
Really fast syndrome-based hashing

Daniel J. Bernstein1, Tanja Lange2, Christiane Peters2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

3 Institute of Information Science
Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan

peter@cryptojedi.org

Abstract. The FSB (fast syndrome-based) hash function was submit-
ted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and
Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and
2007. Many FSB parameter choices were broken by Coron and Joux in
2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic
FSB idea appears to be secure, and the FSB submission remains unbro-
ken. On the other hand, the FSB submission is also quite slow, and was
not selected for the second round of the competition.

This paper introduces RFSB, an enhancement to FSB. In particular,
this paper introduces the RFSB-509 compression function, RFSB with
a particular set of parameters. RFSB-509, like the FSB-256 compression
function, is designed to be used inside a 256-bit collision-resistant hash
function: all known attack strategies cost more than 2128 to find collisions
in RFSB-509. However, RFSB-509 is an order of magnitude faster than
FSB-256. On a single core of a Core 2 Quad Q9550 CPU, RFSB-509 runs
at 10.67 cycles/byte: faster than SHA-256, faster than 7 of the 14 second-
round SHA-3 candidates, and faster than 3 of the 5 SHA-3 finalists.

Key words: compression functions, collision resistance, linearization,
generalized birthday attacks, information-set decoding, tight reduction
to L1 cache.

1 Introduction

Finding collisions in a very simple compression function of the form

(m1,m2, . . . ,mw) 7→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw]

This work was supported by the National Science Foundation under grant 0716498,
by the European Commission under Contract ICT-2007-216499 CACE, by the Eu-
ropean Commission under Contract ICT-2007-216646 ECRYPT II, and by the Na-
tional Science Council, National Taiwan University and Intel Corporation under
Grant NSC99-2911-I-002-001. Part of this work was carried out when Peter Schwabe
was employed by Technische Universiteit Eindhoven. Permanent ID of this docu-
ment: 067a9e99992a54f43b7f859c81b25d16. Date: 2011.05.08.

2 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

turns out to be surprisingly difficult. As an illustration of this difficulty we
challenge the reader to break the following parameters:

– w, the weight of the sum, is 112. (Sum here means exclusive-or; we do not
bother saying “modulo 2” everywhere.)

– The input chunks m1,m2, . . . ,m112 range over {0, 1, . . . , 255}. The compres-
sion function therefore has 896 bits of input.

– Each of the 28672 constants c1[0], . . . , c1[255], . . . , c112[0], . . . , c112[255] is an
independent uniform random 509-bit vector. The compression function there-
fore has 509 bits of output.

At first one might think that linear algebra instantaneously finds preimages in
this function, with collisions as a trivial side effect. Select 509 of these 28672
constants; there is a good chance that those 509 are linearly independent, guar-
anteeing that linear algebra modulo 2 will reveal a subset adding up to the
target. The reason that this attack does not work is that the resulting subset is
extraordinarily unlikely to have the form c1[m1], c2[m2], . . . , c112[m112]: in par-
ticular, the subset will normally have size close to 509/2, much larger than 112.
In other words, linear algebra easily finds random codewords in the linear code
defined by the matrix of constants, but it does not find low-weight codewords,
a classic problem in coding theory.

One can also try to find collisions directly, without a detour through preim-
ages. Select, for example, the 510 constants ci[j] with j ∈ {0, 1, 2, 3} for 1 ≤
i ≤ 50 and ci[j] with j ∈ {0, 1, 2, 3, 4} for 51 ≤ i ≤ 112. Use linear algebra
to find a nonempty subset adding up to 0, and try to split the subset into 224
constants c1[m1], c2[m2], . . . , c112[m112] and c1[m′

1], c2[m′
2], . . . , c112[m′

112]. Low
weight is no longer an obstacle: the subset has about a 2−10 chance of having
size exactly 224. The reason that this attack does not work is that the subset has
chance only about (6/16)50(10/32)62 ≈ 2−175 of containing exactly two c1[· · ·],
exactly two c2[· · ·], etc.

There is a long history of proposals of compression functions of this type
(see Section 2) and also a long history of attacks (see Section 4). Many of
the proposals are motivated by speed: the additions are very fast; the struc-
ture c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw] also has obvious virtues of incremental-
ity and parallelizability. However, the large matrix of random constants makes
small hardware implementations impossible, and software implementations end
up spending far longer waiting for memory access than actually performing use-
ful computations. This problem was already highlighted five years ago by Augot,
Finiasz, and Sendrier in [2, Section 6].

Obtaining very high speed requires reducing memory-access costs, which in
turn requires compressing the matrix. This is impossible for a uniform random
matrix, but security does not seem to require a uniform random matrix. Finiasz,
Gaborit, and Sendrier in [26] proposed using a quasi-cyclic matrix: each block
of the matrix is a block of rotations of a single vector. In [26, Section 4.2] they
suggested choosing the vector length r so that the polynomial (xr − 1)/(x −
1) is irreducible in F2[x]. They argued, under this assumption on the vector
length, that finding a low-weight codeword for a random quasi-cyclic matrix is

Really fast syndrome-based hashing 3

a well-known hard problem in coding theory, as hard as the generic low-weight-
codeword problem.

Most of the specific parameters proposed in [26] were promptly broken in
two different ways, showing two mistakes in the parameter selection. The first
mistake, exploited by Saarinen in [40], is that [26] chose w too large compared to
the vector length r; security against linearization requires w to be considerably
smaller than r/2. The second mistake, exploited by Fouque and Leurent in [27], is
that [26, Section 6] ignored [26, Section 4.2] and chose powers of 2 for r, violating
the irreducibility of (xr − 1)/(x− 1) and allowing the attacker to concentrate on
small factors of (xr − 1)/(x− 1).

Both of these mistakes were fixed in FSB [3], a first-round SHA-3 submis-
sion by Augot, Finiasz, Gaborit, Manuel, and Sendrier. FSB resists the previous
attack strategies and remains unbroken today. Bernstein, Lange, Niederhagen,
Peters, and Schwabe in [9] needed days on an 8-computer cluster (using 64GB
of RAM and 5.5TB of disk) to find collisions in the scaled-down FSB-48 com-
pression function by a streamlined generalized birthday attack; for comparison,
an unoptimized attack on the FSB-48 hash function finds collisions in about a
minute on just one core on one of these computers with negligible memory usage.
The compression function has vector length r = 197 (subsequently truncated to
192 bits, but the rotations are of 197-bit vectors), weight w = 24, and 14 bits in
each mi. Scaling the same attack to the 1024-bit FSB-256 compression function
would cost far more than 2128. Other attacks also do not seem to pose a threat.

However, FSB is quite slow, and was not selected for the second round of
the SHA-3 competition. The best speed reported in eBASH [8] for FSB-256 on
an Intel Core 2 Quad Q9550 (10677) (berlekamp) is 95.53 cycles/byte (using
an assembly-language implementation by Schwabe). SHA-256 takes just 15.26
cycles/byte on the same computer.

Contents of this paper. We introduce the RFSB (“really fast syndrome-
based”) compression function, an improved version of FSB. In particular, we
introduce RFSB-509, a compression function that reaches higher speeds than
SHA-256 on a Core 2 Quad CPU, while maintaining higher collision security
than SHA-256 against every known attack. See Section 2 for the definitions of
RFSB and RFSB-509.

The FSB-to-RFSB improvements come from two sources. First, the design
of RFSB pays much closer attention to the efficiency of the computation of
c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw]. The most important result of this analysis is
that RFSB permutes the vectors in the FSB matrix. This permutation has no
effect on the best attacks known, and might also seem irrelevant to speed, but we
show that it eliminates a critical inefficiency in FSB. See Section 3 for a detailed
explanation of our algorithm for computing RFSB.

Second, the design of RFSB pays much closer attention to the cost of attacks.
This allows the RFSB parameters to be tuned much more tightly than the FSB
parameters were, while still keeping all known attacks safely above our 2128

security target. Our attack survey in Section 4 corrects several algorithm-analysis
errors in the literature, and incorporates some new improvements that we found.

4 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

Like FSB and earlier designs of this type, RFSB offers incremental hashing
and parallelizable hashing. Unlike FSB, RFSB allows fast on-demand matrix
generation, making it implementable in very small hardware.

Building a hash function from a compression function. We emphasize
that our goal in this paper is the traditional goal of building a collision-resistant
compression function F for fixed-length messages. RFSB, specifically RFSB-
509, is our proposal for F . Merkle–Damg̊ard iteration then produces a collision-
resistant compression function F for longer messages; see, e.g., [22, Theorem
3.1]. Our discussion of speed focuses on the speed of this iterated function F for
long messages.

Many, perhaps most, papers on hash-function design use the iteration mode
as an argument for weakening their collision-resistance goals. If the compression
function F has input (v,m), where v is the previous chaining value (or initial-
ization vector) and m is an attacker-controlled block, then these papers say that
F (v,m) = F (v′,m′) with (v,m) 6= (v′,m′) is merely a “pseudo-collision” and
that it qualifies as a “collision” only if v = v′. However, many papers on hash-
function cryptanalysis say that finding a pseudo-collision is a “certificational
attack” even if v 6= v′. To avoid this debate we have designed RFSB to stop all
pseudo-collisions.

One interesting consequence of incrementality is that RFSB can precompute
the v-dependent part of its output before m is available. The preliminary FSB
designs in [1], [2], and [26] had the same feature, but the FSB SHA-3 submission
does not, because it permutes the bits of (v,m). According to [25], this permu-
tation was added in reaction to [27, Section 3], in which Fouque and Leurent
object to the following “IV weakness” in the preliminary FSB designs: a collision
of the form F (m) = F (m′), where m and m′ are distinct single-block messages,
implies F (p, m) = F (p, m′) for every prefix p. We do not see why this is any more
troubling than the following “weakness” in the compression functions of SHA-
1, SHA-2, and every SHA-3 candidate: a collision of the form F (m) = F (m′),
where m and m′ are distinct identical-length block-aligned messages, implies
F (m, q) = F (m′, q) for every suffix q. Our goal is to prevent these collisions
from occurring in the first place.

To build a full-fledged cryptographic hash function, suitable for use in mes-
sage authentication, commitment protocols, etc., we can add any reasonably
strong output filter to RFSB-509. One reasonable choice of output filter is SHA-
256; of course, the 256-bit output length of SHA-256 then reduces collision re-
sistance to 2128. We emphasize that an output filter adds only a small constant
overhead to the cost of hashing; the speed of hashing a long message is the speed
of our compression function.

2 Design of RFSB

This section defines the RFSB family of compression functions. In particular, this
section defines the RFSB-509 compression function. This section then reviews

Really fast syndrome-based hashing 5

the literature, showing in particular how RFSB differs from FSB and explaining
why we introduced these differences.

Specification of RFSB. There are four RFSB parameters: an odd prime num-
ber r, a positive integer b, a positive integer w, and a 2b × r-bit compressed
matrix. The prime r is chosen so that 2 has order r − 1 in the unit group F∗

r ;
i.e., so that the cyclotomic polynomial (xr − 1)/(x− 1) in F2[x] is irreducible.

The RFSB output is an r-bit string, represented as a sequence of dr/8e bytes
in little-endian form. The string (s0, s1, . . . , sr−1) represents the polynomial s0 +
s1x+ · · ·+sr−1x

r−1 in the ring F2[x]/(xr−1). For example, for r = 13, the byte
string (12, 16) represents the bit string (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), which in
turn represents the polynomial x2 + x3 + x12 in F2[x]/(x13 − 1).

The RFSB input is a bw-bit string, represented as a sequence of dbw/8e bytes
in little-endian form. This string represents a sequence (m1,m2, . . . ,mw), where
each mi is an element of {0, 1, . . . , 2b − 1}.

The compressed RFSB matrix is a sequence of r-bit strings c[0], c[1], . . . , c[2b−
1]. We define ci[j] = c[j]x128(w−i) in the ring F2[x]/(xr−1); in other words, ci[j]
is a 128(w− i)-bit rotation of c[j]. This matrix specifies the relationship between
the RFSB input and the RFSB output: RFSB is the function

(m1,m2, . . . ,mw) 7→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw],

i.e., the function that maps an input (m1,m2, . . . ,mw−1,mw) to the output
x128(w−1)c[m1]⊕ x128(w−2)c[m2]⊕ · · · ⊕ x128c[mw−1]⊕ c[mw] in F2[x]/(xr − 1).

Sometimes we refer to the uncompressed RFSB matrix. This is a 2bw× r-bit
matrix containing the strings ci[j], for i ∈ {1, 2, . . . , w} and j ∈ {0, 1, . . . , 2b − 1}.
We do not mean to suggest that implementations need to compute this matrix.

Specification of RFSB-509. Our RFSB-509 proposal has r = 509, b = 8, and
w = 112. In other words, RFSB-509 maps (m1,m2, . . . ,m112), where each mi is
an 8-bit string, to

x128(112−1)c[m1]⊕ x128(112−2)c[m2]⊕ · · · ⊕ x128c[m111]⊕ c[m112]

in F2[x]/(x509 − 1). We chose the parameters (509, 8, 112) to maximize the soft-
ware speed of RFSB (see Section 3) while keeping the cost of all known attacks
above 2128 (see Section 4).

The compressed RFSB-509 matrix is defined as a concatenation of AES out-
puts. Specifically, each 509-bit c[j] is obtained by encrypting the four 16-byte
strings (0, j, 0, . . . , 0, 0), (1, j, 0, . . . , 0, 0), (2, j, 0, . . . , 0, 0), (3, j, 0, . . . , 0, 0) with
AES, concatenating the 128-bit outputs into a 512-bit string, and reducing mod-
ulo x509 − 1 (i.e., folding the last three bits onto the first three bits). The AES
key is a 128-bit all-0 key.

We comment that implementors can trade space for time by computing each
c[j] when it is used, rather than precomputing and storing the AES outputs.
The hardware area required for RFSB-509 (and an AES-based output filter)
is then not much larger than the hardware area required for AES. The regular
input structure also allows “counter-mode caching”, a sharing of work in the first

6 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

two rounds of AES; see [11]. We also comment that varying the AES key is a
natural way to “salt” RFSB-509, converting RFSB-509 into a keyed compression
function.

History and credits. In a 1970 technical report [46], Zobrist introduced the
compression function (m1,m2, . . . ,mw) 7→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw], with
random choices of matrix entries ci[j], as a non-cryptographic hash function.
Zobrist’s parameter choices were too small to be of cryptographic interest.

The same compression function was reintroduced and discarded in a Euro-
crypt 1997 paper [6] by Bellare and Micciancio. The only difference between
Zobrist’s hash and “XHASH” in [6, Section 1] is that ci[mi] is replaced by
H(i,mi), allowing much longer input chunks mi while raising security questions
and efficiency questions for the underlying function H. Bellare and Micciancio
described “XHASH” as insecure, independently of H, because they were able to
find collisions by linearization for large w. They instead proposed various slower
alternatives to ⊕, such as modular multiplication. They did not consider small
values of w.

A very similar compression function with limited w had been introduced
a decade earlier by Damg̊ard at Crypto 1989 [22, Section 4.3]. Damg̊ard used
addition rather than ⊕, took w = 256 for 128-bit output (or more generally
w ≈ 2r for r-bit output), and took mi ∈ {0, 1}. Camion and Patarin introduced
generalized birthday attacks (without giving them that name) at Eurocrypt 1991
[16] and showed that Damg̊ard’s function is breakable in subexponential time.

As far as we know, the first proposal with limited w and several bits in
each mi was the preliminary version of FSB by Augot, Finiasz, and Sendrier
appearing in [1] and [2]. The larger range of mi appears to allow a security level
exponential in r with a polynomial-size matrix, specifically a matrix containing
Θ(r2) bits. However, the implicit constant in Θ(r2) is quite large, and the time
to access the matrix is quite troublesome.

FSB with a quasi-cyclic matrix was introduced by Finiasz, Gaborit, and
Sendrier in [26]. FSB with a truncated quasi-cyclic matrix was introduced by
Augot, Finiasz, Gaborit, Manuel, and Sendrier in [3] and submitted to the SHA-
3 competition. These proposals appear to allow a security level exponential in r
with a compressed matrix containing Θ(r) bits, although the implicit constant
in Θ(r) is still quite large.

Comparison between FSB and RFSB. The FSB-256 proposal from [3] fol-
lows Zobrist’s formula (m1,m2, . . . ,mw) 7→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw] with
r = 1061 bits of output (truncated to 1024 bits), weight w = 128 in the sum, and
b = 14 bits in each input chunk mi. The uncompressed FSB-256 matrix entries
ci[0], ci[1], . . . , ci[16383] are generated modulo x1061 − 1 as

ci[0], ci[0]x, ci[0]x2, . . . , ci[0]x1023,

ci[1024], ci[1024]x, ci[1024]x2, . . . , ci[1024]x1023,

...

ci[15360], ci[15360]x, ci[15360]x2, . . . , ci[15360]x1023,

Really fast syndrome-based hashing 7

where ci[0], ci[1024], . . . , ci[15360] are generated from digits of π.
FSB-256 handles 14 − 1024/128 = 6 bits of new input for each 1024-bit

addition, while RFSB-509 handles 8− 512/112 ≈ 3.43 bits of new input for each
512-bit addition. We are comfortable with a smaller r = 509, and a larger ratio
w/r, because of our tighter security analysis; see Section 4. These changes allow
the compressed RFSB-509 matrix to fit into just 16384 bytes, comfortably inside
L1 cache on typical CPUs.

FSB-256 uses almost r rotations of each vector, while RFSB-509 uses only
w ≈ r/4.5 rotations of each vector. The number of rotations is important be-
cause it is the compression factor for the matrix. We could have allowed further
compression as an option in RFSB-509 by modifying the definition of the ma-
trix to use 2w or 3w or 4w rotations of each vector; but this option would not
help fast software implementations such as ours, and it would slightly complicate
implementations that generate matrix entries on the fly.

The most important difference between FSB and RFSB is the order of matrix
entries: FSB defines ci[j] as ci[0]xj (at least for a wide range of j), while RFSB
defines ci[j] as c[j]xi (or rather c[j]x128(w−i)), exchanging the roles of i and j.
This change is important because j is unpredictable, a chunk of input, while i is a
constant, the position of the chunk. The rotation distances in FSB are therefore
input-dependent, making them quite expensive. The rotation distances in RFSB
are constant, allowing several optimizations that are not available to FSB.

3 Speed of RFSB-509

We implemented the RFSB-509 compression function in assembly language, tar-
geting the widely deployed 45nm Intel Core 2 line of CPUs, specifically the Core
2 Quad Q9550 (10677). To allow public benchmarking of RFSB-509 we imple-
mented a complete hash function that uses RFSB-509 with Merkle–Damg̊ard
iteration, an all-zero initialization vector, and SHA-256 as output filter. We
padded the original message to a multiple of 48 bytes as follows: first zero-pad
to 40 bytes plus a multiple of 48 bytes; then append 8 bytes contaning, in little-
endian form, the number of bytes of the message before padding. We placed the
software into the public domain to maximize reusability, and submitted it to
eBASH [8] for benchmarking.

The eBASH results show RFSB-509 running at 10.67 cycles/byte on a Core
2 Quad Q9550 named berlekamp. For comparison, eBASH reports SHA-256
running at 15.26 cycles/byte on the same machine using the assembly-language
implementation of SHA-256 from Wei Dai’s Crypto++ library, and reports that
the SPHlib and OpenSSL implementations of SHA-256 are slower. The 256-bit
SHA-3 finalists run at 7.90 (Skein), 8.82 (BLAKE), 11.69 (Keccak), 17.20 (JH),
and 22.32 (Grøstl) cycles/byte.

The algorithm that we use to compute RFSB-509 is explained in this section.
This algorithm relies critically on the predictable rotation distances in RFSB;
we would not be able to achieve similar speeds for FSB.

8 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

This section also describes two additional algorithmic improvements that
provide even higher speed for some applications. One improvement, incremental
hashing, is well known, while the other improvement, fast batch verification, is
less well known. We have not implemented these improvements; we emphasize
that RFSB-509 is already quite fast without these improvements. This section
concludes by discussing ways to compute RFSB without variable-index table
lookups.

How to compute RFSB-509. We view the computation of RFSB-509 as
having three phases. The first phase loads the input bytes m1,m2, . . . ,m112

and multiplies their values by 64 to make them usable offsets for loads from
the matrix. Specifically, we load an 8-byte chunk of input into a 64-bit integer
register and then extract 8 matrix offsets from these eight bytes using 7 copy, 8
shift, and 8 mask instructions. The total cost for 112 bytes of input is 14 loads,
98 copies, 112 shifts, and 112 masks.

The second phase loads the 509-bit matrix entries c[m1], c[m2], . . . , c[m112]
and adds them together with appropriate shifts to form the (128(112−1)+512)-
bit (i.e., 14720-bit) polynomial

x128(112−1)c[m1]⊕ x128(112−2)c[m2]⊕ · · · ⊕ x128c[m111]⊕ c[m112]

= x128(112+2)(c[m1]3)

⊕ x128(112+1)(c[m1]2 ⊕ c[m2]3)

⊕ x128(112+0)(c[m1]1 ⊕ c[m2]2 ⊕ c[m3]3)

⊕ x128(112−1)(c[m1]0 ⊕ c[m2]1 ⊕ c[m3]2 ⊕ c[m4]3)

⊕ x128(112−2)(c[m2]0 ⊕ c[m3]1 ⊕ c[m4]2 ⊕ c[m5]3)
⊕ · · ·
⊕ x128(1)(c[m111]0 ⊕ c[m112]1)

⊕ x128(0)(c[m112]0)

where c[mi] = c[mi]0 ⊕ x128c[mi]1 ⊕ x256c[mi]2 ⊕ x384c[mi]3. We represent this
polynomial in radix x128, with 128-bit coefficients such as c[m1]2⊕ c[m2]3 stored
in the 128-bit XMM registers on the Core 2. Loading all the matrix entries takes
112 · 4 = 448 XMM load instructions, and there are 112 · 3 − 3 = 333 xors of
coefficients shown above. The AMD64 architecture allows offsets to be multiplied
by a constant as part of the load operation, and if this constant were allowed to
be 16 then we could eliminate some of the shifts and masks mentioned above;
but the constant is limited to 8.

The third phase reduces this polynomial modulo x509−1. This is an iterative
process, clearing more and more bits of the polynomial until only 509 coefficients
remain. The most obvious reduction strategy, starting from

∑
i x128ipi where

each pi is a 128-bit polynomial, is to replace pj by pj/x509 for a selected j ≥ 4:
in other words, replace pj−4 by p′j−4 = pj−4 ⊕ x3(pj mod x125); replace pj−3

by p′j−3 = pj−3 ⊕
⌊
pj/x125

⌋
; and replace pj by p′j = 0. Using this strategy

Really fast syndrome-based hashing 9

to successively eliminate p114, p113, . . . , p4 produces a 512-bit polynomial p0 ⊕
x128p1 ⊕ x256p2 ⊕ x384p3; replacing p0 by p′0 = p0 ⊕

⌊
p3/x125

⌋
and replacing p3

by p′3 = p3 mod x125 then completes the reduction modulo x509 − 1.
This reduction strategy would be satisfactory if the Core 2 had fast instruc-

tions to shift pj down by 125 bits, producing
⌊
pj/x125

⌋
, and to shift pj up by 3

bits, producing x3(pj mod x125). However, the XMM upwards-shift instruction
psllq actually operates in parallel on two 64-bit halves of a 128-bit vector: if
pj = A + x61B + x64C + x125D then a 3-bit psllq produces x3A + x67C, dis-
carding the desired x64B. There is a 128-bit shift-up instruction pslldq, but
it can only shift by multiples of 8 bits. Similar comments apply to the down-
wards shifts psrlq and psrldq. Clearing pj in this way takes 8 instructions:
copy (since psllq overwrites its input), psllq to obtain x3A + x67C, psrlq to
obtain B + x64D, a shuffle instruction pshufd to obtain x64B, pxor to obtain
x3A+x64B+x67C, psrldq to obtain D, a pxor into pj−4, and a pxor into pj−3.

To eliminate some instructions we use a higher-distance reduction strategy,
replacing pj by pj/x16·509 for each j ≥ 64. In other words, we replace pj−64 by
p′j−64 = pj−64⊕x48(pj mod x80); replace pj−63 by p′j−63 = pj−63⊕

⌊
pj/x80

⌋
; and

replace pj by p′j = 0. The shift distances 48 and 80 here are multiples of 8 bits,
so clearing pj in this way takes only 5 instructions: copy, pslldq, psrldq, pxor,
pxor. We could similarly replace pj by pj/x8·509 for 64 > j ≥ 32, but this would
have a smaller benefit and would complicate the data flow discussed below.

This third phase involves 5(115 − 64) + 8(64 − 4) + 5 = 740 arithmetic
instructions. In total the three phases involve 462 loads and 1395 arithmetic
instructions. We have checked these totals against our implementation.

There are two obvious bottlenecks in this computation. First, the Core 2 can
perform at most 1 load per cycle, so 462 loads take at least 462 cycles. Second,
the Core 2 can perform at most 3 arithmetic instructions per cycle, so 1395
arithmetic instructions take at least 465 cycles. With Merkle–Damg̊ard iteration
each call to the compression function processes 48 bytes of input (together with
the previous output), so 465 cycles yield a lower bound of 9.6875 cycles per byte.
There are several ways to rebalance loads and arithmetic (loading smaller chunks
of input, for example, or replacing chaining-variable loads with arithmetic), but
the balance here is already very good.

The above description ignores all questions of instruction scheduling and
register allocation. There is data flow connecting each input chunk to 8 con-
secutive offsets, connecting each offset to 4 consecutive polynomial coefficients,
connecting pj to pj−64 and pj−63 for j ≥ 64, and connecting pj to pj−4 and
pj−3 for 64 > j ≥ 4. We organize the computation as successive elimina-
tion of p63, p62, . . . , p4, preceded “just in time” by each relevant elimination
of p114, p113, . . . , p64. The polynomial coefficients active at each moment then
fit into the 16 available XMM registers on the AMD64 architecture, and the
offsets, pointers, etc. fit into the 15 available integer registers.

There is enough parallelism in the computation to overcome most latency
problems and come close to the 9.6875-cycle-per-byte lower bound, if instructions
are scheduled carefully. As mentioned above, our software actually uses 10.67

10 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

cycles per byte, about 10% above the lower bound. Note that 448 cycles (97% of
the lower bound and 87% of our actual time) are explained by the 112 512-bit
matrix loads, so there is very little room for improvement on this CPU.

Extra speed: incremental hashing. Zobrist in [46, page 6] emphasized the
incremental nature of his hash, i.e., the ability to quickly update the hash output
for a small change to the input: “moves will typically involve two XOR oper-
ations.” For example, changing m2 to m′

2 simply adds c2[m2] ⊕ c2[m′
2] to the

output. Bellare and Micciancio in [6] advertised the same feature, with various
generalizations of ⊕ and without credit to Zobrist; their paper title was “A new
paradigm for collision-free hashing: incrementality at reduced cost.”

Chaining an incremental compression function such as RFSB produces a
somewhat incremental hash function for long messages. (We say “somewhat”
to emphasize, as in [6, Section 1.1], that this requires storage of all intermedi-
ate compression-function outputs, not merely the final output.) The block that
changes can be recomputed incrementally at very high speed. Each subsequent
block must be recomputed, but RFSB allows some of this computation to be
skipped, since the only change to the input is in the chaining value. Note that
Damg̊ard’s tree hash [22, Theorem 3.2] has only a logarithmic number of subse-
quent blocks for long messages.

Extra speed: fast batch verification. One can compute the sum of many
RFSB outputs at higher speed than computing each output separately. The
idea is very simple: the number of copies of ci[j] in the sum is the number
of occurrences of j as mi in the inputs; one can first count this number of
occurrences, and then add ci[j] once if the number is odd. There are 2bw separate
counters, and computing all of them requires just one fast pass through all of
the inputs. Each b bits require one counter update, which is faster than an r-
bit xor for large r. All other steps become negligible as the number of inputs
increases, but we nevertheless point out a speedup in those steps for large r: one
can combine the ci[j] additions across i into a convolution, which in turn can be
performed in subquadratic time by fast-multiplication techniques.

One can, at almost twice that speed, perform the following simple statistical
check of a batch of alleged RFSB outputs: select 50% of the inputs, compute
the sum of the RFSB outputs, and see whether the sum matches the sum of
alleged outputs. This check cannot be fooled with probability above 50%. This
is an example of what Bellare, Garay, and Rabin in [5] call the “atomic random
subset test.”

To achieve a much higher security level one can compute many indepen-
dent sums. The cost of this computation grows sublinearly with the number of
sums, and therefore sublinearly with the security level, because the sums have
large overlaps that can be shared; see generally [5]. For comparison, the cost of
separately computing each RFSB output grows linearly with the security level.

Extra security: avoiding variable-index table lookups. Our RFSB soft-
ware performs a variable-index table lookup c[mi] for each input chunk mi. This
could be a problem for applications that hash secret data, such as HMAC: table

Really fast syndrome-based hashing 11

lookups can leak index information through cache-timing attacks, hyperthread-
ing attacks, etc., the same way that conditional branches can leak condition
information. See generally [43].

One way to hide indices is to look up all table entries, using arithmetic
operations to combine the results into each desired c[mi]. RFSB has many table
lookups to perform in parallel, and for large tables one can reduce the amount
of arithmetic by batching these lookups into a sorting computation, as described
in the following two paragraphs.

The inputs to this sorting computation are w vectors (mi, 1, i) together with
2b vectors (j, 0, c[j]). Sorting brings each j next to all mi’s that are equal to
j: first (0, 0, c[0]) is followed by all (mi, 1, i) with mi = 0, then (1, 0, c[0]) is
followed by all (mi, 1, i) with mi = 1, etc. A linear-time pass from left to right
then replaces each (mi, 1, i) with (c[mi], 1, i). A second sorting computation then
puts (c[mi], 1, i) back into order of i.

It is well known that essentially-linear-time sorting does not require vari-
able array indexing, and does not require conditional branches. For example,
the Batcher sorting network sorts n items using approximately (1/2)n(lg n)2

compare-exchange steps, and one can do even better for large n. See [31, Section
5.3.4] for a survey of the extensive literature on sorting networks.

Another way to avoid variable-index table lookups is to compute c[mi] di-
rectly from mi. The Käsper–Schwabe bitsliced implementation of AES [30] takes
only about 7 cycles per byte, and new Intel CPUs support AES instructions tak-
ing only about 1.4 cycles per byte in parallelizable modes, i.e., about 90 cycles
to compute c[mi]. This is an order of magnitude slower than our software.

We have two suggestions for improving speed in this situation. One suggestion
is to replace AES with something much simpler and faster. The full security of
AES is certainly not required for RFSB: all that we need is a function generating
a few elements of F2[x]/(xr−1) without any obvious linear structure. The design
of such functions is outside the scope of this paper.

The other suggestion, specific to HMAC, is to eliminate the initial keying in
HMAC. Normally the HMAC input is public (such as a packet sent through the
network), and if no secret key is inserted then RFSB with fast table lookups can
be applied to this public input. The second stage of HMAC needs a key but is
applied only to a short message; this stage can simply be SHA-256. Eliminating
the initial keying allows MAC forgery via offline collision attacks, but we have
designed RFSB precisely to make those collision attacks fail.

4 Attacks against RFSB

This section reviews and analyzes three different strategies to find collisions in
FSB-type hash functions, including some new attack improvements. All of the
strategies cost more than 2128 to find collisions in RFSB-509. This section also
reviews reducibility, an attack tool that converts many FSB-type hash functions
into smaller hash functions that are easier to break, and shows that this tool is
inapplicable to RFSB.

12 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

We describe each attack for general RFSB parameters r, b, w. We illustrate
the scalability of the attacks by considering the special case b = 8, w ≈ r/4.
In this case RFSB compresses ≈ 2r bits to r bits, using r/4 additions of r-bit
vectors, i.e., 2 additions of r-bit vectors per byte of input; the compressed RFSB
matrix fits into 32r bytes; and the cost of each attack is exponential in r.

We make some comments about preimage attacks as a stepping-stone to
collision attacks, but we do not systematically analyze preimage attacks. Several
modern hash-function designs, such as Keccak [12] and Quark [4], drop the
traditional goal of having a preimage exponent twice as large as the best collision
exponent; the question of whether RFSB reaches this goal is outside the scope
of this paper. We are satisfied knowing that first preimages require breaking an
output filter, and that second preimages are even more difficult to find than
collisions.

Cost of computation. In this paper, cost means price/performance ratio: the
size of the attack machine, multiplied by the time taken by the attack machine.
For example, a brute-force k-bit key search can be carried out in time 2kt by a
small attack machine, or in time 2kt/100 by an attack machine 100 times larger,
where t is the time to test a single key; these machines have the same cost.

In a classic paper thirty years ago, Brent and Kung proved that every n-bit
multiplication circuit costs at least n3/2. Here cost has a precise definition as the
circuit area, multiplied by the time taken by the circuit, scaled by a particular
constant reflecting the circuit speed, wire size, etc.; see [14, Theorem 3.1]. The
same bound applies to other computations such as sorting; what matters is that
the computations include n different shifts of one input, where the shift distance
depends on the other input. The model of computation in [14] is a very broad
class of two-dimensional circuits, including all of the most efficient computer
technologies available today.

We use the same definition of cost in this paper. There are some future
technologies, notably quantum computers, that cannot be efficiently simulated
in this model, but we explicitly disregard those technologies.

We caution the reader that a naive operation count, as used in many crypt-
analytic papers, is a poor predictor of cost when the allowed operations include
random access to an arbitrarily large array. For example, sorting n keys uses
fewer operations than performing n separate hash-function evaluations, even if
the hash function is quite fast; but the cost of sorting n keys becomes vastly
larger than the cost of n separate hash-function evaluations as n grows.

In the real world, sorting 250 keys is a major engineering challenge, while
250 hash-function evaluations are a rather easy computation. The current public
sorting record is merely 246.5 bytes, sorted by Yahoo’s Hadoop in 10380 sec-
onds on 3452 nodes with 13808 disks and 27616 cores. For comparison, readily
available software performs 247 separate evaluations of SHA-1 in 10380 seconds
on just 20 PCs, each equipped with two GTX 295 graphics cards. We see over-
whelming evidence that naive operation counts exaggerate the threat posed by
communication-intensive cryptanalytic algorithms, and that this exaggeration

Really fast syndrome-based hashing 13

grows with the size of the problem being solved. We see no evidence of similar
problems with the cost model in [14].

Linearization. The following preimage attack was introduced by Bellare and
Micciancio in [6, Appendix A]. First choose m1,m2, . . . ,mw and compute the
difference ∆ = h ⊕ c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw], where h is the target hash.
Then, for each i, choose m′

i 6= mi and compute the difference δi = ci[mi]⊕ci[m′
i].

Use linear algebra to find a subset of δ1, . . . , δw with sum ∆, i.e., a linear relation
ε1δ1 ⊕ · · · ⊕ εwδw = ∆, if a linear relation exists. Then c1[m1 ⊕ ε1(m′

1 ⊕m1)]⊕
. . .⊕cw[mw⊕εw(m′

w⊕mw)] = h as desired. If no linear relation exists, try again
with new choices of mi and m′

i.
The main obstacle to this attack is that if w < r then δ1, . . . , δw generate

a linear space of dimension at most w (and sometimes less), so under suitable
randomness assumptions the desired linear relation exists with probability at
most 2w/2r. The expected number of iterations is therefore at least 2r/2w; e.g.,
approximately 20.75r if w ≈ r/4.

Saarinen in [40, Section 5] suggested doubling the number of generators for
w ≤ r/2 by computing two differences for each i, say δi = ci[mi] ⊕ ci[m′

i] and
δ′i = ci[mi] ⊕ ci[m′′

i]. There are two obstacles to this attack: first, if 2w < r
then a linear relation exists with probability at most 22w/2r; second, a relation
is useful with probability only (3/4)w, since a relation involving both δi and δ′i
is useless. The expected number of iterations is therefore at least 2r/3w; e.g.,
approximately 20.60r if w ≈ r/4.

More generally, for k ≥ 1 and w ≤ r/k, Saarinen suggested computing k
differences ci[mi]⊕ ci[m′

i], ci[mi]⊕ ci[m′′
i], . . . for each i. Then there are kw gen-

erators, so a linear relation exists with probability at most 2kw/2r. A relation
is useful with probability ((k + 1)/2k)w, so the expected number of iterations is
slightly above 2r/(k + 1)w; e.g., approximately 20.42r if w ≈ r/4 and k = 4.

Saarinen in [40, Section 4] suggested a different way to double the number
of generators for collision attacks: compute δi = ci[mi]⊕ ci[m′

i] and δ′i = ci[ni]⊕
ci[n′

i], and use linear algebra to find a subset of δ1, δ
′
1, . . . , δw, δ′w with sum ∆ =

c1[m1]⊕ c1[n1]⊕ c2[m2]⊕ c2[n2]⊕ · · · ⊕ cw[mw]⊕ cw[nw]. The expected number
of iterations here is at least 2r/4w; e.g., approximately 20.50r if w ≈ r/4.

More generally, for w ≤ r/(2k), one can take 2k generators for each i, with
the first k generators of the form ci[mi] ⊕ ci[m′

i], ci[mi] ⊕ ci[m′′
i], . . . and the

second k generators of the form ci[ni]⊕ci[n′
i], ci[ni]⊕ci[n′′

i], A subset of these
generators has sum ∆ = c1[m1]⊕ c1[n1]⊕ c2[m2]⊕ c2[n2]⊕· · ·⊕ cw[mw]⊕ cw[nw]
with probability at most 22kw/2r. This subset is useful, revealing a collision,
with probability ((k + 1)2/4k)w, so the expected number of iterations is slightly
above 2r/(k + 1)2w; e.g., approximately 20.21r if w ≈ r/4 and k = 2.

A hybrid approach is to take 2k + 2 generators for v values of i and 2k
generators for w−v values of i, assuming that 2kw+2v ≤ r and 0 ≤ v ≤ w. The
expected number of iterations is then slightly above 2r/((k + 1)2w((k + 2)/(k +
1))2v). For k = 1 this approach appears in [40, Section 5.2].

For RFSB-509 the optimal attack parameters are k = 2 and v = 30, and the
expected number of iterations is slightly above 2509/(9112(16/9)30) > 2129. Since

14 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

our security target is 2128, we do not need to assess the cost of each iteration,
but we make one comment on this cost: namely, taking more than r generators
allows the cost of linear algebra to be amortized across several relations.

Note that [27, page 2] claims a simpler formula for the number of iterations
for linearization, namely (4/3)r−2w whenever w ≤ r/2. This claim is correct for
r/4 ≤ w ≤ r/2 (take k = 1 in the hybrid approach above), but understates the
number of iterations for w < r/4. The problem is that for r/4 ≤ w ≤ r/2 one
can reach r generators by taking at most 4 generators for each i, but for w < r/4
this is no longer true. For the same reason, we disagree with the comment in [40,
Section 5] that large values of k do not have “cryptanalytic advantages.”

In the opposite direction, [25, Section 3.3] states that linearization is appli-
cable only for w ≥ r/4. Our RFSB-509 example disproves this statement. As
a more extreme example, for the case w = r/8 used in [3], linearization finds
collisions in time approximately 20.41r. The time grows rapidly as w/r drops.

Generalized birthday attacks. The k-sum problem is to find x1 ∈ L1, . . . , xk ∈
Lk such that x1⊕x2⊕· · ·⊕xk = 0, given k lists L1, . . . , Lk of r-bit strings drawn
uniformly and independently at random.

If k = 2i−1 and each list has 2r/i elements then generalized birthday attacks
solve this problem using O(k · 2r/i) operations. In the next three paragraphs we
review Wagner’s single-modulus generalized birthday attack from [44], which is
slightly simpler and faster than the original multiple-modulus generalized birth-
day attack introduced by Camion and Patarin in [16].

Merge lists L1 and L2 to find all sums of elements u ⊕ v with u ∈ L1 and
v ∈ L2 that are 0 on their first r/i bits. Store these sums in a new list L1,2.
The expected number of elements in L1,2 is again 2r/i. In the same way build a
list L3,4 from lists L3 and L4 and so on and a list Lk−1,k from lists Lk−1 and
Lk. This first level of operations thus generates 2i−2 lists of expected length 2r/i

containing r-bit strings with their first r/i bits zero.
On the next level merge lists L1,2 and lists L3,4 to find all sums of elements

u ⊕ v with u ∈ L1,2 and v ∈ L3,4 that are 0 on their first 2r/i bits. Store
these sums in a new list L1,2,3,4. As r/i bits are already known to be zero, the
expected size of this list is again 2r/i. Similarly build lists L5,6,7,8 and so on to
list Lk−3,k−2,k−1,k.

Continue for i − 2 levels to build lists in the same way to obtain two lists
L1,...,k/2 and Lk/2+1,...,k, each containing an expected number of 2r/i strings that
are 0 on their first (i−2)r/i bits. Compute all sums u⊕v with u ∈ L1,...,k/2 and
v ∈ Lk/2+1,...,k to see, on average, one element with all r bits zero.

Applying this attack to an FSB-type hash function, and taking k = w, runs
into an obstacle: there are only 2b entries in each of the w input lists. The
attack needs 2r/(1+blg kc) entries. Usually b is much smaller than r/(1 + blg kc),
drastically reducing the success probability of the attack.

However, Coron and Joux in [21] used generalized birthday attacks to break
many instances of the preliminary version of FSB presented in [1]. The idea is to
take k smaller than w and to build the starting lists L1, . . . , Lk by considering
all possible xors of columns from one block. To build fewer but larger lists one

Really fast syndrome-based hashing 15

can also consider xors of columns from multiple blocks, two columns per block.
The solution of Wagner’s tree algorithm is then the xor of 2w columns, exactly
2 per block. For extensions see [2], [7], and [37].

In the case of RFSB-509 the number of operations is minimized for k = 16.
There are

(
256
2

)
≈ 215 possible 2-column combinations c1[m1] ⊕ c1[m′

1], and
therefore 2105 possible 14-column combinations involving c1, c1, c2, c2, . . . , c7, c7.
Generate all of these combinations, and build a list containing the combinations
that have their first 4 bits equal to 0, leaving 505 bits uncontrolled; this list
has approximately 2101 elements. Build 16 lists from c1, c2, . . . , c112 by repeating
this procedure. Then apply the generalized birthday attack, zeroing 5 ·101 = 505
bits. Overall this takes 15 merging steps on lists of size 2101.

The cost of a single merging step is more than 2150 by [14, Theorem 3.1];
see the “Cost of computation” subsection above. Reducing the list size to 282

would bring the merging cost down to approximately 2128; but then 5 rounds
clear only 410 bits, leaving 99 bits uncontrolled. At most 105 − 82 = 23 bits
can be controlled through precomputation, so the algorithm must be repeated
276 times on average, bringing the cost above 2200. We have considered several
further variants of Wagner’s attack, including the “Pollard” variant in [9, Section
2.2], and all of them cost far more than 2128.

Information-set decoding. Augot, Finiasz, and Sendrier in [1, Section 4.2]
presented an algorithm that uses roughly

min

{
2r

/((
r/w0

2

)
+ 1

)w0

: w0 ∈ {1, 2, . . . , w}

}

iterations to find a collision c1[m1]⊕ · · · ⊕ cw[mw] = c1[m′
1]⊕ · · · ⊕ cw[m′

w]. For
w ≈ r/4 this number of iterations is roughly 20.3r. Each iteration uses some
linear algebra, inverting an r × r matrix.

The second attack stated in Section 1 is a simplified version of the attack
from [1]; the main difference is that their algorithm also allows having 0 columns
in one block. For RFSB-509, with r = 509 and w = 112, the expected number
of iterations is (2510/((

(
4
2

)
+

(
4
0

)
)50(

(
5
2

)
+

(
5
0

)
)62) ≈ 2155.

Our new paper [10] presents a generalized version of the attack from [1]. The
generalization combines ideas from various improved versions of information-set
decoding, and restructures those ideas to fit the more complicated context of
useful codewords having exactly two c1[· · ·], exactly two c2[· · ·], etc. In partic-
ular, the attack uses the ideas of Lee-Brickell [32], Leon [33], and Stern [42] to
increase the chance of success per iteration at the expense of more effort, and
more memory, per iteration. These generalized attack parameters allow the num-
ber of bit operations to be reduced below 2145; but this is still far above 2128,
and the cost is even larger than the number of bit operations.

Reducibility. As mentioned in Section 1, the preliminary quasi-cyclic FSB pro-
posals in [26] used powers of 2 for r, specifically r = 512 and r = 1024. Fouque
and Leurent broke these proposals in [27].

16 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

To understand the Fouque–Leurent idea, consider transforming RFSB-509
into a smaller compression function f that works as follows. Take a string
(m1,m2,m3,m4,m5) as input. Apply RFSB-509 to the repeated input

(m1,m2,m3,m4,m5, . . . ,m1,m2,m3,m4,m5, 0, 0).

Note that the output in F2[x]/(x509 − 1) is a constant (for the (0, 0)) plus a
multiple of ϕ = 1 + x128·5 + x128·10 + · · · + x128·105. Subtract the constant and
divide by g = gcd

{
x509 − 1, ϕ

}
, obtaining an element of F2[x]/((x509 − 1)/g).

The output of f is this element.
Observe that f is another Zobrist-type hash: f(m1,m2,m3,m4,m5) has the

shape f1[m1]⊕f2[m2]⊕f3[m3]⊕f4[m4]⊕f5[m5]. The difficulty of finding collisions
in this hash depends on how long its output is, i.e., on the degree of (x509−1)/g.
If this output is short then one can easily find collisions in f , and therefore
collisions in RFSB-509.

This attack does not work because the output is actually very long: g turns
out to be x−1, so (x509−1)/g has degree 508. Attacks might marginally benefit
from this change in degree, but not enough to compensate for the restricted set
of inputs to f .

Modifying the attack to construct multiples of other polynomials ϕ also can-
not work. The only divisors of x509 − 1 are x509 − 1, (x509 − 1)/(x − 1), x − 1,
and 1, corresponding to finding multiples of 1, x − 1, (x509 − 1)/(x − 1), and
x509 − 1 respectively. Finding multiples of 1 or x − 1 is trivial but useless, as
in the (m1,m2,m3,m4,m5) example. Finding multiples of (x509 − 1)/(x − 1)
or x509 − 1 is a very hard preimage problem, preventing the attack from even
getting started; an attacker able to solve that preimage problem would not have
any need to transform RFSB-509 into a smaller function.

All RFSB parameters, and all parameters in the FSB SHA-3 submission [3],
are protected in the same way against the Fouque–Leurent attack: r is chosen so
that (xr−1)/(x−1) is irreducible. We are not aware of attacks against primes r
with reducible (xr − 1)/(x− 1), but insisting on irreducibility does not severely
restrict the choice of r.

References

[1] Daniel Augot, Matthieu Finiasz, Nicolas Sendrier, A fast provably secure crypto-
graphic hash function (2003). URL: http://eprint.iacr.org/2003/230. Citations
in this document: §1, §2, §4, §4, §4, §4.

[2] Daniel Augot, Matthieu Finiasz, Nicolas Sendrier, A family of fast syndrome based
cryptographic hash functions, in Mycrypt 2005 [24] (2005), 64–83. URL: http://
lasecwww.epfl.ch/pub/lasec/doc/AFS05.pdf. Citations in this document: §1, §1,
§2, §4.

[3] Daniel Augot, Matthieu Finiasz, Philippe Gaborit, Stéphane Manuel, Nico-
las Sendrier, SHA-3 proposal: FSB (2008). URL: http://www-rocq.inria.fr/

secret/CBCrypto/fsbdoc.pdf. Citations in this document: §1, §2, §2, §4, §4.
[4] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, Maria Naya-Pasencia,

Quark: a lightweight hash, in CHES 2010 [35] (2010), 1–15. URL: http://

131002.net/quark/quark_full.pdf. Citations in this document: §4.

http://eprint.iacr.org/2003/230
http://lasecwww.epfl.ch/pub/lasec/doc/AFS05.pdf
http://lasecwww.epfl.ch/pub/lasec/doc/AFS05.pdf
http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
http://131002.net/quark/quark_full.pdf
http://131002.net/quark/quark_full.pdf

Really fast syndrome-based hashing 17

[5] Mihir Bellare, Juan A. Garay, Tal Rabin, Fast batch verification for modular ex-
ponentiation and digital signatures, in Eurocrypt ’98 [38] (1998), 236–250. URL:
http://cseweb.ucsd.edu/~mihir/papers/batch.html. Citations in this docu-
ment: §3, §3.

[6] Mihir Bellare, Daniele Micciancio, A new paradigm for collision-free hashing:
incrementality at reduced cost, in Eurocrypt ’97 [28] (1997), 163–192. URL:
http://www-cse.ucsd.edu/~mihir/papers/incremental.html. Citations in this
document: §2, §2, §3, §3, §4.

[7] Daniel J. Bernstein, Better price-performance ratios for generalized birthday at-
tacks, in Workshop Record of SHARCS’07: Special-purpose Hardware for Attacking
Cryptographic Systems (2007). URL: http://cr.yp.to/papers.html#genbday.
Citations in this document: §4.

[8] Daniel J. Bernstein, Tanja Lange (editors), eBASH: ECRYPT Benchmarking of All
Submitted Hashes (accessed 21 April 2011), 2011. URL: http://bench.cr.yp.to.
Citations in this document: §1, §3.

[9] Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, Pe-
ter Schwabe, FSBday: implementing Wagner’s generalized birthday attack against
the SHA–3 round–1 candidate FSB, in Indocrypt 2009 [39] (2009), 18–38. URL:
http://eprint.iacr.org/2009/292. Citations in this document: §1, §4.

[10] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Peter Schwabe, Faster 2-
regular information-set decoding, in IWCC 2011 [17] (2011), 81–98. URL: http://
eprint.iacr.org/2011/120. Citations in this document: §4.

[11] Daniel J. Bernstein, Peter Schwabe, New AES software speed records, in Indocrypt
2008 [18] (2008), 322–336. URL: http://cr.yp.to/papers.html#aesspeed. Cita-
tions in this document: §2.

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Note
on Keccak parameters and usage (2010). URL: http://keccak.noekeon.org/

NoteOnKeccakParametersAndUsage.pdf. Citations in this document: §4.
[13] Gilles Brassard (editor), Advances in cryptology—CRYPTO ’89, 9th annual in-

ternational cryptology conference, Santa Barbara, California, USA, August 20–24,
1989, proceedings, Lecture Notes in Computer Science, 435, Springer, Berlin, 1990.
ISBN 0-387-97317-6. See [22].

[14] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication,
Journal of the ACM 28 (1981), 521–534. URL: http://wwwmaths.anu.edu.au/

~brent/pub/pub055.html. Citations in this document: §4, §4, §4, §4.
[15] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second

international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17–19,
2008, proceedings, Lecture Notes in Computer Science, 5299, Springer, 2008. See
[25].

[16] Paul Camion, Jacques Patarin, The knapsack hash function proposed at Crypto’89
can be broken, in Eurocrypt ’91 [23] (1991), 39–53. URL: http://hal.inria.fr/
inria-00075097/en/. Citations in this document: §2, §4.

[17] Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huax-
iong Wang, Chaoping Xing (editors), Coding and cryptology: third international
workshop, IWCC 2011, Qingdao, China, May 30–June 3, 2011, proceedings, Lec-
ture Notes in Computer Science, 6639, Springer, 2011. ISBN 978-3-642-20900-0.
See [10].

[18] Dipanwita Roy Chowdhury, Vincent Rijmen, Abhijit Das (editors), Progress in
cryptology—INDOCRYPT 2008, 9th international conference on cryptology in In-
dia, Kharagpur, India, December 14–17, 2008, proceedings, Lecture Notes in Com-
puter Science, 5365, Springer, 2008. ISBN 978-3-540-89753-8. See [11].

http://cseweb.ucsd.edu/~mihir/papers/batch.html
http://www-cse.ucsd.edu/~mihir/papers/incremental.html
http://cr.yp.to/papers.html#genbday
http://bench.cr.yp.to
http://eprint.iacr.org/2009/292
http://eprint.iacr.org/2011/120
http://eprint.iacr.org/2011/120
http://cr.yp.to/papers.html#aesspeed
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://hal.inria.fr/inria-00075097/en/
http://hal.inria.fr/inria-00075097/en/

18 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

[19] Christophe Clavier, Kris Gaj (editors), Cryptographic hardware and embed-
ded systems—CHES 2009, 11th international workshop, Lausanne, Switzerland,
September 6–9, 2009, proceedings, Lecture Notes in Computer Science, 5747,
Springer, 2009. ISBN 978-3-642-04137-2. See [30].

[20] Gérard D. Cohen, Jacques Wolfmann (editors), Coding theory and applications,
3rd international colloquium, Toulon, France, November 2–4, 1988, proceedings,
Lecture Notes in Computer Science, 388, Springer, 1989. ISBN 0-387-51643-3. See
[42].

[21] Jean-Sébastien Coron, Antoine Joux, Cryptanalysis of a provably secure crypto-
graphic hash function (2004). URL: http://eprint.iacr.org/2004/013. Citations
in this document: §4.

[22] Ivan B. Damg̊ard, A design principle for hash functions, in Crypto ’89 [13] (1990),
416–427. Citations in this document: §1, §2, §3.

[23] Donald W. Davies (editor), Advances in cryptology—EUROCRYPT ’91, workshop
on the theory and application of cryptographic techniques, Brighton, UK, April 8–
11, 1991, proceedings, Lecture Notes in Computer Science, 547, Springer, 1991.
ISBN 3-540-54620-0. See [16].

[24] Ed Dawson, Serge Vaudenay (editors), Progress in cryptology—Mycrypt 2005,
first international conference on cryptology in Malaysia, Kuala Lumpur, Malaysia,
September 28–30, 2005, proceedings, Lecture Notes in Computer Science, 3715,
Springer, 2005. ISBN 3-540-28938-0. See [2].

[25] Matthieu Finiasz, Syndrome based collision resistant hashing, in PQCrypto
2008 [15] (2008), 137–147. URL: http://www-rocq.inria.fr/secret/Matthieu.
Finiasz/research/2008/finiasz-pqcrypto08.pdf. Citations in this document:
§1, §4.

[26] Matthieu Finiasz, Philippe Gaborit, Nicolas Sendrier, Improved fast syndrome
based cryptographic hash functions, in Proceedings of ECRYPT Hash Work-
shop 2007 (2007). URL: http://www-roc.inria.fr/secret/Matthieu.Finiasz/
research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf. Ci-
tations in this document: §1, §1, §1, §1, §1, §1, §1, §2, §4.

[27] Pierre-Alain Fouque, Gaëtan Leurent, Cryptanalysis of a hash function based on
quasi-cyclic codes, in CT-RSA 2008 [34], 19–35. Citations in this document: §1, §1,
§4, §4.

[28] Walter Fumy (editor), Advances in cryptology—EUROCRYPT ’97, international
conference on the theory and application of cryptographic techniques, Konstanz,
Germany, May 11–15, 1997, proceedings, Lecture Notes in Computer Science, 1233,
Springer, Berlin, 1997. ISBN 3-540-62975-0. See [6].

[29] Christoph G. Günther, Advances in cryptology—EUROCRYPT ’88, proceedings
of the workshop on the theory and application of cryptographic techniques held
in Davos, May 25–27, 1988, Lecture Notes in Computer Science, 330, Springer,
Berlin, 1988. ISBN 3-540-50251-3. See [32].

[30] Emilia Käsper, Peter Schwabe, Faster and timing-attack resistant AES-GCM, in
CHES 2009 [19] (2009), 1–17. URL: http://eprint.iacr.org/2009/129. Citations
in this document: §3.

[31] Donald E. Knuth, The art of computer programming, volume 3: sorting and search-
ing, 2nd edition, Addison-Wesley, Reading, 1998. ISBN 0-201-89685-0. Citations
in this document: §3.

[32] Pil Joong Lee, Ernest F. Brickell, An observation on the security of McEliece’s
public-key cryptosystem, in Eurocrypt ’88 [29] (1988), 275–280. Citations in this
document: §4.

http://eprint.iacr.org/2004/013
http://www-rocq.inria.fr/secret/Matthieu.Finiasz/research/2008/finiasz-pqcrypto08.pdf
http://www-rocq.inria.fr/secret/Matthieu.Finiasz/research/2008/finiasz-pqcrypto08.pdf
http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf
http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf
http://eprint.iacr.org/2009/129

Really fast syndrome-based hashing 19

[33] Jeffrey S. Leon, A probabilistic algorithm for computing minimum weights of large
error-correcting codes, IEEE Transactions on Information Theory 34 (1988), 1354–
1359. Citations in this document: §4.

[34] Tal Malkin (editor), Topics in cryptology—CT-RSA 2008, the cryptographers’
track at the RSA conference 2008, San Francisco, CA, USA, April 8–11, 2008,
proceedings, Lecture Notes in Computer Science, 4964, Springer, 2008. ISBN 978-
3-540-79262-8. See [27].

[35] Stefan Mangard, François-Xavier Standaert (editors), Cryptographic hardware and
embedded systems, CHES 2010, 12th international workshop, Santa Barbara, CA,
USA, August 17–20, 2010, proceedings, Lecture Notes in Computer Science, 6225,
Springer, 2010. ISBN 978-3-642-15030-2. See [4].

[36] Claire Mathieu (editor), Proceedings of the twentieth annual ACM-SIAM sympo-
sium on discrete algorithms, SODA 2009, New York, NY, USA, January 4–6, 2009,
SIAM, 2009. See [37].

[37] Lorenz Minder, Alistair Sinclair, The extended k-tree algorithm, in SODA 2009
[36] (2009), 586–595. URL: http://www.cs.berkeley.edu/~sinclair/ktree.pdf.
Citations in this document: §4.

[38] Kaisa Nyberg (editor), Advances in cryptology—EUROCRYPT ’98, international
conference on the theory and application of cryptographic techniques, Espoo, Fin-
land, May 31–June 4, 1998, proceedings, Lecture Notes in Computer Science, 1403,
Springer, 1998. ISBN 3-540-64518-7. See [5].

[39] Bimal Roy, Nicolas Sendrier (editors), Progress in cryptology—INDOCRYPT
2009, 10th international conference on cryptology in India, New Delhi, India,
December 13–16, 2009, proceedings, Lecture Notes in Computer Science, 5922,
Springer, 2009. ISBN 978-3-642-10627-9. See [9].

[40] Markku-Juhani Olavi Saarinen, Linearization attacks against syndrome based
hashes, in Indocrypt 2007 [41] (2007), 1–9. Citations in this document: §1, §4,
§4, §4, §4.

[41] Kannan Srinathan, C. Pandu Rangan, Moti Yung (editors), Progress in cryptology
—INDOCRYPT 2007, 8th international conference on cryptology in India, Chen-
nai, India, December 9–13, 2007, proceedings, Lecture Notes in Computer Science,
4859, Springer, 2007. ISBN 978-3-540-77025-1. See [40].

[42] Jacques Stern, A method for finding codewords of small weight, in [20] (1989),
106–113. Citations in this document: §4.

[43] Eran Tromer, Dag Arne Osvik, Adi Shamir, Efficient cache attacks on AES, and
countermeasures, Journal of Cryptology 23 (2010), 37–71. URL: http://people.
csail.mit.edu/tromer/papers/cache-joc-official.pdf. Citations in this doc-
ument: §3.

[44] David Wagner, A generalized birthday problem, in CRYPTO 2002 [45] (2002), 288–
304. URL: http://www.cs.berkeley.edu/~daw/papers/genbday.html. Citations
in this document: §4.

[45] Moti Yung (editor), Advances in cryptology—CRYPTO 2002, 22nd annual in-
ternational cryptology conference, Santa Barbara, California, USA, August 18–22,
2002, proceedings, Lecture Notes in Computer Science, 2442, Springer, Berlin, 2002.
ISBN 3-540-44050-X. See [44].

[46] Albert L. Zobrist, A new hashing method with application for game playing, Tech-
nical Report 88, Computer Sciences Department, University of Wisconsin (1970).
URL: https://www.cs.wisc.edu/techreports/1970/TR88.pdf. Citations in this
document: §2, §3.

http://www.cs.berkeley.edu/~sinclair/ktree.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://www.cs.berkeley.edu/~daw/papers/genbday.html
https://www.cs.wisc.edu/techreports/1970/TR88.pdf

