
AES Variants Secure Against Related-Key
Differential and Boomerang Attacks⋆

Jiali Choy1, Aileen Zhang1, Khoongming Khoo1, Matt Henricksen2 and Axel
Poschmann3

1 DSO National Laboratories
20 Science Park Drive, Singapore 118230

{cjiali, zyinghui, kkhoongm}@dso.org.sg
2 Institute for Infocomm Research,

A*STAR, Singapore
mhenricksen@i2r.a-star.edu.sg

3 Division of Mathematical Sciences, School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

aposchmann@ntu.edu.sg

Abstract. In this paper, we summarize the recent related-key differen-
tial and boomerang attacks on AES by Biryukov et al. and present a
framework for protection against these attacks. Then we study an alter-
native AES key schedule proposed by May et al. at ACISP 2002 as a
possible candidate to protect against these related key attacks. We find
that there exist equivalent keys for this key schedule and in response, we
propose an improvement to overcome this weakness. We proceed to prove,
using our framework, that our improved May et al.’s key schedule is se-
cure against related-key differential and boomerang attacks. Since May
et al.’s key schedule is not on-the-fly (which is a requirement for some
hardware implementations), we propose an on-the-fly AES key schedule
that is resistant against related-key differential and boomerang attacks.

Keywords: Related-key attacks, differential cryptanalysis, boomerang at-
tacks, AES key schedule.

1 Introduction

In [4], Biryukov et al. launched the first known key-recovery attack on AES-256.
It is a related-key differential attack that exploits a differential characteristic
path of high probability, where we allow both the plaintext and key to have non-
zero differentials. The attack has a time/data complexity of 2131 and requires 265

memory in addition to 235 related key pairs. Later in [3], Biryukov and Khovra-
tovich used a shortened version of the related-key differential characteristic of [4]
to construct a distinguisher for the related-key boomerang attack on AES-256.

⋆ This is an extended version of a paper presented at the WISTP conference 2011. In
this paper, we furnish further details and explanations.

This allowed the authors to avoid the majority of the active S-boxes in the differ-
ential characteristic of [4], which resulted in a much improved attack with time
and data complexity of 299.5, requiring 277 memory and just 4 related keys. A
similar approach was used to derive a related-key boomerang attack on AES-192
with data complexity 2123, time complexity 2176, and memory complexity 2152

in addition to 4 related keys. This is also the first known key-recovery attack on
full AES-192. However, we need adaptive ciphertext decryption for the attack of
[3] whereas only chosen plaintext encryption is needed for the attack of [4].

We shall summarize Biryukov et al.’s attacks from [3, 4] and present a frame-
work for protection against related-key differential attack. Basically, we want the
number of active S-boxes in a differential characteristic of the key schedule and
the number of active S-boxes in the differential characteristic of the main cipher,
conditioned on subkey differences from the key schedule, to be large enough. In
that case, we say the cipher has practical resistance against related-key differ-
ential and boomerang attacks.

The structure of the AES-256 cipher is still very secure as the best non
related-key attacks can work up to at most 8 of the 14 rounds [11]. The more
devastating related key attacks [3, 4] exploits the high linearity in the AES-256
key schedule. If we look only at a key schedule differential characteristic path, it
is possible to find paths which involve only one active S-box. Thus a key point in
securing AES against the latest related-key differential/boomerang attacks is to
make the key schedule more nonlinear, so that any related-key differential path
would involve more active S-boxes in the subkey differences4.

1.1 Our Contribution

We design two new AES variants to protect against the related-key attacks of
[3, 4] by making the AES key schedule more nonlinear, while keeping the main
AES cipher the same. Thus we retain the strong security of AES against non
related-key attacks.

Construction 1: In Section 3, we consider the possibility of using an al-
ternative AES key schedule by May et al. [13]. This key schedule was shown
to have good statistical properties while achieving the strong property of round
key irreversibility and resistance against previously known related-key attacks
[1]. However, we show in Section 3.1 that there are pairs of equivalent keys that
produce the same encryption functions. We propose an improvement of their
key schedule in Section 3.2 that avoids this weakness. Based on our framework,
we prove in Sections 3.3 and 3.4 that the improved May et al.’s key schedules
for AES have practical resistance against related-key differential and boomerang
attacks. This key schedule is also secure against related-cipher attacks and slide
attacks, and has round key irreversibility.

4 Our observations also correspond with those made by Kim et al. in Section 2.6 of
[12] where it is mentioned that if the key schedule of the cipher is complex enough
and does not have “good” differential properties, then the number of keys required
for the attack becomes infeasibly large.

Construction 2: However, our improved May et al.’s design uses three AES
rounds to derive a subkey. This is too expensive for hardware implementation,
which requires on-the-fly key schedule. In Section 4, we propose an on-the-fly key
schedule design for AES-128, AES-192, and AES-256, where the time needed to
derive each round key is no more than the computation of 1.25 (amortized) AES
rounds. Furthermore, we prove that this new key schedule has practical resistance
against related-key differential and boomerang attacks. This key schedule is also
secure against related-cipher attacks and slide attacks, and has partial round
key irreversibility.

Comparison with obvious counter-measures: There are some intuitive
ways to protect against the related-key attacks of [3, 4]. One way is to increase
the number of rounds of AES (e.g. doubling the number of rounds, so that the
number of active S-boxes in Biryukov et al.’s differential path would become too
numerous for their attack to be feasible). The other way is to hash the secret
key before passing it through the AES key schedule (so that it is hard for an
adversary to control the key differences into the AES key schedule). So why do
we need to design a separate AES key schedule instead of using these obvious
fixes? The advantages of our constructions are:

(1) We use a systematic approach to prove protection against the related-key
attacks of [3, 4] by bounding the related-key differential probability for any
characteristic path, while the obvious counter measures are more intuitive.

(2) In the two obvious counter-measures mentioned above (increasing the num-
ber of rounds and hashing the key), the AES key schedule is used. This
allows the adversary to deduce all the other round keys from 1 round key
(respectively 2 round keys) by working through the key schedule backwards
for AES-128 (respectively AES-256). Our improved May et. al.’s key sched-
ule of Section 3 provides round key irreversibility, which forces an adversary
to attack every round key. Our on-the-fly key schedule of Section 4 provides
partial round key irreversibility.

(3) The obvious counter-measure of increasing the number of rounds (e.g. dou-
bling the number of rounds) will slow down encryption speed while the other
counter-measure of hashing the secret key does not allow it to be on-the-fly in
hardware (because of the extra hashing per key set-up). In comparison, our
AES key schedule of Section 4 is on-the-fly and has comparable encryption
speed as AES.

2 Framework for Protection Against Related Key
Differential and Boomerang Attacks

2.1 Some Definitions and Notation

We first define some notation and concepts which form the basis of differential
attacks.

Given a block cipher, the plaintext, secret key and ciphertext are denoted by
P , K and C respectively. The encryption and decryption processes are denoted

by C = EK(P) and P = E−1
K (C) respectively. We denote the input of the first

round by P0, and the output of the ith round by Pi, i = 1, . . . , NR, where NR
is the number of rounds. We see that the input of round i is Pi−1, and that
P0 = P and PNR = C. Similarly, we write Ki, i = 0, . . . ,m, for the m + 1
subkeys generated by the key schedule.

To launch a differential attack, one attempts to find a pair of differences
in the plaintext and ciphertext that occur with high probability. This usually
involves finding a sequence of round inputs and outputs that occur with high
probability. We write∆P and∆C to denote a plaintext and ciphertext difference
respectively, and ∆Pi to denote the difference in the round output of round i. A
differential characteristic refers to a sequence of input differences to the rounds

(∆P0 −→ ∆P1 −→ · · · −→ ∆PNR)

We abbreviate the above expression to (∆P
dc
−→ ∆C).

Similarly, to launch a related-key differential attack, one attempts to find a
set of differences for (P,K,C) that hold with high probability. We shall see that
this can be done by finding a sequence of differences in the key and subkeys
generated by the key schedule, and the plaintext and round outputs generated
by the main cipher, such that these differences occur with high probability.

We first consider a differential characteristic in the key schedule alone. We
denote a difference in the key by ∆K, and differences in the subkeys ∆Ki,
i = 0, . . . ,m. We note that the subkeys are not necessarily derived sequentially
from each other, so the concept of a differential characteristic ‘path’ may not

exist in this sense. We therefore write (∆K
dc
−→ ∆K0, . . . , ∆Km) for a differential

characteristic in the key schedule.
Now we consider a differential characteristic in the key schedule and the main

cipher. We write this as

(∆K
dc
−→ ∆K0, . . . , ∆Km, ∆P0 −→ · · · −→ ∆PNR)

which we abbreviate to (∆P,∆K
dc
−→ ∆C). We also define:

pk = Prob(∆K
dc
−→ ∆K0, . . . , ∆Km),

pc|k = Prob(∆P
dc
−→ ∆C|∆K

dc
−→ ∆K0, . . . , ∆Km).

It is easy to see that Prob(∆P,∆K
dc
−→ ∆C) = pk × pc|k by Bayes’ Theorem.

2.2 Related-Key Differential Attack of [4]

In [4], Biryukov et al. highlighted two main observations of AES-256: slow diffu-
sion in the key schedule reversal and the presence of local collisions due to the
matching differential properties between the key schedule and the main cipher.
By exploiting these weaknesses, they found a related-key key-recovery attack on
full-round AES-256 with total complexity of 2131 time and 265 memory, and an

average of 235 related keys. In this section, we give a gist of the attack. The
interested reader should refer to [4] for the details.

All 128-bit state blocks of AES are written as a 4 × 4 array of bytes. The
byte in the i-th row and j-th column is denoted by M [i, j]. We write the main
cipher as follows:

– Let B0 = P .
– For rounds r = 1, . . . , 13,

• Ar = SubBytes(Br−1 ⊕Kr−1)
• Br = MixColumns(ShiftRows(Ar))

– Let A14 = ShiftRows(SubBytes(B13 ⊕K13)) for round 14
– Let A14 ⊕K14 = C.

The authors placed the 2-round characteristic called a local collision in rounds
12 and 13, i.e. r = 12 and thus, ∆B12 = ∆A14 = 0. Working backwards from
there, the aim then is to construct a differential characteristic of high probability.
Biryukov et al. managed to find such a characteristic with specified differences
such that there are 5 active S-boxes in the key schedule and 15 active S-boxes
in the main cipher from ∆A2 onwards. Therefore, the attack works for 1 out of
235 key pairs and the differential characteristic probability in the main cipher is
2−93.

After a differential characteristic of high probability, (∆P,∆K
dc
−→ ∆C), has

been identified, the key-recovery attack works as follows. For each of the 235

related-key pairs,

(1) Repeat 231 times:
(a) Fix P and P ′ such that P ′ = P ⊕ (v1, v1, v1, v1) where v1 is a particular

column difference determined in the path.
(b) Construct two structures, each with 264 plaintexts, by varying the 8 bytes

of P [i, j] and those of P ′[i, j], where i+ j is even.
(c) Encrypt the first structure with K and the second with K ⊕∆K.
(d) Find a C from the first structure and a C ′ from the second structure

such that C ⊕ C ′ = ∆C. Save this pair.
(2) For each candidate pair, derive 216 variants for the ten key bytes: K0[i, k]

(i+ j even) and K1[0, 0], K1[0, 2].
(3) Pick the key candidate with the maximal number of votes.

Note that with a good related-key pair that satisfies the specified key sched-

ule characteristic, (∆K
dc
−→ ∆K0, . . . , ∆K14), there will be, on average, 4 good

plaintext-ciphertext pairs satisfying the main cipher differential characteristic

(∆P
dc
−→ ∆C|∆K

dc
−→ ∆K0, . . . , ∆K14) in addition to 231 wrong pairs. This

is because for a fixed key, each structure will contain 264 pairs with the right
differences after the S-boxes of the 2nd round. The remaining active S-boxes
in rounds 3-14 satisfy the characteristic with probability 2−93. Therefore, each
structure produces a pair of ciphertexts with the right differences with probabil-
ity 264−93 = 2−29. Consequently, 231 structures produces on average 231−29 = 4
right pairs and 231+128−128 = 231 wrong pairs. All 4 right pairs will vote for

the correct 80-bit key while the 231 wrong pairs will suggest 247 random keys.
Each wrong key is thus expected to occur 2−33 times only, which is much less
than 4. On the other hand, with a wrong related-key pair that fails to sat-
isfy the required key schedule characteristic, there will also be about 231 wrong
plaintext-ciphertext pairs, which will give rise to approximately 247 random key
suggestions and hence, each wrong key also only appears at most once on aver-
age. Therefore, no wrong key guesses will survive the last step, and the correct
80 key bits will be found as a result.

Protection Against Related-Key Differential Attack: The attacker must
run through p−1

k key pairs on average in order to find one that satisfies the
specified differential characteristic in the key schedule. For each key pair, the
differential attack has complexity O(p−1

c|k) and needs the same number of chosen

plaintexts, so in total the complexity is O((pc|kpk)
−1). In the attack of [4], we

have pk = 2−35, pc|k = 2−93, and with some computational overheads get an
attack complexity of 2131.

We can defend against this attack by having pk × pc|k < 2−NK where NK is
the key size of the cipher, for any related-key differential characteristic, i.e. no
good distinguisher can be found that can be exploited in a related-key differential
attack. The attack also cannot be applied if pc|k < 2−NB , where NB is the block
size of the cipher, as there would be insufficient plaintexts to launch the attack.

2.3 Related-Key Boomerang Attack of [3]

The main idea behind the boomerang attack [2, 17] is to use two short differential
characteristics of high probabilities instead of one long differential characteristic
of low probability. We assume that a block cipher E : {0, 1}NB × {0, 1}NK →
{0, 1}NB can be described as a composition of two sub-ciphers, i.e. E = E1 ◦E0.
Here, NB and NK denote the block size and key size of the cipher respectively.
Suppose we have a related-key differential characteristic α → β of E0 (excluding
a couple of rounds at the beginning of the cipher) under a key difference ∆K0

with probability p and another related-key differential characteristic γ → δ for
E1 under key difference ∆K1 with probability q. Here, p = pk × pc|k where pk is
the probability that the differential characteristic path in the key schedule corre-
sponding to E0 will be satisfied while pc|k is the probability that the differential
characteristic path in the main cipher, α → β in E0, will be satisfied given that
the key differential characteristic is satisfied. Likewise, q = qk × qc|k with similar
definitions pertaining to E1. The differential characteristic trails of E0 and E1

are called upper and lower trails respectively.

The related-key boomerang process involves four different unknown but re-
lated keys. The relation between the keys can be an arbitrary bijective function
R chosen in advance by the attacker. A plaintext pair results in a quartet with
probability p2q2 whereas for a random permutation, the probability of obtaining
a good quartet is 2−NB .

More concretely, for AES-256, the related-key boomerang attack [3] exploits
local collisions (as explained in Section 2.2) and ladder switching to gain a middle
round for free. The upper trail for AES-256 covers rounds 1-8 and the lower
trail covers rounds 8-14. There are four related keys: Ka, Kb, Kc and Kd.
The switching state is the state A9 and a special key state KS , which is the
concatenation of K7 and K8. The plaintext difference is specified in 9 bytes and
the probability of the boomerang quartet after the first round is 2−96.

The attack works as follows. Do the following steps 225.5 times:

(1) Prepare a structure of 272 plaintexts where the following 56 bits are constant:
P [0, 1], P [0, 2], P [0, 3], P [2, 1], P [2, 3], P [3, 1], and P [3, 2]. The remaining bits
are varied over all possibilities.

(2) Encrypt it on keys Ka and Kb and keep the resulting sets Sa and Sb in
memory.

(3) XOR ∆C to all the ciphertexts in Sa and decrypt the resulting ciphertexts
with Kc. Denote the new set of plaintexts by Sc.

(4) Repeat the previous step for the set Sb and the key Kd. Denote the set of
plaintexts by Sd.

(5) Compose from Sc and Sd all the possible pairs of plaintexts that are equal
in 56 bits: P [0, 1], P [0, 2], P [0, 3], P [2, 1], P [2, 3], P [3, 1], and P [3, 2].

(6) For every remaining pair, check if the difference in P [i, 0], i > 1 is equal on
both sides of the boomerang quartet (16-bit filter).

(7) Filter out the quartets whose difference cannot be produced by active S-
boxes in the first round and active S-boxes in the key schedule (6-bit filter).

(8) Gradually recover key values and differences, simultaneously filtering out the
wrong quartets.

We can obtain 2144 ordered pairs for each structure. Of these pairs, 272 will
pass the first round. Therefore, we can expect one right quartet per 296−72 =
224 structures and three right quartets out of 225.5 structures. On the other
hand, there will be approximately 291.5 noisy quartets in total. These candidate
quartets will then be used to vote for the right key values. The probability that
three wrong quartets propose the same candidate key values does not exceed
2−80. The attack has 299.5 data and time complexity and requires 277.5 memory
for the filtering step.

Protection Against Related-Key Boomerang Attack: The attacker must
run through (pkqk)

−2 quartets of related keys on average in order to find one
that satisfies the specified differential characteristic in the key schedule. For each
quartet, the attack has complexity O((pc|kqc|k)

−2), so in total the complexity is
O(1/(pc|kpk)). In the attack of [3], we have (pkqk)

2 = 1, (pc|kqc|k)
2 = 2−96, and

with some computational overheads get an attack complexity of 299.5.
We can defend against this attack by having (pkqk)

2(pc|kqc|k)
2 < 2−NK

where NK is the key size of the cipher, for all decompositions of the cipher
into two smaller sub-ciphers and for all differential characteristics for these sub-
ciphers. This would mean that there do not exist any boomerang quartets of

high probability that can be exploited. The attack also cannot be applied if
(pc|kqc|k)

−2 < 2−NB , where NB is the block size of the cipher, as there would
be insufficient plaintexts to launch the attack.

3 Security of Improved May et al.’s AES Key Schedule
Against Related-key Attack

To protect AES against related-key differential and boomerang attacks, one
strategy is to use a strengthened key schedule with good differential proper-
ties. One possible candidate is an alternative key schedule for AES proposed by
May et al. in [13] in 2002. At that time, there was already a 9-round related-key
square attack [11] on AES-256 which exploited the slow diffusion of relatively
few non-linear elements in the key schedule. May et al. wanted to design an
efficient key schedule with more nonlinear components and better diffusion to
defend against such attacks.

Their key schedule for AES-256 is shown below. Here, NR=14 is the num-
ber of rounds; a, b are 128-bit values derived from the Master Key MK =
MK0|MK1| . . . |MK32, a = a0|a1| . . . |a15 (the MKi and ai are 8-bit values,
and | represents concatenation), r is the round number and Kr is the 128-bit
round subkey for Round q. Each round subkey is the 128-bit output after the
execution of three rounds of the cipher algorithm, using the master key (with
the addition of different round constants) as both data and key input.

for r = 0 to NR
for j = 0 to 15

aj = MKj ⊕ S[r ∗ 16 + j] ⊕ S[MKj+16]
bj = MKj+16 ⊕ S[r ∗ 16 + j] ⊕ S[MKj]

for i = 0 to 2
SubBytes(a)
ShiftRows(a)
MixColumns(a)
AddRoundKey(a, b)

Kr = a

May et al.’s Key Schedule for AES-256

In [13], the authors conducted statistical tests to show that for their proposal,
there is no bit leakage between round subkeys. Furthermore, each round key sat-
isfies both the frequency and Strict Avalanche Criterion (SAC) tests, indicating
good pseudorandomness properties such as bit confusion and diffusion. The au-
thors concluded that previously published attacks that exploit the key schedule
such as the standard related-key attacks [1] will not work on their proposed key
schedule.

Moreover, the key schedule achieves the property of round key irreversibility,
by which we mean that given any subset of the round keys, it is hard to derive the
remaining round keys. This forces an adversary to attack all the round keys. This
is in contrast to the AES key schedule, which is reversible - given any two round
keys, one can derive all the other round keys. The obvious countermeasures for
preventing related-key attacks on AES mentioned in the introduction, namely,

increasing the number of rounds and hashing the key before expanding it, also
produce key schedules which are also reversible.

3.1 Equivalent Keys in May et al.’s Key Schedule

Despite the good cryptographic properties of May et al.’s key schedule as men-
tioned in the previous section, we shall show that their key schedule has equiv-
alent keys as shown in the following proposition.

Proposition 1 In May et al.’s key schedule for AES-256, there are 2271 equiva-
lent key pairs {(MK,MK ′) : MK 6= MK ′} such that AESMK(·) = AESMK′(·),
i.e. they produce the same encryption output.

Proof. Consider the 4-byte tuple (MKi,MK ′
i,MKi+16,MK ′

i+16) for each index
i. We look for those that satisfy the equations:

MKi⊕MK ′
i = S[MKi+16]⊕S[MK ′

i+16], S[MKi]⊕S[MK ′
i] = MKi+16⊕MK ′

i+16.
(1)

By a computer simulation, there are 65644 tuples (MKi,MK ′
i,MKi+16,MK ′

i+16)
that satisfy equation (1). In that case,

∆ai = ∆MKi ⊕∆S[MKi+16] = 0 and ∆bi = ∆MKi+16 ⊕∆S[MKi] = 0

Thus for i = 0, 1, 2, . . . , 15, if we let (MKi,MK ′
i,MKi+16,MK ′

i+16) satisfy
equation (1) for s ≥ 1 of the indices i and let (MKi,MKi+16) = (MK ′

i,MK ′
i+16)

for the rest of the 16− s indices, we will have ∆a = 0 = ∆b. From the definition
of May et al.’s key schedule, this implies the subkeys derived from MK and MK ′

are the same and they will produce the same encryption output. The number of
such equivalent key pairs are given by:

16
∑

s=1

(

16

s

)

× 65644s × (2562)16−s ≈ 2272.

When (MK,MK ′) is an equivalent key pair, (MK ′,MK) is also an equivalent
key pair. Thus we divide the total number of equivalent key pairs by 2 to get
2271.

⊓⊔

Example 1. As an example, we list the first and last few of the 65644 solutions
(MKi,MK ′

i,MKi+16,MK ′
i+16) to equation (1):

(00, 02, aa, be), (00, 02, be, aa), (00, 03, cc, d4), (00, 03, d4, cc), ..., (ff, fd, 15, 57), (ff, fd, 57, 15).

By using the idea in the proof of Proposition 1, we form a weak key pair by
letting MKi,MK ′

i take the same values in byte position i = 2, 18, 10, 26, 16, 32
and satisfy equation (1) for the other byte positions:

Byte Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

MK 00 17 00 ff ff 00 00 ff ff 68 ff ff ff 00 ff 2b aa 9e cc 15 57 aa cc 15 15 8b 57 15 57 d4 57 e6

MK′ 02 17 03 fd fd 02 03 fd fd 68 fd fd fd 03 fd 2b be 9e d4 57 15 be d4 57 57 8b 15 57 15 cc 15 e6

3.2 An Improved May et al.’s Key Schedule

From Section 3.1, we have seen that the three AES rounds used to generate each
round key in May et al.’s key schedule help to ensure that the round keys have
good statistical properties and attain round key irreversibility. The problem is
the initialization of a and b which allows an adversary to force a, b to have zero
differential by choosing an appropriate pair of related secret keys.

Below, we propose an improved version of the May et al.’s key schedule.
Basically, we simplify the initialization of a, b so that each byte of a and b only
depends on one instead of two bytes of the secret key. This prevents an adversary
from using the technique in Proposition 1 to force ∆a and ∆b to be zero. We also
make use of key-length-dependent counters keylen to defend against the related-
cipher attack [18], which was first applied to the alternative AES key schedule
proposed by May et al. In the algorithm shown, keylen − 1 refers to the key
length of the cipher (minus 1) encoded as a byte. A more detailed explanation
of the related-cipher attack can be found in Appendix B.

This key schedule, as with the original key schedule by May et al., has the
property of round key irreversibility.

Next, we shall show in the following section that the improved May et al.’s
key schedule can protect AES against related-key differential and boomerang
attacks.

for r = 0 to NR
for j = 0 to 15

aj = S[MKj] ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1)
bj = S[MKj+16] ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1)

for i = 0 to 2
SubBytes(a)
ShiftRows(a)
MixColumns(a)
AddRoundKey(a, b)

Kr = a

Improved May et al.’s Key Schedule AES-256

3.3 Improved May et al.’s Key Schedule is Secure Against
Related-Key Differential Attack

Our aim in this section is to study the security of our improved May et al.’s key
schedule against the related-key differential attack which was recently used by
Biryukov et al. [4, 3, 5] to attack full-round AES-256.

We have the following technical lemma which will be used to prove the main
results of this section later on.

Lemma 1. For any round subkey generation using the key schedule proposal
described above, if we have a pair of master keys with nonzero difference, then

the differential characteristic path either has at least four active S-boxes, or it
has at least three active S-boxes and an additional four active S-boxes resulting
from the generation of a and b.

The proof of this lemma can be found in Appendix C of this paper. Based
on the above result, we may deduce the following corollary.

Corollary 1. If we have a pair of master keys with nonzero difference, then our
improved May et al.’s key schedule for AES-256 has at least 43 active S-boxes
involved in the generation of 13 subkeys.

Proof. By Lemma 1, the differential characteristic path for each subkey gen-
eration has at least three active S-boxes, and if there exists a subkey whose
differential characteristic path produces only three active S-boxes occurs, then
there will be four additional S-boxes involved in generating a and b. This would
give at least 13×3+4 = 43 S-boxes in total. On the other hand, if the differential
characteristic path for each subkeys produces at least four active S-boxes, there
are at least 13× 4 > 43 S-boxes in total. ⊓⊔

In the attacks on AES, we always consider an (NR−2)-round attack involving
NR− 1 subkeys, in keeping with [4] where the attack is based on an (NR− 2)-
round related-key differential characteristic.

Theorem 1. AES-256 using our improved May et al.’s key schedule is resistant
to related-key differential attack.

Proof. We apply Corollary 1 for AES-256 assuming an NR − 2 round attack,
i.e. a 12-round attack which involves 13 subkeys. Since each active S-box has
probability at most 2−6, this gives a probability of at most pk×pc|k = (2−6)43×
pc|k = 2−258 × pc|k < 2−256. Therefore, we may conclude that AES-256 with the
strengthened key schedule is indeed resistant to related-key differential attacks.

⊓⊔

May et al. also proposed alternative key schedules for AES-128 and AES-192.
The key schedules proposed by May et al. in [13] for AES-128 and AES-192
are largely the same as that for AES-256, except that a and b are generated in
slightly different ways: for r = 0 to NR, j = 0 to 15.

(1) For AES-128: aj = bj = MKj ⊕ S[r ∗ 16 + j].
(2) For AES-192: aj = MKj ⊕ S[r ∗ 16 + j] ⊕ S[MKj+8]; bj = MKj+8 ⊕ S[r ∗

16 + j]⊕ S[MKj].

It is easy to see that equivalent keys similar to those in Proposition 1 exist for
May et al.’s key schedule for AES-192. Thus we propose a similar improvement
to May et al.’s key schedule for AES-192 below. As before, we also tweaked
the key schedules a bit by introducing key-length-dependent counters keylen for
protection against the related-cipher attack [18].

(1) Improvement for AES-128: aj , bj = MKj ⊕ S[r ∗ 16 + j]⊕ (keylen− 1).

(2) Improvement for AES-192: aj = MKj ⊕ S[r ∗ 16 + j] ⊕ (keylen − 1); bj =
MKj+8 ⊕ S[r ∗ 16 + j]⊕ (keylen− 1).

Based on the above description of the schedules for AES-128 and AES-192, it is
easy to deduce the following corollary from the proof of Lemma 1.

Corollary 2. If we have a pair of master keys with nonzero difference in our
proposed improvement of the key schedule of [13] for AES-128 and AES-192,
then there are at least 3 active S-boxes involved in the generation of each subkey.

Corollary 2 allows us to prove Theorem 2.

Theorem 2. AES-128 and AES-192 using the key schedule of [13] for AES-128
and our improvement for AES-192 are also resistant to related-key differential
attack.

Proof. In our improved key schedule for AES-128 and AES-192, we see that if
a pair of master keys has non-zero difference, then one of ∆a or ∆b is non-zero.
Thus we can use the fact that every differential characteristic path of a round
subkey generation has at least 3 active S-boxes (excluding the generation of a
and b) from the proof of Lemma 1.

For AES-128, an 8-round attack involves 9 subkeys. Assuming that each
active S-box has probability 2−6, this gives a probability of at least pk × pc|k =

(2−6)(9×3) × pc|k = 2−162 × pc|k < 2−128.
Similarly for AES-192, a 10-round attack involves 11 subkeys. The differential

characteristic probability is at least pk×pc|k = (2−6)(11×3)×pc|k = 2−198×pc|k <
2−192.

Therefore, AES-128 and AES-192 with the strengthened key schedule are
resistant to differential related-key attacks. ⊓⊔

Remark 1. Our proofs show that the original May et al.’s key schedule is also
resistant against related-key differential attack. This is because if a pair of keys
is an equivalent weak key pair, then they produce the same roundkeys and we
have normal differential attack instead of related-key differential attack. If they
are not an equivalent key pair, then ∆a or ∆b is non-zero and we can apply5

Lemma 1 to prove Theorem 1 for May et al.’s key schedule.

3.4 Improved May et al.’s Key Schedule is Secure Against
Related-Key Boomerang Attack

From Section 2.3, we have seen that given a decomposition of a cipher, including
its key schedule, into two smaller sub-ciphers E0 and E1, and given related-key
differential characteristics for E0 and E1, if we let the probabilities of their key
schedule differential characteristics be pk and qk respectively, the probability of
getting a boomerang quartet is less than (pkqk)

2.

5 We can apply Lemma 1 because both the improved and original May et al.’s key
schedule uses the same 3-round AES structure to generate each roundkey.

We consider an arbitrary decomposition of AES, with our improved key
schedule, into two smaller sub-ciphers. The generation of the subkeys by the
key schedule will be split between the two sub-ciphers. Since the subkeys are
independently generated, pkqk is simply the product of the probabilities that
the differential characteristics hold for the generation of each subkey.

We note that it may be possible to bypass one subkey for the round at which
the cipher is split into two using a boomerang switch. Furthermore, we assume
that two rounds at the start can be ignored by not specifying the differences in
the differential trail (as in [3], where one round at the start is ignored). Hence,
for AES-128, we consider the generation of 7 subkeys; for AES-192, 9; and for
AES-256, 11.

By Lemma 1 and Corollary 2, we see that there are at least 3 active S-boxes
involved in the generation of each subkey for all three versions of AES. For
t subkeys, the product of the probabilities that the differential characteristics
hold for each subkey is (2−6)3t. Since pkqk ≤ 2−18t, (pkqk)

2 < 2−NK holds if
(2−18t)2 < 2−NK .

If t ≥ 4, we have (pkqk)
2 < 2−128; if t ≥ 6, we have (pkqk)

2 < 2−192; and
if t ≥ 8, we have (pkqk)

2 < 2−256. For AES-128, t = 7; for AES-192, t = 9;
and for AES-256, t = 11. Hence, for AES with the strengthened key schedule,
for any decomposition into two sub-ciphers, there does not exist a boomerang
quartet of high probability which can be exploited. Therefore, we have proved
that AES-128, AES-192 and AES-256 using the strengthened key schedule of
[13] are resistant to related-key boomerang attack.

Remark 2. By a reasoning similar to Remark 1, the original May et al.’s key
schedule is also resistant against related-key boomerang attack.

4 A New On-the-fly Key Schedule for AES Secure
Against Related-Key Differential and Boomerang
Attacks

We present here a new key schedule for AES that offers several advantages
over both the original key schedule (security against related-key differential and
boomerang attacks) and that proposed by May et al. [13] (better efficiency).

The key schedule shown below generates fifteen 128-bit round keys Ki, 0 ≤
i ≤ NR = 14 from a 256-bit master key or thirteen 128-bit round keys Ki, 0 ≤
i ≤ NR = 12 from a 192-bit master key. Round key Ki is used in the ith round
of encryption. For a 256-bit master key, one subkey SK0 is not converted into
a usable round key, and for a 192-bit master key, three subkeys SK0..2 are not
converted into usable round keys.

Here, Cj denote 128-bit strings which are initialized by equating them to
integers j encoded as 128-bit strings. keylen− 1 refers to the key length of the
cipher (minus 1) also encoded as a 128-bit string. 1R AES(x) refers to one round
of unkeyed AES with the plaintext x. The AddRoundKey operation in the AES
round can be omitted or provided with a null key.

if AES-192
f = 1

if AES-256
f = 2

for j = 0 to 15
K1j = MKj

K2j = MKj+(8∗f)

for j = 0 to 15
Cj = j

C0 = C0 ⊕ K1 ⊕ (keylen − 1)
C4 = C4 ⊕ K2
C8 = C8 ⊕ K1
C12 = C12 ⊕ K2

SK−1 = K1, I−1 = 0
for i = 0 to 15

Ii = 1R AES(Ii−1 ⊕ Ci)
SKi = Ii ⊕ SKi−1

if AES-192
Ki−3 = SKi

if AES-256
Ki−1 = SKi

New key schedule proposal for 192-bit and 256-bit keys

These proposed key schedules for AES-192 and AES-256 are partially irre-
versible, by which we mean that, given two round keys, it is hard to derive the
rest of the round keys. However, given certain combinations of three or more
round keys, it may be possible to derive the rest of the round keys. For example,
if we have SKi, SKi+1 for i = 1 or 2, as well as SK4, then we can obtain K1 from
SKi, SKi+1, and then we either have, or can compute SK3, and then use SK4

to get K2. In this sense, this proposed key schedule is weaker than the original
and improved key schedules by May et al. Nonetheless, partial irreversibility is
a desirable property which is lacking in the original AES-192 and AES-256 key
schedules.

The following key schedule shown generates eleven 128-bit round keysKi, 0 ≤
i ≤ NR = 10 from a 128-bit master key. One subkey SK0 is not converted into
a usable round key.

for j = 0 to 11
Cj = j

C0 = C0 ⊕ MK ⊕ (keylen − 1)
C4 = C4 ⊕ MK
C8 = C8 ⊕ MK

SK−1 = MK, I−1 = 0
for i = 0 to 11

Ii = 1R AES(Ii−1 ⊕ Ci)
SKi = Ii ⊕ SKi−1

Ki−1 = SKi

New key schedule proposal for 128-bit keys

Our proposed key schedule for AES-128 is also partially irreversible in that
at least two round keys are needed to derive the rest of the round keys, and only
certain combinations of keys can work. In contrast, the original AES-128 key
schedule requires only one round key to derive all the other round keys.

Theorem 3. AES-128, AES-192 and AES-256 with the key schedules proposed
in this section are resistant against related-key differential and boomerang at-
tacks.

Proof. In this proof, we will make use of the following result by Daemen and
Rijmen in their specification for Rijndael [8, page 33]:

– The minimum number of active S-boxes in any 4-round differential is 25,
independent of the value of the round keys. The maximum differential prob-
ability of any differential path through 4 rounds is 2−150.

Note that the above results hold only for 4 AES rounds when the input differen-
tial is non-zero and encryption is under a fixed key, i.e. the subkey differentials
are zero.

In all three key schedules, the internal state Ii is essentially the AES cipher,
except that it is keyed by MK or a part of MK every 4 rounds. The round
outputs of the key schedule internal state are then processed to form the round
keys Ki of the main cipher. For an attacker to control the round key differences
∆Ki to launch a related-key attack, he would need to control the output differ-
ential ∆Ii of the key schedule internal state. Thus our job is to prove that the
differential probability of this internal state is low enough to prevent related-key
differential and boomerang attacks.

Since we are considering related key differential attack, we assume ∆MK 6=
0.

Key schedule for AES-128: ∆MK 6= 0 implies the input differential to the
first four AES rounds of the internal state is non-zero. Therefore we can bound
the differential characteristic probability of the key schedule internal state Ii by
2−150.

Key schedule for AES-192, AES-256: ∆MK 6= 0 implies ∆(K1,K2) 6= 0.
Thus, we consider the three cases ∆K1 6= 0, ∆K2 = 0; ∆K1 = 0, ∆K2 6= 0 and
∆K1 6= 0, ∆K2 6= 0.

When ∆K1 6= 0, ∆K2 = 0, the first round corresponding to internal state
I0 will have a non-zero differential input ∆K1. Rounds 2 to 8 corresponding to
I1 to I7 will have zero input key differences. Thus the differential characteristic
probability of these eight rounds, and consequently, of the entire key schedule
internal state Ii is at most (2−150)2 = 2−300.

When ∆K1 = 0, ∆K2 6= 0, the first four rounds corresponding to I0 to I3
will have zero differential characteristic probability since there is a zero input
difference and no input key differences for all four rounds. The fifth round cor-
responding to I4 will have a non-zero differential input ∆K2. Following this,
rounds 6 to 12 corresponding to internal state I5 to I11 will have zero input
key differences. Thus the differential characteristic probability of these eight
rounds, and consequently, of the entire key schedule internal state Ii is at most
(2−150)2 = 2−300.

When ∆K1 6= 0, ∆K2 6= 0, the first round corresponding to internal state I0
will have a non-zero differential input ∆K1 while rounds 2 to 4 corresponding to
I1 to I3 will have zero input key differences. This gives a differential characteristic

probability of at most 2−150 for the first four rounds. The differential output after
these four rounds is ∆I3. If ∆I3⊕∆K2 6= 0, then we have a non-zero differential
input to the next four AES rounds corresponding to I4 to I7. Since rounds
6 to 8 corresponding to internal states I5 to I8 have zero key differences, this
gives a differential characteristic probability of at most 2−150 for rounds 5 to 8. If
∆I3⊕∆K2 = 0, then there is no differential characteristic probability associated
with rounds 5 to 8. But ∆K1 will be a non-zero differential input to the next
four AES rounds while rounds 10 to 12 corresponding to internal states I8 to I11
have zero input key differences. This gives a differential characteristic probability
of at most 2−150 for rounds 9 to 12. In both cases, the differential characteristic
probability of the key schedule internal state Ii is at most (2−150)2 = 2−300.

For protection against related-key boomerang attack, it is not hard to see
from the above proof that when we split the cipher into two sub-ciphers E0, E1,
the corresponding internal state Ii of the key schedule for one of the sub-cipher
will contain 4 unkeyed AES rounds with a non-zero input differential. This means
one of pk or qk is bounded by 2−150 and that (pkqk)

2 ≤ 2−300. Thus our cipher
is secure against related-key boomerang attack.

⊓⊔
For protection against other attacks on the key schedule, the use of round coun-
ters defeats slide attacks [6, 7]. As in the case for the improved May et al.’s key
schedule, the use of key-length-dependant counters keylen defeats the related-
cipher attack [18].

The key schedule offers better efficiency than the proposal by May et al.
which invokes three AES rounds and a few S-box lookups per round key. Our
key schedule proposal invokes at most an (amortized) 1.25 AES rounds per round
key, making it more suitable for hardware implementation. If two AES round
functions are implemented in parallel, it is three times as fast as the May et al.
key schedule to encrypt; or if a single AES round function is implemented, it is
twice as fast.

4.1 Hardware Implementation

Usually hardware implementations of encryption algorithms are optimized for
high throughput, i.e. first for speed and then for area. If we look on these typically
round-based architectures, our proposed new AES key schedule introduces only
minor timing overheads compared to the original AES key schedule. Then for the
encryption of one block with a 128-bit key 11 clock cycles are required (compared
to 10 clock cycles for standard AES) and for 192-bit and 256-bit keys we need
15 clock cycles compared to 12 and 14 clock cycles, respectively. Note that for
AES-256 -which suffers most from recent related key attacks and needs to be
fixed most urgently- this is an overhead of only 7%.

At the same time, the similarity of the key schedule and the data path allows
a better time-area trade-off and thus more flexibility for implementation. A
designer can choose to implement both data paths (as described above, variant
A) or to share resources between them (variant B). The latter variant B allows to
save area at the cost of additional clock cycles (21 for AES-128, 25 for AES-192

and 29 for AES-256). The proposal by May et al. invokes three AES rounds and
a few S-box lookups per round key. Therefore it cannot compute the round keys
on-the-fly and will never achieve the same speed as the standard AES or our
proposal, regardless of the hardware spent. Using a shared data path (variant
B), our proposal is twice as fast as the proposal by May et al., and using two
separate data paths (variant A) it is three times faster.

Also the area overhead of our proposal is very moderate as the following
estimations, which are based on the 180 nm UMCL18G212D3 standard-cell
library from UMC [16], indicate. In a round-based implementation, we need two
128-bit XOR gates to add MK and SK (600 GE) and a 4-bit XOR gate to
add Ci (10 GE). Depending on the key length we need a 7-bit XOR gate (17
GE) or an 8-bit XOR gate (19 GE) and for AES-192 and AES-256 we also need
a 128-bit MUX (342 GE). Finally a 128-bit AND gate (170 GE) is required to
handle the proper addition of MK and the variables I and SK need to be stored
in flip-flops (1536 GE). If the master key is never changed, it can be hardwired
and requires no gates. Otherwise we have an additional storage overhead of 768
GE for AES-128, 1152 GE for AES-192, and 1536 GE for AES-256. For variant
A an additional complete round of AES is required. Since the gate count for an
AES round depends on a wide variety of design choices, an estimation of the
total overhead for variant A is difficult. We therefore concentrate on variant B,
which only needs an additional 128-bit AND gate (170 GE). For variant B our
proposal introduces an overhead of 2505 GE with a hardwired MK and 3270
GE with a flexible MK for AES-128. For AES-192 it sums up to 2850-4000 GE
and for AES-256 to 2850-4385 GE.

To put these overhead figures into perspective, please note that a typical
throughput-optimized co-processor implementation of AES-128 requires tens of
thousands of GE: Satoh et al. report such an implementation on a 0.11 µm
technology with 54,000 GE [15], while the implementation of Pramstaller et al.
on a 0.6 µm technology requires 85,000 GE [14].

5 Conclusion

We summarized the related-key differential and boomerang attacks on AES-256
and developed a framework for the protection of block ciphers against both at-
tacks. It can be easily observed that the main cipher of AES is still secure against
conventional non related-key attacks. So a natural approach to strengthen AES
against these latest attacks is to strengthen the key schedule of AES.

We analyzed May et al.’s key schedule and found equivalent keys associated
with it. Therefore, using our developed framework, we suggested an improvement
to their key schedule. In addition, we also proposed a key schedule of our own.
The main advantages of these two schedules over the original AES key schedule
are that both achieve related-key differential and boomerang attack resistance,
and both provide partial or full round key irreversibility.

Comparing the two new key schedules, the significant advantage of the im-
proved May et al.’s key schedule over our second proposed key schedule is that

it has full round key irreversibility. However, it suffers from the disadvantage
that it uses three AES rounds to derive a subkey and thus, cannot be on-the fly.
Therefore, the improved May et al.’s key schedule is suitable for use in software
applications where the key schedule is only run once, or in hardware applications
where high speed is not very crucial.

On the other hand, the advantage of our second proposed key schedule over
the improved May et al.’s key schedule is that it is much more efficient and
can be implemented on-the-fly, rendering it suitable for hardware applications.
However, the trade-off is that the latter has only partial round key irreversibility.
A summary of our analysis is shown in Table 1 below.

Table 1. Summary of our analysis.

Related-Key
Key Schedule Diff/Boom Attacks Irreversibility On-the-fly

Security Proof

Original AES × [3, 4] × √

Key Schedule in [8]

Improved May et
√

[This paper]
√ ×

al.’s Key Schedule

Key Schedule
√

[This paper]
√ √

Proposed in Sect. 4 (partial)

Acknowledgements

We would like to thank the anonymous reviewers of our previous paper submis-
sion for their valuable comments.

References

1. E. Biham, “New Types of Cryptanalytic Attacks using Related Keys”, Advances in
Cryptology - EUROCRYPT 1993, LNCS 765, pp. 398-409, Springer-Verlag, 1993.

2. E. Biham, O. Dunkelman, and N. Keller, “Related-Key Boomerang and Rectangle
Attacks”, Eurocrypt 2005, LNCS 3494, pp. 507-525, Springer, 2005.

3. A. Biryukov and D. Khovratovich, “Related-Key Cryptanalysis of the Full AES-
192 and AES-256”, Asiacrypt 2009, LNCS 5912, pp. 1-18, Springer-Verlag, 2009.

4. A. Biryukov, D. Khovratovich, and I. Nikolic, “Distinguisher and Related-Key
Attack on the Full AES-256”, Crypto 2009, LNCS 5677, pp. 231-249, Springer-
Verlag, 2009.

5. A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir, “Key
Recovery Attacks of Practical Complexity on AES Variant with Up To 10 Rounds”,
IACR eprint server, 2009/374 July 2009, http://eprint.iacr.org/2009/374.

6. A. Biryukov and D. Wagner, “Slide Attacks”, FSE 1999, LNCS 1636, pp. 245-259,
Springer, 1999.

7. A. Biryukov and D. Wagner, “Advanced Slide Attacks”, Eurocrypt 2000, LNCS
1807, pp. 589-606, Springer, 2000.

8. J. Daemen and V. Rijmen, “Rijndael”, First Advanced Encryption Standard Con-
ference, August 1998, http://csrc.nist.gov/encryption/aes/.

9. J. Daemen, L. Knudsen, and V. Rijmen, “The Block Cipher SQUARE”, FSE 1997,
LNCS 1267, pp. 149-165, Springer-Verlag, 1997.

10. W. Diffe and G. Ledin, “SMS4 Encryption Algorithm for Wireless Networks”,
Cryptology ePrint Archive: Report 2008/329.

11. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whit-
ing, “Improved Cryptanalysis of Rijndael”, FSE 2000, LNCS 1978, pp. 213-230,
Springer-Verlag, 2000.

12. J. Kim, S. Hong, B. Preneel, E. Biham, O. Dunkelman, and N. Keller, “Related-
Key Boomerang and Rectangle Attacks”, IACR eprint server, 2010/019 Jan 2010,
http://eprint.iacr.org/2010/019.

13. L. May, M. Henricksen, W. Millan, G. Carter, and E. Dawson, “Strengthening the
Key Schedule of the AES”, ACISP 2002, LNCS 2384, pp. 226-240, Springer-Verlag,
2002.

14. N. Pramstaller, S. Mangard, S. Dominikus and J. Wolkerstorfer, “Efficient AES
Implementations on ASICs and FPGAs”, AES Conference, pp. 98-112, 2004.

15. A. Satoh, S. Morioka and S. Munetoh, “A Compact Rijndael Hardware Archi-
tecture with S-Box Optimization”, ASIACRYPT 2001, LNCS 2248, pp. 239-254,
Springer-Verlag, 2001.

16. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004.

17. D. Wagner, “The Boomerang Attack”, FSE 1999, LNCS 1636, pp. 156-170,
Springer, Heidelberg, 1999.

18. H. Wu, “Related-Cipher Attacks”, ICICS 2002, LNCS 2513, pp. 447-455, Springer,
2002.

A Figures

Fig. 1. Flow of differences for one round subkey generation

B Related-Cipher Attack of [18]

The related-cipher attack [18] is applicable to related block ciphers with the
same round function but different round numbers, and whose key schedules do
not depend on the total round number. More concretely, consider two related
block ciphers with round numbers r and r + ∆r respectively. If the same key
is used in these two ciphers to encrypt the same message, then a related-cipher
attack can be carried out on a ∆r-round cipher. For this ∆r-round cipher, the
plaintext is the ciphertext of the r-round cipher and the ciphertext is that of the
r +∆r-round cipher. The key can be easily found if ∆r is small.

To defend against the related-cipher attack, the key schedule should be re-
lated to the total round number so that when the same key is used to encrypt
the same plaintext, the intermediate value after the ith round in the r-round
cipher will be different from that in the r′-round cipher (r 6= r′).

Now let us consider a related-cipher attack on AES-192 and AES-256, both
based on May et al.’s original key schedules as described in Section 3. Suppose the
192- and 256-bit keys are formed by a concatenation of a 64-bit key. Then one can
easily check that the first 12 round keys for AES-192 and AES-256 produced by
May et al.’s original key schedule would be identical and for the same plaintext,
the ciphers would produce the same output after 12 rounds. Thus we can use
the ciphertext of AES-192 as the input to round 13 in AES-256. Together with
the ciphertext of AES-256, we can implement a 2-round attack.

In contrast, we included the XOR of keylen−1 in the computation of aj and
bj for our improved May et al.’s key schedule. Therefore, the first twelve subkeys
for AES-192 and AES-256 would be different since the two corresponding key
schedules are initialized with different constants, 191 and 255 respectively. Thus
the related-cipher attack of [18] will not work in this instance. Similarly, our
second proposed key schedule as described in Section 4 also resists the related-
cipher attack since C0 is always taken to be the XOR of the Master Key and
keylen− 1.

C Proof of Lemma 1

C.1 Notation

First, we define some notation. Referring to Figure 1 in Appendix A which shows
the generation of one round subkey, we number the rounds i = 0, 1, 2 and let

∆a
(i)
0 = the input difference to the SubBytes operation in the ith round of the subkey generation,

∆a
(i)
1 = the input difference to the MixColumns operation in the ith round of the subkey generation,

∆a
(i)
2 = the input difference to the AddRoundKey operation in the ith round of the subkey generation,

∆b = the difference in b at each round.

Therefore, ∆a
(0)
0 is the data input difference to the subkey generation func-

tion and ∆b is the key input difference to each round of the subkey generation

function, where (∆a
(0)
0)j = ∆aj = ∆S(MKj) and (∆b)j = ∆S(MKj+16). The

output difference ∆a
(3)
0 is the difference in the round subkey.

We make a few observations about these differences.

(1) After applying the SubBytes operation to the state, the positions of the
active bytes are unchanged. The ShiftRows operation preserves the number

of active bytes, so the input difference to the SubBytes operation ∆a
(i)
0 and

the output difference of the ShiftRows operation∆a
(i)
1 have the same number

of active bytes.

(2) Furthermore, if ∆a
(i)
1 has one active column, and it contains more than one

active byte, ShiftRows−1 spreads them to different columns, so ∆a
(i)
0 must

have more than one active column, each containing one active byte.

(3) ∆a
(i)
2 = MixColumns(∆a

(i)
1). The MixColumns function is maximal distance

separable, so its branch number is 5. Thus t active bytes in one column of

∆a
(i)
1 spread to at least 5 − t active bytes in the same column of ∆a

(i)
2 .

In particular, one active byte in ∆a
(i)
0 gives one active byte in ∆a

(i)
1 which

spreads to one column of at least four active bytes in ∆a
(i)
2 .

(4) The AddRoundKey operation gives ∆a
(i+1)
0 = ∆a

(i)
2 ⊕∆b.

C.2 Proof of Lemma 1

We restate the lemma.
For any round subkey generation using the key schedule proposal described

above, if we have a pair of master keys with nonzero difference, then the dif-
ferential characteristic path either has at least four active S-boxes, or it has at
least three active S-boxes and an additional four active S-boxes resulting from
the generation of a and b.

Proof. We denote n and m to be the number of nonzero bytes in ∆a and ∆b

respectively, and we write k and l for the number of nonzero bytes in ∆a
(1)
0

and ∆a
(2)
0 respectively. Then the number of active S-boxes in the differential

characteristic path is n+ k + l. We also note that if ∆MK 6= 0, then ∆(a, b) 6=
(0, 0). We consider the various cases below.

(1) n = 0

We have ∆a = 0, so ∆b 6= 0 and m 6= 0. Since ∆a
(1)
0 = ∆b, we must have

k = m.
If ∆a

(1)
2 has one active column, then it has at least 5−m active bytes, and

the active bytes of ∆a
(1)
0 = ∆b are all in different columns. Then ∆a

(2)
0 =

∆a
(1)
2 ⊕∆b has at least 5−m−1 active bytes, i.e. l ≥ 4−m. Then n+k+ l ≥

0 +m+ 4−m = 4.
If ∆a

(1)
2 has more than one active column, then, ∆a

(1)
2 has at least 8 − m

active bytes. If m ≥ 4, we have n + k + l ≥ 4. If m ≤ 3, then ∆a
(2)
0 =

∆a
(1)
2 ⊕ ∆b has at least 8 − 2m active bytes, i.e. l ≥ 8 − 2m, which gives

n+ k + l ≥ 0 +m+ 8− 2m = 8−m ≥ 5.

(2) k = 0

We have ∆b = ∆a
(0)
2 , so m ≥ 5 − n. We also have ∆a

(2)
0 = ∆b, so l = m.

Then n+ k + l ≥ n+ 0 + 5− n = 5.

(3) n ≥ 1, k ≥ 1, l = 0

From l = 0 we have ∆b = ∆a
(1)
2 = MixColumns

(

∆a
(1)
1

)

.

If k = 1, ∆a
(1)
0 = ∆a

(0)
2 ⊕ ∆b has one active byte. We have ∆a

(0)
2 =

MixColumns
(

∆a
(0)
1

)

, and we can write ∆a
(1)
0 = MixColumns(α), where α

has four active bytes. Equating the two expressions for ∆b, we get ∆a
(1)
2 =

∆a
(1)
0 ⊕∆a

(0)
2 , and by the linearity of MixColumns we get ∆a

(0)
1 = ∆a

(1)
1 ⊕α.

Then ∆a
(0)
1 has at least three active bytes, as does ∆a

(0)
0 , and so n ≥ 3, giv-

ing n+ k + l ≥ 3 + 1 + 0 = 4.

If k = 2, ∆b = ∆a
(1)
2 has either one or two columns active. If it has two

columns active, then all eight bytes in the two columns are active, and we

also know that ∆a
(1)
0 has two active bytes. If ∆a

(1)
2 has one column active,

then at least three of the bytes in that column active, and the two bytes of

∆a
(1)
0 must be in different columns. Either way, ∆a

(0)
2 = ∆a

(1)
0 ⊕∆b has at

least two active columns, so we must have n ≥ 2. Then n+k+l ≥ 2+2+0 = 4.
If k ≥ 3, then because n ≥ 1, we have n+ k + l ≥ 4.

(4) n ≥ 1, k ≥ 1, l ≥ 1
We either have n = k = l = 1, or n + k + l ≥ 4. Assume n = k = l = 1.

Then n+ k+ l = 3, and since ∆a
(0)
2 has four active bytes and ∆a

(1)
0 has one

active byte, ∆b = ∆a
(0)
2 ⊕∆a

(1)
0 has at least three active bytes, i.e. m ≥ 3.

Since n+m ≥ 4, we have at least four active S-boxes from the generation of
a and b.

⊓⊔

