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Abstract

Group signature schemes allow users to sign messages on behalf of a group while (1) main-
taining anonymity (within that group) with respect to an observer, yet (2) ensuring traceability
of a signer (by the group manager) when needed. In this work we give the first construction
of a group signature scheme based on lattices (more precisely, the learning with errors assump-
tion), in the random oracle model. Toward our goal, we construct a new algorithm for sampling
a random superlattice of a given modular lattice together with a short basis, that may be of
independent interest.

1 Introduction

Group signature schemes [16] allow users to sign messages on behalf of a group administered by
some manager. The group is initialized by having the group manager generate master public and
secret keys; upon admission to the group, a user is given a personal secret key that is derived
from the master secret key by the manager. A member of the group can sign a message using
their personal secret key, enabling anyone who knows the master public key to verify that some
group member signed the message. Roughly, group signatures are required to satisfy two seemingly
contradictory requirements: given some legitimate group signature σ, the group manager should
be able to determine which member of the group issued σ (traceability), but no one other than the
group manager should be able to determine any information about the signer (anonymity). Group
signatures have proven to be a popular primitive, and since their introduction several constructions
have been proposed both with random oracles [5, 6, 13, 10, 14, 22] and without [7, 9, 4, 11, 12, 21].

While there exist constructions of group signature schemes based on trapdoor permutations [7,
9], such schemes serve only as proofs of feasibility and are far from practical. On the other hand,
practical schemes are based on a relatively small set of assumptions: namely, the strong RSA
assumption [5, 6, 13, 22] and various assumptions related to groups having an associated bilinear
map [10, 14, 4, 11, 12, 21]. In this work we show the first construction of a group signature
scheme from assumptions related to lattices. The use of lattice-based assumptions in cryptography
has seen a flurry of activity in recent years. In part, this is due to a general desire to expand
the set of assumptions on which cryptosystems can be based (i.e., beyond the standard set of
assumptions related to the hardness of factoring and solving the discrete logarithm problem).
Relying on lattice-based assumptions offers several concrete advantages as well: such assumptions
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are appealing because of the known worst-case/average-case connections between lattice problems,
and also because lattice problems are currently immune to quantum attacks. Even restricting to
classical attacks, the best-known algorithms for solving several lattice problems require exponential
time (in contrast to the sub-exponential algorithms known, e.g., for factoring). Finally, relying on
lattices can potentially yield efficient constructions because the basic lattice operations manipulate
relatively small numbers and are inherently parallelizable.

While our resulting construction is less efficient than existing schemes based on number-theoretic
assumptions, our construction is significantly more efficient than the generic approaches of [7, 9]
that rely on NIZK proofs based on a Karp reduction to some NP-complete language. We remark
that although Peikert and Vaikuntanathan [27] construct efficient NIZK proofs for specific lattice
problems, their results are not directly applicable to the existing generic constructions.

1.1 Our Techniques

Our construction combines ideas from several different works, tying these together using a new
technical tool described below. At a high level, our group signature scheme follows a template
similar (but not identical) to that of Bellare et al. [7]. The master public key in our scheme
includes a public key pkE for a public-key encryption scheme, along with n signature verification
keys pk1, . . . , pkN . The personal secret key given to the ith group member is ski, the signing key
corresponding to pki. To sign a message M , the group member (1) signs M using ski; (2) encrypts
the resulting signature using pkE ; and then (3) provides a NIZK proof of well-formedness (namely,
that the given ciphertext encrypts a signature on M relative to one of the pki). This implies
anonymity (since no one other than the group manager knows the decryption key skE corresponding
to pkE), yet ensures traceability because the group manager can decrypt the ciphertext that is
included as part of any valid group signature.

To instantiate this approach using lattice-based assumptions, we need to identify candidate sig-
nature and encryption schemes along with an appropriate NIZK proof system. While constructions
of the former primitives based on lattices are known, we do not currently have constructions of
NIZK for all of NP from lattice-based assumptions and we therefore have to tailor our scheme so
that it can rely on (efficient) NIZK proofs for some specific language. This is explained in more
detail in what follows.

For the underlying signature scheme we use the GPV signature scheme [19] that works roughly
as follows. The public key is a basis A ∈ Zn×mq for a random lattice. To sign a message M , the
signer uses a trapdoor T to find a “short” vector e ∈ Zm with Ae = H(M) (where H is a hash
function modeled as a random oracle). Under suitable assumptions, finding such a short vector e
without the trapdoor is hard.

We encrypt the resulting signature using what can be viewed as a non-standard variant of
the Regev encryption scheme [28]. Given a matrix B ∈ Zn×mq , viewed as a public key, we encrypt

e ∈ Zm by choosing a random vector s ∈ Znq and outputting the ciphertext z = BT s+e. Effectively,
e here is being used as the noise in an instance of the “learning with errors” (LWE) problem [28].
Before going further, we stress that this “encryption scheme” is not semantically secure. However, it
turns out that we need something much weaker than semantic security in order to prove anonymity
of our scheme; roughly, all we need is that the encryption of a uniformly random e ∈ Zmq is
computationally indistinguishable from the encryption of a vector e chosen from a certain discrete
Gaussian distribution. We defer further discussion to Section 3.

As described thus far, our group signature scheme would have a master public key consisting
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of verification keys A1, . . . ,AN along with an encryption key B; a signature would include z =
BT s+e, where e is such that Aie = H(M) for some i, along with a proof of well-formedness of the
ciphertext z. Constructing the proof of well-formedness turns out to be the most difficult aspect
of our work, and we must modify our scheme a bit in order to make such a proof (reasonably)
efficient. (In doing so, we also rely on specific properties of the GPV signature scheme.) We change
our scheme as follows: Now, the master public key contains N verification keys A1, . . . ,AN (as
before) and also N encryption keys B1, . . . ,BN . To sign a message M , user i computes a real
signature ei (using the trapdoor associated with Ai) and “pseudo-signatures” ej for all j 6= i. Each
“pseudo-signature” ej has the property that Aj ej = H(M), however ej is not short (and thus
not a valid signature). All the {ej}Nj=1 are then encrypted as before, with each ej being encrypted
using Bj to give a ciphertext zj . We then have the signer provide a proof that (1) each zj encrypts
a correct pseudo-signature with respect to Aj , and (2) at least one of these pseudo-signatures is
short (and hence, in fact, a valid signature). Further details are given next.

To provide a way for the signer to prove that every ciphertext zj encrypts a pseudo-signature,
we develop a new technical tool that we believe to be of independent interest: a way to sample a
basis for an orthogonal lattice with its associated trapdoor.1 Specifically, we show a technique that,
given a matrix B, generates (A,T) such that ABT = 0 (mod q) and T is still a “good trapdoor”
(in the sense required for GPV signatures) for A. If we use matrices {Ai} generated in this way
as verification keys in the group signature scheme described earlier, then it is possible to verify
that a given ciphertext zj encrypts a pseudo-signature with respect to Aj by checking whether

Aj · zj
?
= H(M). This works because

Aj · zj = Aj ·
(
BT
j sj + ej

)
= Aj · ej = H(M)

by construction.
The only thing that remains is to provide a proof that at least one of the zj encrypts a vector

ej that is also short. This translates to proving that at least one of the vectors zj = BT
j sj + ej

is “close to” the lattice generated by the columns of BT
j . This can be done using the (statistical)

zero-knowledge protocol of Micciancio and Vadhan [24], coupled with standard techniques [17, 18]
for making the proof witness indistinguishable and noninteractive in the random oracle model.

1.2 Outline of the Paper

We introduce some notation and review the necessary background on lattices in Section 2. For the
reader who is already familiar with lattices, we highlight the following aspects of our treatment
that are new to this work:

• In Section 2.2 (cf. Lemma 2) and in the rest of the paper, we consider the LWE problem
under a non-standard error distribution. Peikert [26] shows that the hardness of the LWE
problem under this distribution is implied by standard hardness results.

• In Section 2.4 we describe a technique for sampling a basis for an orthogonal lattice and its
associated trapdoor.

We turn to group signatures in Section 3. We review the standard definitions of security for group
signature schemes in Section 3.1, describe our construction in Section 3.2, and prove anonymity
and traceability in Sections 3.3 and 3.4.

1For our definition of an orthogonal lattice, see Section 2.
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2 Preliminaries on Lattices

Throughout, we use n for the security parameter; other parameters are taken to be functions of n.
When we say “statistically close” we mean “within statistical difference negligible in n.”

We review some basic properties of lattices as used in prior work. This section is included mainly
to fix notation and ideas, and we refer to the original papers (cited below) for further exposition.

We use bold lower-case letters (e.g., x) to denote vectors, and bold upper-case letters (e.g., B)
to denote matrices. (Our vectors are always column vectors.) We let ||x|| denote the Euclidean
(i.e., `2) norm of the vector x, and let ||B|| denote the maximum of the Euclidean norms of the

columns of B; i.e., if B = (b1| · · · |bn) then ||B|| def
= maxi ||bi||. If x ∈ R, then bxe denotes the

rounding of x to the nearest integer.
For q an integer, Zq denotes the standard group of integers modulo q. We extend modular

arithmetic to the reals in the obvious way: for example, for q ∈ Z+ and x ∈ R we use x mod q to
represent the unique real number y ∈ [0, q) such that x − y is an integer multiple of q. Finally,
we define a notion of distance between elements in Zq in the natural way: given x, y ∈ Zq, their
distance |x− y| is defined by mapping (x− y) mod q to the set of integers {−bq/2c, . . . , dq/2e − 1}
and then taking the absolute value of the result. We define the distance between two vectors x and
y in Zmq in an analogous way, namely, ||x− y||2 =

∑m
i=1 |xi − yi|2.

Fixing q and given a matrix A ∈ Zn×mq , we define the m-dimensional lattice Λ(AT ) as

Λ(AT )
def
=
{
y ∈ Zm | y ≡ AT s (mod q) for some s ∈ Znq

}
.

In other words, Λ(AT ) consists of all linear combinations of the columns of AT , shifted by integer
multiples of the modulus q. We define2 the orthogonal lattice Λ⊥(A) as

Λ⊥(A)
def
= {w ∈ Zm | A ·w = 0 (mod q)}

An observation worth noting is that for any y ∈ Λ(AT ) and w ∈ Λ⊥(A), it holds that yTw =
0 mod q. Finally, for a vector z ∈ Zmq we define

dist(Λ(AT ), z)
def
= mins∈Znq ||(A

T s− z) mod q||.

2.1 Gaussian Error Distributions

The one-dimensional (continuous) Gaussian distribution over R, parameterized by s ∈ R+, is
defined by the density function

∀x ∈ R : Ds(x) = 1/s · exp(−π(x/s)2).

The m-dimensional continuous Gaussian distribution is defined in a similar way, by the density
function Ds(x) = 1/sm ·exp(−π(||x||/s)2). Finally, we denote by Ds,c the m-dimensional continuous
Gaussian distribution centered at the point c ∈ Rm. i.e., Ds,c(x) = 1/sm · exp(−π(||x− c||/s)2). In
this work we always let Ds (resp., Ds,c) denote truncated Gaussian distributions, i.e., the Gaussian
distribution conditioned on |x| < s ·ω(

√
log n) (resp., ||x− c|| < s ·ω(

√
log n)). The truncated and

non-truncated distributions are statistically close, and we drop the word “truncated” from now on.

2Our definition of an orthogonal lattice differs from that given in some previous work. Λ⊥(A), as we define it, is
merely a scaling of (Λ(AT ))∗, the dual of Λ(AT ). In particular, Λ⊥(A) = q · (Λ(AT ))∗.
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Let Λ ⊆ Zm be a lattice. The discrete Gaussian distribution DΛ,s,c is the m-dimensional
Gaussian distribution centered at c, but with support restricted to the lattice Λ. (We write DΛ,s

as shorthand for DΛ,s,0.) Formally, the density function of the discrete Gaussian distribution is

∀x ∈ Λ : DΛ,s,c(x) =
Ds,c(x)∑
y∈ΛDs,c(y)

.

Gentry et al. [19] show that given a basis B for Λ, this distribution can be sampled efficiently (to
within negligible statistical distance) for s ≥ ||B|| · ω(

√
log n).

2.2 The Learning with Errors Problem

The “learning with errors” (LWE) problem was introduced by Regev [28] as a generalization of
the “learning parity with noise” problem. We describe the problem in a form suitable for our
applications in this paper.

Fix a positive integer n, integersm ≥ n and q ≥ 2, a vector s ∈ Znq , and a probability distribution
χ on Rm. (For our purposes, χ will always be a product distribution in each coordinate.) Define
the following two distributions over Zn×mq × [0, q)m:

• LWEm,q,χ(s) is the distribution obtained by choosing uniform A ∈ Zn×mq , sampling e ← χ,

and outputting (A,AT s + e mod q).

• Um,q is the distribution obtained by choosing uniform A ∈ Zn×mq and uniform y ∈ [0, q)m,
and outputting (A,y).

The decisional variant of the LWE problem (relative to the distribution χ) can be stated informally
as the problem of distinguishing between LWEm,q,χ(s) (for a uniform, unknown s) and Um,q. For-
mally, for m, q, and χ that may depend on n we say the LWEm,q,χ problem is hard if the following
is negligible for any probabilistic polynomial-time algorithm D:∣∣Pr[s← Znq ; (A,y)← LWEm,q,χ(s) : D(A,y) = 1]− Pr[(A,y)← Um,q : D(A,y) = 1]

∣∣ .
A standard setting for the LWE problem considers the error distribution Dαq. We write

LWEm,q,α(s) as an abbreviation for LWEm,q,Dαq(s). Evidence for the hardness of the LWEm,q,α
problem comes from a result of Regev [28], who gave a quantum reduction from approximating cer-
tain lattice problems in the worst case to solving LWEm,q,α, subject to the condition that α·q > 2

√
n.

Peikert [25] later gave a classical reduction with similar parameters. For our purposes, we note
that the LWEm,q,α problem is believed to be hard (given the state-of-the-art in lattice algorithms)
for any m, q = poly(n) and α = 1/poly(n) subject to α · q > 2

√
n.

A second error distribution that can be considered for the LWE problem3 — and the one that
we will use in this paper — is the discrete Gaussian distribution DZm,αq. (We write L̂WEm,q,α as
an abbreviation for LWEm,q,DZm,αq .) Although this distribution may seem similar to a discretized
(rounded) version of Dα′ (for appropriate choice of α′), these distributions are statistically far
from each other and thus we cannot immediately conclude anything about the hardness of the
LWE problem with respect to one distribution from hardness of the LWE problem with respect to

3When using a discrete error distribution χ over Zm (rather than a continuous distribution over Rm), the LWE
problem is to distinguish LWEm,q,χ from the uniform distribution over Zn×mq × Zmq (rather than Zn×mq × [0, q)m).
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the other. Fortunately, a recent result of Peikert [26] can be used to show that hardness of the

L̂WEm,q,α
√

2 problem is implied by hardness of the LWEm,q,α problem. The following is a special case
of Peikert’s result [26, Theorem 1] (for the standard definition of ηε(Λ), the smoothing parameter
of the lattice Λ, see [26]):

Lemma 1 Let Λ be a lattice, and let s, s1, s2 > 0 and ε ∈ (0, 1/2] be such that s2 = s2
1 + s2

2

and s1 ≥ ηε(Λ). Consider the experiment in which we first sample e ← Ds2 and then sample
e′ ← e +DΛ−e,s1. Then the distribution of e′ is within statistical distance 8ε of DΛ,s.

Below, we take Λ = Zm for which ηε(Zm) = O(
√

log ε−1) (see [23, Lemma 3.3]). When s1 =
Ω(
√

log n), as will be the case for our applications, we can then take ε to be negligible and thus the
two distributions considered in the lemma are statistically close. With this in place we can now
prove our desired result:

Lemma 2 For any m = m(n), q = q(n), α = α(n) satisfying αq = ω(
√

log n), hardness of the

LWEm,q,α problem implies hardness of the L̂WEm,q,α
√

2 problem.

Proof We show an efficient transformation T that takes as input (A,y) ∈ Zn×mq × [0, q)m and
has the following properties:

• If (A,y) is uniform over Zn×mq × [0, q)m then the output T (A,y) is uniform over Zn×mq ×Zmq .

• If (A,y) is distributed according to LWEm,q,α(s) then the distribution T (A,y) is statistically

close to L̂WEm,q,α
√

2(s).

The lemma follows immediately from these two properties.
The transformation T works as follows. Given (A,y), it samples a vector w ← DZm−y,αq and

outputs (A,y + w mod q).
Say (A,y) is distributed uniformly over Zn×mq × [0, q)m. Note that y + w is always an integer

vector, and the distribution DZm−y,αq depends only on the fractional part of each entry of y. In
other words, the integer part of each entry in y ensures that each entry of y + w mod q is uniform
in Zq. It follows that (A,y + w mod q) is distributed uniformly over Zn×mq × Zmq .

On the other hand, say y = AT s+e mod q where e← Dαq. Since we have AT s ∈ Zm, sampling
w← DZm−y,αq is equivalent to sampling w← DZm−e,αq. Using Lemma 1, sampling e← Dαq and
then setting e′ = e + w for w ← DZm−e,αq yields a distribution for e′ that is statistically close to
sampling e′ ← DZm,αq

√
2. We conclude that the output T (A,y) =

(
A,AT s + (e + w) mod q

)
has

distribution statistically close to that of L̂WEm,q,α
√

2(s).

2.3 Trapdoor Functions and the GPV Signature Scheme

Ajtai [2] and Alwen and Peikert [3] show algorithms that generate an almost uniform matrix
A ∈ Zn×mq together with a “trapdoor” matrix T ∈ Zm×m satisfying the following conditions:

Lemma 3 ([3]) There is a ppt algorithm TrapSamp that, on input 1n, 1m, q with q ≥ 2 and
m ≥ 8n log q, outputs matrices A ∈ Zn×mq and T ∈ Zm×m such that the distribution on A is
statistically close to uniform over Zn×mq and, with probability all but negligible in n:
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• the columns of T form a basis of the lattice Λ⊥(A), implying in particular A·T = 0 (mod q),

• ‖T‖ = O(n log q) and ‖T̃‖ = O(
√
n log q). (Here, T̃ is the Gram-Schmidt orthogonalization

of T.)

Given an “LWE instance” (A,y = AT s + e mod q) for a “short” vector e, knowledge of T can
be used to recover s. Specifically, if ||T|| < L and e is drawn from Dαq for α ≤ 1/(L · ω(

√
log n)),

then s can be easily recovered. This is done by first computing

TTy mod q = TT (AT s + e) mod q = (AT)T s + TTe mod q

= TTe mod q.

Since T and e contain only “small” entries, each entry of the vector TTe is smaller than q and thus
TTe mod q is equal to TTe (over the integers). Multiplying by (TT )−1 thus gives e, after which it
is easy to recover s.

Gentry, Peikert, and Vaikuntanathan [19] show how to use the trapdoor sampling procedure
described above to construct a one-way preimage-sampleable function. This can then be turned into
a digital signature scheme using an “FDH-like” construction [8]. (See [19] for a formal definition
of preimage-sampleable functions and the construction of the signature scheme.) Here, we describe
how the preimage-sampleable function works.

Take q = poly(n), m ≥ 8n log q, and s = ω(
√
n log q log n). The one-way preimage-sampleable

function is defined by the following algorithms:

• GPVGen(1n) runs TrapSamp(1n, 1m, q) to obtain (A,T). The matrix A (and q) defines the
function fA(e) = Ae mod q, with domain {e ∈ Zm : ||e|| ≤ s

√
m} and range Znq . Hardness

of inversion is with respect to the distribution DZm,s over the domain.

• The trapdoor inversion algorithm GPVInvert(A,T, s,u) samples from f−1
A (u) as follows: first,

it computes (using standard linear algebra) t ∈ Zm such that At = u (mod q). (Except for a
negligible fraction of A, such a t always exists.) Then it samples and outputs e← DΛ⊥(A)+t,s.

The above is one-way if GapSVP is worst-case hard for some suitable approximation factor [1].

2.4 Sampling a Random Superlattice with a Short Basis

We show a variant of the trapdoor sampling algorithm described in Lemma 3. In our variant, the
algorithm is additionally given a matrix B ∈ Zn×mq whose columns span Znq , and should output a
matrix A ∈ Zn×mq (with an associated trapdoor T ∈ Zm×m) satisfying the additional requirement

that Λ(BT ) ⊆ Λ⊥(A). Thus, A is sampled under the condition that Λ⊥(A) is a superlattice
of Λ(BT ) or, equivalently, ABT = 0 (mod q). We also require that the trapdoor T be a “random
basis” for Λ⊥(A), in the sense that the columns of T are distributed according to a discrete Gaussian
distribution over Λ⊥(A).

Overview of the construction. Say we are given a matrix B whose columns span Znq . Write

BT =

(
B1

B2

)
,

with B2 a square, invertible matrix of dimension n × n. (By the stated assumption on B, such
a decomposition can always be found, permuting the rows of BT if necessary.) We generate a
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matrix A = [A1 | A2] in two steps. We generate the first component A1 using the TrapSamp
protocol. Recall, this returns a matrix that is statistically close to uniform, along with an associated
trapdoor T1. With A1 fixed, the second component A2 is constrained to a fixed value by the
requirement that ABT = 0 (mod q); we generate A2 by solving the linear equations that define
this constraint.

We then need to extend T1 into a trapdoor T whose columns are “short” and such that A·T = 0.
Here we rely on a recent techniques of Cash et al. [15], which allows us to extend T1 into a basis
T for Λ⊥(A). We use a second technique from their work to “randomize” T before outputting it.

Lemma 4 There is a ppt algorithm SuperSamp that on input 1n, 1m, q, and B ∈ Zn×mq , where
q ≥ 2, m ≥ n+8n log q, and the columns of B ∈ Zn×mq span Znq , outputs A ∈ Zn×mq and T ∈ Zm×m

such that ABT = 0 (mod q) and the distribution on A is statistically close to uniform over Zn×mq

subject to this condition. Moreover, with probability all but negligible in n:

• the columns of T form a basis of the lattice Λ⊥(A), implying in particular A·T = 0 (mod q),

• ||T̃|| = O(log n ·
√
mn log q).

Proof Let m2 = n and m1 = m−m2. Write

BT =

(
B1

B2

)
,

where B1 ∈ Zm1×n
q and B2 ∈ Zm2×n

q , and furthermore the (square) matrix B2 has full rank over Zq.
(By the stated assumption on B, such a decomposition can always be found, permuting the rows
of BT if necessary.)

Algorithm SuperSamp works as follows:

1. Compute (A1,T1)← TrapSamp(1n, 1m1 , q). If the columns of A1 do not span Znq , output ⊥.
(This occurs only with negligible probability.) Otherwise, let A2 ∈ Zn×m2

q be the unique
matrix satisfying

A2B2 = −A1B1 (mod q).

Since B2 is invertible, A2 can be computed as −A1B1B
−1
2 mod q. Let A = [A1 | A2].

2. Extend T1 ∈ Zm1×m1
q into basis T′ ∈ Zm×mq for Λ⊥(A) using the ExtBasis algorithm of Cash

et al. [15].

3. Randomize T′ into a “random basis” T by applying the RandBasis algorithm of Cash et
al. [15] to T′, using s = ||T̃′|| · log n. Output A and T.

We now verify that this algorithm satisfies the required properties. First observe that

ABT = A1B1 + A2B2 = A1B1 −A1B1 = 0 (mod q).

The claim regarding the distribution of A follows directly from the construction and the fact that
A1 is statistically close to uniform over Zn×m1

q . Properties of TrapSamp guarantee that (except

with negligible probability) T1 is a basis for Λ⊥(A1); results of Cash et al. [15, Lemma 3] then
imply that T′ is a basis for Λ⊥(A), and so T is as well [15, Lemma 4].
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Finally, we have

||T̃|| ≤ ||T̃′|| ·
√
m log n (by properties of RandBasis)

= ||T̃1|| ·
√
m log n (by properties of ExtBasis)

= O(
√
n log q ·

√
m log n) (by properties of TrapSamp),

where the final equality holds with all but negligible probability. The lemma follows.

We will also use the following result regarding our algorithm SuperSamp:

Lemma 5 The distributions{
A← Zn×mq ;

(B,S)← SuperSamp(1n, 1m, q,A)
: (A,B,S)

}
and 

(B,S′)← TrapSamp(1n, 1m, q);
S← RandBasis(S′);

(A,T)← SuperSamp(1n, 1m, q,B)
: (A,B,S)


are statistically close.

Proof In the first distribution, A is uniform and B is statistically close to uniform subject to
the constraint BAT = 0 (mod q); in the second distribution, B is statistically close to uniform
and A is statistically close to uniform subject to the constraint ABT = 0 (mod q). Thus, the
marginal distributions of (A,B) are statistically close.

The lemma follows because, in both distributions, S is the result of applying the RandBasis
algorithm to a basis for Λ⊥(B).

2.5 Efficient NIWI Proofs for Lattice Problems

Let B1, . . . ,BN ∈ Zn×mq and z1, . . . , zN ∈ Zmq , and fix some γ = γ(n). In this section we briefly
describe how it is possible to construct a noninteractive witness-indistinguishable (NIWI) proof (in
the random oracle model) for the gap language Ls,γ = (LY ES , LNO) defined by:

LY ES =

{(
B1, . . . ,BN

z1, . . . , zN

) ∣∣∣∣ ∃s ∈ Znq and i ∈ [N ] : ||zi −BT
i s|| ≤ s

√
m

}
LNO =

{(
B1, . . . ,BN

z1, . . . , zN

) ∣∣∣∣ ∀s ∈ Znq and i ∈ [N ] : ||zi −BT
i s|| > γ · s

√
m

}
.

Here, LY ES is a collection of N points at least one of which is close to the corresponding lattice,
and LNO is a collection of N points all of which are far from the corresponding lattices.

Consider the gap version of the closest vector problem, i.e., the language L′γ = {L′Y ES , L′NO}
defined as:

L′Y ES =
{

(B, z, t) | ∃s : ||z−BT s|| ≤ t
}
.

L′NO =
{

(B, z, t) | ∀s : ||z−BT s|| > γ · t
}
.
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It is known [20, 24] that there is an (interactive) witness-indistinguishable (WI) proof system for L′γ
when γ = Ω(

√
m/ logm). Observe that Ls,γ can be described as the disjunction of several instance

of L′γ ; that is, (
B1, . . . ,BN

z1, . . . , zN

)
∈ LY ES ⇔

∨
i

(
(Bi, zi, s

√
m) ∈ L′Y ES

)
.

(
B1, . . . ,BN

z1, . . . , zN

)
∈ LNO ⇔

∧
i

(
(Bi, zi, s

√
m) ∈ L′NO

)
.

We can thus use the techniques of Cramer, Damg̊ard, and Schoenmakers [17] to obtain an interactive
WI proof for Ls,γ with negligible soundness error. Using the Fiat-Shamir transformation [18], the
resulting protocol can be made non-interactive in the random oracle model. These observations are
summarized in the following lemma.

Lemma 6 Let γ = Ω(
√
m/ logm). There is an NIWI proof system for Ls,γ in the random oracle

model, where the length of the proof is O(mnN log q) bits.

We remark that for our application we only require soundness (and do not require the proof
system to be a proof of knowledge) and witness indistinguishability (rather than zero knowledge).

3 A Group Signature Scheme Based on Lattices

3.1 Definitions

We adopt the definition of group signature schemes from the work of Bellare, Micciancio, and
Warinschi [7], with the relaxation suggested by Boneh, Boyen, and Shacham [10] (and considered
also in, e.g., [11]). Formally, a group signature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,G.Open) is
a collection of four polynomial-time algorithms defined as follows.

• The group key-generation algorithm G.KeyGen(1n, 1N ) is a randomized algorithm that takes
a security parameter 1n and the group size 1N as input, and outputs (PK,TK, ~gsk), where
PK is the group public key, TK is the group manager’s tracing key, and ~gsk is a vector of N
signing keys with gsk[i] being the signing key given to the ith group member.

• The group signature algorithm G.Sign(gsk[i],M) is a randomized algorithm that takes as input
a secret signing key gsk[i] and a message M , and outputs a signature σ.

• The group signature verification algorithm G.Vrfy(PK,M, σ) is a deterministic algorithm that
takes as input the group public key PK, a message M , and a signature σ, and outputs either
1 or 0 (signifying accept or reject, respectively).

• The opening algorithm G.Open(TK,M, σ) is a deterministic algorithm that takes as input the
tracing key TK, a message M , and a signature σ, and outputs an identity i ∈ [N ].

The basic consistency requirements of a group signature scheme are that an honest signature
generated by a group member should be accepted as correct, and must be traceable to the group

10



member who issued it. That is, for any (PK,TK, ~gsk) output by G.KeyGen(1n, 1N ), any M , and
any i ∈ [N ], if σ ← G.Sign(gsk[i],M) then

G.Vrfy(PK,M, σ) = 1 and G.Open(TK,M, σ) = i,

except with negligible probability over the entire experiment.
Group signature schemes are also required to satisfy two basic security properties: anonymity

and traceability. Anonymity means that without the tracing key it should be infeasible to determine
which group member issued a particular signature (even given all the signing keys). Bellare et al. [7]
defined a “CCA-version” of this notion, where the adversary is given access to a tracing oracle.
Following [10] we use a “CPA-version” of anonymity where such oracle access is not given.

Definition 1 A group signature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,G.Open) is anonymous if
for all polynomials N(·) and all probabilistic polynomial-time adversaries A, the advantage of A in
the following experiment is negligible in n:

1. Compute (PK,TK, ~gsk)← G.KeyGen(1n, 1N ) and give (PK, ~gsk) to A.

2. A outputs distinct identities i0, i1 ∈ [N ], along with a message M . A random bit b is chosen,
and A is given G.Sign(gsk[ib],M). Finally, A outputs a bit b′.

A succeeds (denoted Succ) if b′ = b, and the advantage of A is
∣∣Pr[Succ]− 1

2

∣∣.
Traceability means that it should be infeasible for an adversary who corrupts some set of users

C to output a valid signature that cannot be traced to some member of C.

Definition 2 A group signature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,G.Open) is traceable if for
all polynomials N(·) and all probabilistic polynomial-time adversaries A, the success probability of
A in the following experiment is negligible in n:

1. Compute (PK,TK, ~gsk)← G.KeyGen(1n, 1N ) and give (PK,TK) to A.

2. A may query the following oracles adaptively and in any order:

• A Corrupt oracle that on input i ∈ [N ] returns gsk[i].

• A Sign oracle that on input i,M outputs G.Sign(gsk[i],M).

3. At some point, A outputs a message M and a signature σ.

Let C be the set of identities queried to Corrupt. A succeeds if (1) G.Vrfy(PK,M, σ) = 1 and
(2) Sign(i,M) was never queried for i 6∈ C, yet (3) G.Open(TK,M, σ) 6∈ C.

3.2 Our Construction

Let q = poly(n),m ≥ 8n log q, s = ω(
√
n log q log n), and γ = Ω(

√
m/ logm) be parameters of the

system. We let H : {0, 1}∗ → Znq be a hash function, to be modeled as a random oracle. The group
signature scheme is defined as follows:

G.KeyGen(1n, 1N ): For 1 ≤ i ≤ N , compute (Bi,S
′
i) ← TrapSamp(1n, 1m, q) and then compute

(Ai,Ti) ← SuperSamp(1n, 1m, q,Bi) and Si ← RandBasis(S′i). Output PK =
(

(Ai,Bi)
N
i=1

)
as the public key, TK = (Si)

N
i=1 as the tracing key, and gsk = (Ti)

N
i=1 as the signing keys.
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G.Sign(gsk[j],M): To sign message M using secret key gsk[j] = Tj , choose random r ← {0, 1}n,
and compute hi = H(M‖r‖i) for 1 ≤ i ≤ N . Then:

• Compute ej ← GPVInvert(Aj ,Tj , s,hj).

• For i 6= j, choose ei ∈ Zmq uniformly subject to the condition that Aiei = hi (mod q).

For all i, sample si ← Znq and compute zi = BT
i si + ei mod q ∈ Zmq . Finally, construct an

NIWI proof π for the gap language Ls,γ as discussed in Section 2.5 (and using the witness
(si, i)). Output the signature (r, z1, . . . , zN , π).

G.Vrfy(PK,M, σ): Parse the signature as (r, z1, . . . , zN , π). Output 1 iff the proof π is correct, and
Aizi = H(M‖r‖i) (mod q) for all i.

G.Open(TK,M, σ): Parse the signature as (r, z1, . . . , zN , π). Using the {Si}, output the smallest
index i for which4 dist(Λ(BT

i ), zi) ≤ s
√
m.

We first check correctness. Let (r, z1, . . . , zN , π) be a signature produced by an honest signer. It is
clear that π is a valid proof. Moreover, for any i we have

Aizi = Ai(B
T
i si + ei) = Aiei = H(M‖r‖i) (mod q),

and so verification succeeds. Correctness of the opening algorithm follows easily.

Theorem 1 Let m, q, and s be as described above. If the LWEm,q,α problem is hard for α =
s/(q
√

2), then the group signature scheme described above is anonymous. If the GapSVPγ problem

is hard for γ = O(n log4 n), then the group signature scheme described above is traceable.

We note that for values of s as described above, the hardness of LWEm,q,α is implied [28] by the

quantum hardness of approximating GapSVPγ̂ for γ̂ = Õ(n/α). Thus, our entire scheme can be
based on quantum hardness of GapSVP.

We prove anonymity in Section 3.3 and traceability in Section 3.4.

3.3 Anonymity

Fix N = poly(n) and let A be a ppt adversary attacking the group signature scheme in the sense
of Definition 1. Let G0 denote the experiment of Definition 1 with b = 0, and let G1 be the same
experiment with b = 1. We consider a sequence of experiments G0,G

′
0,G
′
1,G1 and show that each

experiment is indistinguishable from the one preceding it. This implies anonymity.
We review G0 as applied to our group signature scheme. First, the key-generation algorithm

G.KeyGen(1n, 1N ) is run and A is given the public key PK =
(

(Ai,Bi)
N
i=1

)
and the secret keys gsk =

(Ti)
N
i=1, where each Bi is statistically close to uniform and (Ai,Ti) ← SuperSamp(1n, 1m, q,Bi).

(The tracing key TK is irrelevant in the CPA-version of the anonymity experiment that we are
considering.) Next, A outputs i0, i1,M , and is given a signature of user i0 on M , computed
in the following way. Let hi = H(M‖r‖i), for a random r ∈ {0, 1}n. Then ei0 is computed
as ei0 ← GPVInvert(Ai0 ,Ti0 , s,hi0), whereas ei (for i 6= i0) is chosen uniformly subject to the

4Soundness of the proof system ensures that if σ is valid, then some such i exists except with negligible probability.
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condition that Aiei = hi (mod q). Then, for all i ∈ [N ], choose random si ← Znq and compute

zi = BT
i si + ei. Finally, a proof π is generated and A is given the signature (r, z1, . . . , zN , π).

In G′0 we introduce the following modification with respect to G0: when generating the signature,
we now compute ei0 ← GPVInvert(Ai0 ,Ti0 , s,hi0) and ei1 ← GPVInvert(Ai1 ,Ti1 , s,hi1). (For
j 6∈ {i0, i1}, the value ej is computed as before.)

Claim 1 If the LWEm,q,α problem is hard, then G0 and G′0 are computationally indistinguishable.

Proof By Lemma 2, hardness of the LWEm,q,α problem implies hardness of the L̂WEm,q,α
√

2

problem. We use A to construct a ppt algorithm D for the L̂WEm,q,α
√

2 problem.

D is given as input (B,y) ∈ Zn×mq × Zmq , where B is uniform and y is either uniform or equal

to BT s + e for e ← DZm,s. (Note s = αq
√

2.) D first chooses a random index i∗ ← [N ] and sets
Bi∗ = B. For all i 6= i∗, it chooses Bi uniformly at random. Then, for 1 ≤ i ≤ N algorithm D
computes (Ai,Ti) ← SuperSamp(1n, 1m, q,Bi). It gives PK =

(
(Ai,Bi)

N
i=1

)
and gsk = (Ti)

N
i=1

to A. All H-queries of A are answered with random elements from the appropriate domain.
Eventually A outputs two identities i0, i1 ∈ [N ] along with a message M . If i∗ 6= i1 then D

outputs a random bit and aborts. Otherwise, D creates a signature by choosing random r ∈ {0, 1}n

and fixing5 hi1
def
= H(M‖r‖i1) = Ai1y mod q. (The value hi = H(M‖r‖i) for i 6= i1 is chosen

uniformly.) Then D computes ei0 ← GPVInvert(Ai0 ,Ti0 , s,hi0) and, for i 6∈ {i0, i1}, chooses ei
uniformly subject to the condition that Aiei = hi (mod q). (D does not explicitly compute any
value ei1 .) For i 6= i1, the ciphertext zi is computed as in G0 and G′0. However, D sets zi1 = y.

Let Drand denote the above experiment when D’s input y is uniformly distributed. We claim
that A’s view in Drand is statistically close to its view in G0. Indeed, the only differences are:

• In G0 we have hi1 chosen uniformly in Znq ; then ei1 ∈ Zmq is chosen uniformly subject to

Ai1ei1 = hi1 (mod q); and finally zi1 = BT
i1

si1 + ei1 mod q.

• In Drand we can write zi1 = y = BT
i1

si1 + ei1 mod q for ei1 chosen uniformly in Zmq ; then
hi1 = Ai1y = Ai1ei1 mod q.

Thus, it suffices to show that the distribution on (h, e) defined by choosing uniform h ∈ Znq and then
choosing e ∈ Zmq uniformly subject to Ai1e = h (mod q) is statistically close to the distribution
on (h, e) defined by choosing e uniformly and the setting h = Ai1e. Define a function f : Zmq → Znq
via f(e) = Ai1e, and note that f is regular. Assuming the columns of Ai1 span Znq (this occurs
with all but negligible probability), the co-domain of f is Znq and hence f applied to a uniform
input yields a uniform element of Znq . The stated claim follows.

On the other hand, let DLWE denote the above experiment when D’s input y is distributed
according to y = BT s + e for e← DZm,s. We claim that A’s view in DLWE is statistically close to
its view in G′0. Indeed:

• In experiment G′0 we have hi1 chosen uniformly in Znq . Then, the value ei1 is computed as

ei1 ← GPVInvert(Ai1 ,Ti1 , s,hi1), and finally zi1 = BT
i1

si1 + ei1 mod q.

• In DLWE we have zi1 = y = BT
i1

si1 + ei1 for ei1 ← DZm,s; then hi1 = Ay = Ai1ei1 mod q.

5Note that, except with negligible probability, H(M‖r‖i1) has not been queried thus far.
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Statistical closeness follows using the results of [19]. Since the probability that D does not abort
is 2/N , and its decision to abort is independent of A’s success, this completes the proof.

The rest of the proof of anonymity is straightforward, and so we merely provide a sketch.
Experiment G′1 is identical to G′0 with the exception that the proof π is now computed using the
witness (si1 , i1) rather than (si0 , i0). Witness indistinguishability of the proof system implies that
G′1 and G′0 are computationally indistinguishable.

Computational indistinguishability of G′1 and G1 (the experiment from Definition 1 with b = 1)
can be proved exactly as in the proof of the previous claim.

3.4 Traceability

Fix N = poly(n) and let A be a ppt adversary attacking the group signature scheme in the sense of
Definition 2. We construct a ppt forger F for the GPV signature scheme [19] (in the random oracle
model) whose success probability is polynomially related to that of A. Since the GPV signature
scheme is secure assuming hardness of the GapSVPγ problem, this completes the proof.

We first observe that we may, without loss of generality, assume that A never corrupts all users
in [N ] because A can succeed with only negligible probability in this case. (Given a valid signature
(r, z1, . . . , zN , π), soundness of the proof system implies that G.Open outputs some i ∈ [N ] except
with negligible probability.)
F is given a public key A for the GPV signature scheme, and begins by choosing a random

index i∗ ∈ [N ] and setting Ai∗ = A. Next, it computes (Bi∗ ,Si∗) ← SuperSamp(1n, 1m, q,Ai∗).
For the remaining indices i 6= i∗, the forger computes (Bi,S

′
i) ← TrapSamp(1n, 1m, q) and then

(Ai,Ti)← SuperSamp(1n, 1m, q,Bi) and Si ← RandBasis(S′i) exactly as in the real key-generation
algorithm. F gives PK = (Ai,Bi)

N
i=1 and TK = (Si)

N
i=1 to A. By Lemma 5, the distribution of

these values (in particular, (Ai∗ ,Bi∗ ,Si∗)) is statistically close to the distribution that is expected
by the adversary.
F answers random oracle queries of A by simply passing these queries to its own random oracle.

F responds to the other queries of A as follows:

• Corrupt(i): if i 6= i∗ then F gives Ti to A, while if i = i∗ then F aborts.

• Sign(i,M): If i 6= i∗ then F computes the signature using Ti and the honest signing algorithm.
If i = i∗, then:

1. F chooses random r ∈ {0, 1}n and queries its own signing oracle on the message M‖r‖i∗.
It receives in return a signature ei∗ .

2. The remainder of the signature is computed using the honest signing algorithm. (Note
that computation of ei∗ the only aspect of signing that relies on the secret key of user i∗.)

Let C denote the set of identities that A has queried to Corrupt. (Recall that if F has not
aborted, then i∗ 6∈ C.) At some point A outputs a message M and signature σ = (r, z1, . . . , zN , π).
Assume G.Vrfy(PK,M, σ) = 1, and that Sign(i,M) was never queried for i 6∈ C. Since F knows TK,
it can compute j ← G.Open(TK,M, σ). If j 6= i∗ then F aborts. Otherwise, F uses Si∗ to recover
ei∗ such that

• ||ei∗ || ≤ s
√
m, and

• zi∗ − ei∗ ∈ Λ(BT
i∗).
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It then outputs the forgery (M‖r‖i∗, ei∗).
Let ε be the probability with which A succeeds in the experiment of Definition 2. It is easy to see

that F aborts with probability at most (N − 1)/N + negl(n) (where the negligible term arises from
the possibility that A violates soundness of the proof system) and, conditioned on not aborting,
the view of A when run as a sub-routine by F is statistically close to its view in the experiment
of Definition 2. Thus, with probability at least ε/N − negl(n) it holds that A outputs (M,σ) with
G.Vrfy(PK,M, σ) = 1 and G.Open(TK,M, σ) = i∗, and where A never queried Sign(i∗,M). We
show that whenever this occurs, F outputs a valid forgery (except with negligible probability).

Fix (M,σ) so the above hold, and let σ = (r, z1, . . . , zN , π). Since G.Open(TK,M, σ) = i∗, this
implies that F will be able to recover ei∗ such that (1) ||ei∗ || ≤ s

√
m and (2) zi∗ − ei∗ ∈ Λ(BT

i∗).
Moreover, since G.Vrfy(PK,M, σ) = 1 we have Ai∗ zi∗ = H(M‖r‖i∗); since Ai∗ (zi∗ − ei∗) = 0 this
means Ai∗ ei∗ = H(M‖r‖i∗). Thus ei∗ is a valid GPV signature on the message M‖r‖i∗. Since A
never queried Sign(i∗,M), we know that F never queried its own signing oracle for a signature on
M‖r‖i∗. It follows that the output of F is indeed a valid forgery.
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