
Revocable Attribute-Based Signatures

with Adaptive Security in the Standard Model

Àlex Escala, Javier Herranz, and Paz Morillo

Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
C. Jordi Girona 1-3, Mòdul C3, 08034, Barcelona, Spain.

e-mail: alexescala@gmail.com, jherranz@ma4.upc.edu, paz@ma4.upc.edu

Abstract. An attribute-based signature with respect to a signing pol-
icy, chosen ad-hoc by the signer, convinces the verifier that the signer
holds a subset of attributes satisfying that signing policy. Ideally, the ver-
ifier must obtain no other information about the identity of the signer
or the attributes he holds. This primitive has many applications in real
scenarios requiring both authentication and anonymity/privacy proper-
ties.
We propose in this paper the first attribute-based signature scheme sat-
isfying at the same time the following properties: (1) it admits general
signing policies, (2) it is proved secure against fully adaptive adversaries,
in the standard model, and (3) the number of elements in a signature de-
pends only on the size of the signing policy. Furthermore, our scheme en-
joys the additional property of revocability: an external judge can break
the anonymity of a signature, when necessary. This property may be very
interesting in real applications where authorities are unwilling to allow
full anonymity of users.

Keywords: attribute-based signatures, Groth-Sahai proofs, unforgeability,
non-linkability, revocability.

1 Introduction

Attribute-based cryptography has emerged in the last years as a very interesting
and powerful paradigm. In an attribute-based cryptosystem, the secret operation
(signing or decrypting) can be performed only by users who hold a subset of
attributes that satisfy some policy. A successful execution of the secret operation
should leak no information about the identity of the user or the attributes he
holds, other than the fact that these attributes satisfy the given policy. Thanks
to that property, attribute-based cryptography has a lot of applications in real-
life scenarios where users want to preserve some level of privacy. For example,
any attribute-based encryption or signature scheme can be used to implement a
private access control mechanism: a server chooses and publishes an access policy,
and then users who want to access some restricted resource (digital information,
access to a building, etc.) must be able to decrypt or sign a fresh challenge chosen

by the server. Attribute-based cryptosystems must satisfy a collusion-resistance
property: if a set of users, each of them holding attributes that do not satisfy
the given policy, collude and try to perform the secret operation, they must fail
to do so, even if the union of all their attributes satisfies the policy.

The notion of attribute-based cryptography appeared explicitly in [6] for the
first time, as an extension of fuzzy identity-based cryptography [15]. Since then,
the notion of attribute-based encryption has received a lot of attention, see for
example [2, 10, 12]. Regarding attribute-based signatures, they were introduced
explicitly in the first version of [14]. After that, other attribute-based encryption
schemes have been proposed in [17, 13].

In an attribute-based signature (we will use sometimes ABS, for short) scheme,
users receive from a master entity a secret key which depends on the attributes
that they hold. Later, a user can choose a signing policy (a monotone increasing
family of subsets of attributes) satisfied by his attributes, and use his secret
key to compute a signature on a message, for this signing policy. The verifier of
the signature is convinced that some user holding a set of attributes satisfying
the signing policy is the author of the signature, but does not obtain any other
information about the actual identity of the signer or the attributes he holds.
Besides the general applications of any attribute-based cryptosystem (such as
private access control), this kind of signatures have many applications in spe-
cific scenarios where both authentication and privacy properties are desired. A
typical example is the leakage of secrets; see [14] for other applications.

All the attribute-based signature schemes that have been proposed up to date
have some drawback in their efficiency, functionality or security analysis. We
propose in this paper a new attribute-based signature scheme which overcomes
these drawbacks. Namely, our scheme is the first one enjoying at the same time
the following properties:

(1) it admits general signing policies,

(2) its security against adaptive adversaries is proved in the standard model,

(3) the number of elements in a signature depends linearly on the size of the
signing policy.

Table 1 summarizes the state of the art in attribute-based signatures, and
the contribution of our new scheme. In the table, λ denotes a security parameter
(the size of the underlying mathematical groups), and |Γ | denotes the size of
the mathematical object used to represent the signing policy. For example, in
the case of (ℓ, n)-threshold signing policies, containing all subsets of at least ℓ
attributes among a set of n attributes, we have |Γ | = n. Note that the difference
between λ and |Γ | can be quite significant; for example, in typical threshold
scenarios the number of involved attributes can be |Γ | = n ≈ 20, whereas
λ ≈ 320. Selective adversaries are those who choose the signing policy they want
to attack at the very beginning, before having access to secret key or signing
queries. In contrast, adaptive adversaries are more powerful: they can choose the
attacked signing policy much later. Proving security against adaptive adversaries
is obviously much better than proving security against selective adversaries.

ABS scheme #elements admitted policies considered adversaries model for the
in a signature security proof

Instantiations 1,2 in [14] O(λ) general adaptive standard

Instantiation 3 in [14] O(|Γ |) general adaptive generic group

[17, 13] O(|Γ |) threshold selective standard

Our scheme O(|Γ |) general adaptive standard

Table 1. Comparison between existing attribute-based signature schemes.

We construct our scheme in different steps. First we concentrate on the case
of threshold signing policies, and we start with a basic scheme which produces
linkable signatures. The design of this first scheme is inspired by the ring sig-
nature scheme of Shacham-Waters [16]. Then we add more technical tools to
provide non-linkability and anonymity to the signatures. Specifically, we use
Groth-Ostrovsky-Sahai [8] and Groth-Sahai [9] proofs. Such proofs have been
proved very useful in the design of signature schemes with some anonymity
properties, such as ring signatures [4, 16] and group signatures [3, 7]. Our second
scheme can be proved secure in the random oracle model. Finally, we explain
which modifications can be applied to this second scheme in order to admit more
general signing policies (possibly at the cost of an increase in the length of the
signatures) and to achieve provable security in the standard model (at the cost
of an increase in the length of the public parameters).

Interestingly, our schemes enjoy the additional property of revocability: the
master entity can send some secret information to some special user, for example
a judge. This user may then revoke the anonymity of an attribute-based signa-
ture, when needed, by tracing this signature to the user who computed it. To
the best of our knowledge, previous attribute-based signature schemes do not
satisfy this property. Revocability can be really useful when implementing the
primitive of attribute-based signatures in real-life scenarios, because authorities
do not usually like the idea of full anonymity.

2 Preliminaries

In this section we review some concepts, hardness assumptions and cryptographic
primitives that will appear in the description and analysis of our schemes.

2.1 Symmetric Bilinear Groups and Hardness Assumptions

A symmetric bilinear group is a tuple (n, G, GT , e, g) where G and GT are cyclic
groups of order n (which can be prime or composite), g generates G and e :
G×G→ GT is a pairing, i.e., an efficiently computable non-degenerate bilinear
map.

The security of our schemes is based on different assumptions. Given a prime
order symmetric bilinear group (p, G, GT , e, g), the CDH assumption states that

any probabilistic polynomial time algorithm that takes as input a tuple (g, ga, gb) ∈
G3 outputs gab ∈ G only with negligible probability. We will use the CDH as-
sumption in the subgroup of order p of a composite order symmetric bilinear
group G to prove the unforgeability of our scheme.

Given a composite order symmetric bilinear group (n, G, GT , e, g) with n =
pq the product of two large primes, the subgroup decision assumption states that
it is hard to distinguish an element in G from an element in Gq, the subgroup
of order q of G. This assumption is needed to construct non-interactive witness
indistinguishable proofs to provide anonymity to our scheme.

Finally, an automorphic signature scheme will be used in the design of the
schemes, and the hardness assumptions ensuring the security of such automor-
phic signature scheme will be inherited by our scheme.

2.2 Automorphic Signatures

An automorphic signature scheme is a signature scheme that satisfies the fol-
lowing properties: the verification keys lie in the message space, messages and
signatures consist of elements of a bilinear group, and verification is done by eval-
uating a set of pairing-product equations. We will use an automorphic signature
in the design of our scheme, essentially as a black-box.

Instantiations of automorphic signature schemes can be found in [5, 1]. Therein,
automorphic signature schemes using either symmetric or asymmetric bilinear
groups are presented. For the symmetric case (the one that we consider here), the
security of the scheme is based on the q-DHSDH (q-Double Hidden Symmetric
Diffie-Hellman) and WFCDH (Weak Flexible Computational Diffie-Hellman)
assumptions. These are non-standard but reasonable assumptions: under the
Knowledge of the Exponent Assumption, the first assumption is equivalent to
the q-SDH-III (q-Strong Diffie-Hellman III) assumption, which is a bit weaker
than the quite standard q-SDH assumption. Under the same Knowledge of the
Exponent Assumption, the asymmetric version of the WFCDH assumption is
equivalent to the standard discrete logarithm assumption.

2.3 NIWI Proofs for Pairing Product Equations

Groth, Ostrovsky and Sahai [8] and Groth and Sahai [9] propose two differ-
ent methodologies to construct non-interactive witness indistinguishable (NIWI)
proofs for different statements. In our scheme we will use both kinds of proofs.

First, Groth,Ostrovsky and Sahai [8] propose a construction of NIWI proofs
for all NP languages. More specifically, they constructed proofs for circuit satis-
fiability. We are just interested in a particular step of the construction: a NIWI
proof that a commitment contains 0 or 1. The setup algorithm outputs a bilinear
group (n, G, GT , e, g), where g is a generator of G and n = pq is the product of
two large primes, and also an element h ∈ G of order q. The commitment to
m ∈ {0, 1} is c = gmhr, the NIWI proof is computed as π = (g2m−1hr)r and the
verifier must check if e(c, c/g) = e(h, π). As proved in [8], this proof is correct,

sound and witness indistinguishable. Instead of using a unique value g, we will
use different values (the hash of some attributes).

Groth and Sahai [9] propose a construction of NIWI proofs of the satisfiability
of equations in bilinear groups. They give three instantiations of their method-
ology based on three different assumptions. In our scheme, we will mainly use
the instantiation based on the subgroup decision assumption. The methodology
of Groth-Sahai applies to different kinds of equations, but we are only interested
in pairing product equations, that is, those of the form

r
∏

i=1

e(gi, Xi) ·

r
∏

i=1

s
∏

j=1

e(Xi, Yj)
γij = tT

where gi, tT and γij are public constants in G, GT and Zn respectively, and Xi

and Yj are secret variables in G.

The setup algorithm outputs a bilinear group (n, G, GT , e, g), where g is a
generator of G and n = pq is the product of two large primes, and an element h of
order q. To construct a NIWI proof, first all secret variables should be committed
computing Com(Xi, ρi) = Xih

ρi and Com(Yj , τj) = Yih
τj . After that, the proof

π is computed using a protocol Proof(ck, E, {Xi, ρi}, {Yj, τj}), where E is the
equation to be satisfied. Finally, the verifier must check that

r
∏

i=1

e(gi, Com(Xi)) ·
r
∏

i=1

s
∏

j=1

e(Com(Xi), Com(Yj))
γij = tT e(h, π).

The correctness, soundness and witness indistinguishability of these proof
systems are proved in [9].

3 Revocable Attribute-Based Signatures: Protocols and

Security

In this section we describe the protocols that form an attribute-based signature
scheme, as well as the security properties that must be required to such a scheme.
A difference with respect to previous definitions for this primitive (such as the
one in [14]) is that we deal explicitly with the identity of the users, because of
the revocability property of our scheme. An attribute-based signature is linked
to a determined signing policy (P , Γ): a set P of attributes and a monotone
increasing family Γ ⊂ 2P of subsets of P . A valid signature means that a signer
possessing all the attributes of some of the subsets in Γ is the author of the
signature. The monotonicity property ensures that A1 ⊂ A2, A1 ∈ Γ ⇒ A2 ∈ Γ .
The most common and simple example of such a monotone increasing family
of subsets is the threshold case: in a (ℓ, n)-threshold signing policy, the set P
contains n attributes, and Γ = {A ⊂ P : |A| ≥ ℓ}. That is, by verifying a
threshold attribute-based signature, the verifier is convinced that the author of
the signature holds at least ℓ of the attributes included in the set P .

3.1 Syntactic Definition

A revocable attribute-based signature scheme consists of four probabilistic polynomial-
time algorithms:

– Setup(1λ). The setup algorithm takes as input a security parameter λ and
outputs some public parameters params, a master secret key msk and a re-
vocation key rk. The public parameters contain the possible universe of at-
tributes P̃ = {at1, . . . , atm}.

– KeyGen(id, A, msk, params). The key generation algorithm takes as input the
master secret key msk, the public parameters params and then an identity
id and a set of attributes A ⊂ P̃ satisfied by the user with identity id. The
output is a private key skid,A. The master entity may store some informa-
tion (for example, a table) relating the executions of this protocol with the
identities id of the users. We refer to this information as st.

– Sign(M,P , Γ, skid,A, params). The signing algorithm takes as input a message

M , a signing policy (P , Γ) where P ⊂ P̃ and Γ ⊂ 2P , a secret key skid,A and
the public parameters params, and outputs a signature σ.

– Verify(σ, M,P , Γ, params). The verification algorithm takes as input the sig-
nature σ, the message M , the signing policy (P , Γ) and the public param-
eters params, and outputs accept or reject, depending on the validity of the
signature.

– Revoke(σ, rk, params, st). The revocation algorithm takes as input a signature
σ, the revocation key rk, the public parameters params and possibly the
information st stored by the master entity during the executions of KeyGen,
and outputs an identity id or the special symbol ⊥.

Of course, the usual properties of correctness for the verification and revo-
cation algorithms must be required. Intuitively, a signature for a signing policy
(P , Γ) that is computed by using skid,A such that A ∈ Γ must be always accepted
by the verification protocol. Analogously, for any signature σ that is accepted
by the verification protocol, the revocation algorithm must output the identity
of the signer who computed σ.

3.2 Security Definitions

Unforgeability. An attribute-based signature scheme must satisfy the property
of existential unforgeability against chosen message and signing policy attacks.
Such property is defined by the following game between a challenger C and an
adversary F .

Setup. C runs the setup algorithm and keeps the master secret key msk and
the revocation key rk to itself, then gives the public parameters params to F .

Queries. Adaptively, F can request any queries described below.

– Secret key query: F requests a private key on an identity id and a set of
attributes B ⊂ P̃.

– Signature query: F requests a signature for a message M and a signing policy
(P , Γ), where P ⊂ P̃ and Γ ⊂ 2P .

– Revocation query: F sends a tuple (M, σ,P , Γ). If the signature is valid, then
F expects to receive as answer an identity id for the author of the signature
σ.

Output. Finally, F outputs a tuple (σ∗, M∗,P∗, Γ ∗) and wins the game if
(1) the signature is valid, (2) F has not made any secret key query for a set
of attributes A ⊂ P̃ such that A ∈ Γ ∗, and (3) F has not made any signature
query for the tuple (M∗,P∗, Γ ∗).

Let SuccF be the event that F wins the above game. The advantage of F
is defined as AdvABS-EUF

F = Pr(SuccF) where the probability is taken over the
coin tosses made by F and C.

Definition 1. An attribute-based signature scheme is unforgeable if, for any
adversary F that runs in polynomial time, its advantage AdvABS-EUF

F is negligible
in the security parameter λ.

The above definition of unforgeability guarantees collusion resistance: a group
of colluding users that pull their secret keys together will not be able to sign
messages for a signing policy that none of the attribute sets of these users sat-
isfies. The definition is in the adaptive setting where the attacker chooses the
target signing policy (P∗, Γ ∗) after making some queries. This is in contrast to
the selective setting where the attacker must choose the target signing policy at
the very beginning of the attack.

Non-Linkability and Anonymity. Intuitively, non-linkability means that an ob-
server cannot distinguish if two valid signatures for the same signing policy have
been computed by the same user. Non-linkability is defined via the following
game between a challenger C and an adversary A.

Setup. The setup is the same as the setup of the unforgeability game.
Queries. A can make the same queries as F in the unforgeability game.
Challenge. A submits a challenge tuple (id0, M0, σ0, M1,P , Γ). If some of

the following conditions fails, the challenger aborts:

– A has asked for a secret key for (id0, A0) such that A0 ∩ P ∈ Γ ,
– Verify(σ0, M0,P , Γ, params) = accept,
– Revoke(σ0, rk, params) = id0.

Otherwise, the challenger C recovers the secret key skid0,A0
that has been de-

livered to A, chooses at random a different identity id1 6= id0 and a subset of
attributes A1 ∈ Γ and runs skid1,A1

←KeyGen(id1, A1, msk, params). Then C flips
a random coin b ∈ {0, 1} and computes σ1 ←Sign(M1,P , Γ, skidb,Ab

, params). The
values σ1, id1, A1, skid1,A1

are returned to A.
Queries. A can make more queries, with the restriction that the signature

σ1 cannot be queried to the revocation oracle.
Output. Finally, A outputs a guess b′ of b and wins the game if b = b′.

Let SuccA be the event that A wins the above game. The advantage of A is
defined as AdvABS-LIN

A = |2Pr(SuccA) − 1|, where the probability is taken over
the coin tosses made by A and C.

Definition 2. An attribute-based signature scheme is non-linkable if, for any
adversary A that runs in polynomial time, its advantage AdvABS-LIN

A is negligible
in the security parameter λ.

The more standard property of signer’s anonymity can be defined in a very
similar way. Since in both definitions the adversary can obtain secret keys for
all identities of his choice, it is easy to see that non-linkability implies signer’s
anonymity.

Non-Frameability. Our schemes will enjoy the interesting property of revocabil-
ity, which means that there exists an authority that can break the anonymity of
a signature, when needed. This property brings new possibilities for an adversary
to cheat the system, that must be dealt with by our security model. Specifically,
we must consider framing attacks where an adversary tries to produce a sig-
nature that is later revoked to the identity of some honest user. This intuition
is formalized by considering the following game, between a challenger C and a
framing attacker T .

Setup. The setup is similar to the setup of the unforgeability game, but now
even the revocation key rk is given to the adversary T .

Queries.A can make the same queries as F in the unforgeability game. Note
that revocation queries make no sense now, since T knows the revocation key.
Let M = {M s.t. (M,P , Γ) is a signing query} be the set of messages queried
to the signing oracle, and let ID = {id s.t. (id, B) is a secret key query} be the
set of identities for which T obtains secret keys.

Output. At some point, T outputs a tuple (σ∗, M∗,P∗, Γ ∗) and wins the
game if (1) the signature is valid, (2) M∗ /∈M, and (3) Revoke(σ∗, rk, params) /∈
ID.

Let SuccT be the event that T wins the above game. The advantage of T
is defined as AdvABS-FRA

T = Pr(SuccT) where the probability is taken over the
coin tosses made by T and C.

Definition 3. A revocable attribute-based signature scheme is non-frameable if,
for any adversary T that runs in polynomial time, its advantage AdvABS-FRA

T is
negligible in the security parameter λ.

4 The New Scheme

In this section, we construct our attribute-based signature scheme. We proceed
in different steps. First, we construct a linkable scheme which works for threshold
signing policies. Then we will introduce some changes in order to achieve non-
linkability. The security of the resulting scheme will be proved in the random
oracle model. After that, we will modify the scheme to admit more general sign-
ing policies. And finally, we will explain how to achieve security in the standard
model.

4.1 The Intuition: a Linkable Scheme

Our basic construction is inspired by the ring signature scheme of Shacham-
Waters [16].

Setup(1λ). The setup algorithm first generates a symmetric bilinear group
(n, G, GT , e, g) of composite order n = pq, where p and q are primes of bit size
Θ(λ). Next, it chooses random w ∈ G, h ∈ Gq, where Gq is the subgroup of G

of order q, s ∈ Zn and cryptographic hash functions H1, H2 : {0, 1}∗ → G. It
also generates a value δp ∈ Zn such that δp = 0 mod q and δp = 1 mod p. An
automorphic signature scheme is chosen, with public key pkaut and secret key
skaut. Finally, a universe of attributes P̃ is chosen. Then, the public parameters
params, the master secret key msk and the revocation key rk are defined as

params = (n, G, GT , e, g, g1 = gs, h, h1 = hs, w, H1, H2, pkaut, P̃)

msk = (s, skaut) rk = δp

The master entity can erase the values (p, q, δp), because they are not needed to
answer key generation queries.

KeyGen(id, A, msk, params). The key generation algorithm takes as input an
identity id, a subset of attributes A ⊂ P̃ satisfied by id, the master secret key msk

and the public parameters params. The master entity chooses a random element
Kid ∈ G and signs this value with the automorphic signature, obtaining σKid

. For
each attribute ati ∈ A, the algorithm chooses a random ri ∈ Zn and defines the
attribute secret key as ski = (Ei, Gi) = (H1(ati)

sKri

id
, gri). Finally, the global

secret key is skid,A = (Kid, σKid
, {ski}ati∈A). The master entity secretly stores

the relation between id and Kid in a table st, that can be sent to the revocation
judge.

Sign(M,P , ℓ, skid,A, params). The signing algorithm takes as input a message

M , a set of attributes P ⊂ P̃, a threshold ℓ, a secret key skid,A and the public
parameters params. The algorithm selects a minimal authorized set A′, this is, a
subset of A ∩ P of cardinality exactly ℓ. To generate the signature, it proceeds
as follows:

1. First, for each ati ∈ P it chooses a random zi ∈ Zn and computes the
commitment Ci of fi and the corresponding proof πi as

Ci = (H1(ati)/w)fihzi and πi = ((H1(ati)/w)2fi−1hzi)zi

where fi = 1 if ati ∈ A′ and fi = 0 otherwise.
2. Then, it computes Hm = H2(M,P , ℓ). It also chooses a random t ∈ Zn

and computes σ1 =

(

∏

ati∈A′

Ei

)

Ht
mhz

1 , σ2 = gt and σ3 =
∏

ati∈A′

Gi, where

z =
∑

ati∈P

zi.

3. Finally, the signature is σ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P , Kid, σKid
).

Verify(σ, M,P , ℓ, params). The verification algorithm takes as input a message
M , the signature σ on M , the threshold signing policy (P , ℓ) and the public
parameters params. It proceeds as follows:

1. For all ati ∈ P , check if e(Ci, Ci/(H1(ati)/w))
?
= e(h, πi).

2. Compute Hm = H2(M,P , ℓ) and check if e(σ1, g)
?
= e(wℓ

∏

ati∈P

Ci, g1)e(Hm, σ2)e(K, σ3).

3. Check that σKid
is a valid automorphic signature on Kid.

4. Output accept if all the tests are successful, and reject otherwise.

Revoke(σ, rk, params, st). Since the value Kid is included in the signature σ,
the judge only needs to recover the relation (id, Kid) from the secret table st.

4.2 Achieving Non-Linkability

It is easy to see that the scheme described in the previous section works correctly.
However, the values σ3, Kid and σKid

allow any verifier to link two signatures
issued by the same signer, even if the relation between Kid and the identity of
the signer is unknown. To solve this drawback, we will use Groth-Sahai proofs
to commit to Kid and σKid

, and we will randomize σ3.
Let Com(Kid) and Com(σKid

) be the commitments to Kid and σKid
respec-

tively. Let πσ be the NIWI proof of the satisfiability of the second verification
equation, and πKid

the NIWI proof of the satisfiability of the verification equation
of the automorphic signature of Kid. We remind the reader that the verification
of an automorphic signature is done by evaluating a set of pairing-product equa-
tions, so we can build Groth-Sahai proofs of satisfiability for these equations.

In addition, we randomize the value σ3 by choosing a random r′ ∈ Zn and
multiplying σ3 with gr′

. We will also need to multiply σ1 with Kr′

id
in order

to satisfy the verification equation. So, we redefine σ3 =
∏

ati∈A′

Gig
r′

and σ1 =

(

∏

ati∈A′

Ei

)

Kr′

id
Ht

mhz
1.

Now, the signature will be the tuple σ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P , Com(Kid),
Com(σKid

), πKid
, πσ). The verification algorithm Verify(σ, M,P , ℓ, params) pro-

ceeds now as follows:

1. For all ati ∈ P , check if e(Ci, Ci/(H1(ati)/w))
?
= e(h, πi).

2. Check if e(σ1, g)
?
= e(wl

∏

ati∈P

Ci, g1)e(Hm, σ2)e(Com(Kid), σ3)e(h, πσ)

3. Checks that σKid
is a valid signature on Kid using the proof πKid

and the
commitments Com(Kid), Com(σKid

).
4. Outputs accept if all the tests are successful, and reject otherwise.

Finally, the revocation algorithm must be modified in the following way.
Revoke(σ, rk, params, st). The revocation algorithm takes as input the revoca-

tion key rk = δp, a valid signature σ, the public parameters params and the table

st. It computes Com(Kid)
δp = K

δp

id
. This value K

δp

id
can be detected in the secret

table st, in order to obtain the identity id of the signer. Note that this process

can be made more efficient if a third value K
δp

id
is added to each entry (id, Kid)

in the table st.

Security Analysis Now we prove that the scheme described in this section
achieves the properties of non-linkability, non-frameability and unforgeability.
The proofs for the first two property are just sketched. The unforgeability proof,
which is done in the random oracle model, is detailed in Appendix A.

Theorem 1. If the subgroup decision assumption holds in G, then our threshold
attribute-based signature scheme is non-linkable.

Proof (sketch). The challenger can use the Setup algorithm to choose the
parameters of the security game. As he knows the secret and revocation keys, he
can answer all the queries made by the adversary using the algorithms KeyGen,
Sign and Revoke.

The advantage of A is negligible because σ1, σ2 and σ3 are randomized
elements. All the commitments and proofs to the attributes {(Ci, πi)} and the
commitments Com(Kid), Com(σKid

), and the proofs πKid
, πσ do not reveal any

information about fi or Kid because they are commitments and NIWI proofs.
⊓⊔

It is easy to see that our scheme also enjoys non-linkability (and anonymity)
with respect to the subset of attributes employed to compute a signature.

Theorem 2. Assuming that the underlying automorphic signature scheme is
secure, our threshold attribute-based signature scheme is non-frameable.

Proof (sketch). The challenger can use the knowledge of all the elements
in msk and rk, excepting skaut, and also its access to a signing oracle for the
automorphic signature scheme, to answer the different queries that a framing
adversary T makes.

If T succeeds in forging a signature σ∗ for which Com(K∗)δp 6= K
δp

id
for all the

values Kid that have been generated in the secret key queries, then the values
in the forged attribute-based signature can be used to obtain a valid forgery
against the automorphic signature scheme. ⊓⊔

Theorem 3. Suppose that the CDH assumption holds in Gp and the subgroup
decision assumption holds in G. Then, our threshold attribute-based signature
scheme is existentially unforgeable under chosen message and signing policy at-
tacks.

The proof of this theorem can be found in Appendix A.

4.3 Admitting More General Signing Policies

The previous scheme admits only threshold signing policies. A first generaliza-
tion of such policies are k-multi-threshold policies: the universe of attributes P̃ is
divided into disjoint subsets, P̃ = B1∪. . .∪Bk. A (ℓ1, . . . , ℓk)-multi-threshold pol-
icy (P , Γ) in this set is defined by Γ = {A ⊂ P : |A∩Bj | ≥ ℓj, for j = 1, . . . , k}.
Our scheme can be easily adapted to admit such multi-threshold policies, with-
out any increase in the length of the signatures. In the setup phase, instead of
choosing a single value w, now k random values w1, . . . , wk ∈ G must be chosen
and added to params. The commitments will be now Ci = (H1(ati)/wj)

fihzi , if
ati ∈ Bj . The NIWI proofs πi are changed so that they satisfy the verification

equation e(Ci, Ci/(H1(ati)/wj))
?
= e(h, πi). Finally, the value Hm must be de-

fined as Hm = H2(M,P , ℓ1, . . . , ℓk) and the verification equation that involves
all the commitments Ci is now

e(σ1, g)
?
=





∏

1≤j≤k

e(w
ℓj

k

∏

ati∈Bj

Ci, g1)



 · e(Hm, σ2) · e(Com(Kid), σ3) · e(h, πσ)

Let us consider now more general signing policies, not necessarily defined by
any threshold. We consider Zn-monotone span programs [11]. A signing policy
(P , Γ) is a Zn-monotone span program if there exist a m1 ×m2 matrix Ψ with
entries in Zn, being m1 ≥ |P|, and a function τ : {1, . . . , m1} → {1, . . . , |P|}
that associates each row of Ψ to an attribute in P , such that

A ∈ Γ ⇐⇒
(

∃λ ∈ (Zn)m1 : λΨ = (1, 0, . . . , 0)
)

and
(

∀j = 1, . . . , m1, atτ(j) /∈ A⇒ λj = 0
)

An ℓ-threshold policy can be represented as a Zn-monotone span program if
ℓ < p, ℓ < q, by considering Vandermonde-type matrices. We have to modify the
Sign and Verify protocols of our threshold scheme in order to admit Zn-monotone
span program signing policies. The signer has to convince the verifier that he
possesses a secret key for a set A of authorized attributes, i.e., that there exists
a vector λ ∈ (Zn)m1 such that λΨ = (1, 0, . . . , 0) and such that λj = 0 for any
index j ∈ {1, . . . , m1} for which atτ(j) /∈ A. In order to guarantee the anonymity
of the attributes, the signer will commit to the components λj of this vector λ.
In addition, NIWI proofs will be added in the signature to convince the verifier
that the commitments are well-formed.

Namely, the signer will prove for all ati ∈ P that there exist a value λ̃i 6= 0
and an index j ∈ τ−1(i) satisfying the equality λj = λ̃ifi. Remember that fi = 1
if ati ∈ A and fi = 0 otherwise, being A the authorized subset of attributes held
by the signer. On the one hand, if fi = 1, then λj 6= 0 for some j ∈ τ−1(i)
(we can assume this without loss of generality; otherwise, the attribute ati ∈ A
would be useless, and A−{ati} ∈ Γ). In this case, λ̃i = λj satisfies the previous
equality. On the other hand, if fi = 0 then λj = 0 for all j ∈ τ−1(i), and any

value λ̃i ∈ Z∗
n satisfies the desired equality. Note that commitments Com(fi) to

the values fi will have to be added to the signature, as well.

To prove that these values λ̃i are different to 0, the signer will prove that
they are invertible. That is, he will prove that there exists µi ∈ Z∗

n such that
µiλ̃i = 1, for all ati ∈ P . The probability that λ̃i is different to zero but is not
invertible is very small because n is the product of two large primes. Note that
it would be more efficient to prove and check that the product of all the values
λ̃i is invertible; this is not possible to do by using Groth-Sahai proofs, because
they only apply to quadratic equations.

Summing up, given the monotone span program (Ψ, τ) defining the signing
policy (P , Γ), and given the commitments Ci = (H1(ati))

fihzi and Com(fi), for
each ati ∈ P , the signer makes NIWI proofs to convince the verifier that:

1. ∃λ ∈ (Zn)m1 such that λΨ = (1, 0, . . . , 0). Note that this means m2 NIWI
proofs, one for each component in this vector equality. We denote such proofs
as {πλ,k}

m2

k=1.

2. ∃λ̃i ∈ Zn, ∃j ∈ τ−1(i) such that λj = λ̃ifi for all ati ∈ P . We denote such
proofs as {πλ̃i

}ati∈P , whose global length is linear in m1.

3. ∃µi ∈ Z∗
n such that µiλ̃i = 1 mod n, for all ati ∈ P . We denote such proofs

as {πµi
}ati∈P .

4. The commitment Com(fi) and Ci commit to the same value, for all ati ∈ P .
We denote such proofs as {πfi

}ati∈P .

The signatures that result from this process have the form

σ =
(

{Ci, πi, Com(fi), Com(λ̃i), Com(λi), πfi
, πλi

, πµi
}ati∈P ,

{πλ,k}
m2

k=1, σ1, σ2, σ3, Com(Kid), Com(σKid
), πKid

, πσ

)

Therefore, the length of the signature depends linearly on the size m1 + m2

of the monotone span program Ψ . Using analogous arguments to those used for
the threshold case, one can prove that the resulting attribute-based signature
scheme enjoys the properties of unforgeability and non-linkability.

4.4 Security in the Standard Model

We have proved the security properties of our schemes in the random oracle
model, but there are well-known techniques that can be applied to our schemes
so that security can be proved in the standard model.

The hash function H1 is used to transform attributes into elements in G.
Since the universe of attributes P̃ is chosen in the Setup algorithm, a different
element Qi ∈ G can be chosen at random and associated to each attribute
ati ∈ P̃ . These elements will be included in the public parameters params. In the
security proofs, we would define Qi = gci with some probability ρ and Qi = gci

2

with probability 1− ρ, for some random value ci ∈ Zn (as it is done in the proof
of Lemma 2, in Appendix A).

The other hash function, H2, is used to transform tuples (M,P , Γ) into
elements of G. A well-known solution for this case is to consider a collusion

resistant hash function H : {0, 1}∗ → {0, 1}m and elements v1, v2, . . . , vm ∈ G,
which are included in params. Then the value of H2(M,P , Γ) is replaced with
m
∏

j=1

v
H(M,P,Γ)j

j , where H(M,P , Γ)j denotes the j-th bit of H(M,P , Γ). In the

security proof the elements v1, v2, . . . , vm will be chosen by algorithm B so that
B knows their discrete logarithm with respect to the base g.

4.5 Prime Order Bilinear Groups

Our scheme uses composite order groups and the security is based (among oth-
ers) on the subgroup decision assumption. Schemes designed in this setting are
considered to be inefficient because the size of the elements in such groups must
be very large.

Alternatively, we can consider a prime order symmetric bilinear group (p, G, GT , e, g),
because Groth-Sahai proofs can be implemented there and revocation keys rk can
be defined in this case, as well. The underlying hardness assumption is then the
decisional linear assumption: given (gα, gβ, grα, gsβ, gt) for random α, β, r, s ∈ Zp

it is hard to tell whether t = r+s or t is random. However, whereas in the compos-
ite order group setting both commitments and proofs consist of a single element,
in the prime order group setting commitments and proofs consist of multiple
elements (1 element for each variable, and 6 or 9 elements for each equation).
Anyway, considering that computing a pairing has complexity of O(n3) in time,
and that the size of composite order groups is about ten times larger than the
size of prime order groups, the scheme in the prime order group setting might be
more efficient. We have described our constructions in the setting of composite
order groups, though, because this simplifies notation and understandability in
a significant way.

The previous comment also affects the discussion about the Zn-monotone
span programs that we consider in Section 4.3. Usually, monotone span programs
are defined over a finite field, whereas we are considering the ring Zn. Note that
n is a product of two large primes, so the ring Zn almost behaves as a field.
Anyway, if we move to the scenario based on the decisional linear assumption,
where the bilinear groups have prime order p, then we can consider the standard
notion of Zp-monotone span programs, for a field Zp.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. Proceedings of

Crypto’10, LNCS 6223, Springer-Verlag, pp. 209–236 (2010)
2. J. Bethencourt, A. Sahai and B. Waters. Ciphertext-policy attribute-based en-

cryption. Proceedings of IEEE Symposium on Security and Privacy, IEEE Society
Press, pp. 321–334 (2007)

3. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group
signatures. Proceedings of PKC’07, LNCS 4450, Springer-Verlag, pp. 1–15 (2007)

4. N. Chandran, J. Groth and A. Sahai. Ring signatures of sub-linear size without
random oracles. Proceedings of ICALP’07, LNCS 4596, Springer-Verlag, pp. 423–
434 (2007)

5. G. Fuchsbauer. Automorphic signatures in bilinear groups and an ap-
plication to round-optimal blind signatures. Manuscript available at
http://eprint.iacr.org/2009/320 (2009)

6. V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. Proceedings of Computer and Com-

munications Security, CCS’06, ACM Press, pp. 89–98 (2006)
7. J. Groth. Fully anonymous group signatures without random oracles. Proceedings

of Asiacrypt’07, LNCS 4833, Springer-Verlag, pp. 164–180 (2007)
8. J. Groth, R. Ostrovsky and A. Sahai. Perfect non-interactive zero knowledge for

NP. Proceedings of Eurocrypt’06, LNCS 4004, Springer-Verlag, pp. 339–358 (2006)
9. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

Proceedings of Eurocrypt’08, LNCS 4965, Springer-Verlag, pp. 415–432 (2008)
10. J. Herranz, F. Laguillaumie and C. Ràfols. Constant size ciphertexts in threshold

attribute-based encryption. Proceedings of PKC’10, LNCS 6056, Springer-Verlag,
pp. 19–34 (2010)

11. M. Karchmer and A. Wigderson. On span programs. Proceedings of SCTC’93,
IEEE Computer Society Press, pp. 102–111 (1993).

12. A. Lewko, T. Okamoto, A. Sahai, K. Takashima and B. Waters. Fully secure func-
tional encryption: attribute-based encryption and (hierarchical) inner product en-
cryption. Proceedings of Eurocrypt’10, LNCS 6110, Springer-Verlag, pp. 62–91
(2010)

13. J. Li, M.H. Au, W. Susilo, D. Xie and K. Ren. Attribute-based signature and its
applications. Proceedings of ASIACCS’10, ACM Press, pp. 60–69 (2010)

14. H.K. Maji, M. Prabhakaran and M. Rosulek. Attribute-based signatures. To appear
in Proceedings of CT-RSA’11, available at http://eprint.iacr.org/2010/595

(2010). A preliminary version is available at http://eprint.iacr.org/2008/328

15. A. Sahai and B. Waters. Fuzzy identity-based encryption. Proceedings of Euro-

crypt’05, LNCS 3494, Springer-Verlag, pp. 457–473 (2005)
16. H. Shacham and B. Waters. Efficient ring signatures without random oracles. Pro-

ceedings of PKC’07, LNCS 4450, Springer-Verlag, pp. 166–180 (2007)
17. S.F. Shahandashti and R. Safavi-Naini. Threshold attribute-based signatures and

their application to anonymous credential systems. Proceedings of Africacrypt’09,
LNCS 5580, Springer-Verlag, pp. 198–216 (2009)

A Proof of Theorem 3

We construct an algorithm B that solves the CDH problem in Gp running an
adversary F attacking the unforgeability of our scheme. Note that each proof
(Ci, πi) in a forged signature (σ∗, M∗,P∗, ℓ∗) generated by F must pass the
verification equation e(Ci, Ci/(H(ati))/w)) = e(h, πi). This implies that Ci has
the form (H1(ati)/w)fihzi for some fi ∈ {0, 1} and zi ∈ Zn. According to the
value of

∑

ati∈P∗ fi, we consider two types of adversaries as follows.

1. A type-1 adversary F1 is one such that
∑

ati∈P∗ fi 6= ℓ∗, where ℓ∗ is the
threshold defining the signing policy of the forged signature.

2. A type-2 adversary F2 is one such that
∑

ati∈P∗ fi = ℓ∗.

For each type of adversary F1 and F2, we will construct algorithms B1 and
B2, respectively, to solve the CDH problem in Gp. We do this in the following
two lemmas.

Lemma 1. Assume that the inherent automorphic signature scheme is secure. If
there exists a type-1 adversary F1 against our threshold attribute-based signature
scheme, then there exists an algorithm B1 that solves the CDH problem in Gp.

Proof. Suppose there exists a type-1 adversary F1 that breaks unforgeability
of our scheme. Let us construct an algorithm B1 that solves the CDH problem
in Gp. B1 is given the description of the bilinear group G, the factorization p, q
of n, which is the order of G, and a random CDH challenge (gp, g

α
p , gβ

p) ∈ G3
p,

where gp is a generator of Gp. Its goal is to compute gαβ
p . The algorithm B1

interacts with F1 as follows:
Setup. B1 selects a generator h ∈ Gq and chooses random values r1 ∈

Z∗
q , r2, r3 ∈ Zq. It also chooses the keys (skaut, pk

aut
) of an automorphic sig-

nature scheme and a universe of attributes P̃. Next it defines the public pa-
rameters as params = (n, G, GT , e, g = gph

r1 , g1 = gα
p hr2 , h, h1 = hr2/r1 , w =

gβ
p hr3 , H1, H2, pkaut, P̃) and gives params to A1. The public parameters are cor-

rectly distributed because e(g1, h) = e(gα
p hr2 , h) = e(hr1 , hr2/r1) = e(gph

r1 , hr2/r1) =
e(g, h1). This is because gp ∈ Gp and h ∈ Gq imply that e(gα

p , h) = 1.
Queries. Adaptively, F1 can make H1-hash queries, H2-hash queries, secret

key queries, signature queries or revocation queries at any time. For hash queries,
B1 creates and maintains two lists H1-list and H2-list storing the information
of all the queries; these lists are consulted before answering any new query, for
consistency.

For a H1-hash query on ati, B1 generates a random ci ∈ Zn and responds with
H1(ati) = gci . For a H2-hash query on a message M , a set of attributes P and a
threshold ℓ, B1 generates a random d ∈ Zn and responds with H2(M,P , ℓ) = gd.
For a secret key query for an identity id and attribute set A ⊂ P̃ , B1 generates a
random ej ∈ Zn, computes Kid = gej and the signature σKid

and for each ati ∈ A
computes ski = (gci

1 Kri

id
, gri), where ri is chosen at random in Zn. It responds

with skid,A = (Kid, {ski}ati∈A). Using these secret keys, B1 can answer signature
queries properly, as well. Since B1 knows p, q, it can easily answer revocation
queries, as well.

Output. Finally, F1 outputs a signature (σ∗, M∗,P∗, ℓ∗), where

σ∗ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P∗ , Com(Kid∗), Com(σKid∗
), πKid∗

, πσ).

If (1) F1 did request a private key skid,A such that A∩P∗ has cardinality at
least ℓ∗, or (2) F1 did request a signature on the tuple (M∗,P∗, ℓ∗), or (3) if the
forged signature is not valid; then B1 stops the simulation because F1 has not
been successful.

Otherwise, B1 solves the given instance of the CDH problem as follows:
let δp be such that δp = 0 mod q and δp = 1 mod p. We have uδp = 1 if,

and only if, u ∈ Gq. We obtain C
δp

i = (H1(ati)
δp/wδp)fi = (gci

p /gβ
p)fi for all

ati ∈ P
∗, and so Cδp =

∏

ati∈P∗ C
δp

i = gc
p/(gβ

p)f , where c =
∑

ati∈P∗ cifi and
f =

∑

ati∈P∗ fi. From the second verification equation of the scheme (see Sec-

tion 4.2), we obtain e(gp, σ
δp

1) = e(gα
p , (gβ

p)ℓ∗gc
p/(gβ

p)f)e(σ
δp

2 , gd
p)e(σ

δp

3 , ge
p), where

H2(M
∗,P∗, ℓ∗)δp = gd

p and Kδp = ge
p. This equation comes from the fact that

Com(Kid∗)
δp = K

δp

id∗
and e(h, πσ)δp = 1. By rewriting this equation, we have

e(gα
p , gβ

p)ℓ∗−f = e(gp, σ
δp

1 (σ
δp

2)−d(σ
δp

3)−e(gα
p)−c). B1 recovers from H1-list the

values ci corresponding to all the attributes in P∗ and the value d corresponding
to the H2-query (M∗,P∗, ℓ∗). It also recovers the value e corresponding to Kid∗ .
As the automorphic signature scheme is secure, we can be sure that the value
of Kid∗ used in the forgery comes from a query, so it is known to B1. Finally,

B1 recovers {fi}i∈P∗ using that C
δp

i = 1 if, and only if, fi = 0. By assumption
f =

∑

ati∈P∗ fi 6= ℓ∗, and so the value (ℓ∗ − f)−1 mod p exists. Therefore, B1

can solve the CDH problem as follows:

gαβ
p =

[

(σ1σ
−d
2 σ−e

3)δpg−αc
p

]

1

ℓ∗−f .

⊓⊔

Lemma 2. If there exists a type-2 adversary F2 against our threshold attribute-
based signature scheme, then there exists an algorithm B2 that solves the CDH
problem in Gp.

Proof. Suppose there exists a type-2 adversaryF2 that breaks the unforgeabil-
ity of our scheme. We construct an algorithm B2 that solves the CDH problem
in Gp. B2 is given the description of the bilinear group G, the factorization p, q
of n, which is the order of G, and a random CDH challenge (gp, g

α
p , gβ

p) ∈ G3
p,

where gp is a generator of Gp. Its goal is to compute gαβ
p . The algorithm B2

interacts with F2 as follows:

Setup. B2 selects a generator h ∈ Gq and chooses random values r1 ∈
Z∗

q , r2, r3, r4 ∈ Zq, r5 ∈ Zp. It also chooses keys (skaut, pkaut) of an automor-

phic signature scheme and a universe of attributes P̃. Next it sets the public
parameters params = (n, G, GT , e, g = gph

r1 , g1 = gα
p hr2 , h, h1 = hr2/r1 , w =

gr5

p hr3 , H1, H2, pk
aut

, P̃), defines g2 = gβ
p hr4 and gives params to F2. The public

parameters are correctly distributed because e(g1, h) = e(gα
p hr2 , h) = e(hr1 , hr2/r1) =

e(gph
r1 , hr2/r1) = e(g, h1). These equalities hold because gp ∈ Gp and h ∈ Gq

imply that e(gα
p , h) = 1. With these parameters, s = logg g1 is implicitly defined.

Queries. Adaptively, F1 can make H1-hash queries, H2-hash queries, secret
key queries, signature queries or revocation queries at any time. B2 creates and
maintains lists H1-list, H2-list and K-list, for consistency. Again, since B2 knows
p, q, it can easily answer revocation queries.

For a H1-hash query on ati, B2 responds as follows: if ati was in a previous H1-
hash query, it recovers (ati, H1-coini, ci) from H1-list; otherwise, it generates a
random H1-coini ∈ {0, 1} so that Pr[H1-coini = 1] = ρ1, for ρ1 to be determined
later. It generates a random ci ∈ Z∗

n and stores (ati, H1-coini, ci) in H1-list. If

H1-coini = 0, then it responds with H1(ati) = gci ; otherwise, it responds with
H1(ati) = gci

2 .
For a H2-hash query on a tuple (M,P , ℓ), B2 responds as follows: if (M,P , ℓ)

already exists in H2-list, B2 recovers (M,P , ℓ, d) from its H2-list; otherwise, it
generates a random d ∈ Zn, stores (M,P , ℓ, d) in H2-list and responds with
H2(M,P , ℓ) = gd.

For a secret key query for an identity id and a set of attributes A ⊂ P̃ ,
B2 responds as follows: it generates a random Kid-coin ∈ {0, 1} so that Pr[Kid-
coin = 1] = ρ2, for ρ2 to be determined later. If Kid-coin = 0, B2 generates a
random e ∈ Zn and sets e′ = 0; otherwise, it generates two random elements
e, e′ ∈ Z

∗
n. It defines Kid = gege′

1 and stores (Kid-coin, e, e′, Kid) in K-list. Next,
for each attribute ati ∈ A, it recovers (ati, H1-coini, ci) from H1-list.

– If H1-coini = 0, then it generates a random ri ∈ Zn and defines ski =
(gci

1 Kri

id
, gri).

– If H1-coini = 1 and K-coin = 1, it generates a random ri ∈ Zn and sets

ski = ((gci

2)−
e

e′ (gege′

1)ri , grig
−

ci
e′

2). The secret key is correctly distributed

(we denote by β∗ the value logg g2) because: Ei = (gci

2)−
e
e′ (gege′

1)ri =

(gci

2)s(gege′

1)(ri−
ci
e′

β∗) = H(ati)
sK

r′

i

id
and, on the other hand, Gi = grig

−
ci
e′

2 =

g(ri−
ci
e′

β∗) = gr′

i .
– Otherwise, if H1-coini = 1 and Kid-coinj = 0, then B2 cannot create ski.

If B2 can create ski for all ati ∈ A, then it uses skaut to compute an au-
tomorphic signature σKid

on Kid and responds to F2’s query with skid,A =
(Kid, σKid

, {ski}ati∈A). Otherwise, it aborts.
For a signature query for the tuple (M,P , ℓ), B2 acts as follows. It recovers

(M,P , ℓ, d) from H2-list and recovers (H(ati), H1-coini, ci) from H1-list, for all
the attributes ati ∈ P . B2 creates a K value by generating at random e, e′ ∈ Zn

and computing K = gege′

1 . With this value of K, B2 can create secret keys for any
attribute at, so a secret key skP can be generated and used to sign the message
M , by following the algorithm Sign of the scheme. Note that the adversary F2

cannot distinguish which value of K has been used in the signature (due to the
anonymity properties of the scheme).

Output. Finally, F2 outputs a signature (σ∗, M∗,P∗, ℓ∗) where

σ∗ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P∗ , Com(Kid∗), Com(σKid∗
), πKid∗

, πσ).

If (1) F2 did request a private key skid,A such that A∩P∗ has cardinality at
least ℓ∗, or (2) F2 did request a signature for the tuple (M∗,P∗, ℓ∗), or (3) if the
forged signature is not valid; then B2 stops the simulation because F2 has not
been successful.

Otherwise, B2 solves the given instance of the CDH problem as follows: let δp

be such that δp = 0 mod q and δp = 1 mod p. Computing C
δp

i for all ati ∈ P
∗,

B2 recovers {fi}ati∈P∗ , so it recovers the subset A′ of attributes that has been
used in the forged signature. Next it recovers (M∗,P∗, ℓ∗, d∗) from H2-list and
(ati, H1-coini, ci) from H1-list, for every attribute ati ∈ A′. On the other hand, it

computes Com(Kid∗)
δp = K

δp

id∗
. Since the automorphic signature scheme is secure,

we can be sure that the value of Kid∗ used in the forgery has been obtained in a
secret key query, so Kid∗ is known to B2, that can recover (Kid∗ -coin, e, e′, Kid∗)
from K-list. If Kid∗ -coin = 1, then B2 aborts. Otherwise, let B0 be the set of
indices i ∈ A′ such that H1-coini = 0 and let B1 be the set of indices i such that
H1-coini = 1. We have A′ = B0 ∪B1. Due to the non-malleability properties of
the employed hash functions, σ1 must be of the form

σ1 =

(

∏

ati∈A′

(H(ati))
s

)

Kr
id∗H

t
mhz

1

=

(

∏

i∈B0

(H(ati))
s
∏

i∈B1

(H(ati))
s

)

(ge)r(gd∗

)thz
1

=

(

∏

i∈B0

(gci)s
∏

i∈B1

(gci

2)s

)

σe
3σ

d∗

2 hz
1

= g

∑

i∈B0

ci

1 (gs
2)

∑

i∈B1

ci

σe
3σ

d∗

2 hz
1

Let cB0
=
∑

i∈B0

ci and cB1
=
∑

i∈B1

ci. If cB1
mod p = 0, B2 aborts because it

cannot solve the CDH problem. Otherwise, we have gs
2 = (σ1σ

−d∗

2 σ−e
3 g

−cB0

1 h−z
1)1/cB1 .

We also have (gs
2)

δp = gαβ
p , that comes from the fact that gα

p = g
δp

1 = (gs)δp .

Using that Com(σ3)
δp = σ

δp

3 , we have that B2 can solve the CDH problem as
follows:

gαβ
p = (gs

2)
δp =

[

σ
δp

1 (σ
δp

2)−d∗

(σ
δp

3)−e(gα
p)−cB0

]
1

cB1

Analysis. Let abort be the event that B2 aborts during the simulation and
let forge be the event that F2 produces a valid forgery according to the definition
of the unforgeability game. We have

AdvCDH
B2

≥ Pr[forge ∧ ¬abort]

= Pr[forge|¬abort] Pr[¬abort]

= AdvABS
F2

Pr[¬abort]

The last equality comes from the fact that, if abort does not occur, then
B2 simulates perfectly the environment of F2. Let abortE be the event that B2

aborts at a secret key query, let abortK be the event that Kid∗ -coin = 1 when F2

outputs a forgery, and let abortC be the event that cB1
mod p = 0.

Pr[¬abort] = Pr[¬abortE ∧ ¬abortK ∧ ¬abortC]

= Pr[¬abortE] Pr[¬abortK ∧ ¬abortC |¬abortE]

= Pr[¬abortE] Pr[¬abortK |¬abortE] Pr[¬abortC |¬abortE]

≥
[

((1 − ρ2)(1 − ρ1)
qE + ρ2)

]

·
[

(1− ρ2)(1− ρ1)
qE

]

·

·
[

(1 − 1/p)(1− (1− ρ1)
qE)ρ2

]

The third equality follows from the fact that the events abortK and abortC
are independent. We note that F (ρ1, ρ2) = ((1− ρ2)(1− ρ1)

qE + ρ2)(1− ρ2)(1−
ρ1)

qE (1 − 1/p)(1 − (1 − ρ1)
qE)ρ2 is greater than 0 except when ρ1 = 0, ρ1 =

1, ρ2 = 0 or ρ2 = 1. Therefore, by choosing appropriate values for ρ1 and ρ2, we
obtain

AdvCDH
B2

≥ AdvABS
F2
·Ω(1)

⊓⊔

