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Abstract

We cryptanalyse a matrix-based key transport protocol due to Baum-
slag, Camps, Fine, Rosenberger and Xu from 2006. We also cryptanal-
yse two recently proposed matrix-based key agreement protocols, due to
Habeeb, Kahrobaei and Shpilrain, and due to Romanczuk and Ustimenko.

1 Introduction

Regular proposals are made to employ groups in cryptography; see for example
the survey article by Blackburn et al [2] or the book by Myasnikov et al [6].
In particular, matrix groups are often considered because matrices are easy
to represent and manipulate. However, such proposals generally have a poor
reputation: we are unaware of any fully specified proposals that are widely
regarded as secure.

In this paper we cryptanalyse a matrix-based key transport protocol due
to Baumslag, Camps, Fine, Rosenberger and Xu [1], which we refer to as the
BCFRX scheme. In fact, their proposal is more general and they suggest several
platform groups; we consider their only matrix group proposal. We cryptanalyse
this scheme in a very strong sense. We show that for practical parameter sizes
a passive adversary can feasibly recover the session key after observing just one
run of the protocol. We find an even more efficient attack if two or more runs
of the protocol are observed. Our techniques reduce the problem of breaking
the scheme to a sequence of feasible Gröbner basis computations. This work
constitutes Section 2.
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We also cryptanalyse two recently proposed matrix-based key agreement
protocols, due to Habeeb, Kahrobaei and Shpilrain (HKS) [4], and due to Ro-
manczuk and Ustimenko (RU) [7]. These schemes both fail due to straightfor-
ward linearisation attacks. This work constitutes Sections 3 and 4.

2 The BCFRX Scheme

We begin by describing the BCFRX scheme. The protocol assumes that Alice
and Bob a priori share some secret information, namely their long-term secret
key. The goal of the protocol is for Alice and Bob to establish a session key for
subsequent cryptographic use. To achieve this, Bob chooses the session key and
sends it to Alice in three passes, as follows.

Let G be a finitely presented group. Let A and B be two commuting sub-
groups of G (so AB = BA for all A ∈ A and B ∈ B). The group G is made
public and the subgroups A and B form Alice and Bob’s long-term secret key.
Then:

• Bob chooses a session key K ∈ G and elements B,B′ ∈ B. He sends
C := BKB′ to Alice.

• Alice picks elements A,A′ ∈ A and sends D := ACA′ = ABKB′A′ to
Bob.

• Since A and B commute, we have that ABKB′A′ = BAKA′B′. Bob
sends E := B−1DB′

−1 = AKA′ to Alice.

• Alice computes K = A−1EA′
−1.

We can think of this protocol as Shamir’s three-pass (or no-key) protocol [5,
Protocol 12.22, Page 500], with the operation of multiplying on the left and
right by a group element replacing the exponentiation operation.

There was no detailed discussion of security in [1], but we need to specify
a security model and what it means to break the protocol, in order to crypt-
analyse it. We will consider the weakest possible notion of security: the passive
adversary model. So we will regard the protocol as broken if we can construct
an adversary that can feasibly compute the session key, after eavesdropping on
one or more runs of the protocol; this adversary must perform well for practical
parameter sizes.

Baumslag et al. [1] suggested several abstract platform groups to serve for G.
But in this paper we concentrate on their only matrix group proposal: G =
SL4(Z), the group of invertible 4×4 matrices of determinant 1 over the integers.
It was proposed that the commuting subgroups A and B should be constructed
as follows. Writing I2 for the 2× 2 identity matrix, define the subgroups U and
L of G by

U =
(

SL2(Z) 0
0 I2

)
and L =

(
I2 0
0 SL2(Z)

)
. (1)
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Let M ∈ SL4(Z) be a secret matrix known to both Alice and Bob. Then we
define

A = M−1UM and B = M−1LM. (2)

We may thus view the long-term secret key as the matrix M .
As described the proposal is not yet fully specified, since it remains to specify

how the long-term secret keyM is chosen, and how the protocol chooses elements
fromA and B at various points. It was stated in Baumslag et al. [1] that elements
are picked randomly from A and B, and we presume that the matrix M is picked
in a similar fashion from G = SL4(Z). But since the group G and its subgroups
A,B are infinite, the meaning of the word random is unclear in this context.
Any practical cryptanalysis will depend on the details of how these random
choices are made; however the cryptanalysis we give below will work for any
efficient method for making these random choices that we can think of.

In any fully specified implementation of the protocol, there exists an integer
Λ such that the entries of all matrices generated in the protocol lie in the interval
(−Λ/2,Λ/2). Since the standard way to represent a 4× 4 integer matrix of this
form uses approximately 16 log2 Λ bits, it is natural to think of log2 Λ as the
security parameter of the scheme.

A cryptanalysis

Our cryptanalysis proceeds in three stages. In Stage 1, we argue that integer
computations may be replaced by computations modulo p for various small
primes p. In Stage 2 we show that knowledge of a matrix N of a restricted form
allows a passive adversary to compute any session key transmitted under the
scheme. Finally, in Stage 3, we show that this matrix N may be computed in
practice. None of these stages is rigorous (though Stage 2 may be made so), but
the stages all work well in practice.

Stage 1: Working modulo p

Suppose an adversary wishes to discover a session key K. Since the entries of K
lie in the interval between −Λ/2 and Λ/2, it is enough to find K mod n for any
n > Λ. Indeed, this is how we approach our cryptanalysis. We will show (see
Stages 2 and 3 below) that in practice we may efficiently compute K mod pi for
small primes pi of our choice. (We are thinking of pi as a prime of between 80
and 300 bits in length: in some sense quite large, but in general smaller than Λ.)
We run this computation for several different primes pi until

∏
pi > Λ. Setting

n =
∏
pi, we can then appeal to the Chinese remainder theorem to calculate

K mod n = K.
We write this more precisely as follows. Let T be a fully specified version of

the BCFRX protocol, with SL4(Z) as a platform. For a prime p, let Zp be the
integers modulo p. Let Tp be the BCFRX protocol under the platform group
G = SL4(Zp), defined as follows. We identify the subgroups U and L defined
by (1) with their images in SL4(Zp). Let the subgroups A and B be chosen to
be of the form (2) for some matrix M ∈ G chosen uniformly at random. Let
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the protocol pick all elements from A and B uniformly and independently at
random. This makes sense since G is finite. We use Tp to model the protocol
T taken modulo p. This model is not quite accurate: for example, it is almost
certain that when M ∈ SL4(Z) is chosen according to the method specified in
T , the distribution of M mod p will not be quite uniform in SL4(Zp). But for
all ways we can think of in which T can be specified, the protocol Tp is a good
model for T taken modulo p (in the sense that an adversary that succeeds in
practice to recover the session key generated by Tp will also succeed in practice
to recover K mod p when presented with the matrices from a run of the protocol
T ). Note that an adversary has great freedom in choosing p, which makes the
reduction to Tp difficult to design against. The fact (see below) that the session
key for Tp can be feasibly computed in practice shows that T is insecure.

Stage 2: Restricting the long-term key

We consider the protocol Tp over SL4(Zp) defined above. From now on, let us
write an arbitrary 4×4 matrix Z in block form as Z =

(
Z11 Z12
Z21 Z22

)
, for the obvious

2× 2 submatrices Zij of Z.
The following lemma shows that there are many equivalent long-term keys

for the protocol Tp.

Lemma 2.1. Let M ∈ SL4(Zp) be the long-term key shared by Alice and Bob,
and define subgroups A and B by A = M−1UM and B = M−1LM . Let N ∈
GL4(Zp) be any matrix such that N−1UN = A and N−1LN = B. If N is
known, then any session key can be efficiently computed by a passive adversary.

Proof. An adversary is presented with matrices C, D and E that are transmitted
as part of the protocol. We have that C = BKB′, D = ABKB′A′ and E =
AKA′ for some unknown matrices A,A′ ∈ A and B,B′ ∈ B. Suppose that
the adversary is also able to obtain a matrix N satisfying the conditions of the
lemma. Since A,A′ ∈ A we may write A = N−1RN and A′ = N−1R′N for
some unknown matrices R,R′ ∈ U . Similarly we may write B = N−1SN and
B′ = N−1S′N for some unknown matrices S, S′ ∈ L.

Define an (unknown) matrix K ′ by K ′ = NKN−1. Define matrices C ′, D′,
E′ by

C ′ := NCN−1 = SK ′S′,

D′ := NDN−1 = RSK ′S′R′ and

E′ := NEN−1 = RKR′.

Note that the adversary can compute C ′, D′ and E′.
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Using the fact that S, S′ ∈ L and R,R′ ∈ U , we may write

C ′ =
(

K ′11 K ′12S
′
22

S22K
′
21 S22K

′
22S
′
22

)
,

D′ =
(
R11K

′
11R

′
11 R11K

′
12S
′
22

S22K
′
21R

′
11 S22K

′
22S
′
22

)
and

E′ =
(
R11K

′
11R

′
11 R11K

′
12

K ′21R
′
11 K ′22

)
.

Clearly K ′11 is known to the adversary, since K ′11 = C ′11. Moreover, K ′22 is
known since K ′22 = E′22.

To compute K ′12, find any matrix X such that XD′12 = C ′12 (note there may
be more than one such X if K ′12 is noninvertible). This implies XR11K

′
12 =

K ′12, since S′22 is invertible. Thus an adversary can compute XE′12 = K ′12.
Similarly, to compute K ′21 find any matrix Y such that D′21Y = C ′21. This
implies K ′21R

′
11Y = K ′21 and an adversary can compute E′21Y = K ′21.

Once K ′ is known, the session key K may be recovered since K = N−1K ′N .

Let Mat2(Zp) be the set of 2 × 2 matrices over Zp. Let I ⊆ Mat2(Zp) be
defined by

I =
{(

1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 0

)}
.

We say that N ∈ GL4(Zp) is of restricted form if N11, N22 ∈ I.

Lemma 2.2. For any long-term key M used in the protocol Tp, there is a matrix
N of restricted form satisfying the conditions of Lemma 2.1. Moreover, for an
overwhelming proportion of long-term keys M , we may impose the condition
that N11 = N22 = I2, where I2 is the 2× 2 identity matrix.

Proof. Let f : Mat2(Zp) → GL2(Zp) be a function such that f(X)X ∈ I for
all X ∈ Mat2(Zp). Such a function f certainly exists: it can be derived from a
standard row reduction algorithm.

Define

H :=
(
f(M11) 0

0 f(M22)

)
and N := HM.

The definition of H means that N11, N22 ∈ I, and so N is of restricted form.
Also, any matrix

H ∈
(

GL2(Zp) 0
0 GL2(Zp)

)
has the property that H−1UH = U and H−1LH = L. So

N−1UN = M−1H−1UHM = M−1UM = A
and similarly B = N−1LN . So the main statement of the lemma is proved. To
see why the last statement of the lemma holds, note that for an overwhelming
proportion of long-term keys M we have that M11 and M22 are invertible. The
function f maps any invertible matrix to its inverse, and so N11 = N22 = I2 in
this case.
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Stage 3: Computing the matrix N

We may compute an equivalent long-term key N of restricted form as follows.
After eavesdropping on a run of the protocol, we know the matrices C,D, and
E. We also know a matrix N of restricted form must satisfy the equations

NDN−1 = RNCN−1R′, (3)

NDN−1 = SNEN−1S′, (4)

NN−1 = I4, (5)

for unknown matrices R,R′ ∈ U and S, S′ ∈ L. Since N is of restricted form we
have N11, N22 ∈ I. There are thus only 9 possible combinations for N11 and N22,
so we may perform a trivial exhaustive search to find the right combination. (In
practice we would first try N11 = N22 = I2, since this holds with overwhelming
probability.) We assign variables x1, . . . , x8 for the remaining unknown entries
of N , and x9, . . . , x24 for the unknown entries of N−1.

Expanding (3) and (4), we find

(NDN−1)22 = (NCN−1)22, (NDN−1)11 = (NEN−1)11.

This gives us 4 + 4 = 8 quadratic equations in the xi, i = 1, . . . , 24. Adding the
16 quadratic equations from (5), we have a system of 24 quadratic equations
in 24 unknowns and expect a Gröbner basis calculation to reveal N . If we
eavesdrop on a second run of the protocol, we learn 8 new equations (from (3)
and (4)) and expect to compute N even more efficiently.

Experimental results

Over 1,000 trials using Magma [3] Version 2.16-11 on a Intel Core 2 Duo 1.86GHz
desktop, it took roughly 12 seconds to compute each (lex ordered) Gröbner basis
for a random 300-bit prime. In all our experiments, twenty three of the basis
elements had the form xi + fi(x24) for i = 1, . . . , 23, where fi is a polynomial
of degree 5. The final basis element was a degree 6 polynomial in x24. Thus in
all our cases we had a maximum of six possibilities for a matrix N of restricted
form satisfying Lemma 2.1.

If we eavesdrop on a second run of the protocol, we can add 8 new equations
(or just one of the 8 new equations) to our system. A Gröbner basis calculation
then reveals a unique value for N .

3 The HKS Scheme

Next we turn our attention to a key agreement protocol proposed by Habeeb,
Kahrobaei and Shpilrain [4]. Our description of the scheme is somewhat sim-
plified from [4].

Let A be a group and let B be an abelian group. Let Aut(B) denote the
automorphism group of B, and let A,B,Aut(B), a ∈ A, b ∈ B,n ∈ N be public.
Then
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• Alice picks an embedding ψ : A→ Aut(B) and sends
x = ψ(a)(b)ψ(a2)(b) . . . ψ(an−1)(b) to Bob.

• Bob picks an embedding φ : A→ Aut(B) and sends
y = φ(a)(b)φ(a2)(b) . . . φ(an−1)(b) to Alice.

• Alice computes

kA =
n−1∏
i=1

ψ(ai)(y) =
n−1∏
i=1

n−1∏
j=1

ψ(ai)φ(aj)(b).

• Bob computes

kB =
n−1∏
i=1

φ(ai)(x) =
n−1∏
i=1

n−1∏
j=1

φ(ai)ψ(aj)(b).

We require that Alice and Bob pick ψ and φ so that they commute. If this is
done, Alice and Bob have computed a common shared key k = kA = kB .

The proposal [4] suggests to take A to be a p-group (a group of order pl for
some l ∈ N and prime p) and B to be an elementary abelian p-group of order
pm. Thus B may be viewed as an m-dimensional vector space over Fp, and
so Aut(B) = GLm(Fp). With this choice of platform groups, we can view the
protocol as follows.

Define f(x) = x+x2 + · · ·+xn−1. Let b be an m-dimensional column vector
over Fp. Alice and Bob choose private m ×m matrices J and K respectively,
using some method so that f(J) and f(K) commute. In general, and a little
more formally, J = MA(rA) and K = MB(rB) where MA and MB are public
algorithms which take as input random sequences of coin tosses rA and rB re-
spectively (in addition to the public parameters of the scheme). The algorithms
must have the property that the matrices f(MA(rA)) and f(MB(rb)) commute
for all input sequences rA and rB respectively. The paper [4] suggests some
candidates for MA and MB , but we do not make use of the details of these
algorithms in this cryptanalysis.

Alice transmits the column vector wA = f(J)b to Bob. Bob transmits the
column vector wB = f(K)b to Alice. The common key k is the column vector
defined by

k = f(J)f(K)v = f(J)wB = f(K)wA,

the last equality following since f(J) and f(K) commute.

A cryptanalysis

Suppose an adversary Eve receives wA, wB and the public parameters of the
scheme.

Let X be any matrix such that Xb = wA, and X commutes with f(L) for all
matrices L that can possibly be generated by Bob. Such a matrix exists since
X = f(J) satisfies these conditions.
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Note that the conditions onX are linear conditions on the unknown entries of
X. This is clear for the condition that Xb = wA. The commutator condition can
be expressed as Xf(L) = f(L)X, for matrices L output by the algorithm MB .
To compute the commutator condition on X, Eve can run MB on some random
inputs rE to find suitable matrices f(L) and impose the necessary conditions
Xf(L) = f(L)X on X. Since these conditions are linear, the number of random
inputs rE that is required before these necessary conditions become sufficient
to imply the commutator condition (at least for an overwhelming proportion of
runs of the protocol) is very small.

Since all the conditions on X are linear and easy to find, a suitable matrix
X can be computed efficiently.

We claim that k = XwB . To see this, observe that

XwB = Xf(K)b = f(K)Xb = f(K)wA = f(K)f(J)b = f(J)f(K)b = k.

This means that the adversary can generate the shared key, and the scheme is
broken.

4 The RU Scheme

We now cryptanalyse a recent key agreement protocol proposed by Romanczuk
and Ustimenko [7]. The protocol works as follows.

Let GLn(Fq) denote the group of invertible n×n matrices over a finite field
Fq of order q, and let Fq[x, y] denote the polynomial ring over Fq in two variables
x and y. Let C,D ∈ GLn(Fq) be two commuting matrices and let d ∈ Fn

q . The
matrices C,D and the vector d are made public.

To agree on a shared key, Alice picks a polynomial fA(x, y) ∈ Fq[x, y] and
sends wA = fA(C,D)d to Bob. Likewise Bob picks a polynomial fB(x, y) ∈
Fq[x, y] and sends wB = fB(C,D)d to Alice. Alice computes kA = fA(C,D)wB ,
Bob computes kB = fB(C,D)wA. Since C and D commute, the same is true
for fA(C,D) and fB(C,D), and so their shared key is the vector k := kA = kB .

It was not fully specified how the matrices C,D and the polynomials fA, fB

are generated. However, the following cryptanalysis applies to any method of
generation.

A cryptanalysis

Suppose a passive adversary Eve receives wA, wB , and the public quantities C,D
and d. Let X be any matrix such that

XC = CX, XD = DX, Xd = wA.

Note that such a matrix exists, since X = fA(C,D) satisfies these conditions.
Since the conditions on X are all linear, such a matrix is easily found. Eve can
then compute the key as:

XwB = XfB(C,D)d = fB(C,D)Xd = fB(C,D)wA = k.
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