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Abstract. A computational group is pseudo-free if an adversary cannot find solutions in this group
for equations that are not trivially solvable in the free group. This notion was put forth by Rivest as a
unifying abstraction of multiple group-related hardness assumptions commonly used in cryptography.
Rivest’s conjecture that the RSA group is pseudo-free had been settled by Micciancio for the case of
RSA moduli that are the product of two safe primes. This result holds for a static setting where the
adversary is only given the description of the group (together with a set of randomly chosen generators)
and has to come up with the equation and the solution.

In this paper we explore a powerful extension of the notion of pseudo-freeness. We identify, motivate,
and study pseudo-freeness in face of adaptive adversaries who may learn solutions to other non-trivial
equations before having to solve a new non-trivial equation.

Our first contribution is a carefully crafted definition of adaptive pseudo-freeness that walks a fine line
between being too weak and being unsatisfiable. We give generic constructions that show how any
group that satisfies our definition can be used to construct digital signatures and network signature
schemes.

Next, we prove that the RSA group meets our more stringent notion of pseudo-freeness and as a
consequence we obtain different results. First, we obtain a new network (homomorphic) signature
scheme in the standard model. Secondly, we demonstrate the generality of our framework for signatures
by showing that all existing strong RSA-based signature schemes are instantiations of our generic
construction in the RSA group.

1 Introduction

BACKGROUND. The search for abstractions that capture the essential security properties of prim-
itives and protocols is crucial in cryptography. Among other benefits, such abstractions allow for
modular security analysis, reusable and scalable proofs. The random oracle model [5], the univer-
sal composability framework [9] and variants [1,3, 19] of the Dolev-Yao models [11] are results of
this research direction. Most of the existing results in this direction (the above examples included)
tackle mostly primitives and protocols and are not concerned with the more basic mathematical
structures that underlie current cryptographic constructions. One notable exception is the work on
pseudo-free groups, a notion put forth by Hohenberger [16] and later refined by Rivest [20]. In this
paper we continue the investigation of this abstraction.

Roughly speaking, a computational group G (a group where the group operations have efficient
implementations) is pseudo-free if it behaves as a free group as far as a computationally bounded
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adversary is concerned. More specifically, a group is pseudo-free if an adversary who is given a
description of the group cannot find solutions for non-trivial equations. Here, non-triviality means
that the equation does not have a solution in the free group. For instance, in a pseudo-free group
given a random element a it should be hard to find a solution for an equation of the form x¢ = a,
when e # 1, or for the equation w%x% = a°, but not for the equation mlxg’ = a°. This last equation
is trivial since it can be solved over the free group (it has 21 = a2, 22 = a as solution in the free
group) and a solution in the free group immediately translates to a solution over G. The notion
of pseudo-freeness generalizes the strong RSA assumption (when G is an RSA group) but also
numerous other assumptions currently used in cryptography; see [20] for further details. Rivest’s
conjecture that the RSA group is pseudo-free was largely settled by Micciancio [18] who proved
that this is indeed the case when the RSA modulus is the product of two safe primes.

In its most basic form that had been studied so far, the notion of pseudo-free groups did not lend
itself easily to applications. The problem is that in most of the interesting uses of the RSA group
the adversary is not only given a description of the group, but often he is allowed to see solutions
to non-trivial equations before having to come up with his own new equation and solution. This
is the case for example in RSA-based signature schemes where one can think of a signature as
the solution to some non-trivial equation. A chosen-message attack allows the adversary access to
an oracle that solves (non-trivial) equations over the group, and a forgery is a solution to a new
equation.

This problem was recognized early on by Rivest [20] who also left as open problems the design
of a notion of pseudo-freeness for adaptive adversaries and, of course, whether such groups exist.
In this paper we put forth such a notion, prove that the RSA group is adaptive pseudo-free, and
exhibit several applications for adaptive pseudo-free groups. We detail our results next.

ADAPTIVE PSEUDO-FREE GROUPS. We first extend the notion of pseudo-freeness to adaptive
adversaries. Informally, we consider an adversary that can see solutions for some equations and has
as goal solving a new non-trivial equation. As explained above, this scenario captures typical uses
of groups in cryptography.

Our definition involves two design decisions. The first is to fix the type of equations for which
the adversary is allowed to see solutions and how are these equations chosen: too much freedom in
selecting these equations immediately leads to potentially unsatisfiable notions, whereas too severe
restrictions may not model the expected intuition of what an adaptive adversary is and may not
allow for applications. In the definition that we propose, equations are selected from a distribution
over the set of equations. Importantly, the distribution depends on a parameter supplied by the
adversary. This models the idea that in applications, the adversary may have some control over how
the equations are selected. Different choices for this distribution lead to a variety of adversaries from
very weak ones where no equation is provided (precisely the setting of pseudo-freeness proposed
earlier), to a setting where the adversary has no influence on the choice of equations, and ending
with the very strong notion where the adversary basically selects the equations on his own.

The second issue is to define what is a non-trivial equation in the adaptive setting. Indeed,
previous definitions of triviality do not apply since in our new setting the adversary knows additional
relations between the group elements which in turn may help him in solving additional equations.
We define non-triviality in a way motivated by existing uses of groups in cryptography and an
analysis of equations over quotients of free groups.

Our definition is for the case of univariate equations but can be easily extended to multivariate
equations as well as systems of equations.



GENERIC CONSTRUCTIONS FOR SIGNATURES. Our definition of pseudo-freeness is parametrized
by a distribution over equations. We show that for any distribution in a class of distributions that
satisfy certain criteria, one can construct secure digital signatures and network coding signature
schemes. The requirements on the distribution include the ability to efficiently check membership
in the support of the distribution, and a property on the distribution of the exponents in the
equation. Informally, these requirements are used to enforce that each equation freshly drawn from
the distribution is most likely non-trivial with respect to previously sampled equations. We show
that an adversary that breaks the signature scheme must also contradict the pseudo-freeness of the
underlying group.

Our generic construction for network coding signatures is secure in the vanilla model based only
on the adaptive pseudo-freeness of the underlying group. Any instantiation of such groups would
thus yield network signature schemes secure in the standard model. Indeed, given the instantiation
that we discuss below, our framework yields the first RSA-based network coding homomorphic
signature scheme secure in the standard model.

THE RSA GROUP IS ADAPTIVE PSEUDO-FREE. Next, we turn to proving that the RSA group is
adaptive pseudo-free. We do so for a class of distributions closely related but slightly more general
than the distributions that yield signatures schemes. We show that an adversary that contradicts
pseudo-freeness of the RSA group with respect to the distribution can be used to contradict the
strong RSA assumption. We also prove that the RSA group is pseudo-free for a weaker version of
adaptive adversaries who output their inputs to the distribution non-adaptively, but in this case
the proof is for a larger class of distributions.

We do not attempt to prove adaptive pseudo-freeness of the RSA group for multivariate equa-
tions. While this is potentially an interesting topic for further research, we are not aware of cryp-
tographic applications where such equations are used.

INSTANTIATIONS. An appealing interpretation of the proof of adaptive pseudo-freeness for the RSA
group is that it distills the core argument that underlies the typical security proofs for signatures
based on the strong RSA assumption. Each such proof explains how a signature forgery can be used
to break strong RSA. In this sense our proof is a generalization to a broader (abstractly defined)
set of equations rather than the particular equations that define an individual signature scheme.

Indeed, we show that virtually all strong RSA signature schemes are instances of our generic
construction. We explain how to obtain the schemes by Cramer and Shoup [10], Fischlin [12],
Camenisch and Lysyanskaya [8], Zhu [22], Hotheinz and Kiltz [15], and that by Gennaro, Halevi,
and Rabin [13] by instantiating our generic distribution in appropriate ways. The security of all of
these schemes follows as a corollary from the security of our generic construction.

2 Preliminaries

A number N is called a RSA modulus if it is the product of two distinct prime numbers p, q.
QRN C Z} is called the set of quadratic residues modulo N, namely QRy = {7 € Z}, : 7 =
z2mod N, z € ZX }.

Definition 1 (Safe primes). A prime p is called safe prime if p = 2p’ +1 where p’ is also prime.

The Strong RSA Assumption was introduced by Baric and Pfitzmann in [4]. Essentially it is a
variant of RSA where the adversary is allowed to choose the exponent e for which it has to extract
the root. It is formally defined as follows.



Definition 2 (Strong RSA). Let N be a random RSA modulus of length k where k € N is the
security parameter and T be a random element in Zy;. Then we say that the Strong RSA assumption
holds if for any PPT adversary A the probability

Pr((y,e)«—A(N,7) : y° = 7 mod N]
1s negligible in k.

In this paper we use a variant of this assumption where 7 is taken from the set QRy. As shown in
[10] such variant is implied by the standard Strong RSA.

2.1 Division Intractable Functions

In our work we use the notion of division intractable functions. Informally, a function H is division
intractable if an adversary A cannot find x1,x9,..., 2,y such that: y # x; and H(y) divides the
product of the H(x;)’s. It is easy to see that this notion is satisfied by any function that maps inputs
to (distinct) prime numbers. Such mappings can be instantiated without making any cryptographic
assumptions (see [7] for a construction), but they are not very efficient in practice.

Gennaro et al. introduced in [13] the notion of division intractable hash functions and also
showed how to get practical implementations of them. We recall below the formal definition.

Definition 3 (Division Intractable Hash Functions). Let H be a family of hash functions with
poly(k)-bit input and k bit output. We say that H is division intractable if for any PPT adversary
it 1s hard to win the following game:

1. a function H is chosen at random from H;
2. the adversary outputs x1, T2, ..., x4,y such that: (i)y # x;¥i = 1,...,t and (i) H(y)| [T'ey H(2:).

2.2 Signatures

A digital signature scheme IT is given by a triple of algorithms (KG, Sign, Ver) for key generation,
signing, and verifying respectively. Key generation takes as input a security parameter k and returns
a pair of keys (sk, vk) for producing and verifying signatures, respectively. On input a signing key
sk and a message m, the signature algorithm produces a signature ¢. The verification algorithm
takes as input a triple vk, m, o and tests if signature o is a valid signature on m with respect to
verification key vk.

We recall two security notions for signature schemes.

Definition 4 (Security of signature schemes). Consider the erperiment Expj{:ﬁma(k) where

a signing, verification key-pair (sk,vk) is generated for security parameter k. Then, the adversary
1s given vk and is provided with a signing oracle that produces signatures on the messages that the
adversary (adaptively) queries. Eventually, the adversary outputs a tentative forgery (mx,ox). The
experiment returns 1 if o* is a valid signature on m* and m* had not been queried to the signature
oracle. We call Expj‘fl}cma(k:) the related experiment where (mx,ox) is considered a forgery if it is
different from all the pairs (m;,o;) obtained from the signature oracle. A signature scheme II is
unforgeable under chosen message attack if for any probabilistic, polynomial time adversary A the

uf-cma

advantage of Advy 7™ (k) = Pr[Expi’Iﬁma(k:) = 1] is a negligible function. The signature scheme
is strongly-unforgeable if Advj‘fl}cma(kz) = Pr[EXpi‘fl}cma(k) = 1] is a negligible function.

It is also possible to consider a relaxed experiment where the adversary is required to choose
the messages for which it wants to see the signatures, before receiving the public key. Signature

schemes that are proved with respect to such experiment are said to be weakly-secure.



3 Static pseudo-free groups

As warm up, we recall the notion of pseudo-free groups as introduced by Rivest [20]. To distinguish
it from the notions that we develop in this paper we refer to the older notion as static pseudo-free
groups.

FREE ABELIAN GROUPS. For any set of symbols A = {a1,as,...,a,} we write A1 for the
set of symbols A~ = {a7',ay',...,a,;'}. Let X = {z1,...,2,} and A = {a1,...,am} be two
disjoint sets of variables and constant symbols. An equation over X with constants in A is a
pair A = (wy,w2) € (X* x A*). We usually write an equation A = (wy,wsz) as w; = wsy and
looking ahead (we will only consider these equations over abelian groups), we may also write it as
e xlr = ajtay? - aim where {eq,...,e,} and {s1,..., s, } are integers.

Let (G,-) be an arbitrary abelian group and o : A — G be an interpretation of the constants
in A as group elements. We write A\, for the equation A interpreted over G via a. An evaluation

1 : X — G is a solution for A\, if

() - Plen)™ = alar)™ - alam)™™.

Any equation A over X and A can be viewed as an equation over the free group F(A) via the
interpretation 14 : A — F(A) that maps a to a. It can be easily shown [20, 18] that the equation
A1, has a solution in F(A) if and only if Vi = 1,...,m, it holds gcd(ey, ..., ey) | si. We call such
equations trivial, in the sense that these equations have solutions over the free group. All of the
other equations are deemed non-trivial.

STATIC PSEUDO-FREE GROUPS. A computational group consists of a (finite) set of representations
for the group elements together with efficient implementations for the two group operations. Infor-
mally, a computational group is pseudo-free if it is hard to find an equation which is unsatisfiable
over the free group, together with a solution in the computational group. It is worth noting that
if the order of the group is known then finding solutions for non-trivial equations may be easy.
Therefore, the notion of pseudo-free groups holds for families G = {Gn}nyen;, of computational
groups where N is chosen at random from the set of indexes Ny (typically these are the strings of
length k) and the corresponding order ord(Gy) is hidden to the adversary.

In the following we recall the formal definition given by Micciancio in [18] (which is similar to
that of Rivest [20]). The adversary that is considered in the following definition is static (in that it
is only allowed to see a description of the group, but obtains no further information). To distinguish
this class of groups from others that we define in this paper we call them static pseudo-free groups.

Definition 5 (Static Pseudo-Free Groups [18]). 4 family of computational groups G = {Gn}n
is static pseudo-free if for any set A of polynomial size |A| = p(k) (where k is a security param-
eter), and PPT algorithm A, the following holds. Let N € Ny be a randomly chosen group inder,
and define o : A — Gy by choosing a(a) uniformly at random in Gy, for each a € A. Then, the
probability (over the selection of «) that on input (N, a) adversary A outputs an equation A\ and a
solution ¥ for Ay is negligible in k.

4 Adaptive pseudo-free groups

A ROUGH DEFINITION. The notion described above requires an adversary to produce a solution for
some non-trivial equation only given some randomly chosen generators to be used in the equation,



but no additional information. In contrast, the notion that we develop attempts to capture the idea
that an adversary against the computational group gets to see several equations with solutions, and
then attempts to solve a new non-trivial equation. A typical cryptographic game that captures this
situation involves an adversary A who works against a Challenger as follows.

Setup The Challenger chooses a random instance of the computational group Gy (by picking a

random index N < A i) from a family G = {Gn } nen,,- Then he fixes an assignment o : A — Gy
for the set of constants and gives (o, Gy ) to the adversary.

Equations queries In this phase the adversary is allowed to see non-trivial equations together
with their solutions.

Challenge At some point the adversary is supposed to output a new “non-trivial” equation A*
(defined by (e*, s*)) together with a solution *.

Notice that the above description incorporates an assumption that we make for simplicity, namely
that all equations are univariate. In general, any univariate equation over A is of the form: z¢ =
aj*as? - --asr. For the case of static pseudo-free groups, this restriction is justified by the following
lemma that was proved by Micciancio in [18]. Informally the lemma says that any (multivariate)
equation and solution (A, 1)) can be efficiently transformed into a univariate equation and solution
(N, 4'). Whilst we extend the definition of trivial equations to the multivariate case in Appendix
A, it would be interesting to see if a similar lemma is possible in the context of adaptive pseudo-

freeness.

Lemma 1 ([18]). For any computational group family G, there is a PPT algorithm that on input
an equation A over constants A and variables X,a group G from G, and a variable assignment
v : X — G, outputs a univariate equation N and value ¥V' € G such that: (1) if X is unsatisfiable
over the free group F(A), then X is also unsatisfiable over F(A) and (2) for any assignment
a:A— G, if ¢ is a solution to N\, then ¢’ is a solution to X,.

The general definition of pseudo-freeness that we sketched above leaves open two important
points: 1) How are the equations for which the adversary sees solutions produced? and 2) What
does “non-trivial equation” mean when other equations and solutions are given? We discuss and
give answers to these two problems in Sections 4.1 and 4.2 respectively.

4.1 A spectrum of adaptive adversaries

The second phase of the above generic game requires that adversaries be given non-trivial equations
together with their solutions, so we need to clarify how are these equations produced. Here we
identify a whole spectrum of possible choices. The weakest definition one might consider is one
where the adversary does not have any control over these equations. For instance, this means that,
whenever the Challenger is queried in the second phase, the Challenger chooses an equation A;
(more precisely it chooses its exponents (e;, s;)) and gives A; and its solution in G, v;, to the
adversary. Unfortunately, in such a game the adversary is not really adaptive: it may receive all
the equations and solutions at once.

The strongest possible notion, and perhaps the most natural one, would be to consider an ad-
versary that is allowed to choose equations ); (namely their respective exponents (e;, %)) in any
way it wants. In particular the choice of the equations can be done in an adaptive way, namely
A asks for an equation, sees its solutions, then chooses another equation and so on. We call this



definition “Strong Adaptive Pseudo-freeness”. Unfortunately this choice seems to lead to an un-
realizable notion.* We therefore settle on an intermediary variant where the adversary is allowed
to be adaptive, but still cannot choose the equations in a completely arbitrary way. Instead, we
consider a setting where the equations are selected from the set of all equations according to some
distribution over which the adversary has some limited control. We formulate this limitation via a
parametric distribution o over the set of all possible equations. Sampling from such a distribution
requires some parameter M of some appropriate length which is provided by the adversary. The
distribution then produces a tuple of m + 1 integers which for expressivity we write (e, s). Here e
is an integer (the exponent for the variable) and s is a vector of m integers (the exponents for the
generators). The idea is that once the parameter M is fixed, ¢(M) is some fixed distribution from
which (e, s) are drawn. Notice that the two ends of the spectrum can be modeled via appropriate
choices of .

4.2 Non-trivial equation w.r.t. other equations

Our definition of adaptive pseudo-freeness requires an adversary to find a solution to a non-trivial
equation. In the original setting of Rivest, non-triviality of an equation simply meant that the
equation has no solution in the free group. In our setting, non-triviality is less clear: the adversary
is already given solutions for some equations which may lead to solutions for other equations that
are difficult to solve otherwise. In this section we develop a notion of triviality for equations given
solutions to other equations. Our ultimate goal is to characterize, using the world and vocabulary
afferent to free groups those equations that cannot be solved in the computational group.

GENERAL DEDUCIBILITY MODULO EQUATIONS. We frame the discussion in slightly more general
terms to obtain a framework suitable for talking about non-triviality of both univariate and multi-
variate equations.

Let F be the free abelian group generated by the set {aj, as,...,an} and let A C F x F be an
arbitrary binary relation on F that models equalities between words in F (equations with solutions
can be thought of as such relations). We therefore aim to characterize the set of all equalities that
can be derived from A. Recall that eventually these equalities are interpreted over computational
groups, hence there are two ways for an adversary to derive new equalities. The first is to use
the group operations and their properties. For example, if A = {ajas = aa4}, then it can also
be derived that aja? = aasas = aja?, where the first equality is obtained by simply multiplying
a2 to the known equation, and the second equality follows using the commutativity of F and
the known equality. The second possibility reflects an ability that computational adversaries have
(when working against computational groups). Specifically, if an equality of the form w{ = wi can
be derived in a computational group, then the equality wq = ws can also be derived (provided that
q is relatively prime with the order of the group). Furthermore, since we search for an abstraction
independent of the order of the group, we have to consider the above possibility for any ¢. The
following definition is motivated by the above discussion.

Definition 6. Let F be a freely generated abelian group and let A C F x F be an arbitrary binary
relation on F. Let =4 be the smallest congruence on F that:

- AgEA

4 For example, it is not clear at all if a group like Z% can be proved strongly-adaptive pseudo-free under any
reasonable assumption (e.g. Strong RSA).



Vg € N,Vwi,wy € F, wi =4 wl = w1 =4 wo.

Then, wy and ws are trivially equal with respect to A if w1 =4 ws.

Next, we derive an explicit description for =4. Let A = {(w1,1,w2,1), (w12, w22), ..., (Wi, war)}

Consider the binary relation R4 on F defined by: (w1, w2) € R, if and only if there exist l1,lo, ..., l; €
Q such that

Here, exponentiation of a word w = aj'ay’ ... a

t —1 l;
w) = woy - Hi:l(wl,i W)t
51,52 Sn

sn with a rational number | = p/q is defined (in the

obvious way) if and only if ¢ divides ged;<;<,, p - i

The following proposition states that =4 and R4 are one and the same relation.

Proposition 1. Let Ry and =, defined as above. Then (wi,ws) € Ry if and only if (wy, wa) €=4.

The proposition follows by the next two lemmas:

Lemma 2. =,C Ry

Proof. We prove that R, is a congruence and has all of the closure properties required from =4
(so the desired inclusion follows since =, is the smallest congruence with these properties).

R, is reflexive. Let w € F arbitrary. Then we derive that (w,w) € R, by setting [ = lo =
R, is symmetric. for wy and wy such that (wq,ws2) € Ry, so there exists l1,12,...,l; € Q such

that wy = wy - IT},_, (wi}ngk)lk. Then (we,w1) € Ry by fixing the coefficients for the linear
combination to —lIy, —ls, ..., —l;.

R, is transitive. If I3, 1o, ..., l; show that R4(wy,ws) and mq,ma, ..., m; show that R,(we,ws)
then Iy +my,lo + ma,...,ly + my show that Rj(wi,ws).

R, commutes with the operations. Let wq, wq, w], w) such that (wl,wg),(%}’l,wé) € Ry, so
. -1 k
there exists l1,la,...,l, m1,ma,...,my such that wy = wy - II}_, (wl,ka,k> and w) = w) -

my
i, (wl_,iwzk) . Then (wjw),wows) € R, (take the coefficients for the required linear

combination to be Iy + my, for any 1 < k < t). Also, we have that (w;',w[ ') € Ry: take
the required coefficients to be —ly, —lo, ..., —l;.

A C Ry. To show that (wy g, wa k) € Ra for any 1 < k <t, set all of I1,ls,...,l; be equal 0 with
the exception of [ for an arbitrary 1 < k <t which is set to 1.

Let wi,ws be such that (w(ll,wg) € R,. By the definition of R, there exists l1,1s,...,[; such

l
that w{ = wd - II!_, <w1_’,1€w2,k) * 1t follows that (w1, ws2) € Ry by setting the coefficients of
the linear combination to l1/q,la/q,...,l1/q.

Since R, satisfies all of the properties that =4 satisfies, and the latter is the smallest congruence
with these properties, it follows that =4C R4.

Lemma 3. Ry C=4

Proof. Define the operations R, S,T,1,Q : P(F x F) — P(F x F) as follows.

S(8) ={(z,9) | (y,2) € S}



) =A{(z,y) |3z € F: (z,2),(2,y) € S}
- Q(S8) ={(z,y) | Jg € Z, (2%,y7) € S}

— I(S) ={(z,9) | (z",y ") € S}

) = {(z172,9192) | (z1,91), (T2,92) € S}

=
“

Since all of the operations above commute with each other, the congruence=, is the closure of the
set (F x F U A) under the above operations. It is easy to see that F x F U A C R, and that for
any set S if S C Ry then O(S) C R, for any operation O € {S,T,Q, I, M}. The desired inclusion
then follows.

TRIVIAL EQUATIONS. Using the notion of deducibility modulo equations developed above we can
now specify the class of equations that we consider trivial (given solutions for the equations in some
set A). For simplicity, we focus on the case of univariate equations which is more relevant for the
cryptographic applications of this paper. The definition easily extends to the case of multivariate
equations (for completeness we give this variation in Appendix A). Assume that we are given a set
of equations
A= {:ce’“ = aslf . -asﬁl}t
1 m E—1
together with {qﬁk}};:l, their corresponding solutions. (Notice that these are equations in a compu-
tational group; solutions for these equations may simply not exist in a free group). Let F be the
the free abelian group generated by {¢1, ¢, ..., ¢, a1,a2,...,ay} (interpreted as symbols). The
equations in A induce a binary relation on F which (by a slight abuse of notation) we also call A.
So A = {(¢7F, ailf e ai,;:”) | 1 <k < t}. The following definition simply is a particular instance of
Definition 6 to the case of univariate equations.

*

Definition 7. Equation z¢ = ail -~-af72” is trivial with respect to A if the equation has a solution
over F/ =4.

We use the characterization of =, that we gave earlier to explicitly determine the class of trivial
equations. Let

o =i <1>
be an equation that has a solution over F/A. Let ¢ = ¢* - ¢f*a’" .. a¥» be such a solution. From
the explicit characterization of =4 there exists [y, ...,[l; in Q such that

* * * * . _ gt l;
(@ oftapt - atp)” = atlat g Ty (05 I y0, ) (2)

Since equality is standard equality over F, the relation above translates (via symbol by symbol
matching of exponents) into the following requirement. Equation (1) has a solution if there exist
V1 Um, k1 ke in Z and [q,...,l; € Q such that:

1. k:ie* =€; " ll (fOI‘ all 1 < /) < t)
2. vie* =5 — Z;Zl ljsl(-]) (for all 1 <i <m)

The converse of the above statement is also true: if integers vy, ---vm, k1, ...,k and rationals
l1,---,l; exist such that Equation 2 holds then ¢ = qb]l“ e ftaqfl ---apm is a solution for Equa-

tion (1) over F/ =4.



Finally, we express these two conditions in a more compact matrix form which will be simpler
to use in our proofs. Given the set of equations

k k t

S
A= {xe’“ =ay' ‘--af;gl}
k=1

we define the following quantities:

1/61
8% DY Sl?l 1/62
Y= : and F =
S}TL PR Sﬁn 1/6
t

These quantities are dependent on A but we do not show the dependency explicitly to avoid heavy
notation.

Proposition 2 (Trivial equation w.r.t. a set of equations). Equation \* : 2° = aif caim

is trivial w.r.t A if and only if:

ke 7" VeZ™: e (YEk+V) =s*

*

where 8* = [s*---s* 17T,
1

*
m

Proof. The proposition follows by simply setting I; = kzg forall 1 < <t.

4.3 A definition of adaptive pseudo-free groups

The definition of adaptive pseudo-freeness that we give below is for a set A of m generators, a
computational group {Gy} y and is parameterized by a distribution ¢(-) as discussed in Section 4.1.

Setup The Challenger chooses a random instance of the computational group Gy (by picking
a random index N < Aj) from a family ¢ = {Gn}n~en;,. Then he fixes an assignment « :
A — Gy for the set A of generators and a specific parametric distribution ¢ for the exponents.
The adversary is given in input the assignment o : A — Gy and the descriptions of the
computational group and the parametric distribution ¢.

Equations queries In this phase the adversary is allowed to adaptively query the Challenger
on equations and see their solutions. More precisely, A controls the queried equations via the
parametric distribution ¢. Namely, for each query it chooses a parameter M; and hands it to
the Challenger. The Challenger runs (e;, s*)«@(M;), computes the solution 1; for the equation
i, which is z% = aii i and gives (¢, e;, 8%) to A.

Challenge Once the adversary has seen the solutions, then it is supposed to output an equation
A* (defined by (e*,s*)) together with a solution ¥*. We say that A wins this game if \* is a
non-trivial equation.

Definition 8 (Adaptive pseudo-free groups). G is a family of adaptive pseudo-free groups

w.r.t. distribution p, if for any set A of polynomial size, any PPT adversary A wins in the game
above with at most negligible probability.
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We restate several of the reasons that justify the above definition. Although the definition
is parametrized by a distribution, we feel this is the right way of modeling an adversary who
is adaptive but not all-powerful. As explained, by varying the distribution one obtains a large
spectrum of potentially interesting instantiations, starting with static pseudo-freeness all the way
to strong adaptive pseudo-freeness. Finally, we show that for some fixed distributions adaptive
pseudo-freeness implies immediately secure signature schemes.

5 Applications of adaptive pseudo-free groups

As an application of adaptive pseudo-free groups we show how to obtain signature and network
coding signature schemes out of pseudo-free groups. For our signature construction we exhibit a class
of parametric distributions ¢y and show that any family of groups that is adaptive pseudo-free w.r.t.
p € py immediately yields a signature scheme that is strongly-unforgeable under chosen-message
attack. We also explain how to adapt the distribution and the proof to obtain the analogous result
for (non-strongly) unforgeable schemes.

5.1 Signatures from adaptive pseudo-free groups

THE CLASS OF PARAMETRIC DISTRIBUTIONS ¢y. In this section we introduce a specific class of
parametric distributions ¢y : {0,1}¢ — ZM*™ x {0, 1},
For any input M € {0,1}¢ and an integer ¢, ¢,(M) outputs a tuple (e, s,r) such that:

— r is a binary string taken according to some arbitrary distribution D,

— e = H(r) where H : {0,1}*® — {0,1}*(") is a division intractable function (see Section 2) and
a(-) and b(-) are polynomials;

- 51 =1;

— 8i € Ze (. 85 <€) Vi=2,...,m for some efficiently samplable distribution Ds,.

Also we require that ¢g(M) produces an output (e, s,r) for which one can efficiently tell that
it belongs to the support of ¢g(M). Formally, we require that ¢, is equipped with an efficient
algorithm Very,(-,-,-,-) that, on input (e, s,r, M), outputs 1 if (e, s,r) is in the support of ¢y(M)
and 0 otherwise. Moreover we require Very, (e, s,r, M) to be such that, for all PPT adversaries A
the probability

Pr((e,s,r, My, Ma)—A(pr) : My # My AN Very,(e,s,7, M) =1AVery,(e,s,r, My) = 1]

is at most negligible.

SIGNATURE SCHEME CONSTRUCTION. We now show how to build a signature scheme from any
family of groups G that is adaptive pseudo-free w.r.t. ¢ € .

Let ¢ be a parametric distribution taken from the class ¢y and let G be a family of groups that is
adaptive pseudo-free w.r.t. ¢. Then we have the following signature scheme PFSig = (KG, Sign, Ver):

KG(1%) Let A = {a1,...,an} and X = {z} be the sets of constants variable symbols. The key
generation algorithm selects a random group G from G, fixes an assignment o : A — G for
the symbols in A and finally it sets vk = (X, A,a,G, ) as the public verification key and
sk = ord(G) as the secret signing key. The input space of ¢, M, is taken as the message space
of the signature scheme.

11



Sign(sk, M) The signing algorithm proceeds as follows:
- (67 S, 74)<_95(M)
— Use ord(G) to solve the equation z¢ = aj* ---asr. Let ¢ : X — G be the satisfying assign-
ment for z. The algorithm outputs o = (e, s,7,%) as the signature for M.
Ver(vk, M, o) To verify a signature o for a message M, the verification algorithm proceeds as
follows:
— Check if Very(e,s,r, M) =1 and if the equation 2¢ = a7* - - - a;* is satisfied in G by ¢ (z).
— If both the checks are true, output 1, otherwise 0.

SECURITY OF THE SIGNATURE SCHEME. In this section we prove the security of the proposed
signature scheme under the assumption that G is adaptive pseudo-free w.r.t. ¢. In particular we
can state the following theorem:

Theorem 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution @ € @y, then the
signature scheme PFSig is strongly-unforgeable under chosen-message attack.

Proof. For sake of contradiction, assume there exists an adversary A that is able to break the
security of PFSig with non-negligible probability. Then we can build a simulator algorithm B that
is able to break adaptive pseudo-freeness of G w.r.t. ¢.

Let X and A be the sets of variable and constant symbols. At the beginning of the game B
receives («, G) and the description of ¢ from its challenger. It sets vk = (X, A, a,G) and runs A
on input vk.

Whenever A asks for a signature on a message M; € M, B hands M; to its challenger and
gets back (e;, 8%, 7,1;) where (e;, s',r;) is taken from @(M;) (i.e. Very(e;, s',ri, M;) = 1) and ¢
is a valid solution for the equation \; defined by the exponents (e;, s°). B gives o; = (e;, 8,74, ;)
as a signature for the message M;. It is easy to see that o; are valid signatures and that they are
distributed as in the real case.

In the end A is supposed to output a valid forgery (M*,o*) (i.e. it holds that (M*,o*) #
(M;,0;) Vi =1,...,t where t is the number of queries made by the adversary). Finally B outputs
o* = (e*,s*,r*,9*) to its challenger.

Since (M*,0*) is a valid forgery, we have that ¢* is a solution for the equation z¢ = aif e afg”
and that Verg(e*,s*,7*, M*) = 1. To conclude the proof of security it remains to show that the
equation (e*, s*) is non-trivial.

More precisely, we will prove the following lemma.

Lemma 4. Let (M*,o%) = (M*,(e*,s*,r*,¢*)) be a valid forgery for the scheme PFSig w.r.t. to
the set {(M;,0:)}i_, of previously issued signatures, then the equation defined by (e*,s*) is non-
trivial w.r.t. to the set of equations A = {(e;, s')}!_;.

Proof (Lemma /). According to Proposition 2 (and for properly defined X, F) we want to show
that
VkeZ!V e Z™: e (XEk + V) # s*.

For sake of contradiction, assume there exist k € Z! and V € Z™ such that e*(ZEl;‘ + V) =s".
Then we show that this contradicts at least one of our assumptions.
Let P =[]/, e; and p; be the j-th row of (2 Ek):

Sjl'l%l S;I;‘t Zle(sé‘ ]%l Hz;&l ei)
el €t P
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Vj=1,...,mit holds e*p; = s7 — e*‘7j or equivalently

s*P ¢ R .
é* => (s [ es) + V5P (3)

=1 il

*
sjP

2+ must be an integer too. In partic-

Since both <Zf:1 sé»l%l [Tz ei) and (V;P) are integers, then
ular this must hold even for j = 1 and thus it must be that e* | P (as s} = 1).
Then we can have different cases that contradict our assumptions:

— e* | P and r* # r;j. This contradicts that H (in ) is division intractable.

— e* | Pand r* =r; (i.e. € = ¢;). In this case, Vi = 1,...,m we have
t 17
. s Scki(1 ] € .
;e (211#] (T V)

from which s* = s/ l%j mod e*. For any choices of ki, i # j, the last equation is satisfied for
ki =1 mod e* (as 5§ = 5{ = 1) and thus s* = s/ (since s*, s/ € Z™). This means that in this
case we have (e*, s*,7*) = (ej, 87,7;).
Then we can have two different subcases:

o M* # M;. This contradicts the security property on the verification algorithm of ¢.

e M* = Mj;. This contradicts that (M*,c*) is a forgery.

Notice that if one relaxes a bit the requirements on the parametric distribution ¢, Theorems 1
leads to different flavors of digital signature schemes. For instance, one might consider the distribu-
tion @', which slightly generalizes the parametric distribution ¢ as follows. ¢’ is exactly as ¢ with
the only difference that s is chosen unformly in Zpg for some value B > e. It is easy to rewrite the
proof of Theorem 1 in order to show the following

Corollary 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution @', then the signa-
ture scheme PFSig is unforgeable under chosen-message attack.

Informally, what this corollary is saying is that by (slightly) generalizing the parametric distri-
bution one gets a signature scheme where unforgeability is guaranteed only for previously unsigned
messages (i.e. the scheme is not strongly unforgeable).

5.2 Network coding signatures from adaptive pseudo-free groups

In this section we show that our framework allows to encompass network coding signature schemes
as defined and constructed by [6,14]. In particular, by combining previous theorems with ideas
from [14] we construct the first RSA-based network coding homomorphic signature scheme provably
secure without random oracle. In the following we will represent files V' to be signed as collections
(M, ... vM) where each v is a n-dimensional vector of the form (v1,...,v,). To sign V the
signer signs every single vector v(¥) separately. Informally this is done using a signature scheme that
allows some form of (controlled) malleability. In this way, if we interpret signatures as solutions
of non trivial equations, one can easily compute solutions for any linear combination of the given
equations. This simple observation, when combined with ideas from [14], can be used to construct
a secure signature scheme for network coding without random oracles.
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BACKGROUND ON LINEAR CODING SCHEMES. In linear network coding [2, 21], a file to be transmit-
ted is viewed as an ordered sequence of n-dimensional vectors vy, ...v,, (defined over the integers
or over some finite field). Before transmission, the source node creates the m augmented vectors
w1, ..., W, obtained by prepending to v; a vector u;, of length m. Each u; contains a 1 in ¢th po-
sition and 0 in all the remaining positions (m is typically much smaller than n). These augmented
vectors are then sent by the source as packets in the network. Each node in the network processes
packets as follows. When receiving ws . . . wy,, a node computes some linear combination of the re-
ceived packets (e.g., using coefficients randomly chosen from a suitable domain) and transmits the
resulting vector on its outgoing edges. In other words, each node transmits a linear combination of
the vectors it receives. To recover the original file a node must receive m (valid) vectors w; of the
form described above, for which the corresponding w;’s are linearly independent. Thus, denoting
with U the matrix whose rows are uq,...,u,;, and V the matrix whose rows are vi,...,v,, the
original message can be retrieved as

M=U"'v

The idea sketched above is susceptible to pollution attacks where malicious nodes inject invalid
vectors in the network so that to make reconstruction of the original file impossible. To overcome
this problem a viable solution is to use network coding signatures. The basic requirement of such
schemes is that they allow to efficiently check if a given vector is valid, i.e. if it has been obtained as
linear combination of valid vectors wy, ... wg. More details about network signatures can be found
in [6, 14]. We recall the formal definitions in Appendix B.

Our Network Coding Signature Scheme Here we describe our network coding signature
scheme. First, however, we discuss some additional details required to properly present the scheme.
As already mentioned, a file to be signed is expressed as a set of vectors (U(l), .. .,v(m)) of n
components each. Such vectors will be prepended with m unitary vectors u(® (of m components
each). Let us denote with w(? the resulting vectors.

Using a similar notation as [14] we denote with @ = {0,...,¢ — 1} (for some prime ¢) the set
from which coefficients are (randomly) sampled. We denote with L an upper bound on the path
length from the source to any target. By these positions B = mq” denotes the largest possible
value of u-coordinates in (honestly-generated) vectors. Moreover denoting with A an upper bound
on the magnitude of the coordinates of initial vectors v, ... v("™) we set B* = M B.

Let on be the following parametric distribution. It takes as input some random identifier fid,
a vector space V and a bound B*. Let ¢; be a security parameter and ¢ be an integer such that
2¢ > B*, compute e = H(fid) where H : {0,1}* — {0,1}¢ is a division intractable function. Next,
for each v() = (vy), e vgi)) € V it proceeds as follows. First, it samples (uniformly and at random)
a { + £s-bit random integer s; and outputs (s;, u(®), v(i)). The global output of ¢ is then

(6, {(Sia u(l)a U(Z)) 7,':1)

Notice that ¢y is a simple extension of distribution ¢’ described above. It is straightforward to
show that it fits the requirements of corollary 1 as well.

Let G be a family of groups that is adaptive pseudo-free w.r.t. . Then we have the following
signature scheme NetPFSig = (NetKG, NetSign, NetVer):

NetKG(1*.n) Let A = {g,91,---,9n,h1,...,hm} and X = {z} be the sets of constants variable
symbols. The key generation algorithm selects a random group G from G, fixes an assignment
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a: A — G for the symbols in A and finally it sets vk = (X, A, o, G, ¢ ) as the public verification
key and sk = ord(G) as the secret signing key. The input space of ¢y, M, is taken as the set
of m-dimensional vectors whose components are positive integers of magnitude at most M.

Sign(sk, V') The signing algorithm proceeds as follows. A random identifier fid for the vector space
V is chosen. Next, it runs @x (V, B*, fid) to get back (e, {(s;,u”,v®)}7 ). Finally, for i = 1 to
m, it uses ord(G) to solve the equation

Let ¢ : X — G be the satisfying assignment for z; and o; = (e, s;, u@ v _fid, 1) the signature
for w(® The algorithm outputs ¢ = (o1,...0,,) as the signature for V.

Ver(vk, V, o) To verify a signature o for a vector space V', the verification algorithm proceeds as
follows

— Check if Veryy (e, V, B, fid, {(s;, u(®, v(i)) m ) =1, and if the equations
26 = goight oo g pu L are all satisfied in G by ().

— If all the checks are true, output 1, otherwise 0.

Combine(vk, fid, w1, ..., wy, 01,...,07) To combine signatures o;, corresponding to vectors w; shar-
ing the same fid, a node proceeds as follows.

— It discards any w; having u coordinates negative or larger than B/(mgq), or having v coordi-
nates negative or larger than B*/(mgq). Without loss of generality we keep calling wy, ... wy
the remaining vectors.

— It chooses random «aq,...ap € Q, set w = Zle a;w; and it outputs the signature o =
(e, s, w,fid, 1) on w which is obtained by computing

14 14
¢:H¢iaia Szzaisi
i=1 i=1

One can easily rewrite the proof of corollary 1 to prove the following.

Theorem 2. If G is a family of adaptive pseudo-free groups w.r.t. distribution @y, then the
NetPFSig signature scheme described above is a secure (homomorphic) network coding signature.

6 The RSA group is adaptive pseudo-free

In Section 4 we have defined the notion of adaptive pseudo-free groups and in Section 5 have
showed a class of parametric distributions (called ¢y) that allows to build signatures from the
sole assumption that a family of groups is adaptive pseudo-free w.r.t. ¢ € y. At this stage, it is
therefore interesting to find a computational group candidate to be proved adaptive pseudo-free.
As proved by Micciancio in [18], the only group that we know to be pseudo-free is the RSA group
ZY of integers modulo N, where N is the product of two “safe” primes and the sampling procedure
takes elements from Q Ry . Therefore we aim to prove adaptive pseudo-freeness for the same group.

5 We implicitly assume that the Very, verification algorithm rejects immediately if any of the u coordinates is
negative or larger than B, or if any of the v coordinates is negative or larger than B*
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A PARAMETRIC DISTRIBUTION ¢. First of all we need to define the specific parametric distribution
for which we will prove adaptive pseudo-freeness of the RSA group.

Let us consider the following ¢ : M — Z x Z™ x {0,1}*, where M = {0,1}*. For any input
M € M, (M) outputs a tuple (e, s,r) that is defined as follows:

— r is a random binary string

— e = H(r) where H : {0,1}* — {0,1}* is a division intractable function (see definition in Section
2)

— 81 = 1

— $o is uniformly distributed in Z,

— For 3 <i < m, each s; is taken with an arbitrary (but efficiently samplable) distribution D, in
Ze such that the tuple ss, ..., s,, is binding to M®.

The verification algorithm Verg (e, s, 7, M) checks that e = H(r) and that s3, ..., s,, are binding
w.r.t. M. It is straightforward to verify that ¢ is contained in the class ¢, defined in section 5.1.

We state the following theorem.

Theorem 3. If the Strong-RSA Assumption holds, then Z}; is adaptive pseudo-free w.r.t. ¢.

Proof. For sake of contradiction, we assume that Z}; is not adaptive pseudo-free w.r.t. ¢. According
to Definition 8, this means that there exists an efficient PPT adversary A that with non-negligible
probability is able to output an equation A* (defined by (e*, s*)) together with a solution ¢* such
that \* is non-trivial w.r.t. to the set A of previously queried equations. In order to prove the
theorem we will show that we can build an algorithm B out of A that breaks the Strong-RSA
Assumption (more precisely its variant where 7 € QRy ).

For i = 1 to t (where ¢ is the number of queries made by A), let (e;, 8°,7;)«—@(M;).

If we consider e* and the set {ej,...,e;} we can distinguish two types of adversaries:

Type I the adversary outputs e* such that ex { Hle €5y
Type II the adversary outputs e* such that ex | H§:1 €;.

At the beginning of the game we guess on the type of adversary we have and will set up the proper
simulation according to such guess. Notice that the guess will be right with probability at least 1/2.

Type I. In the case of a Type I adversary we show how to build a simulator B that breaks Strong-
RSA with non-negligible probability. B takes as input (IV,7) where N is the product of two safe
primes p,q (where p = 2p' +1 and ¢ = 2¢' + 1) and 7 € QRy. Its goal is to find an e-th root y of
7 for e of its choice.

In the following we describe the simulator B during the three phases of the game.

Setup B chooses in advance ¢t random strings r1,...,7; and computes e; = H(r;) V1 = 1,... t.
Then it fixes the assignment « for the constant symbols as follows:

— pick random z1, 29, . . . , Zm {1,...,N?}
— let B =[_, & and set a(a1) = 77 and a(a;) = a(a;)? for all i = 2 to m.

6 This means that there exists an efficient algorithm that on input (M, s3,...,8m) outputs 1 if s3, ..., sm are created
w.r.t. M
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Finally B gives a (and the description of Z}) to the adversary A.

For ease of exposition we will use a; instead of a(a;) to refer group elements. For all 2 <i <m
let z; = bip'q’ + ¢; where 0 < ¢; < p'¢’. Since each z; is chosen from a suitably large interval, the
distributions of each (z; mod p'q’) is statistically indistinguishable from the uniform distribution
over Zpg. SO a1,a2,...,a, are distributed like random quadratic residues of Z3;. Moreover
the conditional distribution of b; given ¢; is statistically indistinguishable from the uniform
distribution over {0,..., | N?/p'¢'|}.

Equations queries At this stage A is allowed to adaptively query equations by submitting param-
eters M1, ..., M! for ¢. Therefore B has to solve such equations and give the corresponding solu-
tions to A. For all i € {1,...,t}, each query M* is managed as follows. B chooses the exponents

1

sb,..., 8t € Ze, according to ¢(M?). Then B computes the solution of \; = 2% = a; 'agé cagn

as follows:

— let Ei = Hz-:l’j?éi € .
= Wie) = ()P
Finally B gives (e;, s%,7;,1;) to A. It is easy to see that 1; is a valid solution for )\; and that
the equations are distributed as in the real case.
Challenge Once the previous phase is over, A is supposed to output an equation \*, for M*
(together with a solution *) which is non-trivial w.r.t. A = {\;}._,. Since (e*,s*,7*) are
distributed according to ¢(M*) we have:

w*(x)e* — alagz e a‘:rfln — TE(21+Z;H:2 ZJS;)
Let £ = E(z1 + "4 2js}) and d = ged(e*, E'). Provided that e* { E' B can use standard
techniques (i.e. Shamir’s trick) to extract an (e*/d)-th root y of 7 and thus it can output

(e*/d,y) to break Strong-RSA.

Therefore we are left with the task of showing that e* 4 £’ with non-negligible probability. Let r be
a prime dividing e*. Since we are assuming a Type I adversary it holds r { E. Thus the point is to
show that r{ (21 + > 7., 2;s7) with non-negligible probability.

As pointed out before, let z; = b;p’q’ + ¢;. Since each b; is essentially hidden to the view of any
adversary, r may depend only on the ¢;’s. Since r { p¢ the probability that r | (z1+2285+. . .4+2msh,),
or equivalently (z1 + 2285 + ...+ zms),) = 0 mod r, is close to 1/r. This means that e* t E/ with

probability close to 1 — 1/r, for the smallest prime factor r of e*.

Type II. The case of a Type II adversary is a bit more complicated. Since ex | H§:1 e; we can
have two cases:

1. r* #r; Vi=1,...,t. In this case it is easy to see that our assumption on ¢ is not satisfied as we
would be able to break the division intractability of the function H. Indeed we have (r1,...,7)
and r* # r;,Vi = 1,...,t such that H(r*) = e* | [['_, e; (where e; = H(r;)).

2. r* =r; for some j € {1,...,t} (i.e. ¢* = ¢;). The simulation for this case is described below.
Precisely we will show how to build an algorithm B that breaks Strong-RSA with non-negligible
probability.

Before giving the details of the simulation we first give some intuitions that will be useful to
understand our approach.
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Let {(e;, s")}I_; be the exponents of the ¢ queried equations and (e*, s*) be the ones of A*. Since
A* is non-trivial we have that Vk € Z' and VV € Z™:

1 1 ---1 ]{1/61 V1 1
1 .2 t N
S3 85 -+ 8 ka/eo %) s
o 2 5 2 . n y 2
shos2 st | kefe Vin Sm

Namely, at least one of the following m inequalities must hold:

1. e*(k1€2 cecep+...+eeg--- et—lkt) 7& (1 — V1€*>(61 ... et)
2. e*(shkieg - -ep+ ...+ shkieren - -ep_q) # (55— Vae*)(e1--- )

m. e*(sk kiea---ep+...+ejea- 18t k) # (s, — Vine*)(e1 - -er)

Since the fact above holds for all integer vectors k € Z! and V € Z™, then it must hold even
for k and V such that: lch =1,k =0V +£jand V =07,

In particular, for such choices of k and V', wlog we assume that the v-th inequality holds. Since
we are in the case that e* = e;, observe that the first equation is always satisfied for such kand V.
Thus it must hold s/, # s* for some v € {2,...,m}.

B can guess j and v with non-negligible probability 1/(¢(m — 1)) by picking them at random in
{1,...,t} and {2,...,m} respectively. Then it performs the following simulation.

Setup B choosesry,...,r; and computes e; = H(r;) Vi =1,...,t. Then B picks random uq, . . . , U, &

QRN, z,,0 & {1,...,N?}. and fixes the assignment for the constant symbols as follows:
I1

alaz) = lim1izs “ ala,) = alaz)®™, alar) = alaz) Puy =1 and a(a;) = u{ﬁzl “ for i =3 to
m and ¢ # v. Finally it gives a and the description of the group Z}% to A.
For ease of exposition, in the following we will use a; instead of «(a;) to refer group elements.
Solving equations In this phase B is adaptively asked by A to solve at most ¢ equations with
1

parameters M1, ..., M? respectively. For each parameter M*, B chooses s5, ..., s, according to

Q(M?). For all i € {1,...,t}\{j} B solves \; = 2¢ = ala;22 .--aym by computing
m ' Hl;ﬁ@j €]
¢Z($) — (THl;ﬁi,j 6[)1+Zu8,1/—6 H ujj

J=1,j#2,v

It is easy to observe that ; is a valid solution for ;.

In order to solve the j-th equation B uses a different approach. Let M J be the queried parameter
and s}, ooy sﬂ_n be chosen according to M7. B sets s} = 8 — z,s, mod e; and find w such that
B — 2,81, = s} + we;. It then computes:

m \ Hizs e
_ s? e Sj J
bi(@) = [T H u;* = Vaiay® - an.

i=1,i#2,v

After having solved each equation, the simulator hands (e;, 8%, 7;, ;) to A.
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Challenge In this phase A is supposed to output a non-trivial equation \* (defined by (e*, s*)),
together with a solution ¥*. If it is the case we show that B can extract a root of 7 as follows.
Let

* - m (Hl;é i €1)e;
(1/}*(517)>e _ a(Sé—S%)-qu(slt—S?/) H a('Sf—S‘Z) _ (Tnlij el)(sg—sg)—s—zl,(sj‘,—s{;) H U(S:_SZ) J j
vi(@) ’ i=3,iv 2 i=3,iv l
Since e* = e; we obtain:
w ( ) m _ (Hl;ﬁj el)
*(z (sg—sz‘) _ (Al e (s*—sj)-i—zl,(s*—si)
U, = (7t4#d 2772 v .
() (I ()

i=3,i#v

Let B = ([, e)(s5 — s) + 2,(s% — s1)). In order to extract a root of 7 we have to show that
e* { B’ with non-negligible probability. Observe that e* { [],,; e and that z, = bp’q’ + ¢ where
b is information theoretically hidden to any adversary. Since s;, — s, #+0 (by our guess) and
s%,8) € Zex, we have that e* | (s5 — s}) + 2,(s), — s7) only with negligible probability. Thus
B can use standard techniques (i.e. Shamir’s trick) to extract an (e*/d)-th root y of 7 where
d = gcd(e*, E).

O

As a corollary of the above theorem we can prove adaptive pseudo-freeness of the RSA group
w.r.t. two new parametric distributions s, @ # @ which still are within the class ¢y defined in
section 5.1. In particular @, is a variant of ¢ where: so = 0 and for all i = 3 to m, s; € {0,...,p}
such that p is at most polynomial in the security parameter (and of course p < e).

Corollary 2. If the Strong-RSA Assumption holds, then Z3; is adaptive pseudo-free w.r.t. ps.

The proofs follows from that of theorem 3. The intuition here is that when the s;’s are small they
can be guessed in advance with non-negligible probability.

Instead ¢y, is a variant of ¢ where: so = 0 and s3,..., 8, € Z. are obtained as output of a
chameleon hash function CH(M; R) computed on the parameter M and with randomness R.

Corollary 3. If the Strong-RSA Assumption holds, and CH is a chameleon hash function, then
Ly 1s adaptive pseudo-free w.r.t. Qep,.

The proof is the same as in Corollary 2. The intuition here is that one can use the chameleon
property of C'H in the simulation to “prepare” the s;’s in advance.

WEAK ADAPTIVE PSEUDO-FREENESS OF THE RSA GROUP. One may also consider a weaker notion
of adaptive pseudo-freeness where the adversary is forced to choose the parameters M1, ..., M? of
its queries at the beginning of the game, i.e. before receiving the description of the group from the
challenger.

If we consider such a notion, then we notice that our proof of theorem 3 still holds even w.r.t. a
slightly more general distribution than ¢ where the entire tuple (e, s2, ..., sy ) needs to be bound
to M. To see this, observe that all r;’s can be still computed at the beginning of the game as the
simulator now knows M7, ..., M; in advance.

It is trivial to see that starting from a weak-adaptive pseudo-free group our results of section
5.1 lead to the construction of signature schemes that are weakly-secure (see Definition 4).
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7 A framework for Strong RSA-based Signatures

In this section we show that, in light of the results of theorems 1 and 3, and by appropriately
instantiating the parametric distribution ¢, we get all the known constructions of Strong RSA-
based digital signatures in the standard model (to the best of our knowledge).

Cramer Shoup Signatures. Cramer-Shoup’s [10] signature scheme works as follows:

Key Generation Generate N as the product of two safe primes p and ¢. Also randomly choose
two quadratic residues a1,a3 € QRy and an (¢ + 1)-bit prime e’. The public key is (N, a1, as, €)
and the private key is (p, q).

Sign To sign m, compute ¢-bit hash value H(m) with a collision-resistant hash function H and

then compute ¢ = yela?(m) for a random y € QR . Next pick a random (¢+ 1)-bit prime e # ¢

and solve (for z) the following equation z¢ = alaf(c) mod N. The signature is (y, e, x)
Verification Check that the two equations above hold and that e is an ¢ + 1-bit (odd) integer

different from e’.

While the signature above may look like based on a system of two equations, we observe that
only for the second equation the signing process is required to find a solution (using the secret
key) while the first equation (i.e. ¢ = ye/a?(m)) is, de facto, a chameleon hash function computed
on the message m and randomness y. In particular it is a chameleon hash based on the RSA
assumption which, for efficiency, is implemented by sharing some parameters with the signature
scheme. Therefore we can see Cramer-Shoup’s scheme as a special case of our general framework

when considering the following distribution.

¢ Choose r at random and set e = H'(r) (where H' : {0,1}* — {0,1}**! is a function that maps
into primes of length ¢ + 1)
Let ¢ = CH(m;y) (CH is a chameleon hash function) and set s; = 1 and s3 = H(c) (H is a
collision resistant hash function) All the remaining s;’s are set to 0.

It is easy to check that ¢ is a special instantiation of ¢, and so the security of the scheme is
implied by Corollary 3.

Fischlin Signatures. Fischlin’s [12] signature scheme can be seen as a simplification of Cramer-
Shoup signature. The scheme works as follows:

Key Generation Generate N as the product of two safe primes p and ¢. Also randomly choose
three quadratic residues aj, ag,as € QRy. The public key is (N, a1, a2, as3) and the private key
is (p,q)-

Sign To sign m compute the ¢-bit hash value H(m) with a collision-resistant hash function H. Next
output a random (¢ + 1)-bit prime e, a random ¢-bit integer o and solve (for z) the following

equation z¢ = alag‘ag@H(m) mod N. The signature is (e, z, @)

Verification Check that the equation above holds, that e is an ¢ + 1-bit (odd) integer and that «
is an ¢ bit value.

The signature above can be seen as a special case of our general framework when considering the
following distribution.
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¢F® Choose r at random and set e = H'(r) (where H' : {0,1}* — {0,1}**! is a function that maps
into primes of length ¢ + 1)
Let o €g {0,1}¢ and set s = 1, s = a and s3 = a @ H(m) (H is a collision resistant hash
function) All the remaining s;’s are set to 0.

Fis

It is easy to check that ¢ is a special instantiation of ¢.

Camenisch-Lysyanskaya Signatures. The scheme by Camenisch and Lysyanskaya [8] scheme
works as follows

Key Generation Generate N as the product of two safe primes p and ¢. Also randomly choose
three quadratic residues aj, ag,as € QRy. The public key is (N, a1, a2, as) and the private key
is (p, q)-

Sign To sign m of length ¢,, output a random (¢, + 2)-bit prime e, a random ¢-bit integer s of
length ¢5 = |N|+¢,, + ¢ where ¢ is a security parameter and solve (for z) the following equation
z¢ = ajajaf’ mod N. The signature is (e, z, s)

Verification Check that the the equation above holds and that e and s are of appropriate length.

The signature above can be seen as a special case of our general framework when considering the
following distribution pCt (which is a special instantiation of ¢') and Corollary 1.

¢t Choose r at random and set e = H'(r) (where H' : {0,1}* — {0,1}*! is a function that maps
into primes of length ¢ + 1)
Let s €g Zp where B > e is some bound of size at most ¢; and set s1 =1, so = s and s3 =m
(H is a collision resistant hash function) All the remaining s;’s are set to 0.

Zhu’s Signatures. Zhu proposed in [22] a variation of Cramer-Shoup’s signature scheme. The
proof of security was found incorrect and later fixed in [23]. This signature scheme is basically the
same as the one by Camenisch and Lysyanskaya described above except that s is a random string
of £ bits.

We can show that the Zhu’s scheme is a special case of our general framework when considering
the following distribution.

%" Choose r at random and set e = H(r) (where H : {0,1}* — {0,1}**! is a function that maps
into primes of length ¢ + 1)

Let s < Ze and set s1 =1, so = s and s3 = m. All the remaining s;’s are set to 0.

Zhu

Again, it is easy to check that " is a special instantiation of .

Hofheinz-Kiltz Signatures. Hofheinz and Kiltz show in [15] how to use programmable hash
functions to get a new efficient signature scheme based on Strong RSA. The description follows.

Key Generation Generate N as the product of two safe primes p and ¢g. Also randomly choose
¢ + 1 quadratic residues ag, ay,...,a; € QRy. The message space is {0, 1}5 . The public key is
(N,ap,a,...ap) and the private key is (p, q).

Sign To sign M compute the ¢-bit integer m = mq---my as the output of some appropriate
collision resistant hash function H. Next choose a random (¢)-bit prime e and solve (for z) the

following equation
l

2% = ag Halmi mod N
i=1
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The signature is (e, z)
Verification Check that the the equation above holds and that e is an ¢-bit (odd) integer.

It is easy to notice that its security emerges from corollary 2.

Gennaro-Halevi-Rabin Signatures. In [13] it is presented an efficient signature scheme that
comes in two flavors. A basic (weakly secure) signature scheme and a fully secure (slightly less
efficient) one that requires chameleon hash functions [17]. Here we discuss only the first version of
the scheme.

Key Generation Generate N as the product of two safe primes p and ¢”. Also randomly choose
a quadratic residues a1 € QRy. The public key is (N, a1) and the private key is (p, q).

Sign To sign m (of arbitrary length) compute the ¢-bit hash value H(m) with a division intractable
hash function H and solve (for x) the following equation ¢ = a; mod N. The signature is (e, z)

Verification Check that the equation above holds and that e = H(m).

The scheme above fits our framework for weakly-secure signature scheme (see section 6) when
using the following distribution :

¢CHR Choose r = m and set e = H(m) (where H : {0,1}* — {0,1}**! is a division intractable
hash function that maps into integers of length ¢ + 1)
Set s; = 1. All the remaining s;’s are set to 0.

7.1 A new network signature from Strong RSA

It is easy to see that combining the results of Theorem 3 and Theorem 2 we obtain a concrete
instantiation of the network coding signature scheme given in Section 5.2 whose security is thus
based on Strong RSA in the standard model. We notice that our scheme is not as efficient as the
one proposed by Gennaro et al. in [14], but it is secure in the standard model.

8 Conclusion

In this paper we have introduced a formal definition of adaptive pseudo-freeness. We have shown
that under reasonable conditions the RSA group is adaptive pseudo-free for moduli that are prod-
ucts of safe primes, and exhibited the first direct cryptographic applications of adaptive pseudo-free
groups: under some mild conditions, pseudo-free groups yield secure digital signature schemes. We
have shown that all the RSA based signatures in the literature (to the best of our knowledge) can
be seen as instantiations of our framework and furthermore we showed that our methodology yields
a new network coding signature scheme in the standard model.

There are several interesting problems that we have not addressed. Here we enumerate some of
them. The first obvious one, originally posed by Rivest, is what other groups used in cryptography
are pseudo-free. A new construction would lead via our example to new signature schemes for
example. Our results for RSA are only for univariate equations. It should be interesting to either
justify this restriction through an analogue of Lemma 1 or if this is not possible, extend our study to
multi-variate equations. A one-more RSA inversion problem where the adversary needs to compute
the e’th root of n + 1 random group elements with access to only n RSA inversion queries has a

" In [13] this assumption is relaxed to consider safe primes or quasi-safe primes.
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strong flavor of adaptive pseudo-freeness. The lack of a relation between the strong RSA problem
and the one-more-RSA-inversion problem thus shows that proving general adaptive pseudo-freeness
of the RSA group is difficult. Nevertheless, studying the relation between these two problems within
our framework seems to be an interesting direction. Finally, we manage to prove pseudo-freeness
for a large class of parametric distributions sufficient for cryptographic applications. It should be
interesting to understands how far one can go with the limitations that we impose on the adversary
by trying to enlarge this class.
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A Non-trivial multivariate equations

Here we obtain an explicit description of trivial multi-variate equations. Let

k ko gk k
A= {x} :v2 cxt =altay . oaim et
be a set of multivariate equations over F, and let {qﬁ]f, qﬁé’, ey gbfl | Kk =1...t} solutions for these

equations.
As for the case of univariate equations we interpret these equations together with their solutions,
as relations between words in the free group generated by

{¢1,k7¢2,k7~--7¢n,k ‘ k= 1...t}U{a1,a2,...,am}.

*

. ey el e’ st s3 sk e 1 oep s .
Then, an equation z,'xy? ... zy" = aj'ay’ ... ayy is trivial if it has a solution over F/=,. Assume
that

a solution for the equation (for some vé, k‘fj (with 1 <7 <m,1<1<n,1<i<n). Using the

explicit characterization of =, we obtain that there exist l1,1ls,...,l; € Q such that:
n t n J m
S S *
Hqﬁf—allan...afﬁnHH H
i=1 i=1 j=1 j=1

By replacing the expressions for ¢; in the above relation and matchlng the exponents of the

different symbols we obtaln that equation: xl x2 xf{b = al*a;* . a,ﬁ” is trivial with respect to
A if there exist integers vj, k:lzj with 1 <j7<m,1 <[ <n,1<i<n and rationals l1,[o,...,[; such
that:
—Foralll<u<t,1<j...n
n
Z o j€; = €fl
i=1
—For1<j<m
m t
IS )
=1 u=1



B Network Coding Signatures

We recall the definitions of network coding signatures and network coding homomorphic signatures.

Definition 9. A network coding signature is defined by a triple of algorithms (NetKG, Sign, Ver)
such that:

NetKG(1*, N) On input the security parameter k and a parameter N, this algorithm outputs (vk, sk)
where sk is the secret signing key and vk is the public verification key. N defines the size of the
signed vectors.

Sign(sk, V,fid) The signing algorithm takes as input the secret key sk, a random file identifier fid
and an m-dimensional subspace V.C FYN and outputs a signature o.

Ver(vk, fid, v, o) Given the public key vk, a file identifier fid, a vector v € FN and a signature o, the
algorithm outputs 0 (reject) or 1 (accept).

For correctness, we require that for all honestly generated key pairs (vk,sk), all identifiers fid and
all V. c FV, if 0«Sign(sk, fid, V) then Ver(vk, fid,v,0) =1 Vv € V.
A network coding signature is secure if it satisfies the following definition.

Definition 10. Consider the following experiment between an adversary A and a challenger. At
the beginning the adversary chooses a positive integer N and gives it to the Challenger, who runs
(vk,sk)«—NetKG(1¥, N') and gives vk to A. Then the adversary can adaptively ask for signatures on
vector spaces V; C TN of its choice and finally A outputs a tuple (fid*,v* o*). We say that the
adversary wins if Ver(vk, fid*, v*,0*) = 1 and either one of the following cases holds: (1) fid* # fid;
for all i; (2) fid* = fid; for some i but v* ¢ V;.

Finally we give the formal definition of homomorphic network coding signature. As noticed
by Boneh et al. [6] homomorphic network coding signatures are a special case of network coding
signatures.

Definition 11. A homomorphic network coding signature scheme is defined by a 4-tuple of algo-
rithms (NetKG, Sign, Ver, Combine) such that:

NetKG(lk, N) On input the security parameter k and a parameter N, this algorithm outputs (vk, sk)
where sk is the secret signing key and vk is the public verification key. N defines the size of the
signed vectors.

Sign(sk, v, fid) The signing algorithm takes as input the secret key sk, a random file identifier fid
and a vector v € FN and outputs a signature o.

Combine(vk, fid, {(w;, o) }¢_,) This algorithm takes as input the public key vk, a file identifier fid,
and a set of tuples (w;, ;) where o; is a signature and w; € F is a coefficient. This algorithm
outputs a new signature o such that: if each o; is a valid signature on vector v;, them o is a
valid signature for v obtained from linear combination Zle W;V; .

Ver(vk, fid, v, o) Given the public key vk, a file identifier fid, a vector v € FN and a signature o, the
algorithm outputs 0 (reject) or 1 (accept).
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