIBEβ with A as follows. It chooses α, a, b, c, d ∈ ZN randomly, and gives A
the following public parameters:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}.

We note that B knows the master secret key α, so it can easily make normal keys.
To make a semi-functional ciphertext for (I∗1 , . . . , I∗` ) and message M , B chooses random

values t1, . . . , t` ∈ ZN and forms the ciphertext as:

C = Me(X1X2, g)α, C0 = X1X2,

Ci,1 = (X1X2)d(X1X2)cti , Ci,2 = (X1X2)ti , Ci,3 = (X1X2)aI
∗
i +b ∀i ∈ {1, . . . , `}.
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We note that this will set σ = c modulo p2.
B chooses a random value ψ ∈ ZN . To make a semi-functional key for (I1, . . . , Ij), B chooses

random values λ1, . . . , λj ∈ ZN up to the constraint that λ1 + · · · + λj = α. It also chooses
random values y1, . . . , yj , r1, . . . , rj ∈ ZN . It forms the key as:

Ki,0 = gλiwyi , Ki,1 = gyi , Ki,2 = vyi(uIih)ri , Ki,3 = gri ∀i ∈ {1, . . . , j − 1},

Kj,0 = gλjwyj (Y2Y3)ψyj , Kj,1 = gyj (Y2Y3)yj , Kj,2 = vyj (Y2Y3)cyj (uIjh)rj ,Kj,3 = grj .

We note that the semi-functional ciphertext and keys are well-distributed, and share the common
value of σ = c modulo p2 as required. We note that the Gp2 terms on the ciphertext are random
because the value of d modulo p2 does not appear elsewhere.

Now, if A fails to produce I, I ′ such that gcd(I − I ′, N) = A, where A = p1p3 and B = p2,
then B guesses randomly. However, with non-negligible probability, A will produce such an
I, I ′. B can detect this by computing A,B and testing that gB and gB3 are not the identity
element (this confirms that B = p2, since it demonstrates the p1 and p3 do not divide B). Now,
B can learn whether T has a Gp2 component or not by testing if TA is the identity element or
not. If it is not, then T has a Gp2 component. Thus, B achieves non-negligible advantage in
breaking Assumption 4.

Lemma 26. Under Assumptions 3 and 4, our dual system encryption HIBE scheme has one
semi-functional key invariance.

Proof. Relying on the above lemma, if this is false we may assume there exists a PPT attacker A
which achieves a non-negligible difference advantage between Game HIBE′0 and Game HIBE′1.
This means that A must also achieve a non-negligible difference in advantage between at least
one of the following pairs of games: Game HIBE′0 and Game EK, Game EK and Game EC,
and Game EC and Game HIBE′1. Given such an A, we will create a PPT algorithm B which
distinguishes one of the following pairs of oracles with non-negligible advantage: O0 and O1,
O1 and O2, and O2 and O3. This violates one of Lemmas 8, 9, 10.

We assume B interacts with one of O0, O1, O2, and O3. B initially obtains the group
elements

g, u, h, v, w, gsgγ2 , w
y(g2g3)yψ, gy(g2g3)y, vy(g2g3)yσ

from its oracle. It chooses α ∈ ZN randomly, and gives A the following public parameters:

PP = {N,G, g, u, h, v, w, e(g, g)α}.

We note that B knows the master secret key α.
When A requests a normal key, B can responds by using the usual key generation algorithm,

since it knows α. When A requests a semi-functional key for some identity vector (I1, . . . , Ij),
B creates one as follows. It chooses random values λ1, . . . , λj ∈ ZN up to the constraint that
λ1 + · · · + λj = α. It also chooses random values y1, . . . , yj−1, y

′
j , r1, . . . , rj ∈ ZN . It forms the

key as:

Ki,0 = gλiwyi , Ki,1 = gyi , Ki,2 = vyi(uIih)ri , Ki,3 = gri ∀i ∈ {1, . . . , j − 1},

Kj,0 = gλj
(
wy(g2g3)yψ

)y′j
, Kj,1 = (gy(g2g3)y)y

′
j , Kj,2 = (vy(g2g3)yσ)y

′
j (uIjh)rj , Kj,3 = grj .

We note that this creates properly distributed semi-functional secret key with the values of ψ, σ
fixed modulo p2 and p3, and the value of yj implicitly set to yy′j , which is rerandomized for each
key.
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When A requests the challenge key for some identity vector (I1, . . . , Ij), B makes a challenge
key-type query to the oracle with input value Ij . It receives from its oracle four group elements,
which will denote by (T0, T1, T2, T3). B chooses random values λ1, . . . , λj ∈ ZN up to the
constraint that λ1+· · ·+λj = α, and also chooses random values y1, . . . , yj−1, r1, . . . , rj−1 ∈ ZN .
B forms the challenge key for A as:

Ki,0 = gλiwyi , Ki,1 = gyi , Ki,2 = vyi(uIih)ri , Ki,3 = gri ∀i ∈ {1, . . . , j − 1},

Kj,0 = gλjT0, Kj,1 = T1, Kj,2 = T2, Kj,3 = T3.

If B is interacting with O0, then (T0, T1, T2, T3) will be distributed as (wy
′
, gy

′
, vy

′
(uIjh)r, gr)

for y′, r ∈ ZN randomly chosen, and so this will be a properly distributed normal key. If B is in-
teracting with O1 or O2, (T0, T1, T2, T3) will be distributed as (wy

′
, gy

′
, vy

′
(uIjh)rX2X3, g

rY2Y3),
where y′, r ∈ ZN , X2, Y2 ∈ Gp2 , and Y2, Y3 ∈ Gp3 are chosen randomly, and so this will be a
properly distributed ephemeral semi-functional key. If B is interacting with O3, (T0, T1, T2, T3)
will be distributed as (wy

′
(g2g3)ψy

′
, gy

′
(g2g3)y

′
, vy

′
(g2g3)σy

′
(uIjh)r, gr), where y′, r ∈ ZN are

randomly chosen, and so this will be a properly distributed semi-functional key.
WhenA requests the challenge ciphertext for messagesM0,M1 and identity vector (I∗1 , . . . , I∗` ),

B makes a ciphertext-type query to the oracle for each I∗i (We recall the value Ij from the chal-
lenge key cannot be equal to any of these values I∗ modulo p3.) In response to each query
for I∗i , B receives three group elements, which we denote by (T i1, T

i
2, T

i
3). B chooses β ∈ {0, 1}

randomly and forms the ciphertext as:

C = Mβe(gsg
γ
2 , g)α, C0 = gsgγ2 ,

Ci,1 = T i1, Ci,2 = T i2, Ci,3 = T i3 ∀i ∈ {1, . . . , `}.

If B is interacting with O0, O1, or O3, then each (T i1, T
i
2, T

i
3) will be distributed as

(wsgδ2v
ti , gti , (uI

∗
i h)ti),

where ti ∈ ZN is randomly chosen, so this will be a properly distributed semi-functional cipher-
text. If B is interacting with O2, then each (T i1, T

i
2, T

i
3) will be distributed as

(wsgδ2v
tigσti2 , gtigti2 , (u

I∗i h)tigti(a
′I∗i +b′)

2 ),

where ti ∈ ZN is randomly chosen, and a′, b′ ∈ ZN are randomly chosen and do not vary with
i. In this case, B has produced a properly distributed ephemeral semi-functional ciphertext.

Thus, if B is interacting with O0, then it has properly simulated Game HIBE′0. If B is
interacting with O1, then it has properly simulated Game EK. If B is interacting with O2, then
it has properly simulated Game EC. And finally, if B is interacting with O3, then it has properly
simulated Game HIBE′1. Thus, since A must achieve a non-negligible difference of advantage
between at least one of these pairs of games, B will be able to distinguish the corresponding
pair of oracles with non-negligible advantage. This violates one of Lemmas 8, 9, 10. Hence,
under Assumptions 3 and 4, our dual system encryption HIBE scheme has one semi-functional
key invariance.

This completes the proof of Theorem 4.
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5 Key-Policy Attribute-Based Encryption

We now present our construction for KP-ABE. Our public parameters consist of a constant
number of elements from a bilinear group of composite order N , while our attribute universe
is ZN . Ciphertexts in our system are associated with sets of attributes, while secret keys
are associated with LSSS access matrices. Our construction is closely related to our HIBE
construction. The main changes are that attributes have now replaced identities, and the
master secret key α is now shared according to the LSSS matrix, instead of as a sum. We follow
the convention that to share a value α, one employs a vector ~α with first coordinate equal to α,
and the shares are obtained by multiplying the rows of the LSSS matrix by the sharing vector ~α.
A subset of rows is capable of reconstructing the shared secret if and only if their span includes
the vector (1, 0, . . . , 0).

5.1 Construction

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and chooses a
suitable bilinear group G of order N = p1p2p3, a product of three distinct primes. It chooses
α ∈ ZN uniformly randomly, and also chooses uniformly random elements g, u, h, v, w from the
subgroup Gp1 . It sets the public parameters as:

PP := {N,G, g, u, h, v, w, e(g, g)α}.

The MSK is α, and the universe U of attributes is ZN .

Encrypt(M,S ⊆ U,PP) → CT The encryption algorithm takes in a message M , a set of
attributes S, and the public parameters. We let ` denote the size of the set S, and we let
s1, . . . , s` ∈ ZN denote the elements of S. The encryption algorithm chooses uniformly random
values s, t1, . . . , t` ∈ ZN and computes the ciphertext as:

C := Me(g, g)αs, C0 := gs,

Csi,1 := wsvti , Csi,2 := gti , Csi,3 := (usih)ti ∀i ∈ {1, . . . , `}.

(We also assume the set of S is given as part of the ciphertext.)

KeyGen(MSK,PP, (A, ρ))→ SK The key generation algorithm takes in the master secret key
α, the public parameters, and a LSSS matrix (A, ρ), where A is an n×m matrix over ZN , and
ρ maps each row of A to an attribute in ZN . The key generation algorithm chooses a random
vector ~α ∈ ZmN with first coordinate equal to α and random values r1, . . . , rn, y1, . . . , yn ∈ ZN .
For each x ∈ {1, . . . , n}, we let Ax denote the xth row of A, and we let ρ(x) denote that attribute
associated with this row by the mapping ρ. We let λx := Ax · ~α denote the share associated
with the row Ax of A. The secret key is formed as:

Kx,0 := gλxwyx , Kx,1 := gyx , Kx,2 := vyx(uρ(x)h)rx , Kx,3 := grx ∀x ∈ {1, . . . , n}.

(We also assume the access matrix (A, ρ) is given as part of the key.)

Decrypt(SK,CT)→M The decryption algorithm takes in a ciphertext CT for attribute set
S and a secret key SK for access matrix (A, ρ). If the attributes of the ciphertext satisfy the
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policy of the secret key, then it will compute the message M as follows. First, it computes
constants ωx such that

∑
ρ(x)∈S ωxAx = (1, 0, . . . , 0). It then computes:

B =
∏

ρ(x)∈S

(
e(C0,Kx,0)e(Cρ(x),2,Kx,2)

e(Cρ(x),1,Kx,1)e(Cρ(x),3,Kx,3)

)ωx
,

M = C/B.

5.2 Correctness

We observe that:

B =
∏

ρ(x)∈S

(
e(g, g)sλxe(g, w)syxe(g, v)tρ(x)yxe(g, uρ(x)h)tρ(x)rx

e(w, g)syxe(v, g)tρ(x)yxe(uρ(x)h, g)tρ(x)rx

)ωx
,

=
∏

ρ(x)∈S

(
e(g, g)sλx

)ωx
= e(g, g)sα.

This shows that M = C/B.

5.3 Security

We will prove that our system is selectively secure using a similar strategy to our proof of
adaptive security for our HIBE system (the formal definition for selective security in the KP-
ABE setting can be found in Appendix A). We were able to achieve adaptive security in the
HIBE setting because we could assume that, regardless of what identity vector was chosen
for the challenge ciphertext, each requested key would have a final identity component which
would not match any components of the challenge ciphertext. This allowed us to put our
semi-functional components only on the last level of the key, which was crucial to preserving
the appearance of randomness via our pairwise independence argument in the middle stages
of the proof. In the adaptive KP-ABE setting, we only know that the policy of a requested
key will fail to be satisfied by the attribute set of the ciphertext, but we do not know how it
will fail to be satisfied. In other words, for keys which are requested by the attacker before
the challenge ciphertext, we do not know which rows of the keys will correspond to attributes
which are not in the challenge ciphertext. This leaves us in a bind - we do not know where
to put the semi-functional terms. If we try to put semi-functional terms on each row, we will
not be able to make the semi-functional terms appear suitably random in the attacker’s view.
If we put the semi-functional terms on too few rows, we will not achieve a meaningful kind of
semi-functionality.

This problem is solved by moving to the selective security model, which forces the attacker
to reveal the attribute set of the challenge ciphertext at the very start of the game. This
means that when the simulator is faced with a key request, it already knows which rows of
the key correspond to attributes which are absent from the ciphertext, and it can place the
semi-functional terms exactly on these rows. We must add an additional hybrid to our proof
strategy here so that we can change the rows of a key from normal to semi-functional one at a
time. The proof of the following theorem can be found in Appendix B.

Theorem 27. Under Assumptions 1-4, our KP-ABE system is selectively secure.
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5.4 Delegation for KP-ABE

In general, we say that a KP-ABE system provides delegation capabilities if it has an additional
algorithm, Delegate, which takes in the public parameters, a secret key for an access structure
A, and a target access structure A′. It outputs a new secret key for A′ when the access structures
A and A′ satisfy certain conditions. A necessary condition is for A to represent an access policy
which is equivalent to or more restrictive than the policy represented by A′. However, we
may not allow delegation to every such A′. A KP-ABE system with delegation for tree access
structures was presented in [28]. We will enhance our KP-ABE construction above to include
delegation capabilities for LSSS matrices. We first formally define security for KP-ABE systems
with delegation.

5.4.1 Security Definition

Selective security for KP-ABE systems with delegation is defined in terms of the following game
between a challenger and an attacker. We let U denote the universe of attributes. We will later
refer to this as Game KP-ABE with delegation. We assume that the universe of attributes is
known by the attacker in the initialization phase. (In our particular system, this corresponds
to giving the attacker the value N before the other public parameters.)

Initialization The attacker chooses a set S∗ ⊆ U of attributes which it will attack, and gives
this to the challenger.

Setup The challenger runs the Setup algorithm and gives the public parameters PP to the
attacker. It also initializes a set Z = ∅.

Phase 1 In this phase, the attacker can make many queries of the following types:

• Create: In a Create query, the attacker gives the challenger an access structure A. The
challenger creates a key for this by calling the KeyGen algorithm, and adds the key to the
set Z. It gives the attacker a reference to the key only (it does not give the challenger the
key itself).

• Delegate: In a Delegate query, the attacker gives the challenger a reference to a key in Z
and a target access structure A′. If allowed by the delegation algorithm, the challenger
runs Delegate to produce a key for A′ from the referenced key in Z. It adds this new key
to Z and gives the attacker a reference to it (again, it does not give the attacker the key).

• Reveal: In a Reveal query, the attacker gives the challenger a reference to a key in Z,
and the challenger gives the referenced key to the attacker. The attacker is not allowed
to make reveal queries on keys for access policies which are satisfied by S∗.

Challenge The attacker declares two equal length messages M0 and M1. The challenger
flips a random coin β ∈ {0, 1}, and encrypts Mβ under S∗, producing CT. It gives CT to the
attacker.

Phase 2 The attacker again makes Create, Delegate, and Reveal queries, subject to the same
constraints as in Phase 1.
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Guess The attacker outputs a guess β′ for β.
The advantage of an attacker A in this game is defined to be AdvKP−ABEA (λ) = Pr[β =

β′]− 1
2 .

Definition 28. A key-policy attribute-based encryption system with delegation is selectively
secure if all polynomial time attackers have at most a negligible advantage in the above security
game.

We note that adaptive security for KP-ABE systems with delegation is defined similarly,
except that there is no initialization phase. In other words, the attacker does not have to
provide the set S∗ until the challenge phase when it requests the ciphertext. The attacker is
still constrained to ask only to reveal keys with access policies not satisfied by S∗ in both Phase
1 and Phase 2. So when the attacker declares S∗, it must be the case that all the keys revealed
to the attacker in Phase 1 have access policies not satisfied by S∗.

In Appendix A, we define the selective security game for KP-ABE without delegation,
which we call Game KP-ABE. As in the HIBE case, it is not necessary to prove security in
the more elaborate definition if the delegation algorithm produces keys which are appropriately
re-randomized. More formally, we will prove that our KP-ABE system with delegation has the
following property:

Delegation Invariance We say a KP-ABE scheme with delegation ΠD = (Setup, Encrypt,
KeyGen, Decrypt, Delegate) has delegation invariance if for any PPT algorithm A, there exists
a PPT algorithmA′ such that the advantage ofA in Game KP-ABE with delegation is negligibly
close to the advantage of A′ in Game KP-ABE against Π = (Setup, Encrypt, KeyGen, Decrypt).

It follows that if a KP-ABE system ΠD = (Setup, Encrypt, KeyGen, Decrypt, Delegate)
has delegation invariance and the system Π = (Setup, Encrypt, KeyGen, Decrypt) without the
delegation algorithm is proven selectively secure, then ΠD is also selectively secure in the sense
of Definition 28. (The same holds for the adaptive versions of the security definitions.)

5.4.2 The Delegation Algorithm for our KP-ABE System

We now state the delegation algorithm for our KP-ABE construction. It allows delegation from
an n×m LSSS matrix (A, ρ) to an n′×m′ LSSS matrix (A′, ρ′) when the following two conditions
are met. We let ej ∈ Zm′N denote the vector of length m′ with a 1 in the jth coordinate and 0’s
elsewhere. For each row Ax of A, we let Am

′
x denote the vector of length m′ formed by taking

the length m vector Ax and concatenating m′ −m 0’s on the end.

1. m ≤ m′

2. For each attribute si ∈ U in the image of ρ′, we have:

SpanZN {A
′
x s.t. ρ

′(x) = si} ⊆ SpanZN {A
m′
x s.t. ρ(x) = si, em+1, . . . , em′}.

In other words, this requires the A′ has more columns than A, and for each attribute,
the span of the rows associated with that attribute in A includes the projection onto ZmN of
the rows of A′ associated with that attribute. It is easy to verify that if (A, ρ) and (A′, ρ′)
satisfy these conditions, then the access policy represented by (A′, ρ′) is either equivalent to or
more restrictive than the policy represented by (A, ρ). However, there are matrix pairs (A, ρ),
(A′, ρ′) where (A′, ρ′) is equivalent or more restrictive which fail to satisfy these conditions.
Nonetheless, we will later show “completeness” of our delegation mechanism in the sense that
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if (A′, ρ′) represents an access policy which is equivalent to or more restrictive than (A, ρ), then
there exists an LSSS matrix (A′′, ρ′′) which represents the same policy as (A′, ρ′), and the pair
(A, ρ) and (A′′, ρ′′) do satisfy conditions 1 and 2 above.

Delegate(PP,SK, (A′, ρ′)) → SK′ If (A, ρ) and (A′, ρ′) satisfy conditions 1 and 2, then the
delegation algorithm proceeds as follows. It chooses a random vector ~α′ ∈ Zm′N with first
coordinate equal to 0. We let ~α ∈ ZmN denote the vector sharing α in the key SK for (A, ρ). The
vector sharing α for the delegated key will be implicitly set to ~α + ~α′ (where we think of ~α as
being concatenated with m′−m 0’s on the end). Note that this is distributed as a freshly chosen
random vector of length m′ with first coordinate equal to α. We let λ′x = A′x ·~α′. The algorithm
also chooses random values rx, yx ∈ ZN for x from 1 to m′. For each row A′x of x, we compute
coefficients ωx1 , . . . , ω

x
n ∈ ZN such that ωxi is 0 whenever ρ(i) 6= ρ(x), and ωx1A1 + · · ·+ ωxnAn is

equal to the projection of A′x onto ZmN . We let SK = {Kx,0,Kx,1,Kx,2,Kx,3 ∀x ∈ {1, . . . ,m}}
denote the secret key for (A, ρ).

The key SK′ is formed as:

K ′x,0 = gλ
′
xwyx

n∏
i=1

K
ωxi
i,0 , K

′
x,1 = gyx

n∏
i=1

K
ωxi
i,1 ,

K ′x,2 = vyx(uρ(x)h)rx
n∏
i=1

K
ωxi
i,2 , K

′
x,3 = grx

n∏
i=1

K
ωxi
i,3 ∀x ∈ {1, . . . , n′}.

We note that this re-randomizes the sharing vector as well as all the random exponents
rx, yx. Hence, this key has the same distribution as a key for (A′, ρ′) generated by calling
KeyGen instead.

Lemma 29. Our KP-ABE system with delegation has delegation invariance.

Proof. Since the keys produced by the delegation algorithm have the same distribution as fresh
keys generated from KeyGen, we can define A′ to run like A, except replacing all of A’s queries
with only queries to the key generation algorithm for the keys that A requests to be revealed.
Since this produces the same distribution on the keys, A’s advantage will be precisely the same
as A’s advantage. Hence, our system has delegation invariance.

5.4.3 Completeness of our Delegation Conditions

We now show that if the LSSS matrix (A′, ρ′) represents an equivalent or more restrictive policy
than (A, ρ), then there exists some LSSS matrix (A′′, ρ′) which represents the same access policy
as (A′, ρ′), and (A, ρ) can delegate to (A′′, ρ′′) under our conditions 1 and 2. The size of A′′

will be polynomially related to the sizes of A,A′, and (A′′, ρ′′) will be efficiently computable
from (A, ρ) and (A′, ρ′). Essentially, we can adapt the completeness argument for trees given in
[28] to the LSSS matrix setting. In the tree or boolean formula setting, we note that if T is a
boolean formula and T ′ is an equivalent or more restrictive boolean formula, then the formula
T ANDT ′ is equivalent to T ′. In [28], they note that a key for T can always be used to form a
key for T ANDT ′.

Similarly, we will form (A′′, ρ′′) so that it represents an AND of the policies of (A, ρ) and
(A′, ρ′), and hence it is equivalent to (A′, ρ). We will start with a copy of A, and for each row,
we will add a 1 in a new column and m′ − 1 0’s following it. We will then place a copy of A′ in
these columns in new rows. Essentially, this will force a user to satisfy A′ in order to use each
row of A in reconstructing the secret.
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As usual, we let A be n ×m and A′ be n′ ×m′. We define A′′ to be n + nn′ ×m + nm′.3

We define the rows of A′′ as follows. The first n rows of A′′ are equal to the rows of A in
the first m coordinates, and then row i of A′′ for i from 1 to n additionally has a 1 in entry
m + 1 + (i − 1)m′ (it has 0’s in all other coordinates). The next n′ rows have a copy of A′

in columns m + 1 through m + m′, the next n′ rows after that have a copy of A′ in columns
m + m′ + 1 through m + 2m′, and so on. Letting Ji denote an n ×m′ matrix with a 1 in the
ith row, first column entry and 0’s elsewhere, we can illustrate this pictorially as:

A′′ =


A J1 J2 J3 . . . Jn
0 A′ 0 0 . . . 0
0 0 A′ 0 . . . 0
...

...
...

. . . . . .
...

0 0 0 0 . . . A′


In the block matrix above, a 0 represents a block of 0’s of the appropriate size. We define

ρ′′ on A′′ in the natural way - i.e each row of A′′ is associated with the attribute assigned to the
row of A or A′ which is embedded in it.

To see that (A′′, ρ′′) represents the same policy as A′, we note that if a set of attributes
satisfies (A′, ρ′), it also satisfies (A, ρ). Thus, to reconstruct the secret from such a set of
attributes using shares for (A′′, ρ′′), the user can reconstruct the secret in the copy of A, yielding
a vector which is 1 in the first coordinate, and non-zero only in the coordinates m+1+(i−1)m′

for i from 1 to n. These non-zero coordinates can be canceled out by reconstructing the vector
em+1+(i−1)m′ using the ith copy of A (we let ej denote the vector with a 1 in the jth coordinate
and 0’s elsewhere.

To see that (A, ρ) can delegate to (A′′, ρ′′) under our conditions 1 and 2, we note that A′′

clearly has more columns than A, and for each attribute, the span of the rows associated with
that attribute in A includes the projection onto ZmN of the rows of A′′ associated with that
attribute, so condition 2 holds. (Note that if we consider the first mn coordinates of rows of A′′

associated with some attribute, we get exactly the rows of A associated with that attribute.)
This shows that our KP-ABE system allows delegation between from any policy represented

by a LSSS matrix to any other equivalent or weaker policy represented by a LSSS matrix.
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A Background for ABE

We now formally define access structures, linear secret-sharing schemes, KP-ABE systems, and
selective security for KP-ABE systems.

A.1 Access Structures

Definition 30. (Access Structure [6]) Let {P1, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A
of non-empty subsets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will use monotone access
structures. We note that it is possible to (inefficiently) realize general access structures with
our techniques by having the negation of an attribute represented as a separate attribute (so
the total number of attributes will be doubled).

A.2 Linear Secret-Sharing Schemes

Our construction will employ linear secret-sharing schemes (LSSS). We use the following defi-
nition, adapted from [6].

Definition 31. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set
of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The matrix A has `
rows and n columns. For all i = 1, . . . , `, the ith row of A is labeled by a party ρ(i) (ρ is
a function from {1, . . . , `} to P). When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av
is the vector of ` shares of the secret s according to Π. The share (Av)i belongs to party
ρ(i).

We note the linear reconstruction property: we let Π denote an LSSS for access structure
A. We let S denote an authorized set, and define I ⊆ {1, . . . , `} as I = {i|ρ(i) ∈ S}. Then there
exist constants {ωi ∈ Zp}i∈I such that, for any valid shares {λ}i of a secret s according to Π,
we have:

∑
i∈I ωiλi = s. These constants {ωi} can be found in time polynomial in the size of

the share-generating matrix A [6].
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Boolean Formulas We note that access policies could alternatively be described in terms
of monotonic boolean formulas. LSSS access structures are more general and can be derived
from such representations: one can use standard techniques to convert any monotonic boolean
formula into a corresponding LSSS matrix.

A.3 KP-ABE Definition

A Key-Policy Attribute-Based Encryption Scheme consists of the following algorithms:

Setup(λ,U) → PP,MSK The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PP and a master secret key
MSK.

Encrypt(M,PP, S) → CT The encryption algorithm takes in a message M , the public pa-
rameters, and a set of attributes S. It outputs a ciphertext CT.

KeyGen(A,MSK,PP) → SK The key generation algorithm takes in an access structure A,
the master secret key MSK, and the public parameters PP. It outputs a secret key SK.

Decrypt(CT, SK) → M The decryption algorithm takes in a ciphertext encrypted under a
set of attributes S and a secret key for an access structure A. It will output the message M if
S satisfies A.

A.4 Selective Security for KP-ABE Systems

We define selective security for KP-ABE systems in terms of the following game between an
attacker and a challenger. We let U denote the universe of attributes. We will later refer to this
selective security game as Game KP-ABE. We assume that the universe of attributes is known
by the attacker in the initialization phase. (In our particular system, this corresponds to giving
the attacker the value N before the other public parameters.)

Initialization The attacker chooses a set S∗ ⊆ U of attributes which it will attack, and gives
this to the challenger.

Setup The challenger runs the Setup algorithm and gives the public parameters PP to the
attacker.

Phase 1 The attacker queries the challenger for private keys corresponding to access struc-
tures, under the restriction that the access structure of each key must not be satisfied by S∗.

Challenge The attacker declares two equal length messages M0 and M1. The challenger
flips a random coin β ∈ {0, 1}, and encrypts Mβ under S∗, producing CT. It gives CT to the
attacker.

Phase 2 The attacker queries the challenger for private keys corresponding to access struc-
tures, again with the restriction that the access structure of each key must not be satisfied by
S∗.

46



Guess The attacker outputs a guess β′ for β.
The advantage of an attacker A in this game is defined to be AdvKP−ABEA (λ) = Pr[β =

β′]− 1
2 .

Definition 32. A key-policy attribute-based encryption system is selectively secure if all poly-
nomial time attackers have at most a negligible advantage in the above security game.

We note that adaptive security for KP-ABE systems is defined similarly, except that there
is no initialization phase. In other words, the attacker does not have to provide the set S∗ until
the challenge phase when it requests the ciphertext. The attacker is still constrained to ask
only for keys with access policies not satisfied by S∗ in both Phase 1 and Phase 2. So when the
attacker declares S∗, it must be the case that all the keys requested by the attacker in Phase 1
have access policies not satisfied by S∗.

B Security Proof for Our KP-ABE System

We now prove that our KP-ABE system is selectively secure. As for our HIBE system, we begin
by defining an abstraction of dual system encryption KP-ABE schemes and three security
properties which will imply selective security. Since we are working in the selective security
setting, the challenger knows the set S∗ throughout the security game, and may refer to it in
creating semi-functional keys. To incorporate this into our abstraction, we define the semi-
functional key generation algorithm below to take in S∗ as an additional input.

B.1 Dual System Encryption KP-ABE

A dual system encryption KP-ABE scheme consists of the following algorithms. We note that
the algorithms EncryptSF and KeyGenSF need not run in polynomial time, since they will not
be used in the normal operation of the system. They are only needed for the security proof.

Setup(λ,U) → PP,MSK The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PP and a master secret key
MSK.

Encrypt(M,PP, S) → CT The encryption algorithm takes in a message M , the public pa-
rameters, and a set of attributes S. It outputs a ciphertext CT.

EncryptSF(M,PP, S) → C̃T The semi-functional encryption algorithm takes in a message
M , the public parameters, and a set of attributes S. It outputs a semi-functional ciphertext
C̃T.

KeyGen(A,MSK,PP) → SK The key generation algorithm takes in an access structure A,
the master secret key MSK, and the public parameters PP. It outputs a secret key SK.

KeyGenSF(A,MSK,PP, S∗) → S̃K The semi-functional key generation algorithm takes in
an access structure A, the master secret key MSK, the public parameters PP, and a set of
attributes S∗. It outputs a semi-functional secret key S̃K.

Decrypt(CT, SK) → M The decryption algorithm takes in a ciphertext encrypted under a
set of attributes S and a secret key for an access structure A. It will output the message M if
S satisfies A and the key and ciphertext are not both semi-functional.
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B.2 Selective Security Properties for Dual System Encryption KP-ABE

We now define three security properties for a dual system encryption KP-ABE scheme. We will
show that a system which has these properties is selectively secure. To define these properties,
we first define the following variations of the selective security game above.

We define Game KP-ABEC to be the same as Game KP-ABE above, except that the chal-
lenger will create a semi-functional ciphertext by calling EncryptSF in the challenge phase
instead of calling Encrypt. We define Game KP-ABESF to be the same as Game KP-ABEC ,
except that the challenger responds to all key requests by calling KeyGenSF and inputting the
set S∗ initially provided by the attacker. In other words, in this game the attacker receives all
semi-functional keys as well as a semi-functional ciphertext.

Semi-functional Ciphertext Invariance We say a dual system encryption KP-ABE scheme
ΠD =(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt) has semi-functional cipher-
text invariance if, for any PPT attacker A, the advantage of A in Game KP-ABEC is negligibly
close to the advantage of A in Game KP-ABE. We denote this by:∣∣∣AdvKP−ABEA (λ)−AdvKP−ABECA (λ)

∣∣∣ = negl(λ).

Semi-functional Key Invariance We say a dual system encryption KP-ABE scheme ΠD =(Setup,
Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt) has semi-functional key invariance if, for
any PPT attacker A, the advantage of A in Game KP-ABESF is negligibly close to the advan-
tage of A in Game KP-ABEC . We denote this by:∣∣∣AdvKP−ABECA (λ)−AdvKP−ABESFA (λ)

∣∣∣ = negl(λ).

Semi-functional Security We say a dual system encryption KP-ABE scheme ΠD =(Setup,
Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt) has semi-functional security if, for any
PPT attacker A, the advantage of A in Game KP-ABESF is negligible. We denote this by:

AdvKP−ABESFA = negl(λ).

Theorem 33. If a dual system encryption KP-ABE scheme ΠD =(Setup, Encrypt, EncryptSF,
KeyGen, KeyGenSF, Decrypt) has semi-functional ciphertext invariance, semi-functional key
invariance, and semi-functional security, then Π =(Setup, Encrypt, KeyGen, Decrypt) is a
selectively secure KP-ABE scheme.

Proof. This proof is analogous to the HIBE case, but we include it for completeness. We let
A denote any PPT algorithm. We will show that A’s advantage in the selective security game
against Π is negligible under the assumption that ΠD =(Setup, Encrypt, EncryptSF, KeyGen,
KeyGenSF, Decrypt) has semi-functional ciphertext invariance, semi-functional key invariance,
and semi-functional security. First, we note that in the original Game KP-ABE, there are no
calls to the semi-functional algorithms. Hence, the advantage of A against Π in this game is
the same as its advantage against ΠD. Therefore, it suffices to consider A’s advantage against
ΠD.

By semi-functional ciphertext invariance, we have that:∣∣∣AdvKP−ABEA (λ)−AdvKP−ABECA (λ)
∣∣∣ = negl(λ).

By semi-functional key invariance, we have that:∣∣∣AdvKP−ABECA (λ)−AdvKP−ABESFA (λ)
∣∣∣ = negl(λ).
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By the triangle inequality, we conclude that:∣∣∣AdvKP−ABEA (λ)−AdvKP−ABESFA (λ)
∣∣∣ = negl(λ).

By semi-functional security, we know thatAdvKP−ABESFA (λ) is negligible, thusAdvKP−ABEA (λ)
is negligible as well. This proves that Π is selectively secure.

B.3 An Alternative Security Property

As in the HIBE case, semi-functional key invariance is typically the most challenging aspect of
the security proof and is difficult to prove directly. This motivates the definition of one semi-
functional key invariance, which is easier to prove and implies semi-functional key invariance
through a hybrid argument. To define this alternative property, we first need to define an
additional security game, Game KP-ABEb, where b can take values 0 and 1. In this game,
when the attacker requests a key, it specifies whether it wants a normal or semi-functional key.
The challenger then calls KeyGen or KeyGenSF respectively to produce the key (note that
KeyGenSF is always called with the set S∗ as input, where the attacker declares S∗ at the
beginning of the game). At some point, the attacker specifies a challenge key. If the value of b
is 0, then the challenger responds with a normal key. If the value of b is 1, then the challenger
responds with a semi-functional key. The ciphertext provided to the attacker in this game is
semi-functional.

One Semi-functional Key Invariance We say a dual system encryption KP-ABE scheme
ΠD =(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt) has one semi-functional key
invariance if, for any PPT attacker A, the advantage of A in Game KP-ABE0 is negligibly close
to its advantage in Game KP-ABE1. We denote this by:∣∣∣AdvKP−ABE0

A (λ)−AdvKP−ABE1
A (λ)

∣∣∣ = negl(λ).

Theorem 34. If a dual system encryption KP-ABE scheme ΠD =(Setup, Encrypt, EncryptSF,
KeyGen, KeyGenSF, Decrypt) has one semi-functional key invariance, then it also has semi-
functional key invariance.

Proof. This proof is also analogous to the HIBE case, but we include it for completeness. We
suppose there exists a PPT attacker A which achieves a non-negligible difference in advantage
between Game KP-ABEC and Game KP-ABESF . Then we will show there must exist a PPT
algorithm B which has a non-negligible difference in advantage between Game KP-ABE0 and
Game KP-ABE1, contradicting one semi-functional key invariance. We let q denote the number
of key queries that A makes. For k from 0 to q, we define Game KP-ABESFk as follows: the
attacker receives a semi-functional ciphertext, semi-functional keys in response to the first k
key requests, and normal keys in response to the remaining key requests. We note that Game
KP-ABESF0 is Game KP-ABEC and that Game KP-ABESFq is Game KP-ABESF .

Since A has a non-negligible difference in advantage between Game KP-ABEC and Game
KP-ABESF and q is polynomial, there must exist some value of k from 0 to q − 1 such that∣∣∣AdvKP−ABESFkA (λ)−AdvKP−ABESFk+1

A (λ)
∣∣∣

is non-negligible. Now, B works as follows. When it receives the public parameters from its
challenger, it forwards these to A. For the first k key requests that A makes, B forwards these to
its challenger as requests for semi-functional keys, and returns the resulting semi-functional keys
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to A. For the k+1 key request from A, B forwards this to its challenger as the challenge key, and
returns the resulting key to A. For the remaining key requests from A, B forwards these to its
challenger as requests for normal keys, and returns the resulting keys to A. B outputs whatever
A outputs. Now, if B is playing Game KP-ABE0, then A is playing Game KP-ABESFk. If B is
playing Game KP-ABE1, then A is playing Game KP-ABESFk+1. Hence, since A has a non-
negligible difference in advantage between these two games, B has a non-negligible difference in
advantage between Game KP-ABE0 and Game KP-ABE1.

B.4 Our Semi-functional Algorithms

We now define the semi-functional algorithms for our KP-ABE scheme, which make it into a
dual system encryption KP-ABE scheme. The other algorithms are defined above in Subsection
5.1. We let g2 denote a generator of the subgroup Gp2 and g3 denote a generator of the subgroup
Gp3 .

EncryptSF(M,S ⊂ U,PP) → C̃T The semi-functional encryption algorithm first calls the
normal encryption algorithm, Encrypt, to obtain a normal ciphertext
CT = {C ′, C ′0, C ′si,1, C

′
si,2
, C ′si,3 ∀si ∈ S}. It then chooses two random values γ, δ ∈ ZN and

forms the semi-functional ciphertext as:

C = C ′, C0 = C ′0 · g
γ
2 ,

Csi,1 = C ′si,1 · g
δ
2, Csi,2 = C ′si,2, Csi,3 = C ′si,3 ∀si ∈ S.

We note that the additional term gδ2 in each Csi,1 is the same for each value of i.

KeyGenSF(MSK,PP, (A, ρ), S∗) → S̃K The first time the semi-functional key generation
algorithm is called, it chooses two random values ψ, σ ∈ ZN which it stores and uses on
all subsequent calls. Each time it is called, the semi-functional key generation algorithm
first calls the normal key generation algorithm KeyGen to obtain a normal secret key, SK =
{K ′x,0,K ′x,1,K ′x,2,K ′x,3 ∀x ∈ {1, . . . n}}. For each x such that ρ(x) /∈ S, it chooses a random
value ỹx ∈ ZN .

It forms the semi-functional key as:

Kx,0 = K ′x,0, Kx,1 = K ′x,1, Kx,2 = K ′x,2, Kx,3 = K ′x,3 ∀x s.t. ρ(x) ∈ S∗,

Kx,0 = K ′x,0 · (g2g3)ψỹx , Kx,1 = K ′x,1 · (g2g3)ỹx ,

Kx,2 = K ′x,2 · (g2g3)σỹx , Kx,3 = K ′x,3 ∀x s.t. ρ(x) /∈ S∗.

B.5 Semi-functional Ciphertext Invariance

We now show that our dual system encryption KP-ABE scheme has semi-functional ciphertext
invariance.

Lemma 35. Under Assumption 1, our dual system encryption KP-ABE scheme has semi-
functional ciphertext invariance.

Proof. We assume there is a PPT attacker A such that A achieves a non-negligible difference
in advantage between Game KP-ABE and Game KP-ABEc. We will create a PPT algorithm
B which breaks Assumption 1 with non-negligible advantage. B is given g ∈ Gp1 and T . B
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receives the set S∗ from A, and then B chooses a, b, c, d, α randomly from ZN . It gives the
public parameters

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}

to A. Since B knows the master secret key α, it can respond to A’s key requests by calling the
key generation algorithm and giving A the resulting keys.

At some point, A provides two messages M0,M1 and requests the challenge ciphertext for
S∗. We let ` denote the size of S∗, and we let s1, . . . , s` denote the elements of S∗. B forms the
ciphertext as follows. It chooses t1, . . . , t` randomly from ZN and β randomly from {0, 1} and
sets:

C = Mβe(g, T )α, C0 = T,

Ci,1 = T dvti , Ci,2 = gti , Ci,3 = (usih)ti ∀i ∈ {1, . . . , `}.

This implicitly sets gs equal to the Gp1 part of T . If T ∈ Gp1 , then this is a well-distributed
normal ciphertext, and B has properly simulated Game KP-ABE. If T ∈ Gp1p2 , then this is
a well-distributed semi-functional ciphertext (since the value of d modulo p2 is random), and
B has properly simulated Game KP-ABEC . Thus, B can use the output of A to achieve an
non-negligible advantage against Assumption 1.

B.6 Semi-functional Security

We now show that our dual system encryption KP-ABE scheme has semi-functional security.

Lemma 36. Under Assumption 2, our dual system encryption KP-ABE scheme has semi-
functional security.

Proof. We suppose there exists a PPT attacker A who achieves a non-negligible advantage in
Game KP-ABESF . We will create a PPT algorithm B which has a non-negligible advantage
against Assumption 2.
B receives g, g2, g3, gαX2, g

sY2, T . It also receives S∗ from A. It chooses a, b, c, d randomly
from ZN and sets the public parameters as:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, gαX2)}.

It gives these to A. We note that B does not know the master secret key α.
In response to a KeyGen query for an n × m LSSS matrix (A, ρ), B will create a semi-

functional key as follows. It chooses random values y′1, . . . , y
′
n, r1, . . . , rn ∈ ZN , a random vector

~µ ∈ ZmN up to the constraint that the first coordinate is zero, and a vector ~ν which is chosen
uniformly at random from the set of vectors in ZmN which are orthogonal to all rows Ax of A
where ρ(x) ∈ S∗ and have first entry equal to 1 (note that this set is non-empty because S∗

does not satisfy the access matrix (A, ρ)). B will implicitly set ~α = α~ν + ~µ (note that this is
distributed as a uniformly random vector with first entry equal to α). It also chooses random
values fx ∈ ZN for each x such that ρ(x) /∈ S∗. It forms the semi-functional key as:

Kx,0 = gAx·~µwy
′
x , Kx,1 = gy

′
x , Kx,2 = vy

′
x(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) ∈ S∗,

Kx,0 = gAx·~µ(gαX2)(d+1)Ax·~ν · wy′x · (g2g3)(d+1)fx , Kx,1 = gy
′
x(gαX2)Ax·~ν(g2g3)fx ,

Kx,2 = vy
′
x(gαX2)cAx·~ν(g2g3)cfx(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) /∈ S∗.

This is a properly distributed semi-functional key with ψ = d+ 1 modulo p2, p3, σ = c modulo
p2, p3, yx = y′x modulo p1 for all x s.t. ρ(x) ∈ S∗, yx = αAx · ν + y′x modulo p1 for all x s.t.
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ρ(x) /∈ S∗, ỹx equal to fx modulo p3, and ỹx modulo p2 equal to fx plus the discrete logarithm
of X2 base g2 times Ax · ν.

At some point, A provides B with two messages M0,M1. We let ` denote the size of S∗ and
we let s1, . . . , s` denote the elements of S∗. B creates the challenge ciphertext as follows. It
chooses t1, . . . , t`, δ′ randomly from ZN and chooses β randomly from {0, 1}. It sets:

C = MβT, C0 = gsY2,

Ci,1 = (gsY2)d · vti · gδ′2 , Ci,2 = gti , Ci,3 = (usih)ti ∀i ∈ {1, . . . , `}.

If T = e(g, g)αs, this is a well-distributed semi-functional encryption of Mβ with γ equal to
the discrete log of Y2 base g2 and δ = equal to d times this discrete log plus δ′. Notice that δ′

randomizes this so that there is no correlation with d modulo p2. Hence this is uncorrelated from
the exponents modulo p2 of the semi-functional keys. In this case, B has properly simulated
Game KP-ABESF .

If T is a random element of GT , then this is a semi-functional encryption of a random
message, and hence the ciphertext contains no information about β. In this case, the advantage
of A must be zero. Since the advantage of A is non-negligible in Game KP-ABESF , B can use
the output of A to obtain a non-negligible advantage against Assumption 2.

B.7 One Semi-functional Key Invariance

To prove one semi-functional key invariance for our dual system encryption KP-ABE scheme,
we will proceed similarly to our proof of one semi-functional key invariance in our HIBE scheme.
We begin by defining ephemeral semi-functional keys and ciphertexts, which will be similar to
our HIBE proof, except that we will now need an additional hybrid over the rows Ax of the
key, and hence ephemeral semi-functionality for keys will be defined more “locally” as occurring
only on a certain row of the key at a time. We will let I denote the number of rows Ax in
an access matrix (A, ρ) such that ρ(x) /∈ S∗. The ephemeral semi-functional key generation
algorithm will take in an additional input i, which is an integer allowed to take values from 0
to I + 1. These algorithms will also take the values σ, ψ in as input - since they will share these
values with regular semi-functional keys and ciphertexts.

EncryptESF(M,PP, S, σ)→ C̃TE The ephemeral semi-functional encryption algorithm first
calls the normal encryption algorithm, Encrypt, to obtain a normal ciphertext
CT = {C ′, C ′0, C ′si,1, C

′
si,2
, C ′si,3 ∀si ∈ S}. It then chooses random values γ, δ, a′, b′, t1, . . . , t` ∈

ZN , where ` is the size of S. It forms the ephemeral semi-functional ciphertext C̃TE as:

C := C ′, C0 := C ′0 · g
γ
2 ,

Ci,1 := C ′i,1 · g
γ
2 · g

σti
2 , Ci,2 := C ′i,2 · g

ti
2 , Ci,3 := C ′i,3 · g

(a′si+b′)ti
2 ∀i ∈ {1, . . . , `}.

KeyGenESF(MSK,PP, (A, ρ), S∗, i, σ, ψ)→ S̃KE The ephemeral semi-functional key gener-
ation algorithm first calls the normal key generation algorithm KeyGen to obtain a normal
secret key, SK = {K ′x,0,K ′x,1,K ′x,2,K ′x,3 ∀x ∈ {1, . . . n}}. It chooses additional random values
r1, r2 ∈ ZN . We let xj be the index of the jth row Ax of A such that ρ(x) /∈ S∗. B chooses
additional random values ỹj ∈ ZN for each j < i. The ephemeral semi-functional key S̃KE is
formed as:

Kx,0 = K ′x,0, Kx,1 = K ′x,1, Kx,2 = K ′x,2. Kx,3 = K ′x,3 ∀x s.t. ρ(x) ∈ S∗,
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Kxj ,0 = K ′xj ,0(g2g3)ψỹj , Kxj ,1 = K ′xj ,1(g2g3)ỹj ,

Kxj ,2 = K ′xj ,2(g2g3)σỹj . Kxj ,3 = K ′xj ,3∀xj s.t j < i

Kxi,0 = K ′xi,0, Kxi,1 = K ′xi,1, Kxi,2 = K ′xi,2(g2g3)r1 , Kxi,3 = K ′xi,3(g2g3)r2 .

Kxj ,0 = K ′xj ,0, Kxj ,1 = K ′xj ,1, Kxj ,2 = K ′xj ,2. Kxj ,3 = K ′xj ,3 ∀xj s.t. j > i.

We again note that the values ψ, σ are shared with the semi-functional keys and ciphertexts.
The KeyGenESF algorithm with index i essentially produces a key where the first i − 1 rows
of the matrix with attributes not in S∗ are distributed as they would be in a semi-functional
key, the ith such row is distributed as ephemeral semi-functional, and the remaining rows are
distributed as they would be in a normal key. Note that setting i = 0 will yield a normal key,
and setting i = I + 1 will yield a semi-functional key.

We also extend our definition of the semi-functional key generation algorithm to take in
an index i from 0 to I. It acts the same as the non-indexed semi-functional key generation
algorithm for the first i rows with attributes not in S∗, and then leaves the rest of the rows
normal. Note that if we set our index to I, we reproduce our non-indexed definition. More
formally:

KeyGenSF(MSK,PP, (A, ρ), S∗, i) → S̃K The first time the semi-functional key genera-
tion algorithm is called, it chooses two random values ψ, σ ∈ ZN which it stores and uses
on all subsequent calls. Each time it is called, the semi-functional key generation algorithm
first calls the normal key generation algorithm KeyGen to obtain a normal secret key, SK =
{K ′x,0,K ′x,1,K ′x,2,K ′x,3 ∀x ∈ {1, . . . n}}. We let xj be the index of the jth row Ax of A such that
ρ(x) /∈ S∗. B chooses additional random values ỹj ∈ ZN for each j ≤ i.

It forms the semi-functional key as:

Kx,0 = K ′x,0, Kx,1 = K ′x,1, Kx,2 = K ′x,2, Kx,3 = K ′x,3 ∀x s.t. ρ(x) ∈ S∗,

Kxj ,0 = K ′xj ,0 · (g2g3)ψỹj , Kxj ,1 = K ′xj ,1 · (g2g3)ỹj ,

Kxj ,2 = K ′xj ,2 · (g2g3)σỹj , Kxj ,3 = K ′xj ,3 ∀xj s.t. j ≤ i,

Kxj ,0 = K ′xj ,0, Kxj ,1 = K ′xj ,1, Kxj ,2 = K ′xj ,2. Kxj ,3 = K ′xj ,3 ∀xj s.t. j > i.

In order to get from Game KP-ABE0 to Game KP-ABE1, we will step through the following
intermediary games. In these games, the distributions of the challenge and ciphertext vary, while
the distributions of the requested normal and semi-functional keys remain the same as in Games
KP-ABE0 and KP-ABE1.

Game KP-ABE′0 This game is exactly like Game KP-ABE0, except with the added restric-
tion that the attacker cannot produce an access matrix (A, ρ) for the challenge key such that
ρ(x) /∈ S∗ for some x, but ρ(x) is equal to some element of S∗ when both are reduced modulo
p3.

Game EKi In this game, the ciphertext is semi-functional, and the challenge key is now
ephemeral semi-functional with index i. We retain the added modular restriction from the
previous game.
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Game ECi In this game, the ciphertext is ephemeral semi-functional and the challenge key
is ephemeral semi-functional with index i. We retain the added modular restriction.

Game SFi In this game, the ciphertext is semi-functional, and the challenge key semi-
functional with index i. We retain the added modular restriction.

Game KP-ABE′1 This game is exactly like Game KP-ABE1, except with the added modular
restriction.

We will transition between these games in the following order. We begin with Game KP-
ABE0 and move to Game KP-ABE′0. We then move to Game EK1, then Game EC1, then Game
SF1, then Game EK2, Game EC2, Game SF2, and so on, until we arrive at Game SFI , which
is the same as Game KP-ABE′1. Finally, we transition to Game KP-ABE1. We will prove that
through each of these (polynomially many) transitions, the advantage of an attacker A can only
change negligibly. This will show that our system has one semi-functional key invariance.

Lemma 37. Under Assumptions 3 and 4, for any PPT attacker A, the difference in A’s
advantage between Game KP-ABEβ and Game KP-ABE′β for β = 0, 1 is negligible.

Proof. We proceed similarly as in the proof of Lemma 25. We suppose there exists a PPT
attacker A and a value of β ∈ {0, 1} such that A’s advantage changes non-negligibly between
Game KP-ABEβ and Game KP-ABE′β. We will either create a PPT algorithm B that breaks
Assumption 3 with non-negligible advantage or a PPT algorithm B that breaks Assumption 4
with non-negligible advantage.

Because A’s advantage differs non-negligibly, it must be that while playing Game KP-ABEβ,
A produces two values s∗, s′ ∈ ZN which are unequal modulo N but are equal modulo p3, with
non-negligible probability. We let A denote the g.c.d. of s∗ − s′ and N , and we let B denote
N/A. We then have that p3 divides A, and B 6= 1. We consider two possible cases: 1) p1

divides B and 2) A = p1p3, B = p2. At least one of these cases must occur with non-negligible
probability.

If case 1) occurs with non-negligible probability, we can create a B which breaks Assumption
3 with non-negligible advantage. B receives g, g2, X1X3, T . It can use these terms to simulate
Game KP-ABEβ with A as follows. It chooses α, a, b, c, d ∈ ZN randomly, and gives A the
following public parameters:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}.

We note that B knows the master secret key α, so it can easily make normal keys. Since B also
knows g2, it can easily make semi-functional ciphertexts.

To make semi-functional keys, B uses X1X3 and g2. More precisely, to make a semi-
functional key for (A, ρ), B chooses random values r1, . . . , rn, y1, . . . , yn ∈ ZN , and a random
vector ~α ∈ ZmN with first entry equal to α. For each row Ax of A, we let λx = Ax · ~α. It forms
the semi-functional key as:

Kx,0 = gλxwyx , Kx,1 = gyx , Kx,2 = vyx(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) ∈ S∗,

Kx,0 = gλx(X1X3g2)dyx , Kx,1 = (X1X3g2)yx ,

Kx,2 = (X1X3g2)cyx(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) /∈ S∗.

This produces properly distributed semi-functional keys with ψ = d modulo p2, p3 and σ = c
modulo p2, p3.
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Now, if A fails to produce s∗, s′ such that gcd(I−I ′, N) = A is divisible by p3 and p1 divides
B = N/A, then B guesses randomly. However, with non-negligible probability, A will produce
such an s∗, s′. B can detect this and use it to determine the nature of T in the same way as in
the proof of Lemma 25. Thus, B achieves non-negligible advantage in breaking Assumption 3.

If case 2) occurs with non-negligible probability, we can create a B which breaks Assumption
4 with non-negligible advantage. B receives g, g3, X1X2, Y2Y3, T . It can use these terms to
simulate Game KP-ABEβ with A as follows. It chooses α, a, b, c, d ∈ ZN randomly, and gives
A the following public parameters:

PP = {N,G, g, u = ga, h = gb, v = gc, w = gd, e(g, g)α}.

We note that B knows the master secret key α, so it can easily make normal keys.
To make a semi-functional ciphertext for S∗ = {s1, . . . , s`} and message M , B chooses

random values t1, . . . , t` ∈ ZN and forms the ciphertext as:

C = Me(X1X2, g)α, C0 = X1X2,

Ci,1 = (X1X2)d(X1X2)cti , Ci,2 = (X1X2)ti , Ci,3 = (X1X2)asi+b ∀i ∈ {1, . . . , `}.

We note that this will set σ = c modulo p2.
B chooses a random value ψ ∈ ZN . To make a semi-functional key for (A, ρ), B chooses

random values r1, . . . , rn, y1, . . . , yn ∈ ZN and a random vector ~α ∈ ZmN with first entry equal
to α. It forms the key as:

Kx,0 = gλxwyx , Kx,1 = gyx , Kx,2 = vyx(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) ∈ S∗,

Kx,0 = gλxwyx(Y2Y3)ψyx , Kx,1 = gyx(Y2Y3)yx ,

Kx,2 = vyx(Y2Y3)cyx(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) /∈ S∗.

We note that the semi-functional ciphertext and keys are well-distributed, and share the
common value of σ = c modulo p2 as required (notice that the Gp2 terms on the ciphertext are
random because the value of d modulo p2 does not appear elsewhere).

Now, if A fails to produce s∗, s′ such that gcd(s∗− s′, N) = A, where A = p1p3 and B = p2,
then B guesses randomly. However, with non-negligible probability, A will produce such an
s∗, s′. B can detect this and exploit this in the same was as in the proof of Lemma 25. Thus,
B achieves non-negligible advantage in breaking Assumption 4.

Lemma 38. Under Assumptions 3 and 4, our dual system encryption KP-ABE scheme has
one semi-functional key invariance.

Proof. We proceed similarly to the proof of Lemma 26. We suppose there exists a PPT attacker
A who achieves a non-negligible difference in advantage between Game KP-ABE0 and Game
KP-ABE1. By the above lemma, we may assume that A also achieve a non-negligible difference
in advantage between Game KP-ABE′0 (i.e. Game SF0) and Game KP-ABE′1 (i.e. Game SFI ,
where I denote the number of rows in the challenge key’s access matrix whose attributes are
not in the attribute set S∗ of the ciphertext).

Since our hybrid sequence of games between Game SF0 and Game SF1 has at most a
polynomial number of steps, there must exist a value of i ∈ {1, . . . , I} such that A achieves a
non-negligible advantage between one of the following pairs of games: Game SFi−1 and Game
EKi, Game EKi and Game ECi, Game ECi and Game SFi. We will use A to create a PPT
algorithm B which will be able to distinguish with non-negligible advantage between one of the
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following pairs of oracles from Section 4.4.2: O0 and O1, O1 and O2, O2 and O3. This will
contradict one of Lemmas 8, 9, 10.

We assume B interacts with one of O0, O1, O2, and O3. B initially obtains the group
elements

g, u, h, v, w, gsgγ2 , w
y(g2g3)yψ, gy(g2g3)y, vy(g2g3)yσ

from its oracle. It chooses α ∈ ZN randomly, and gives A the following public parameters:

PP = {N,G, g, u, h, v, w, e(g, g)α}.

We note that B knows the master secret key α.
When A requests a normal key, B can responds by using the usual key generation algorithm,

since it knows α. When A requests a semi-functional key for some access matrix (A, ρ), B creates
one as follows. It chooses random values y′1, . . . , y

′
n, r1, . . . , rn ∈ ZN and a random vector ~α ∈ ZmN

with first entry equal to α. For each row Ax of A, we let λx = Ax · ~α. B forms the key as:

Kx,0 = gλxwy
′
x , Kx,1 = gy

′
x , Kx,2 = vy

′
x(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) ∈ S∗,

Kx,0 = gλx
(
wy(g2g3)yψ

)y′x
, Kx,1 = (gy(g2g3)y)y

′
x ,

Kx,2 = (vy(g2g3)yσ)y
′
x (uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) /∈ S∗.

We note that this creates properly distributed semi-functional secret keys with the values of
ψ, σ fixed modulo p2 and p3, and the value of yx implicitly set to yy′x for the rows such that
ρ(x) /∈ S∗.

When A requests the challenge key for some access matrix (A, ρ), B makes a challenge key-
type query to the oracle with input value ρ(xi) ∈ ZN , where xi ∈ {1, . . . , n} is the index of
the ith row Ax in A such that ρ(x) /∈ S∗. B receives from its oracle four group elements in
response, which we will denote by (T0, T1, T2, T3). B chooses random values rj , y′j ∈ ZN , for all
j ∈ {1, . . . , n} such that j 6= xi. It also chooses a random vector ~α ∈ ZmN with first entry equal
to α, and we set λx = Ax · ~α. B forms the challenge key as:

Kx,0 = gλxwy
′
x , Kx,1 = gy

′
x , Kx,2 = vy

′
x(uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) ∈ S∗,

Kxi,0 = gλxiT0, Kxi,1 = T1, Kxi,2 = T2, Kxi,3 = T3,

Kx,0 = gλx
(
wy(g2g3)yψ

)y′x
, Kx,1 = (gy(g2g3)y)y

′
x ,

Kx,2 = (vy(g2g3)yσ)y
′
x (uρ(x)h)rx , Kx,3 = grx ∀x s.t. ρ(x) /∈ S∗ ∧ x 6= xi.

If B is interacting with O0, then (T0, T1, T2, T3) will be distributed as (wy
′
, gy

′
, vy

′
(uIjh)r, gr)

for y′, r ∈ ZN randomly chosen, and so this will be a properly distributed normal key. If B is in-
teracting with O1 or O2, (T0, T1, T2, T3) will be distributed as (wy

′
, gy

′
, vy

′
(uIjh)rX2X3, g

rY2Y3),
where y′, r ∈ ZN , X2, Y2 ∈ Gp2 , and Y2, Y3 ∈ Gp3 are chosen randomly, and so this will be a
properly distributed ephemeral semi-functional key. If B is interacting with O3, (T0, T1, T2, T3)
will be distributed as (wy

′
(g2g3)ψy

′
, gy

′
(g2g3)y

′
, vy

′
(g2g3)σy

′
(uIjh)r, gr), where y′, r ∈ ZN are

randomly chosen, and so this will be a properly distributed semi-functional key.
When A requests the challenge ciphertext for messages M0,M1 and S∗ = {s1, . . . , s`}, B

makes a ciphertext-type query to the oracle for each sj (We recall the value ρ(xi) from the
challenge key cannot be equal to any of these values sj modulo p3.) In response to each query
for sj , B receives three group elements, which we denote by (T j1 , T

j
2 , T

j
3 ). B chooses β ∈ {0, 1}

randomly and forms the ciphertext as:

C = Mβe(gsg
γ
2 , g)α, C0 = gsgγ2 ,
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Cj,1 = T j1 , Cj,2 = T j2 , Cj,3 = T j3 ∀j ∈ {1, . . . , `}.

If B is interacting with O0, O1, or O3, then each (T j1 , T
j
2 , T

j
3 ) will be distributed as

(wsgδ2v
tj , gtj , (usjh)tj ),

where tj ∈ ZN is randomly chosen, so this will be a properly distributed semi-functional cipher-
text. If B is interacting with O2, then each (T j1 , T

j
2 , T

j
3 ) will be distributed as

(wsgδ2v
tjg

σtj
2 , gtjg

tj
2 , (u

sjh)tjgtj(a
′sj+b′)

2 ),

where tj ∈ ZN is randomly chosen, and a′, b′ ∈ ZN are randomly chosen and do not vary with
j. In this case, B has produced a properly distributed ephemeral semi-functional ciphertext.

Thus, if B is interacting with O0, then it has properly simulated Game SFi−1. If B is
interacting with O1, then it has properly simulated Game EKi. If B is interacting with O2,
then it has properly simulated Game ECi. And finally, if B is interacting with O3, then it
has properly simulated Game SFi. Thus, since A must achieve a non-negligible difference
of advantage between at least one of these pairs of games, B will be able to distinguish the
corresponding pair of oracles with non-negligible advantage. This violates one of Lemmas 8, 9,
10. Hence, under Assumptions 3 and 4, our dual system encryption KP-ABE scheme has one
semi-functional key invariance.

This concludes our proof of Theorem 27.
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