
Extending Baby-step Giant-step algorithm for
FACTOR problem

Martin Stanek?

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Abstract. Recently, a non-abelian factorization problem together with
an associated asymmetric encryption scheme were introduced in [1]. We
show how a classical baby-step giant-step algorithm for discrete loga-
rithm can be extended to this problem. This contradicts the claims re-
garding the complexity of the proposed problem.

1 Introduction

Baba, Kotyada, and Teja [1] introduced a factorization problem over non-abelian
finite groups. Let (G, ·) be a (non-commutative) finite group with identity e. Let
[g], for g ∈ G, denotes the subgroup generated by element g. Let g, h ∈ G, and
we assume that [g]∩ [h] = {e}. A function f : [g]× [h]→ G is defined as follows:

f(gx, hy) = gxhy.

It is easy to verify that f is an injective mapping. The FACTOR problem is
defined in the following way: given z ∈ Range(f) compute f−1(z), i.e. g′ ∈ [g]
and h′ ∈ [h] such that g′h′ = z.

The authors of [1] claim that FACTOR problem is more difficult than dis-
crete logarithm problem (DLP). We show that this is not generally true, and
the FACTOR problem can be solved by modification of baby-step giant-step
algorithm in time O(

√
nm), where n = ord(g) and m = ord(h). Therefore, for

groups where the best approach to DLP is a generic algorithm, the FACTOR
problem is at most as difficult as DLP.

In the following section we present two generalizations of baby-step giant-
step algorithm. The first one requires that the orders of g and h are relatively
prime, the second algorithm is universal and works for arbitrary orders.

2 Solving FACTOR problem

2.1 Algorithm for co-prime ord(g) and ord(h)

We assume that n = ord(g) and m = ord(h) are relatively prime, i.e. gcd(n,m) =
1. Let l = d√nm e. The main idea is to use baby-step giant-step algorithm for

? supported by VEGA 1/0266/09



discrete logarithm, but “translate” the exponent into pair of exponents (and pre-
serve addition over both representations). Moreover, we must take into account
non-commutativity of G and pay attention to the correct order of multiplica-
tions. We define a function ϕ : Znm → Zn × Zm as follows:

ϕ(k) = (k mod n, k mod m).

For brevity, we denote the first (second) coordinate of ϕ as ϕ1 (ϕ2), i.e. ϕ1(k) =
k mod n (ϕ2(k) = k mod m). Since gcd(n,m) = 1, ϕ is an isomorphism between
(Znm,+) and (Zn,+)×(Zm,+) (it follows from the Chinese remainder theorem).

Algorithm. Let z ∈ Range(f) be an input. The algorithm computes (x, y) ∈
Zn×Zm, such that z = gxhy. The algorithm has a pre-computation phase (this
phase does not depend on input), and an online phase.

Pre-computation (giant steps). We compute values gϕ1(jl)hϕ2(jl), for all j =
0, 1, . . . , l − 1, and store them together with value j in a hash table S. The
complexity of this phase is O(l), i.e. O(

√
nm).

Online (baby steps).

for i = 0, 1, . . . , l − 1:
if (gϕ1(i) · z · hϕ2(i) ∈ S):

let j be the index corresponding to the found value
return (ϕ1(jl − i), ϕ2(jl − i))

The correctness of the online phase follows from the fact that ϕ is an isomor-
phism, and from the following derivation:

gϕ1(i) · z · hϕ2(i) = gϕ1(jl)hϕ2(jl)

⇓
z = gϕ1(jl)−ϕ1(i)hϕ2(jl)−ϕ2(i)

= gϕ1(jl−i)hϕ2(jl−i)

Using the fact that lookup in the hash table takes a constant time, the
complexity of this phase is O(

√
nm).

2.2 Universal algorithm

The following algorithm solves FACTOR problem for arbitrary values of n =
ord(g) and m = ord(h). Without loss of generality we assume n ≥ m. Let l =
d√nm e. The main idea is similar to the previous algorithm but the “translation”
is different.

Algorithm. Let z ∈ Range(f) be an input. The algorithm computes (x, y) ∈
Zn × Zm, such that z = gxhy.



Pre-computation (giant steps). We compute values gilhj , for 0 ≤ i < dn/le and
0 ≤ j < m, and store them together with corresponding values i, j in a hash
table S (the assumption m ≤ n prevents storing more than O(l) values). The
complexity of this phase is O(m · nl ) = O(

√
nm). The values of Range(f) can

be visualized on n ×m grid where a position (a, b) corresponds to the element
gahb. Then the values stored in S correspond to grey boxes, see Fig. 1.

0 1 2 m− 1

0

2

l

. . .

. . .

1

l + 1

n− 1

Fig. 1. Values stored in the hash table S.

Online (baby steps). In the online phase we move upward in the grid, and test
whether we hit some grey box:

for k = 0, 1, . . . , l − 1:
if (g−k · z ∈ S):

let i, j be the indices corresponding to the found value
return ((il + k) mod n, j)

The correctness of the online phase follows from the fact that each z ∈ Range(f)
can be expressed as gil+khj , for 0 ≤ i < dn/le, 0 ≤ j < m, and 0 ≤ k < l ; and
from the following derivation:

g−k · z = gilhj ⇒ z = gil+khj

It can be easily seen that the complexity of this phase as well as the overall
complexity of the algorithm is O(

√
nm).

References

1. S. Baba, S. Kotyada, R. Teja: A Non-Abelian Factorization Problem and an Asso-
ciated Cryptosystem, Cryptology ePrint Archive, Report No. 2011/048, 2011.
(retrieved: 31/01/2011)


