
DPA Leakage Evaluation and Countermeasure Plug-in

at logic level

Tang Ming
1,2

, Wang Xiaorong
2
, Qiu Zhenlong

2
, Gao Si

2
, Zhang Huanguo

1,2
, Wu

Qianhong
1,2

1(State Key Lab. of AIS&TC, Ministry of Education, Wuhan University in China, m.tang@126.com)

2(School of Computer, Wuhan University, Wuhan 430072, China)

Abstract:

There exist 3 different types of research about SCAs, such as SCA analysis, SCA

evaluation and SCA countermeasures. All of these studies try to establish more

security in cryptographic software, hardware and system. Evaluation of SCA tries to

find factors of different SCAs, moreover, the purpose of SCA Evaluation could be

regarded as the first step of building countermeasures against SCAs. We choose DPA,

which is one of the most popular and realistic SCAs at present, as our research target

to build practical evaluation scheme and countermeasure which can be regarded as

plug-in of EDA toolkits and could help designers of circuits to judge the power

leakage and improve the resistance against DPAs automatically. Our contribution

concludes: more accurate evaluation scheme; more efficient balanced scheme; be

portable to build countermeasures based on evaluation scheme, furthermore, our

countermeasures could be plug in EDA toolkits which is automatic and transparent to

designers of circuits.

Keywords: DPA, DPA evaluation, DPA countermeasure, Karnaugh Diagram

1. Background

SCA evaluations can be classified into three categories: algorithm-level,

logic-level, and gate-level. There could be other different classifications such as

circuit-level and logic-level, and algorithm-level and circuit-level. The logic-level

corresponds to logic function implementation. The circuit-level considers the position

and route of a real circuit.

For a block cipher, an algorithm-level evaluation mainly targets on non-linear

operations. Prouff considered non-linear operations as the core of DPA and introduced

the concept: “transparency order of an S-box” to evaluate the resistance against DPAs .

However, the concept of transparency order cannotbe used for all types of circuits

except pre-charge circuits.

Suzuki, Saeki, and Ichikawa provided an elegant logic-level evaluation explored

the qualitative evaluation of WDDL, MASK-AND, etc [22]. Circuit-level evaluations

and countermeasures such as aim to eliminate the leakage in the phase of place and

route. These studies judge the leakage from different levels and phases in an

implementation of cryptographic algorithms.

From target of countermeasures against DPA, there are two different types of

schemes which are used in power collection [20] and power analysis [24,25]. The

countermeasures in power collection try to eliminate the leakage power information,

however, the schemes in power analysis are aim to increase complexity of analyzing

for DPA attackers. Moreover, countermeasures in power analysis are more dependent

on special DPA, for they rely on the concrete DPA analysis model, which means

different countermeasure in power analysis corresponds to different DPA analysis.

Naturally, countermeasures in power collection are more ideal to design security

circuits, for they could protect circuits from DPAs completely and could resist any

types of power attacks such as DPAs, CPA, or other HODPAs.

Unfortunately, existing countermeasures in power collection such as WDDL,

dual rail are not able to resist power attacks successfully. Moreover, there are no

countermeasures combined with EDA design tools to help designers to acquire safety

circuits immune to SCAs.

The work of Regazzoni, Cevrero, Standaert considers a real circuit design flow

and uses the conditional entropy between the secret key and its corresponding leakage

[17]. The evaluation flow is based on the simulation. Their countermeasure requires

adding noise to different parts of circuits. The experimental results are based on the

evaluation of different noise injections.

The purpose of this paper is to compare different protected designs from area and

power consumed.

The contribution of this paper is the first one to “develop a design flow based on

standard CAD tools that can automatically synthesize and place-and-route such hybrid

designs.” However, the research of this paper stops in evaluation step, not to extend

this scheme to automatically design safety circuits against DPAs.

The other parts of this paper conclude: section 2 introduces our evaluation of

logic circuit and the contribution of this evaluation to our Karnaugh Diagram

countermeasure; section 3 descripts our Karnaugh Diagram method carefully and

illustrate the implementation of our countermeasure; we design and make extensive

experiments to test the efficiency and effectiveness of our Karnaugh Diagram method

in section 4; section 5 gives the final conclusion of this paper.

2. Evaluation

2.1 leakage model

In this paper, leakage model means evaluation of the number of leakage

information. Moreover, a leakage model is usually proposed to resist the special type

of SCA, such as the Hamming weight of the secret value corresponding to dual-rail

coding countermeasure [20].

However, Hamming weight has been proofed to hardly cover most types of

circuits except pre-charge circuits. For Hamming weight of a string is the number of

symbols that are different from the zero-symbol of the alphabet used, which

corresponds to the property of pre-charge circuits whose original is constant and often

be set to zero.

In order to evaluate the power leakage of a circuit, more general leakage model:

the switch model has been proposed and used in many EDA tools, such as

Primepower in Synopsys [1]. Switch model is based on the power of a circuit is linear

with the number of transverse gates, which include two different switch situations:

0->1 and 1->0. Our evaluation and countermeasure are both based on switch model.

http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Alphabet

2.2 Our evaluation

Point: the contribution and relation of our evaluation to our countermeasure

1.2.1 Introduction of our evaluation

Considering the property of Karnauth Map, we make some modifications to

improve the efficiency of evaluation.

We make the final evaluation about DPA in logic circuit level as following:

When the st_kano has the same number of “one ” units and “zero” units, the

logic circuit has no DPA leakage, else, it has DPA leakage. This evaluation is much

more efficient that true table evaluation. Furthermore, we proof the effectiveness of

this evaluation in theory 4.

Theory 4: When the st_kano has the same number of “one ” units and “zero” units,

the logic circuit has no DPA leakage, else, it has DPA leakage.

Proof of Theory 4:

1) firstly to certify the correctness of theory 4 in 2-input logic function

X1

X2

X1’

1

0

0

0 0

0

0

1

F

X2’

F’

x1

x2

X1*

X2*

G1

G2

G3

G4

Figure 4: evaluation based on st_kano

P1. sw_kano table is cut into 4 parts { G1, G2, G3, G4} based on X1

partition as in figure 4.

P2. based on the establish guidelines of sw_kano, we can get:

G1=l1r1 ^ t2

G2=l1r2 ^ t2 (1)

G3=l2r1 ^ t2

G4=l2r2 ^ t2

Where lirj represents one unit in st_kano whose column index is i and

row index is j; t2 is the right st_kano in figure 4.

 P3. There are two relationships between l1r1 and l1r2

 First: l1r1=/l1r2

 Because t2 has the same number of “one” units and “zero” units, we can

get: G1+G2=G3+G4, which means the number of “one” units in G1 and

G2 equals to that in G3 and G4.

 Second: l1r1=l1r2

Then l2r1=l2r2, and l1r1=/l2r1, we can get:

G1=G2 and G3=G4

Considering the establishment of Gi in function (1), we can get the

number of “one” units in G1 equals to the number of “zero” units in G3. with the

same knowledge, the number of “one” units in G2 equals to the number of “zero”

units in G4.

Supposing that l1r1=0, l2r1=1, therefore, the number of “one” units in

G1 equals the number of “one” units in t2, and the number of “zero” units in G3

equals to the number of “zero” units in t2.

Because t2 has the same number of “one” units and “zero” units, we can

get: G1+G2=G3+G4, which represents X1 is balanced in different partitions.

This process can be expanded to other original input bits. Theory 4 is

true in 2-input logic functions.

2) finally to proof the theory 4 in any number of input logic function

P1. We choose {X1,…,Xn} as n input bits of a logic function;

P2. We define {Gi1, Gi2, Gi3, Gi4} as the groups of units which

corresponds to X1 different partitions with Xi in sw_kano.

P3. Based on the conclusion of 2-input logic function previously, we can get

Gi1+Gi2=Gi3+Gi4

P4. Therefore, “one” partition of X1 in sw_kano can be represented as

n

i

GiGi
2

21 ）（ , while “zero” partition of X1 in sw_kano is

n

i

GiGi
2

43 ）（ .

P5. As the results of P3, we can get

n

i

GiGi
2

21 ）（ =

n

i

GiGi
2

43 ）（ .

Therefore, as for a logic function theory 4 is true. We can use theory 4 to

evaluate DPA leakage efficiently.

2.2.3 The relationship between our evaluation and countermeasure

The core of our evaluation is to count the number of switched gates in whole

circuits. This scheme is built in true table of logic function of the circuit designing,

which could be regarded as the cipher algorithm. Moreover, our countermeasure

which will be illustrated in Section 3 is based on a Karnauth Map to correspond to the

logic circuit implementation. As we all know, true table and Karnauth Map are

one-to-one relationship, therefore, it is very convenient to transform from logic

function in algorithm to logic circuit in implementation during building

countermeasure of DPAs. Furthermore, it is very easy combine both true table and

Karnauth Map with EDA tools of the circuit design flow.

3. Our Countermeasure

3.1 Karnaugh Map Countermeasure

As many resistances against DPAs, the purpose of our countermeasure is to hold

the leakage of power constant. Based on our evaluation of true table, we can find

every output bit including intermediate output bits which have the possibilities of

power leakage. Considering the direct relationship between Karnaugh Map and logic

function, and original input bit partition of DPA could be very convenient decrypted

on Karnaugh Map. We decide to introduce Karnaugh Map into our countermeasure

against DPAs.

In order to introduce our countermeasure explicitly, the symbols are introduced

as following:

st_kano: standard Karnaugh Map corresponds to the logic function of original

circuits;

sw_kano: it is the combination of two st_kano, and it is a changed Karnaugh Map

which is used to judge balance level of circuits;

Bu_stsw: guidelines of establish sw_kano from two st_kano;

Po_bala: guidelines of balancing operation on sw_kano;

Our countermeasure consists of 3 procedures which include Karnaugh Map

establishment, sw_kano balance, and st_kano balance.

3.2 Karnaugh Map Establishment

1) Evaluation based on true table

The details of true table have been introduced in section 2.

As the results of true table, the output bits have the power leakage and their

corresponding logic functions which are also the output of synthesis netlist are made

flag.

2) Build standard Karnaugh Map

 Karnaugh Map: is a method to simplify Boolean algebra expressions. The

Karnaugh map reduces the need for extensive calculations by taking advantage of

humans' pattern-recognition capability, permitting the rapid identification and

elimination of potential race conditions.

 Build st_kano: as the definition of st_kano introduced, st_kano corresponds to the

logic function of the original circuits.

There are two different schemes to build st_kano:

One is based on the definition of standard Karnaugh Map. Set each unit in

http://en.wikipedia.org/wiki/Boolean_algebra_(logic)
http://en.wikipedia.org/wiki/Race_condition

st_kano to “1” which is corresponding to the existing element in logic function. The

first scheme is same as the traditional method of standard Karnaugh Map generation.

Actually, the logic description in st_kano is different from original logic function,

except that they have the same logic values in output bits. Because each unit in

st_kano or in Karnaugh Map means the minimum element of logic function, however,

an element in original logic function may be a simplify logic element which could

correspond a few minimum logic elements. If we concern the number of gates, the

description of st_kano is different from that in original logic function.

Therefore, we design another scheme to establish st_kano. We use true table to

establish st_kano directly. After the operation of true table, we can find every output

bit which has leakage possibility. We set the corresponding units of these output bits

in st_kano, for true table holds the relationship between original input and all output

bits. We give an example as following, table 1 is the true table of this example and

figure 1 is the st_kano:

Table 1: build st_kano based on true table

DPA leakage

X1 or X2 partition

AND2

X1 X2 X1' X2' △X1 △X2 F F' △F

0 0 0 0 0 0 0 0 0

P（△F=1|X1=0)=2/8=0.25

0 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 1 1 0 1 1

0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 1 1 0 0 0

0 1 1 1 1 0 0 1 1

1 0 0 0 1 0 0 0 0

P（△F=1|X1=1)=4/8=0.5

1 0 0 1 1 1 0 0 0

1 0 1 0 0 0 0 0 0

1 0 1 1 0 1 0 1 1

1 1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0 1

1 1 1 0 0 1 1 0 1

1 1 1 1 0 0 1 1 0

Table 1 is the true table of 1 2F X X , where

1 2' ' 'F X X , 1 1 'X X X ,
2 2 'X X X , and output bit F has power leakage

for P（Δ F=1| 1X =0）≠P（Δ F=1| 1X =1）. Then we should build st_kano of this output

bit F as in figure 1.

X1

X2

X1’

1

0

0

0 0

0

0

1

F

X2’

F’

Figure 1: st_kano establishment

Figure 1 is the two st_kanos of logic function F, where F and F’ correspond to

neighboring state of this logic function respectively. F is the previous state and F’ is

the second one. The reason for two kanos is because we choose switch model as

power leakage model of DPA evaluation which need count the number of switched

gates. As we all known, switching gate depends on the different states such as 1 to 0

or 0 to 1, therefore, two st_kanos represent these two neighboring states.

3) Establish switch Karnaugh Map

For st_kano is another illustration of original logic functions, we use sw_kano

which is the switch Karnaugh Map to represent the switched gates of circuits in logic

level. Moreover, sw_kano is based on st_kanos. Because two neighboring st_kanos

could induce the present and next state of each gates. Figure 2 is an example of the

sw_kano which is corresponding to the logic function of Figure 1.

0 0 0 0

0 0

0 0

0 0

1 1

1 1

1 1

x1

x2

X1*

X2*

Figure 2: sw_kano corresponding to st_kano in Figure 1

From the instance in Figure 2, we conclude the guidelines of sw_kano

establishment as following:

 Every related units in two neighboring st_kano are combined to one unit of

sw_kano. The related units are the two units in two st_kanos to generate one

unit of sw_kano. We choose “row first” order to search each unit in st_kano,

which means the index order of row is from small to big and the index order

of column is also small to big in one row.

 Supposing that the size of st_kano is m*n, sw_kano built on two neighboring

st_kanos has the size of m
2
*n

2
.

 The units of sw_kano only have two different values which are one and zero.

If the related units of two neighboring st_kanos have different values, the

corresponding unit in sw_kano is one, if the related units are same, it will

generate zero unit in sw_kano.

 Addresses of units in sw_kano are also based on the related units of st_kanos.

As to the address of one unit in sw_kano equals to the combination of two

addresses of related units in st_kanos. For example, if the addresses of related

units are x1x2, x1*x2*, the address of corresponding unit in sw_kano is x1x2

x1*x2*.

 Although original Karnaugh Map has two dimensions: row direction and

column direction, we design both st_kano and sw_kano in one dimension

array to reduce address space and increase efficiency of the resistance

scheme.

3.3 Balance Guidelines of switch Karnauth Map

This phase consists of two steps: the first is re-evaluation of sw_kano, for the

logic circuits have different gates in Karnaugh Map which is illustrate in second step

of our countermeasure scheme; and the second is balance logic design to eliminate

power leakage.

Therefore, we should establish two sets of guidelines corresponding evaluation

and balance respectively.

1) Evaluation guidelines of sw_kano

P1. Each address bit of sw_kano unit is the original input bit. Therefore, each

address bit partition decides the extent of power leakage.

P2. To count the number of “1” value unit in sw_kano for each address bit at

different partitions. If the counter of one partition equals to that of zero partition, it

is no power leakage of this output at the corresponding original input bit. If they

are not equal, we should record these original input bits to do balance operations.

For example, x1 partition of sw_kano in Figure 2, the counter of x1=1 partition is

4, and the counter of x1=0 partition is 2. The two counter values are not equal,

therefore, F function will leakage power in x1 partition.

2) Problems in sw_kano balance

 There are some key problems to resolve in sw_kano balance. We analyze these

problems which are symbolized as Q and introduce our resolutions as A as following:

 Q1: When we find an output bit had power leakage in an original input

partition, which means that the number of switched gates in the logic function

of this output bit is different in partition 1 with partition 0. Supposing that the

number of switched gates in partition 1 is more than that in partition 0, the

question is whether we should increase switched gates in partition 0, or to

decrease that in partition 1?

A1: Considering that if we decrease switched gates in partition 1, it will bring

another question that this handle operation may change the logic function of

original design of this output bit. Therefore, we choose to increase switched

gates in less number partition.

 Q2: As the same question in Q1, increase in the number of switched gates in

partition 0 may change the logic function of original design.

A2: In order to delete the influence of original design, we regard the increase

operation as the logic function of a new output bit. We call these new output

bits in this kind of increase as balanced output bits.

 Q3: Though the balanced output bits could get rid of the influence of original

design, it is still a question caused by these bits. As we all known, only logic

function except the final output bits of circuit design must be optimized in

synthesis phase of EDA designing.

A3: Therefore, we should create balanced output bits as final output bits of

original design. Of course, we could make some combination of these

balanced output bits to decrease the number of total final output bits, which

will improve the hardware resource and the power consumption.

 Q4: However, these balanced output bits could not be added in original circuit

simply. Because, every balanced output bit corresponds to a unbalanced

output bit in original circuit. The corresponding relationship has time

character, which means that each balanced output bit must be synchronous

with its corresponding unbalanced output bit.

A4: Based on the true table in the previous part of this section, we could

acquire the level of each unbalanced output bit. Each balanced output bit

should be organized in its corresponding level. If there is a level of original

circuit has no unbalanced output bits, we could add some NULL operations

without any logic circuits but take one clock period.

 Q5: The balanced measure on one original input partition may influence or

break the balanced relationship of other original input bits.

A5: We should set a counter for each output bit in the same logic level. Based

on the values of these counters, we establish the logic functions of balanced

output bits.

In order to establish an effective and efficient balance policy of sw_kano, we

make and proof the truth of Theory 1 and Lemma 1.

__

Some symbols should be declared at first in Table 2.

 Original input bit: original input bit of logic circuits or logic functions

 Count_Oi_Xjp: represents the number of unit in sw_kano with one value,

which corresponds to the original input bit with different partitions, where

Oi is the ith output bit; Xj means the jth original input bit; p represents “1”

partition (p=1), or “0” partition (p=0).

 Dv_Xj = | Count_Oi_Xj1 - Count_Oi_Xj0 |, which means the distance of

different partitions of the jth original input bit.

 Md_v: represents the distance of the present max Dv_xi with other Dv_xj

(i=/j)

For example: a two input bits logic function as following.

Dv_X1=4

Dv_X2=2

Md_v=2

 __

Theory 1: For a logic function with any number of input bits, any original input

bit with both one and zero partition have the even number of units in sw_kano.

Lemma 1: For a logic function with any number of input bits, Md_v in any time

is even.

Naturally, when Theory 1 is true, Lemma 1 will be true too. Because

Count_Oi_Xjp is even, Dv_Xj is also even.

Proof of Theory 1:

a) proof the theory 1 of two original input bits of logic function

X1

X2

X1’

1

0

0

0 0

0

0

1

F

X2’

F’t1_l1 t1_l2

t1_r1

t1_r2

t2_l1 t2_l2

t2_r1

t2_r2

0 0 0 0

0 0

0 0

0 0

1 1

1 1

1 1

x1

x2

X1*

X2*

L1 L2 L3 L4

R1

R2

R3

R4

Figure 3: 2-input logic function in sw_kano

Where t1 represents the left st_kano, t2 means the right st_kano, ti_lj and

ti_rj represent the columns and rows of t1 and t2 respectively, and Li and Rj mean

the columns and rows in sw_kano respectively.

P1. For X1 as an example, the one partition of X1 in sw_kano takes L3 and

L4 columns and the zero partition of X1 takes L1 and L2 in sw_kano.

P2. The units of L3 and L4 are generated by the XOR operation between

l2r1 and every unit in t2, and between l2r2 and every unit in t2. For the

number of st_kano units is n2 for n original input bits of the logic

function, the number of st_kano units is even.

P3. There are only two relationships between l2r1 and l2r2.

First: l2r1=l2r2

Then the number of the units with “one” value generated by l2r1

equals to the number by l2r2. Therefore, the number of switched units in

L3 and L4 is even.

Second: l2r1=/l2r2

 Then the units with value “one” generated by l2r1 corresponds to the

units with value zero generated by l2r2. Therefore, the number of

switched units in L3 and L4 is n2 and also is even.

 P4. With the same situation, we can proof the other original input bits of the

2- input logic function.

b) Proof the theory 1 of any number of input bits in logic function.

P1. Supposing that the number of original input bits is n, and X1 is also the

object input bit.

P2. The destination is to proof the “one” partition of X1 has even switched

units in sw_kano.

P3. Supposing lir1 and lir2 be the unit of Xi=0 and Xi=1 respectively, where

Xi is the any input bit of logic function except X1.

P4. There are only two different relationships between lir1 and lir2

 First: lir1=lir2

 Second: lir1=/lir2

With the same reason, the number of one partition of X1 in sw_kano related

with Xi is even.

P5. Therefore, the number of one partition of X1 in sw_kano is even.

Theory 1 is true.

__

3) Balance guidelines of sw_kano

 Based on these questions and their corresponding answers, we conclude balance

guidelines of sw_kano as following:

 We choose to increase the less number of switched gates in the partition.

 We regard the increased units in sw_kano be the components of logic function

which is contributed to the new output bits. We called these new output bits as

balanced output.

 We should make a combination of every balanced output bit to decrease the

number of the new final output bits.

 The combination of balanced output bits should be complied with the level of

their corresponding unbalanced output bit. This kind of level could be

acquired in true table establishment.

 We should forbid the influence between balanced output bits and unbalanced

output bits during balanced process. The establishment of balance operations

should be based on the counter for the switched gates of each output bit.

In order to illustrate sw_kano balance method clearly, we conclude the

detailed the procedure of sw_kano as following.

(1) We classify the unbalanced situation in sw_kano as two types.

First: All original input bits have the same number of Dv_xj for their own

partitions.

Second: There are different Dv_xj values for different original input bits.

(2) If original input bits have the same number of Dv_xj, we can choose the

corresponding units which are satisfied with the Dv_xj;

(3) For those balanced original input bits, we define these bits in the balanced

output logic function with both positive and negative logic in the same times.

(4) If the number of satisfied units in sw_kano is less than Dv_xj, we repeat these

satisfied units more than one time to receive Dv_xj.

(5) If the satisfied units in sw_kano are already the “one” units, balanced output

logic function can also use them, for balanced output bits are independent with the

original logic function.

(6) If logic function has different Dv_xj for different original input bits, we can

repeat (2) to (5) steps from the min Dv_xj at present until all Dv_xj=0.

3.4 Balance Guidelines of standard Karnaugh Map

 The standard Karnaugh Map and the switch Karnaugh Map correspond to the

logic function of circuit and DPA leakage of different original input partitions

respectively. St_kano helps us to descript logic circuits, while sw_kano establish the

relationship between circuits and power consumption. Based on the balance methods

of sw_kano, we introduce balance guidelines of st_kano in this section.

 We still use a 2-input logic function as an example. If we find that the unit

XiXjXu’Xv’ is one of the balanced logic units in sw_kano, we will use this unit to

generate the balanced units in st_kanos which include st1 and st2. The corresponding

units in st_kanos are XiXj and Xu’Xv’, for example, XiXj in st1 and Xu’Xv’ in st2.

 As the balanced unit in sw_kano, XiXjXu’Xv’ means that XiXj=/Xu’Xv’, for

example XiXj=1 and Xu’Xv’=0 (Actually XiXj=0 and Xu’Xv’=1 is equal to this

condition). Because st1 equals to st2, both XiXj and Xu’Xv’ are minum units in

2-input logic function. Therefore we can define that XiXj=1 and Xu’Xv’=0 is the

balanced units in st_kano. Furthermore, XiXj can not be in the same position in st1 as

Xu’Xv’ in st2, we can combine them in a standard Karnauth Map. The final balanced

logic function is

'

vuji XXXXF , while F’ is independent with F.

 However, it is not the end of balance measures of st_kano. There are some

problems in practical implementation of balance guidelines.

 Q1: Whether F’ will introduce some new DPA leakage?

 A1: Only XiXj and XuXv exist in the logic function of F’. The other min units do

not appear in F’, we could regard the other units as “X” value, which means the

random value including both “1” and “0”. In another words, we can regard the “X”

units as both “1” and “0”. Therefore, these units with “X” elements will generate the

same number of switched gates and the same value of power consumption.

Q2: How to guarantee that the balanced circuits (F’) will be synthesized with the

corresponding unbalanced units (F)?

A2: After the analyzing and balancing for each unbalanced output bit, we can

acquire every logic function for balanced output bits and their logic levels. Based on

the increasment of each level, we combine the logic functions in the same level and

generate the final output bit for this logic level. Of course, if there are n logic levels in

original circuits, there are n final balanced output bits.

On the other hand, in order to hold the time complying, we use a matrix to

descript all final balanced output bits. Each final output bit has (n-1) NULL operation,

because it is very hard to combine any two balanced output bit in different logic levels

into one bit; and then each final output bit only take one clock period actually. In the

following example, we will give the matrix for the example.

Level 1

Level 2

Level n

1

1

1

0 0 0

0 0 0

0 0 0

represent 1 corresponding to

the actual logic operation

represent 0 corresponding to

the NULL operation

Figure 4: the matrix of final balanced output bits

Q3: If there are several balanced units in sw_kano, how to build balanced units

in st_kano?

A3: When these balanced units in one sw_kano, we can confirm that they take in

the same logic level. However, we can not combine these balanced units in one logic

function. Because, different balanced unit corresponds to different balanced output, if

we combined them into one balanced output, we will generate some other units except

balanced units.

For example in a 2-input logic function, if 2121 '' XXXX

 and 2121 '' XXXX

are two balanced units in sw_kano, we should build two balanced functions such as

F1’ (2121

'

1 '' XXXXF

) and F2’ (2121
'

2 '' XXXXF

) corresponding to these

two balanced units respectively. Otherwise, if we build one balanced function named

as F’=F1’+F2’ which will generate some new switched units in the new sw_kano.

This illustrates us that we can also cut one original logic function into different sub

logic functions to eliminate DPA leakage. The latter method has the advantage of less

power consumption than increasing balanced units.

Q4: How to compute the number of levels in balanced units? For example,

balanced units are F1’ and F2’ in Q3. If we consider the original input as the first level

of logic circuits, balanced units like F1’ and F2’ take more than one logic levels,

which conflict with the number of logic level in one output bit.

A4: We could consider the all “min units” in logic functions as the first logic

level, which can resolve the problem. We name these “min units” as “auto units” and

this resolution can also fit for logic functions with different original input bits.

Actually, both original input and “auto units” could be regarded as the first logic level,

because the purpose of balanced guidelines for sw_kano and st_kano is to guarantee

the balanced units can play role with unbalanced logic function parallel, which has

been solved with the matrix in A2.

We conclude the balance guidelines of st_kano as following:

(1) We generate the balanced units in st_kano based on the balanced units in

sw_kano as previous introduction.

(2) For the whole logic circuit, we use the matrix in figure 4 to guarantee the

balanced circuits (F’) will be synthesized with the corresponding

unbalanced units (F).

(3) We should not combine different balanced units in the same logic level,

which will generate extra logic circuits to leakage power.

4. Experiments

4.1 conditions of experiments

General PC

CPU: Pentium (R) Dual-Core 2.7Ghz

Memory: 1024MB RAM

Operating system: Windows 7

Java Platform: jdk1.6.0_10

Java IDE: eclipse

Text Editor: UltraEdit 32

4.2 results and analyses

4.2.1、 Make the judgement about the impact of the input on transition

 We simulated to determine the impact of each input on the transition. We set the

number of the input while output values are random. The results are as follows:

Input number

The number of the inputs that have the impact on transition

 test1 test2 test3 test4 test5 test6 test7 test8

1 0 0 0 0 0 0 0 0

2 0 2 0 0 0 2 0 0

3 3 3 3 0 1 0 1 1

4 4 0 4 0 4 2 1 0

5 5 5 4 0 1 3 1 5

6 0 4 6 4 4 4 5 6

7 7 6 7 7 7 5 6 5

8 6 8 8 7 6 7 0 8

9 9 8 8 9 8 0 9 8

10 9 10 9 10 10 8 9 10

Table: The result of the impact of the input on transition

 Conclusion: Not all inputs have the influence on the transition.

4.2.2、The level division of RTL netlist

 We carry out the level division of the netlist to analyze Karnaugh map better, and

get the output values for the following experiments in the meantime.Due to the space

constraints, the specific experimental data is omitted here.

 The experiment consists of two parts: Level division of the Present-Sbox, as well as

the level division of AES.

4.2.3、Using actual netlist file to analyze the impact of the input on transition

 Using the method mentioned in 4.2.1 to analyze the generated gate-level netlist

file.The output values of the gates in circuit placed in out.txt (equivalent to the above

random value). The results are shown in following Figure:

1) 、The analysis of Present-Sbox netlist (input numbers are 4):

The table for the analysis of Present-Sbox netlist

Name

The number of the inputs

that have the impact on

transition

gate[0] 0

gate[1] 0

gate[2] 4

gate[3] 4

gate[4] 2

gate[5] 4

gate[6] 2

gate[7] 2

gate[8] 4

gate[9] 0

gate[10] 0

gate[11] 2

gate[12] 2

gate[13] 3

gate[14] 3

gate[15] 3

gate[16] 3

gate[17] 3

gate[18] 3

gate[19] 3

gate[20] 3

gate[21] 3

gate[22] 3

gate[23] 3

gate[24] 3

gate[25] 3

gate[26] 3

gate[27] 3

gate[28] 3

gate[29] 3

gate[30] 3

gate[31] 3

gate[32] 3

gate[33] 3

gate[34] 3

gate[35] 3

gate[36] 3

gate[37] 3

gate[38] 3

gate[39] 3

gate[40] 3

gate[41] 3

gate[42] 3

Type of logic gate

The Number of logic gate in

original circuit

The Number of logic gate

in WDDL

The Number of logic gate

in KANO WDDL - KANO Contrast(better one)

AND 9 18 14 4 KANO

OR 4 8 15 -7 WDDL

NOR 11 22 15 7 KANO

NAND 5 10 14 -4 WDDL

XOR 1 2 31 -29 WDDL

2)、 The analysis of the ASE netlist (input numbers are 8)

According to the test data, we found that basically every logic door has the inputs that

influence the transition.

4.2.4、Contrast between KANO and WDDL

We achieved to convert the original netlist into the WDDL netlist and KANO netlist,

and made the comparison of the amount of components. The results are shown in

Figure:

1) 、Contrast in Present-Sbox netlist

2) 、Contrast in AES netlist

 Type of logic gate

The Number of logic gate in

original circuit

The Number of logic gate

in WDDL

The Number of logic gate

in KANO WDDL - KANO Contrast(better one)

AND 249 498 374 124 KANO

OR 106 212 356 -144 WDDL

NOR 250 500 356 144 KANO

NAND 125 250 374 -124 WDDL

XOR 0 0 731 -731 WDDL

NXOR 0 0 0 0 KANO=WDDL

INV 95 1650 95 1555 KANO

DDF 8 16 9 7 KANO

Amounts 833 3126 2295 831 KANO

3)、 WDDL netlist

NXOR 1 2 1 1 KANO

INV 8 78 8 70 KANO

DDF 4 8 5 3 KANO

Amounts 43 148 103 45 KANO

4)、 KANO netlist

5) circuit diagram

 Conclusion: KANO has obvious advantages in the circuit resources, and of

course the circuit power consumption will be less than WDDL, so KANO achieves to

reduce the circuit resources and power consumption.

 We found the phenomenon that some logic gates themselves are in balance and thus

we carried out a method against DPA based on the Karnaugh map --KANO. Contrast

to WDDL, KANO largely reduces the amount of circuit resources and the power

consumption of transition. KANO is a more lightweight approach against DPA, which

can be better applied to practice.

5. Conclusion

 We propose a new evaluation and countermeasure for Differential Power Attack.

Based on Karnaugh Diagram, we design more accurate evaluation and more

lightweight countermeasure of DPA. The core of these interesting contributions relies

on our finding of the relationship between Kano and logic circuits. We improve this

kind of relationship, and create a new kind of Karnaugh Diagram to illustrate the

power leakage and even the differential power value leakage. The latter is the factor

of making our countermeasure more efficiency. We have proofed the effectiveness of

our evaluation and countermeasure, evaluated and compared the efficiency of this

new countermeasure with WDDLs.

Reference:

[1] http://www.synopsys.com/support/li/installation/documents/install072/primepower

y-2006.06 install.pdf/.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM

Side-Channels(s): Attacks and Assessment Methodologies. In CHES 2002. LNCS

2523, 2003.

[3] R. M. Avanzi. Countermeasures against Di_erential Power Analysis for

Hyperelliptic Curve Cryptosystems. In CHES 2003, pages 366-381. LNCS 2779,

2004.

[4] E. Biham and A. Shamir. Di_erential Fault Analysis of Secret Key Cryptosystems.

In Proceedings of Crypto'97, pages 513-525. LNCS 1294, 1998.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage

Model. In CHES 2004, pages 16-29. LNCS 3156, 2004.

[6] M. Bucci, L. Giancane, R. Luzzi, and A. Tri_letti. Three-Phase Dual-Rail

Pre-charge Logic. In CHES 2006, pages 232-241. LNCS 4249, 2006.

[7] S. Dziembowski and K. Pietrzak. Leakage-Resilient Cryptography in the Standard

Model. http://eprint.iacr.org/2008/240.pdf.

[8] C. H. Kim and J.-J. Quisquater. New Di_erential Fault Analysis on AES Key

Schedule: Two Faults Are Enough. In CARDIS 2008, pages 48-62. LNCS 5189, 2008.

[9] P. Kocher. Timings Attacks on Implementations of Di_e Hellman, RSA, DSS and

other systems. In Crypto 1996, pages 104-113. Springer-Verlag, 1996.

[10] P. Kocher, J. Ja_e, and B. Jun. Di_erential Power Analysis. In Crypto 1999, pages

338-397. LNCS 1666, 1999.

[11] L. Lin, M. Kasper, T. G•uneysu, C. Paar, and W. Burleson. Trojan Side-Channels:

Lightweight Hardware Trojans through Side-Channel Engineering. In CHES 2009,

pages 382-395. LNCS 5747, 2009.

[12] F. Menichelli, R. Menicocci, M. Olivieri, and A. Tri_letti. High-Level

Side-Channel Attack Modeling and Simulation for Security-Critical Systems on Chips.

In IEEE Transactions on Dependable and Secure Computing 2008, pages 164-176.

IEEE 5(3), 2008.

[13] T. S. Messerges. Using Second Order Power Analysis to Attack DPA Resistant

Software. In CHES 2000, pages 238-251. LNCS 1965, 2000.

[14] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Investigations of Power

Analysis Attacks on Smart Cards. In CHES 1999. LNCS 1666, 1999.

[15] E. Peeters, F.-X. Standaert, N. Donckers, and J.-J. Quisquater. Improved

Higher-Order Side-Channel Attacks with FPGA Experiments. In CHES 2005, pages

309-323. LNCS 3659, 2005.

[16] E. Prouff. Dpa Attacks and S-Boxes. In FSE 2005, pages 424-441. LNCS 3557,

2005.

[17] F. Regazzoni, A. Cevrero, and F.-X. Standaert. A Design Flow and Evaluation

Framework for DPA-Resistant Instruction Set Extensions. In CHES 2009, pages

205-219. LNCS 5747, 2009.

[18] M. Renauld, F. X. Standaert, and N. V. Charvillon. Algebraic Side-Channel

Attacks on the AES: Why Time also Matters in DPA. In CHES 2009, pages 99-111.

LNCS 5747, 2009.

[19] M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh. A Design Methodology for a

DPA-Resistant Cryptographic LSI with RSL Techniques. In CHES 2009, pages

189-204. LNCS 5747, 2009.

[20] P. Schaumont and K. Tiri. Masking and Dual-Rail Logic Don't Add Up. In CHES

2007, pages 95-106. LNCS 4727, 2007.

[21] R. M. Sommer. Smartly Analyzing the Simplicity and the Power of Simple

Power Analysis on Smart Cards. In CHES 2000, pages 78-92. LNCS 1965, 2000.

[22] D. Suzuki, M. Saeki, and T. Ichikawa. Random Switching Logic: A

Countermeasure against DPA based on Transition Probability. http://eprint.iacr.org

(2004).

[23] D. Suzuki, M. Saeki, and T. Ichikawa. DPA Leakage Models for CMOS Logic

Circuits. In CHES 2005. LNCS 3659, 2005.

[24] K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure

DPA Resistant ASIC or FPGA Implementation. In Design, Automation and Test in

Europe Conference (DATE 2004), pages 246-251, 2004.

[25] K. Tiri and I. Verbauwhede. Place and Route for Secure Standard Cell Design. In

CARDIS 2004, pages 143-158. Kluwer Academic Publishers, 2004.

[26] N. Veyrat-Charvillon and F.-X. Standaert. Mutual Information Analysis: How,

When and Why? In CHES 2009, pages 429-443. LNCS 5747, 2009.

[27] S. M. Yen and M. Joye. Checking Before Output May Not Be Enough Against

Fault-Based Cryptanalysis. In IEEE Trans. on Computers, pages 967-970. IEEE 49,

2000.

[28] Y. Zhou and D. Feng. Side-channel Attacks: Ten Years After Its Publication and

the Impacts on Cryptographic Module Security Testing.

http://eprint.iacr.org/2005/388/, 2005.

