
A Low-Area Unified Hardware Architecture for the
AES and the Cryptographic Hash Function ECHO

Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki

Graduate School of Systems and Information Engineering
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

jeanluc.beuchat@gmail.com, okamoto@risk.tsukuba.ac.jp, yamazaki@cipher.risk.tsukuba.ac.jp

Abstract—We propose a compact coprocessor for the AES (en-
cryption, decryption, and key expansion) and the cryptographic
hash function ECHO on Virtex-5 and Virtex-6 FPGAs. Our
architecture is built around an 8-bit datapath. The Arithmetic
and Logic Unit performs a single instruction that allows for
implementing AES encryption, AES decryption, AES key expan-
sion, and ECHO at all levels of security. Thanks to a careful
organization of AES and ECHO internal states in the register
file, we manage to generate all read and write addresses by
means of a modulo-16 counter and a modulo-256 counter. A fully
autonomous implementation of ECHO and AES on a Virtex-
5 FPGA requires 193 slices and a single 36k memory block,
and achieves competitive throughputs. Assuming that the security
guarantees of ECHO are at least as good as the ones of the SHA-
3 finalists BLAKE and Keccak, our results show that ECHO
is a better candidate for low-area cryptographic coprocessors.
Furthermore, the design strategy described in this work can be
applied to combine the AES and the SHA-3 finalist Grøstl.

I. INTRODUCTION

We describe a compact unified architecture for the Ad-
vanced Encryption Standard (AES) [13] and the cryptographic
hash function ECHO [5] on Virtex-5 and Virtex-6 Field-
Programmable Gate Arrays (FPGAs). Our coprocessor imple-
ments AES encryption, AES decryption, AES key expansion,
and ECHO at all levels of security. This architecture might for
instance be extremely valuable for constrained environments
such as wireless sensor networks or radio frequency identifi-
cation technology, where some security protocols mainly rely
on cryptographic hash functions (see for example [30]). Sev-
eral cryptographic protocols combine public-key cryptography
(PKC) (e.g. RSA, elliptic curve cryptography (ECC), etc.),
hash functions, random number generators, and symmetric
encryption/decryption algorithms. Consider for instance the
BLS short signature scheme [10]: in order to verify a signature,
one has to hash the message and compute two bilinear pairings
on an elliptic curve. Each pairing constitutes a time-consuming
task: the best coprocessors for embedded systems compute the
Tate pairing over 128-bit-security curves in more than 2ms [1],
[17]. Therefore, one has more than 4ms in order to hash the
next message while computing the two bilinear pairings for
the current message. In this context, it is also important to
keep the amount of hardware resources for the hash function
as small as possible (i.e. it is pointless to design a massively
parallel coprocessor able to hash a message in far less than
4ms).

After a short description of the AES (Section II) and the
ECHO family of hash functions (Section III), we propose a
unified coprocessor built around an 8-bit datapath (Section IV).
We have prototyped our architecture on Virtex-5 and Virtex-6
FPGAs and discuss our results in Section V.

II. THE ADVANCED ENCRYPTION STANDARD

The round transformation of the AES operates on a 128-
bit intermediate result, called state. The state is internally
represented as a 4× 4 array of bytes A:

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 .

Each byte ai,j , 0 ≤ i, j ≤ 3, is considered as an element
of F28

∼= F2[x]/(m(x)), where the irreducible polynomial is
given by m(x) = x8 + x4 + x3 + x + 1. In the following,
we encode an element of F28 by two hexadecimal digits: for
instance, 89 is equivalent to x7 + x3 + 1 in the polynomial
basis representation. We denote the jth column of A by Aj .
The number of rounds Nr as well as the number of 32-bit
blocks in the cipher key Nk of the AES depend on the desired
security level (Table I).

TABLE I
BLOCK LENGTH, KEY LENGTH, NUMBER OF 32-BIT BLOCKS OF THE KEY

(Nk ), AND NUMBER OF ROUNDS (Nr ) OF AES-128, AES-192, AND
AES-256.

Algorithm
Block length Key length

Nk Nr[bits] [bits]
AES-128 128 128 4 10
AES-192 128 192 6 12
AES-256 128 256 8 14

The AES involves four byte-oriented transformations and
their inverses for encryption and decryption, respectively [13]:
• The SubBytes step is the only non-linear transformation

of the AES. Its role is to introduce confusion to the
data so that the relationship between the secret key and
the ciphertext is obscured. It updates each byte of the
state using an 8-bit S-box, denoted by SRD. Internally,
the AES S-box computes the modular inverse of ai,j (the
value 00 is mapped onto itself) and then applies an affine
transformation.



The inverse transformation, called InvSubBytes and de-
noted by S−1RD , performs the inverse affine transformation
followed by an inversion over F28 .

• The ShiftRows step simply consists of a cyclical left shift
of the three bottom rows of the state by 1, 2, and 3 bytes,
respectively: 

b0,j
b1,j
b2,j
b3,j

←


a0,j
a1,(j+1) mod 4

a2,(j+2) mod 4

a3,(j+3) mod 4

 ,

where 0 ≤ j ≤ 3. The inverse operation is called
InvShiftRows:

a0,j
a1,j
a2,j
a3,j

←


b0,j
b1,(j+3) mod 4

b2,(j+2) mod 4

b3,(j+1) mod 4

 .

• The MixColumns step is a permutation operating on the
AES state column by column. Together with ShiftRows,
this step provides diffusion in the cipher: if a single bit of
the plaintext is flipped, then the whole ciphertext should
be changed. Each column of the AES state is considered
as a polynomial over F28 , and is multiplied modulo y4 +
01 by the constant polynomial c(y) = 03 · y3 + 01 ·
y2 + 01 · y + 02 [13]. This operation is performed by
multiplying each column of the state A by a circulant
matrix ME :

b0,j
b1,j
b2,j
b3,j

←

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


︸ ︷︷ ︸

ME

·


a0,j
a1,j
a2,j
a3,j

 ,

where 0 ≤ j ≤ 3.
During the inverse operation, called InvMixColumns,
each column of the state is multiplied by d(y) = 0B ·
y3 + 0D · y2 + 09 · y + 0E. One easily checks that d(y)
is the multiplicative inverse of c(y) modulo y4 + 1:

c(y) · d(y) ≡ 01 (mod y4 + 1).

Here again, the modular multiplication by a constant
polynomial can be defined by a matrix multiplication:

b0,j
b1,j
b2,j
b3,j

←

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


︸ ︷︷ ︸

MD

·


a0,j
a1,j
a2,j
a3,j

 .

• The AddRoundKey step combines the state A with a
128-bit round key. Let r denote the round index. Each
byte ki,4r+j of the round key and its corresponding byte
ai,j are added in F28 by a simple bitwise XOR operation.
AddRoundKey is therefore its own inverse.

A. Key Expansion

The round keys involved in the AddRoundKey steps are
derived from the cipher key as follows. Let us consider an
array consisting of 4 rows and 4 · (Nr + 1) columns. Each
column Kj contains four elements of F28 denoted by k0,j ,
k1,j , k2,j , and k3,j . The round key of the jth round of the
AES encryption algorithm is given by columns K4j to K4j+3

(Figure 1).
The cipher key is copied in the first Nk columns of the array,

and the next columns are defined recursively. The process,
summarized by Algorithms 1 and 2, involves an intermediate
variable RC ∈ F28 and a permutation matrix P defining a
cyclic rotation of the bytes within a column:

P =


00 01 00 00
00 00 01 00
00 00 00 01
01 00 00 00

 .

We denote the identity matrix by I. This matrix notation will
be useful to pinpoint a unified 8-bit datapath for key expansion,
encryption, and decryption in Section IV-A.

Algorithm 1 AES key expansion for Nk ≤ 6.
Input: A cipher key K0, . . . , KNk−1.
Output: Expanded key.

1. RC← x0;
2. for j = Nk to 4Nr + 3 do
3. if j mod Nk = 0 then

4. Kj ← P ·


SRD(k0,j−1)
SRD(k1,j−1)
SRD(k2,j−1)
SRD(k3,j−1)

⊕ I ·Kj−Nk
;

5. k0,j ← k0,j ⊕ RC;
6. RC← x · RC;
7. else
8. Kj ← I ·Kj−1 ⊕ I ·Kj−Nk

;
9. end if

10. end for
11. Return KNk

, . . . , K4Nr+3;

B. Encryption

After an initial AddRoundKey step, an AES encryption
involves Nr − 1 repetitions of a round composed of the four
byte-oriented transformations described above. Eventually, a
final encryption round, in which the MixColumns step is
omitted, produces the ciphertext (Algorithm 3). Noting that
the order of ShiftRows and SubBytes is indifferent [13], we
obtain the datapath depicted on Figure 2.

Algorithm 3 updates the AES state column by column.
Since the ShiftRows transformations performs cyclical left
shifts of the three bottom rows of the state, we have to be
careful not to overwrite bytes that are still involved in the
forthcoming MixColumns steps (a1,0 is for instance needed
to update the fourth column of the AES state, and should
not be overwritten when updating the first column). Thus, the



k3,1

006

039

037

038

036

k3,9

k1,9

k2,9

k0,9

K9K5

005

K6

007

K7 K8

k0,0

k2,0

k1,0

K10

043

041

042

040

k3,10

k1,10

k2,10

k0,10

AES-128 cipher key

AES-192 cipher key

AES-256 cipher key

Round key 0 Round key 1 Round key 2

k3,0

016

k3,4

k1,4

k2,4

k0,4
Address of ki,j:

018

000

017

i + 4j

K0

019

k0,3

k2,3
023

021

022

020

k3,5

k1,5

k2,5

k0,5

002

k1,3

001

k3,3

003

K11

012

014

013

027

025

026

024

k3,6

k1,6

k2,6

k0,6

047015

045

k0,2

046

044

k2,2

k1,2

k3,2

031

029

030

028

k3,7

k1,7

k2,7

k0,7

k3,11

008

k1,11
010

k2,11

k0,11
009

011

k0,1

035

033

034

032

k3,8

k1,8

k2,8

k0,8

K1

k2,1

K2

k1,1

K3 K4

004

Fig. 1. Key expansion and round selection.

Algorithm 2 AES key expansion for Nk > 6.
Input: A cipher key K0, . . . , KNk−1.
Output: Expanded key.

1. RC← x0;
2. for j = Nk to 4Nr + 3 do
3. if j mod Nk = 0 then

4. Kj ← P ·


SRD(k0,j−1)
SRD(k1,j−1)
SRD(k2,j−1)
SRD(k3,j−1)

⊕ I ·Kj−Nk
;

5. k0,j ← k0,j ⊕ RC;
6. RC← x · RC;
7. else if j mod Nk = 4 then

8. Kj ← I ·


SRD(k0,j−1)
SRD(k1,j−1)
SRD(k2,j−1)
SRD(k3,j−1)

⊕ I ·Kj−Nk
;

9. else
10. Kj ← I ·Kj−1 ⊕ I ·Kj−Nk

;
11. end if
12. end for
13. Return KNk

, . . . , K4Nr+3;

encryption algorithm requires an internal 4× 4 array of bytes
B.

C. Decryption

We consider here the equivalent decryption algorithm de-
scribed in [13, Section 3.7.3] (Algorithm 4). Its main ad-
vantage over the straightforward decryption process is that
encryption and decryption rounds share the same datapath
(Figure 2). Nevertheless, the round keys are introduced in
reverse order for decryption.

Algorithm 3 AES encryption.
Input: A 128-bit plaintext A and Nr + 1 round keys.
Output: A 128-bit ciphertext B.

1. for j = 0 to 3 do
2. Aj ← I ·Aj ⊕ I ·Kj ;
3. end for
4. for i = 1 to Nr − 1 do
5. for j = 0 to 3 do

6. Bj ←ME ·


SRD(a0,j)

SRD(a1,(j+1) mod 4)
SRD(a2,(j+2) mod 4)
SRD(a3,(j+3) mod 4)

⊕ I ·K4i+j ;

7. end for
8. A← B;
9. end for

10. for j = 0 to 3 do

11. Bj ← I ·


SRD(a0,j)

SRD(a1,(j+1) mod 4)
SRD(a2,(j+2) mod 4)
SRD(a3,(j+3) mod 4)

⊕ I ·K4Nr+j ;

12. end for
13. Return B;

III. THE HASH FUNCTION ECHO

The ECHO family of hash functions [5] is built around
the round function of the AES. This design strategy allows
one to easily exploit advances in the implementation of the
AES, such as the new AES instruction set of Intel Westmere
processors [6]. ECHO is a family of four hash functions,
namely ECHO-224, ECHO-256, ECHO-384, and ECHO-512
(Table II). The main differences lie in the length of the
chaining variable and in the number of rounds.

In this work, we assume that our coprocessor is provided
with a padded message M . We refer the reader to [5, Section
2.2] for a description of the padding step. A hardware wrapper



K4Nr
, K4Nr+1,

K4Nr+2, and K4Nr+3K4Nr−2, and K4Nr−1

K4Nr−4, K4Nr−3,K4, K5, K6, and K7K0, K1, K2, and K3

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

C
ip

he
rt

ex
t

Pl
ai

nt
ex

t

Encryption round

S
ub

B
yt

es

S
hi

ftR
ow

s

M
ix

C
ol

um
ns

Encryption round

S
ub

B
yt

es

S
hi

tfR
ow

s

M
ix

C
ol

um
ns

Last encryption round

A
dd

R
ou

nd
K

ey

S
ub

B
yt

es

S
hi

ftR
ow

s

K4Nr
, K4Nr+1,

K4Nr+2, and K4Nr+3

K0, K1, K2, and K3

A
dd

R
ou

nd
K

ey

K4, K5, K6, and K7K4Nr−4, K4Nr−3,
K4Nr−2, and K4Nr−1

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Last decryption round

In
vM

ix
C

ol
um

ns

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Decryption round
In

vM
ix

C
ol

um
ns

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Decryption round

C
ip

he
rt

ex
t

Pl
ai

nt
ex

t

InvMixColumnsInvMixColumns

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

Fig. 2. AES encryption and decryption flowcharts.

Algorithm 4 AES decryption.
Input: A 128-bit ciphertext A and Nr + 1 round keys.
Output: A 128-bit plaintext B.

1. for j = 0 to 3 do
2. Aj ← I ·Aj ⊕ I ·K4Nr+j ;
3. end for
4. for i = 1 to Nr − 1 do
5. for j = 0 to 3 do

6. Bj ←MD ·


S−1RD(a0,j)

S−1RD(a1,(j+3) mod 4)
S−1RD(a2,(j+2) mod 4)
S−1RD(a3,(j+1) mod 4)


⊕MD ·K4Nr−4i+j ;

7. end for
8. A← B;
9. end for

10. for j = 0 to 3 do

11. Bj ← I ·


S−1RD(a0,j)

S−1RD(a1,(j+3) mod 4)
S−1RD(a2,(j+2) mod 4)
S−1RD(a3,(j+1) mod 4)

⊕ I ·Kj ;

12. end for
13. Return B;

interface for ECHO (and several other hash functions) com-
prising communication and padding is for instance described

TABLE II
PROPERTIES OF THE ECHO FAMILY OF HASH FUNCTIONS (REPRINTED

FROM [5]). ALL SIZES ARE GIVEN IN BITS.

Algorithm
Chaining Message

Digest Counter Saltvariable block
ECHO-224 512 1536 224 64 or 128 128
ECHO-256 512 1536 256 64 or 128 128
ECHO-384 1024 1024 384 64 or 128 128
ECHO-512 1024 1024 512 64 or 128 128

in [4]. A padded message is divided into 1536-bit (ECHO-
224 and ECHO-256) or 1024-bit (ECHO-384 and ECHO-512)
message blocks M1, M2, . . . , Mt that are iteratively processed
using a compression function Compress512 (ECHO-224 and
ECHO-256) or Compress1024 (ECHO-384 and ECHO-512).

The internal state Si of the ECHO family can be viewed as
a 4× 4 array of 128-bit words (Figure 3), each of them being
considered as an AES state A(k), 0 ≤ k ≤ 15:
• ECHO-224/256. The 512-bit chaining variable Vi−1 and

the 1536-bit message block Mi, 1 ≤ i ≤ t, are split into
Nv = 4 and Nm = 12 AES states, respectively. Vi−1 is
stored in the first column of the internal state, and Mi in
the remaining columns.

• ECHO-384/512. Both Vi−1 and Mi are 1024-bit values
that can be split into Nv = Nm = 8 AES states. Vi−1
occupies the first half of the internal state and Mi the
second one.



Vi−1 Mi

Vi−1 Mi

ECHO-224/256:

ECHO-384/512:

Address of a(k)i,j :
i + 4j + 16k

a
(2)
2,2a

(2)
2,0

a
(2)
0,0 a

(2)
0,1

a
(2)
2,1

A(0)

A(1)

A(4)

A(5)

A(8)

A(9)

A(12)

A(13)

A(2) A(6)

A(3) A(7) A(11)

A(10) A(14)

A(15)

003

014

013

015011007

012008

009005

010

001

002

000 004

006

a
(0)
3,0

a
(0)
2,3

a
(0)
1,3

a
(0)
3,3a

(0)
3,2a

(0)
3,1

a
(0)
0,3a

(0)
0,2

a
(0)
1,2a

(0)
1,1

a
(0)
2,2

a
(0)
1,0

a
(0)
2,0

a
(0)
0,0 a

(0)
0,1

a
(0)
2,1

035

046

045

047043039

044040

041037

042

033

034

032 036

038

a
(2)
3,0

a
(2)
2,3

a
(2)
1,3

a
(2)
3,3a

(2)
3,2a

(2)
3,1

a
(2)
0,3a

(2)
0,2

a
(2)
1,2a

(2)
1,1a

(2)
1,0

Fig. 3. Internal state of the ECHO family.

The initial chaining variable V0 encodes the intended hash
output size [5, Section 2.1].

BIG.ShiftRows
BIG.MixColumns

BIG.SubWordsBIG.SubWords

BIG.MixColumns
BIG.ShiftRows

TV0

Mt Ct SaltM1 C1 Salt

Compress1024

Compress512 or

VtV1

Fig. 4. Chained iteration of the compression function. T denotes the optional
truncation described in [5, Section 3.5] and [5, Section 4.1].

ECHO applies iteratively a compression function to update
the chaining variable Vi, 0 ≤ i ≤ t (Figure 4 and Algorithm 5).
Compress512 and Compress1024 perform N

(ECHO)
r = 8 and

10 iterations of BIG.Round, respectively. BIG.Round is the
sequential composition of three transformations:
• The BIG.SubWords transformation applies two AES

rounds to each 128-bit word A(j), 0 ≤ j ≤ 15, of the
internal state defined on Figure 3:

A(j) ← AESROUND(AESROUND(A(j), k1), k2),

where AESROUND denotes one round of the AES
encryption flow. As explained in Section II-B, an internal
4 × 4 array of bytes B(j) is needed to solve data
dependency issues (Algorithm 5, lines 11 and 12).
The key schedule for the derivation of the two 128-bit
subkeys k1 and k2 is much simpler than the one of the

AES. k1 is related to the number of unpadded message
bits Ci hashed at the end of the current iteration. An
internal 64-bit counter κ is initialized with the value of
Ci, and k1 is defined as follows:

k1 = κ ‖ 0 . . . 0︸ ︷︷ ︸
64×

.

κ is incremented at the end of each AES round involving
k1. If the size of the message exceeds 264 − 1, one has
the flexibility to use a 128-bit counter Ci. k2 is equal
to the 128-bit salt value that enables ECHO to support
randomized hashing.

• The BIG.ShiftRows step is the analogue of the Shift-
Rows step of the AES. The first line of the internal state
is left unchanged. Each 128-bit word of the second, third,
and fourth lines is left-rotated by one, two, and three po-
sitions, respectively. At the byte level, this transformation
is given by:

b
(4k)
i,j

b
(4k+1)
i,j

b
(4k+2)
i,j

b
(4k+3)
i,j

←


a
(4k)
i,j

a
((4k+5) mod 16)
i,j

a
((4k+10) mod 16)
i,j

a
((4k+15) mod 16)
i,j

 ,

where 0 ≤ i, j, k ≤ 3.
• The BIG.MixColumns step operates on the ECHO state

column by column. We build a polynomial over F28 by
picking the (i+ 4j)th byte of each AES state in the kth
column, and apply to it the MixColumns transformation:

b
(4k)
i,j

b
(4k+1)
i,j

b
(4k+2)
i,j

b
(4k+3)
i,j

←

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


a
(4k)
i,j

a
(4k+1)
i,j

a
(4k+2)
i,j

a
(4k+3)
i,j

 ,

where 0 ≤ i, j, k ≤ 3. We combine the BIG.ShiftRows
and BIG.MixColumns steps (Algorithm 5, line 18), and
avoid data dependency issues thanks to intermediate
variables B(j), 0 ≤ j ≤ 15.

After N
(ECHO)
r calls to the compression function, the

BIG.Final step generates the new value of the chaining vari-
able Vi from Vi−1, Mi, and the internal state. Note that this
step depends on the selected level of security (Algorithm 5,
lines 26 to 34).

IV. A COMPACT UNIFIED COPROCESSOR FOR THE AES
AND THE ECHO FAMILY OF HASH FUNCTIONS

A. A Unified Arithmetic and Logic Unit

Since our objective is to develop a low-area coprocessor
for the AES and the ECHO family of hash functions, it seems
natural to consider an 8-bit datapath (Figure 5). Above all, note
that the ShiftRows and InvShiftRows steps are implemented
by accordingly addressing the register file organized into bytes.
As a result, these operations are virtually for free and do
not require dedicated hardware in the Arithmetic and Logic



Algorithm 5 The ECHO hash function.
Input: A chaining variable V (Nv 128-bit words), a message

block (Nm 128-bit blocks), κ, and salt. AESROUND
denotes an encryption round of the AES.

Output: A new chaining variable.
1. for i = 0 to Nv − 1 do
2. A(i) ← V (i);
3. end for
4. for i = 0 to Nm − 1 do
5. A(Nv+i) ←M (i);
6. end for
7. k1 ← κ ‖ 0 . . . 0︸ ︷︷ ︸

64×

;

8. k2 ← Salt;
9. for r = 1 to N (ECHO)

r do
10. for j = 0 to 15 do
11. B(j) ← AESROUND(A(j), k1);
12. A(j) ← AESROUND(B(j), k2);
13. k1 ← (k1 + 1) mod 264;
14. end for
15. for k = 0 to 3 do
16. for i = 0 to 3 do
17. for j = 0 to 3 do

18.


b
(4k)
i,j

b
(4k+1)
i,j

b
(4k+2)
i,j

b
(4k+3)
i,j

←ME ·


a
(4k)
i,j

a
((4k+5) mod 16)
i,j

a
((4k+10) mod 16)
i,j

a
((4k+15) mod 16)
i,j

;

19. end for
20. end for
21. end for
22. for j = 0 to 15 do
23. A(j) ← B(j);
24. end for
25. end for
26. if Algorithm is ECHO-224/256 then
27. for i = 0 to 3 do
28. V (i) ← V (i) ⊕M (i) ⊕M (i+4) ⊕M (i+8) ⊕ A(i) ⊕

A(i+4) ⊕A(i+8) ⊕A(i+12);
29. end for
30. else
31. for i = 0 to 7 do
32. V (i) ← V (i) ⊕M (i) ⊕A(i) ⊕A(i+8);
33. end for
34. end if
35. Return V ;

Unit (ALU). We can now describe key expansion (Algo-
rithms 1 and 2), encryption (Algorithm 3), and decryption
(Algorithm 4) using a single instruction:

Rk ← A · f(Ri)⊕ B ·Rj , (1)

where
• Ri, Rj , and Rk are vectors of four bytes;
• f is a function applied to each byte of Ri;

• A and B are 4× 4 matrices of bytes.
The values of these parameters for the different steps of
Algorithms 1, 2, 3, and 4 are summarized in Table III.
The hash function ECHO benefits from the same instruc-
tion: the BIG.SubWords consists of AES rounds, and the
BIG.MixColumns step involves the circulant matrix ME .
Only the key schedule and the BIG.Final step require a small
additional amount of hardware.

1) The SubBytes and InvSubBytes Steps: The SubBytes
and InvSubBytes steps are often considered as the most
critical part of the AES and several architectures for SRD and
S−1RD have already been described in the literature (see for
instance [20] for a comprehensive bibliography). On Xilinx
Virtex-5 and Virtex-6 FPGAs, the best design strategy consists
in implementing the AES S-boxes as 8-input tables [12]. Two
control bits ctrl1:0 allow us to perform SubBytes, InvSub-
Bytes, or to bypass this stage when f is the identity function.

2) Matrix Multiplication: A quick look at Table III in-
dicates that matrix A in Equation (1) can be any of the
four matrices introduced in Section II. Two control bits
ctrl3:2 are therefore necessary to select the desired operation.
Since we emphasize reducing the usage of FPGA resources,
we adopt the multiply-and-accumulate approach proposed by
Hämäläinen et al. [24], and need 4 clock cycles to multiply one
column of the state or the round key array by a 4×4 circulant
matrix (Figure 6). Let us consider the product ME · Aj . We
compute a first partial product by multiplying each coefficient
of the fixed polynomial 01+01 ·y+03 ·y2 +02 ·y3 by a0,j ,
and store the result in registers r0, r1, r2, and r3. Then, at each
clock cycle, the intermediate result is rotated and accumulated
with a new partial product. This process involves a control
signal to distinguish between the first step and the subsequent
ones. Such a signal can be generated by computing the bitwise
OR of the two bits of a modulo-4 counter.

A standard way to implement the AES consists in taking ad-
vantage of the well-known relation between the MixColumns
and InvMixColumns polynomials [13, p. 55]:

d(y) = (04y2 + 05) · c(y) mod (y4 + 01).

However, multiplication by 04y2 + 05 would incur extra
clock cycles for decryption (i.e. a different instruction flow
for encryption and decryption). In order to keep the instruction
memory of our coprocessor as small as possible, it is crucial
to use the same code for encryption and decryption. A status
register indicates which algorithm is currently executed, and
the control unit generates the control bits ctrl3:0 accordingly.

Our algorithm for multiplication by MD is based on the
following observation [29]:

MD =ME +


0C 08 0C 08
08 0C 08 0C
0C 08 0C 08
08 0C 08 0C

 .

Table IVa defines the multiplication of an element a(x) =∑7
i=0 aix

i ∈ F28 by 08 and 0C. Note that each line of the
table involves at most 5 bits of a(x) and can therefore be



TABLE III
IMPLEMENTATION OF AES KEY EXPANSION, AES ENCRYPTION, AES DECRYPTION, AND BIG.MIXCOLUMNS WITH A SINGLE INSTRUCTION.

Algorithm Operation Rk A f Ri B Rj

Algorithm 1, line 4 Ki P SRD Ki−1 I Ki−Nk

Key expansion Algorithm 1, line 8 Ki I Identity Ki−1 I Ki−Nk

Algorithm 2, line 8 Ki I SRD Ki−1 I Ki−Nk

Algorithm 3, line 2 Aj I Identity Aj I Kj

AES encryption Algorithm 3, line 6 Bj ME SRD


a0,j

a1,(j+1) mod 4

a2,(j+2) mod 4

a3,(j+3) mod 4

 I K4i+j

Algorithm 3, line 11 Bj I SRD


a0,j

a1,(j+1) mod 4

a2,(j+2) mod 4

a3,(j+3) mod 4

 I K4Nr+j

Algorithm 4, line 2 Aj I Identity Aj I K4Nr+j

AES decryption Algorithm 4, line 6 Bj MD S−1
RD


a0,j

a1,(j+3) mod 4

a2,(j+2) mod 4

a3,(j+1) mod 4

 MD K4Nr−4i+j

Algorithm 4, line 11 Bj I S−1
RD


a0,j

a1,(j+3) mod 4

a2,(j+2) mod 4

a3,(j+1) mod 4

 I Kj

BIG.MixColumns Algorithm 5, line 18


b
(4k)
i,j

b
(4k+1)
i,j

b
(4k+2)
i,j

b
(4k+3)
i,j

 ME Identity


a
(4k)
i,j

a
((4k+5) mod 16)
i,j

a
((4k+10) mod 16)
i,j

a
((4k+15) mod 16)
i,j

 I

00
00
00
00



implemented by means of a LUT with 5 inputs and 2 outputs
(i.e. a LUT6 2 primitive if we consider Virtex-5 or Virtex-6
FPGAs). A second table computes (00 · y2 + 00 · y3) · a(x),
(00 ·y2 +01 ·y3) ·a(x), (01 ·y2 +00 ·y3) ·a(x), or (03 ·y2 +
02 ·y3) ·a(x) according to the 2 control bits ctrl3:2. Since the
computation of each digit of 02 · a(x) and 03 · a(x) requires
at most 3 coefficients of a(x) (Table IVb), this operation can
be implemented by means of 8 LUT6 2 primitives.

Figure 7 describes how we implement multiplication by I,
ME , MD, and P by combining the outputs of those tables.
One easily checks that this circuit is equivalent to the one
illustrated in Figure 6. In particular, note that the content of
registers r2 and r3 is given by:

r2 ←


00 if ctrl3:2 = 00,
03 · a(x) if ctrl3:2 = 01,
(08⊕ 03) · a(x) = 0B · a(x) if ctrl3:2 = 10,
01 · a(x) if ctrl3:2 = 11,

and

r3 ←


01 · a(x) if ctrl3:2 = 00,
02 · a(x) if ctrl3:2 = 01,
(0C⊕ 02) · a(x) = 0D · a(x) if ctrl3:2 = 10,
00 if ctrl3:2 = 11.

Our matrix multiplication unit involves 16 LUT6 2 primitives
and 32 LUT6 primitives, resulting in a total requirement of
12 slices on a Virtex-5 FPGA. Compared to the MixColumns

operator of ECHO-256 coprocessor described in [8], where
only multiplication by ME is needed, the hardware overhead
amounts to 4 Virtex-5 slices. Matrix B is either the identity
matrix I or the InvMixColumns matrix MD (Table III). We
followed a similar strategy to implement multiplication by B.

3) Addition over F28 : Figure 8 describes the component we
designed to perform the AddRoundKey step. Since our matrix
multiplication units output 4 bytes, we perform 4 additions
over F28 in parallel and store the result in a shift register.
This approach allows us to write data byte by byte in the
register file. Here again, a simple modulo-4 counter controls
the process: a new result is loaded during the first clock cycle,
and then shifted in the three subsequent clock cycles.

The same component performs the additions involved in the
round key derivation. However, additional hardware resources
are needed to:
• initialize RC (Algorithm 1, line 1 and Algorithm 2,

line 1);
• add RC to k0,i when the column index i is a multiple of
Nk (Algorithm 1, line 5 and Algorithm 2, line 5);

• update RC (Algorithm 1, line 6 and Algorithm 2, line 6).
A multiplexer controlled by ctrl6 selects the operand loaded
in the register when the clock enable signal ctrl7 is equal to
1: the initial value 01 or x · RC. When i mod Nk = 0, the
control unit sets ctrl8 to 1 so that RC is added to k0,i.

Recall that the BIG.MixColumns step does not involve any
round key addition (see Algorithm 5, line 18 and Table III).
In order to use the same datapath for this operation, we add



BIG.Final, and
KeyExpansion

Data

ct
rl

9

User interface

4-stage FIFO

18
k

B
lo

ck
R

A
M

18
k

B
lo

ck
R

A
M

3-stage FIFO

M
od

ul
o-
4

co
un

te
r

M
od

ul
o-
4

co
un

te
r

AddRoundKey,

Logic Unit

10

Arithmetic and

00

ECHO key

01

Mux

schedule

(10 bits)

0001

1111

. . .
1000

0111

(10 bits)

. . .

(10 bits)

0000

Counter

LUT

5-
st

ag
e

FI
FO

ct
rl

8:
4

ct
rl

3:
2

ct
rl

0

ct
rl

1

counter
Modulo-16

(10 bits)

Latency: 2 clock cycles

Control unit Instruction ROM

1

0

Address generation

r3

r2

r1

r0

sk3
sk2
sk1

Latency:
• AES, BIG.SubWords, and BIG.MixColumns: 6 clock cycles

• BIG.Final (ECHO-384/512): 2 clock cycles

sk0

• BIG.Final (ECHO-224/256): 4 clock cycles

8 bits
Control signals

1 bit

SubBytes

Po
rt

A
Po

rt
B

we0

(dual-ported memory block)
Register file and key memory

we1

addr1

addr0

Po
rt

B
Po

rt
A

we3

we2

addr2

addr3

InvSubBytes

0

1

01

00

10

1

0

1

0

ct
rl

10

Matrix multiplication
• Identity matrix
• InvMixColumns

Matrix multiplication
• Identity matrix
• MixColumns
• InvMixColumns
• Cyclic rotation

Fig. 5. General architecture of our unified 8-bit coprocessor for AES and ECHO.

the constant 00 stored in the key memory of the coprocessor.
During the BIG.Final step, two bytes are read from the

register file at each clock cycle, and accumulated thanks to
the feedback mechanism controlled by ctrl4 and ctrl5 (here
again, the signal sk0 is obtained by reading the constant 00
from the key memory). Thus, the computation of each byte of
V (i) involves four and two clock cycles for ECHO-224/256
and ECHO-384/512, respectively. All other operations require
six clock cycles (Figure 5). Therefore, special attention must
be paid to the design of the control unit in order to take the
latency of each operation into account.

4) ECHO key schedule: The choice of an 8-bit datapath
enables to increment the internal 64-bit counter κ in 8 clock
cycles, thus keeping the critical path of the adder as small as

possible. Figure 5 describes the pipelined adder implementing
ECHO key schedule. k1 is stored in the key memory and
is read byte by byte. During the first clock cycle, we add
the constant 1 to the least significant byte of k1 and store
the output carry in a flip-flop. This carry bit is then added
to the second byte of k1, and the content of the flip-flop is
updated accordingly. We repeat this process until the 64 least
significant bits of k1 are updated. Since the 8 most significant
bytes of k1 are not modified, we simply add the constant 0 in
the remaining clock cycles. A modulo-16 counter and a small
look-up table allow us to select the input carry of the 8-bit
adder at each clock cycle.



1

MixColumns: multiplication byME =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



Identity: multiplication by I =


01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01



Cyclic rotation: multiplication by P =


00 01 00 00
00 00 01 00
00 00 00 01
01 00 00 00



InvMixColumns: multiplication byMD =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E



Operationctrl3:2

00

01

10

11

1 bit 2 bits 8 bits

Modulo-4
counter

MixColumns

00

01

10

11

counter
Modulo-4

0

1

1

01

09

00

0011

10

01

00

02

0E

01

0011

10

01

00

01

0D

00

0011

10

01

00

03

0B

00

0111

10

01

00

ctrl3:2

Ti
m

e

r1 r2 r3

01 · a0,j ⊕ 01 · a1,j ⊕ 02 · a2,j

Acc

Register r3

03 · a0,j ⊕ 01 · a1,j ⊕ 01 · a2,j

Register r2

01 · a0,j ⊕ 02 · a1,j ⊕ 03 · a2,j ⊕ 01 · a3,j

02 · a0,j03 · a0,j01 · a0,j01 · a0,j

02 · a0,j ⊕ 03 · a1,j ⊕ 01 · a2,j ⊕ 01 · a3,j

Register r1Acc Register r0

01 · a0,j ⊕ 02 · a1,j02 · a0,j ⊕ 03 · a1,j03 · a0,j ⊕ 01 · a1,j01 · a0,j ⊕ 01 · a1,j

01 · a0,j ⊕ 02 · a1,j ⊕ 03 · a2,j

01 · a0,j ⊕ 01 · a1,j ⊕ 02 · a2,j ⊕ 03 · a3,j

02 · a0,j ⊕ 03 · a1,j ⊕ 01 · a2,j

03 · a0,j ⊕ 01 · a1,j ⊕ 01 · a2,j ⊕ 02 · a3,j

r0

Fig. 6. Multiplication by a circulant matrix.

TABLE IV
MULTIPLICATION OVER F28 OF a(x) BY SEVERAL CONSTANTS.

Inputs ×08 ×0C
a5, a6 a5 a5 ⊕ a6

a5, a6, a7 (a5 ⊕ a6)x (a5 ⊕ a7)x
a0, a6, a7 (a6 ⊕ a7)x2 (a0 ⊕ a6)x2

a0, a1, a5, a6, a7 (a0 ⊕ a5 ⊕ a7)x3 (a0 ⊕ a1 ⊕ a5 ⊕ a6 ⊕ a7)x3

a1, a2, a5, a6, a7 (a1 ⊕ a5 ⊕ a6)x4 (a1 ⊕ a2 ⊕ a5 ⊕ a7)x4

a2, a3, a6, a7 (a2 ⊕ a6 ⊕ a7)x5 (a2 ⊕ a3 ⊕ a6)x5

a3, a4, a7 (a3 ⊕ a7)x6 (a3 ⊕ a4 ⊕ a7)x6

a4, a5 a4x7 (a4 ⊕ a5)x7

(a) Multiplication of a(x) by 08 and 0C.

Inputs ×01 ×02 ×03
a0, a7 a0 a7 a0 ⊕ a7

a0, a1, a7 a1x (a0 ⊕ a7)x (a0 ⊕ a1 ⊕ a7)x
a1, a2 a2x2 a1x2 (a1 ⊕ a2)x2

a2, a3, a7 a3x3 (a2 ⊕ a7)x3 (a2 ⊕ a3 ⊕ a7)x3

a3, a4, a7 a4x4 (a3 ⊕ a7)x4 (a3 ⊕ a4 ⊕ a7)x4

a4, a5 a5x5 a4x5 (a4 ⊕ a5)x5

a5, a6 a6x6 a5x6 (a5 ⊕ a6)x6

a6, a7 a7x7 a6x7 (a6 ⊕ a7)x7

(b) Multiplication of a(x) by 02 and 03.

B. Memory Organization

Since we consider an 8-bit datapath, the memory of our
coprocessor is organized into bytes. We will show below that
10 address bits are needed to access message blocks and
intermediate data, thus allowing us to implement the register
file and the key memory by means of a single Virtex-5 or
Virtex-6 block RAM configured as two independent 18 Kb
RAMs (Figure 5).

a) Register file.: Recall that an ECHO state is an array
of 256 bytes a(k)i,j , where 0 ≤ i, j ≤ 3 and 0 ≤ k ≤ 15

(Figure 3). Let us define the 8-bit address of a(k)i,j as 16k+4j+i
(i.e. the 4 most significant bits encode the index k, and the
4 least significant bits define the location of the byte in the
AES state A(k)). We decided to organize the register file into
four blocks of 256 bytes selected by two additional address

bits (Figure 9). In order to implement ECHO according to
Algorithm 5, we need a first 4×4 array of AES states to store
the chaining variable and the message block. The compression
function involves two additional arrays (ECHO states A and B
in Algorithm 5). We use the 128 least significant bits of A and
B as intermediate variables for the AES. The key expansion
algorithm computes Ki from Ki−1 and Ki−Nk

(Algorithms 1
and 2). In order to access a byte of Ki−1 and Ki−Nk

at each
clock cycle, we keep two copies of the round keys. The first
one is located in the 4th block of 256 bytes of the register
file, and the second one is stored in the key memory. Since
Nr ≤ 14, we have to memorize at most 4Nr+4 = 60 columns
Ki, i.e. 240 bytes. The 8 least significant address bits of a
round key byte ki,j , 0 ≤ i ≤ 3 and 0 ≤ j ≤ Nr ≤ 14, are
given by i+ 4j (Figure 1).



11

Modulo-4
counter

00

00

8 LUT6 2 8 LUT6 2

ctrl3

8 LUT6

8 LUT6 8 LUT6 ctrl28 LUT6

a(x)

11 10 11 10

00 00

01 00

00 00

01 00

00

0110

ctrl3:2

ctrl3:211 00

8 bits

0110

1 bit 2 bits

r1

×09 ×0D

×02×0C

r3

×08

r2r0

×03

Fig. 7. Multiplication by I, ME , MD , and P .

Computation of RC

ctrl4

5-
in

pu
t

L
U

T
s

2-input
LUTs

×x

ctrl7

ctrl5

Modulo-4
counter

ctrl8 1 0

1 bit 8 bits

1 0

ctrl6

(key expansion)

1 0

To register file

01

0 1

00

RC or 00

r3r2r1r0 sk3sk2sk1
register file

From

sk0

L
U

T
s

6-
in

pu
t

ctrl4

1 0 1 0

4-input
LUTs

Fig. 8. Implementation of AddRoundKey, KeyExpansion, and BIG.Final.



16

Unused

512

0

255

message block
Chaining variable and

767

256

511

ECHO state A

Constant 00

512

767

ECHO state B

272272

128-bit block B
512

527

Unused
767

528

Unused
784 + 16Nr

1023

Round keys (K0 to K4Nr+3)
783 + 16Nr

768

Unused
784 + 16Nr

1023

Unused
255

511

16

Unused

271

256
k2 (128-bit salt)

(c) Key memory (AES and ECHO)(a) Register file (AES)

768

1023

Unused

(b) Register file (ECHO)

15

0
k1 = κ ‖ 0 . . . 0

511

Unused

768

271

256
128-bit block A

783 + 16Nr

15

0
128-bit plaintext or ciphertext

Round keys (K0 to K4Nr+3)

255

Fig. 9. Memory organization.

b) Key memory.: Besides a copy of the AES round keys,
the key memory contains k1, k2, and a block whose all
bytes are set to zero which provides us with the constant
00 needed for the BIG.MixColumns and BIG.Final steps
(Section IV-A3). Thus, no dedicated hardware is needed to
force sk0, sk1, sk2, and sk3 to 00.

In the following, we show that our careful organization of
the data in the register file and in the key memory allows
one to design a control unit based on a 4-bit counter, an 8-bit
counter, and a simple Finite State Machine (FSM).

C. Control Unit
The control bits of our unified ALU, the read and write

addresses of the register file and the key memory, and the
write enable signals are computed by a control unit that mainly
consists of an address generator and an instruction memory.
A FSM, four internal registers, and a stack allow us to select
and execute the algorithm specified by the user.

1) Address Generation: The address generation process is
the most challenging task in the design of a low-area unified
coprocessor for the AES and the hash function ECHO: at first
glance, it seems that each task (AES key expansion, AES
encryption, AES decryption, BIG.MixColumns, etc.) requires
a different addressing scheme. However, we described a way
to generate the eight least significant bits of all read and write
addresses of ECHO-256 by means of a counter by 5 modulo
16 and a modulo-256 counter [8]. We show here that our
address generator can be slightly modified in order to support
ECHO-512 and the AES (Figures 10 and 11). Note that our
control unit generates at each clock cycle a read address and
its corresponding write address. Since our coprocessor embeds
several pipeline stages (Figure 5), it is necessary to delay write
addresses and write enable signals accordingly. Shift registers
allow us to synchronize signals in our coprocessor. On Xilinx

devices, they are efficiently implemented by means of SRL16
primitives, whose depth is dynamically adjusted according to
the algorithm being executed (Figure 10c): the latency of the
BIG.Final step is equal to six and four clock cycles for ECHO-
224/256 and ECHO-384/512, respectively. In all other cases,
the datapath includes eight pipeline stages.

Figure 10 describes the generation of the write enable
signals and the two most significant bits of read and write
addresses. The architecture is fairly simple in the case of the
key memory: two control bits ctrl6:5 allows for selecting one
of the four blocks of 256 bytes. For a given algorithm, read and
write operations always occur in the same block and share the
same two most significant address bits. Since the BIG.Final
step does not modify the key memory, an 8-stage FIFO allows
for synchronizing the write address and the write enable signal.

The register file needs a more careful attention. Recall
that 128-bit plaintext or ciphertext blocks, chaining variables
and message blocks are stored in the first block of 256
byte of the register file (Figure 9). The first intermediate
variables are written in the second block. Thus, the two most
significant bits of read and write addresses must be set to 00
and 01, respectively. This task is performed thanks to two
multiplexers controlled by ctrl10:9 and ctrl8:7. Then, read and
write operations alternate between the second and the third
blocks of 256 bytes. It suffices to flip the bits of the write
address. In the case of the read address, we wish to generate
the sequence 00→ 01→ 10→ 01→ . . .. Let a1:0 denote the
two most significant bits of the current read address. We easily
check that we obtain the next read address b1:0 by computing
b0 ← ā0 ∨ a1 and b1 ← a0. Of course it would have been
possible to add a fourth input to the multiplexer controlled
by ctrl10:9 in order to set the read address to 01. Then, it
suffices to flip the address bits to switch between the second



and the third memory block. However, this approach would
imply two distinct instructions to switch from the first to the
second block, and between the second and the third blocks,
thus increasing the size of the instruction memory.

Figure 11 describes how we generate the eight least signif-
icant bits of read and write addresses (i.e. the location of a
byte in a block of 256 bytes).

a) AES key schedule.: Figure 12 illustrates the schedul-
ing of the AES-128 key expansion algorithm. Since Nr ≤ 14,
the round key array contains at most 240 bytes, and we
can use the modulo-256 counter to process it byte by byte
(Algorithm 1): a new byte kj,i of the array is computed
from kj,i−Nk

and kj,i−1. Recall that the address of kj,i−Nk

is given by j + 4i − 4Nk and assume that it is provided by
the modulo-256 counter. It suffices to increment the counter
by 4 · (Nk− 1) and 4Nk to obtain the addresses of kj,i−1 and
kj,i, respectively. Our address generator is provided by Nk−1
and a 6-bit adder allows us to increment the current value of
the modulo-256 counter by 4 · (Nk − 1) (Figure 11). Since

Nk = 2 · (((Nk − 1) div 2) + 1),

it suffices to add 8 · (((Nk − 1) div 2) + 1) = 4Nk to the
address of kj,i−Nk

in order to obtain the address of kj,i (5-bit
adder on Figure 11).

b) AES encryption.: Recall that the ShiftRows step
is implemented by accordingly addressing the register file
(Section IV-A) and that the order in which bytes are processed
during the first AddRoundKey step does not matter. In order
to update a column of the AES state, we have to read
a0,j , a1,(j+1) mod 4, a2,(j+2) mod 4, and a3,(j+3) mod 4, where
0 ≤ j ≤ 3 (Algorithm 3). During an encryption round, the
control unit performs the following tasks (Figure 13):
• Read a byte of the AES state from the register file.

Starting from 0 (i.e. the address of a0,0), we generate
all read addresses thanks to a counter by 5 modulo 16.

• Read a byte of the round key from the key memory. The
modulo-256 counter allows us to process the round key
array column by column.

• Update one byte of the AES state. Since the AES state is
updated column by column, the address is given by the
4 least significant bits of the modulo-256 counter.

In order to update the value of a3,3, we have to provide
our ALU with a0,3, a1,0, a2,1, and a3,2. Our control unit will
generate the address of a3,2 (read operation) and a3,3 (write
operation) at time t. Since our coprocessor includes D = 8
pipeline stages, we will write the new value of a3,3 in the
register file at time t+D (Figure 14). Therefore, we have to
wait D−3 = 5 clock cycles before starting the next encryption
round. Then, we read a0,0 at time t + D − 2, a1,1 at time
t + D − 1, a2,2 at time t + D, and a3,3 at time t + D + 1,
thus satisfying constraints implied by data dependencies. Each
encryption round requires 16 +D− 3 = 21 clock cycles. It is
possible to relax this constraint by interleaving two (or more)
AES encryptions. However, this approach works only in the
case of a chaining mode without output feedback or during

the BIG.SubWords step of ECHO, where we process 16 AES
states.

c) AES decryption.: Two simple modifications of the
AES encryption addressing scheme allow us to decrypt a
ciphertext block (Figure 15):
• In order to perform InvShiftRows instead of ShiftRows,

it suffices to increment the modulo-16 counter by 13
instead of 5. Therefore, only the most significant bit of
the offset depends on the algorithm.

• The 128-bit round keys must be introduced in reverse
order: the jth step of decryption involves the (Nr − j)th
round key (0 ≤ j ≤ Nr). Since the 16 bytes of round
key j are stored from address 16j to 16j+15 (Figure 1),
we have to modify the four most significant bits of the
address in order to perform decryption. Furthermore, Nr

is always even, and the least significant bit of Nr− j has
the same value as the one of j. Thus, we can compute the
three most significant bits of Nr − j by means of three
look-up tables addressed by j.

The control unit embeds an internal register that indicates
which algorithm is executed. The most significant bit of
the offset as well as the control signals of the multiplexers
selecting the read address of the key memory depend only
on the content of this register. Thanks to this design strategy,
the instruction memory contains a single algorithm to perform
either encryption or decryption.

d) ECHO.: Figure 16 describes the address gener-
ation process of ECHO. The only difference between
BIG.SubWords and AES encryption is that we now have to
process 16 AES states. The four most significant bits of the
address are therefore given by the four most significant bits
of the modulo-256 counter.

During the BIG.MixColumns step, we have to increment
the read addresses by 80 modulo 256. Consider the read
addresses of the BIG.SubWords state: it suffices to swap the
first four bits with the last four bits in order to obtain a counter
by 80 modulo 256 (since 80 = 16·5, we can re-use our counter
by 5 modulo 16). One easily checks that the write addresses
are obtained by swapping the first four bits with the last four
bits of our modulo-256 counter.

The BIG.Final step requires careful attention: in order to
speed up this operation, we read a byte of the chaining variable
or of the message block on the first port of the register file, and
a byte of the internal state (i.e. the output of the last round)
on the second one. We describe this process on Figure 16
in the case of ECHO-224/256. Modifying the scheduling for
ECHO-384/512 is straightforward.

2) Instruction Memory: We implemented two mechanisms
in our control unit in order to keep the size of the instruction
memory as small as possible:
• Nested loops. Consider for instance AES encryption:

since the number of rounds Nr depends on the desired
level of security, we need a loop instruction in order
to share the same code between AES-128, AES-192,
and AES-256. When encryption starts, the value of Nr



(b) Register file

ctrl4

111

110 BIG.Final (ECHO-224/256)

BIG.Final (ECHO-384/512)

Algorithm

ctrl4

00

ctrl0

Algorithm

Others 110 111Algorithm

ctrl05 37

SRL16
(A3:0 + 1)-stage FIFO

Write enable
(c) Implementation on Virtex-5 and Virtex-6 devices

000110

11 01 00

2
bi

ts

SR
L

16

8-
st

ag
e

FI
FO

0

6-
st

ag
e

FI
FO

ctrl8:7

110 111Others

Write enable

SR
L

16

8-
st

ag
e

FI
FO

ctrl6:5

Write address Read address

SR
L

16

8-
st

ag
e

FI
FO

Write enable

ctrl1

(a) Key memory

01

11

10 00

Read address

b0 ← ā0 ∨ a1

b1 ← a0

a1:0

ctrl10:9

8-
st

ag
e

FI
FO

4-
st

ag
e

FI
FO

Write address

110 or 111Others

ctrl4

11

A3:0

Fig. 10. Generation of the 2 most significant bits of read and write addresses, and generation of the write enable signals.

is loaded in one of the four internal registers of the
control unit. The loop instruction will therefore include
the address of the register. A nested loop is then needed
to process all the columns of the AES state. The number
of iterations is the same, regardless of the chosen security
level, and can be specified in the loop instruction. There-
fore, we implemented two addressing modes (absolute
and register indirect). Each time a loop instruction is
executed, the return address and the number of iterations
are pushed onto a stack.

• Conditional branch. Compared to AES-128 and AES-
192, the key expansion algorithm for AES-256 requires
specific instructions to compute Ki when i mod Nk = 4
(Algorithm 2). Thanks to a conditional branch mecha-
nism, we can write a single key expansion algorithm and
skip the instructions specific to AES-256 when we target
a lower level of security. Conditional instructions are also
useful to select the code of the BIG.Final step of ECHO
(i.e. lines 27 to 29 or lines 31 to 33 of Algorithm 5).

Thanks to these mechanisms, the instruction memory contains
only 3 algorithms: AES key expansion (58 instructions),
AES encryption/decryption (26 instructions), and ECHO (36
instructions).

V. RESULTS AND COMPARISONS

We captured our architecture in the VHDL language and
prototyped our coprocessor on Virtex-5 and Virtex-6 FPGAs
with average speedgrade. Table V and VI summarize the place-
and-route results measured with ISE 12.3 and the throughput
of each algorithm implemented, respectively. It is of course
possible to reduce the number of slices by implementing a
subset of the functionalities (e.g. a single level of security,
AES without key expansion, etc.).

TABLE V
PLACE-AND-ROUTE RESULTS.

FPGA
Area 18k memory Frequency

[slices] blocks [MHz]
xc5vlx50-2 193 2 359
xc6vlx75t-2 155 2 397

A. Low-Resource AES Cores

Several articles describe AES cores built around an 8-bit
datapath:

• Feldhofer et al. [18] have introduced a protocol based
on the AES for authenticating an RFID tag to a reader
device. The challenge was to propose a low-power AES-
128 encryption core suitable for RFID tags. In order to
keep the number of registers as small as possible, round
keys are computed just in time by using the S-box and the
XOR functionality of the datapath. The coprocessor needs
1016 clock cycles for the encryption of a 128-bit plaintext
block (including key expansion). Our approach involves
a smaller number of clock cycles, however it would be
unfair to make a comparison between an architecture
optimized for RFID tags (0.35 µm CMOS process) and
a coprocessor taking advantage of the features of today’s
FPGA technology.

• Good and Benaissa [22], [23] have proposed an 8-bit Ap-
plication Specific Instruction Processor (ASIP) for AES-
128. They defined a minimal set of instructions to per-
form the operations required by the AES and the control
unit mainly consists of a program ROM, an instruction
decoder, and a program counter. Their coprocessor needs
122 Spartan-II slices and is therefore more compact than



2 bits ((Nk − 1) div 2)

3:
0

Read address (register file)

ctrl3

ctrl2

11 10 01 00
01: AES-128 decryption
00: other algorithms

10: AES-192 decryption
11: AES-256 decryption

1: BIG.SubWords
0: Key expansion

ctrl2

ctrl3

ctrl110 1

111110Others

111111

0 1

BIG.SubWords

Key expansion

AES round (encryption or decryption)

Last AES round (encryption or decryption)

Algorithm

BIG.MixColumns

111

110 BIG.Final (ECHO-224/256)

BIG.Final (ECHO-384/512)

AddRoundKey

011

001

010

000

Algorithm

101

100

010 000001011Others

3 bits

(key memory)

0

2:
0

3:
0

Algorithm

Nk − 1

6-
bi

ta
dd

er

5-
bi

ta
dd

er

2:1

0

010011100101 000001110

0 3:
00 7:
1 0

8-
st

ag
e

FI
FO

6-
st

ag
e

FI
FO

Write address
(register file)

1 0

0

Write address
(key memory)

3:
0

7:
2

7:
40

1 0

0

1

1
7:3

7:2

Algorithm

Least significant bits of the

(i.e. modulo-16 counter)
modulo-256 counter

0

3:
0

A
lg

or
ith

m

3:
0

8
bi

ts

Modulo-256 counter
1: AES decryption

1:
0

7:
2

7:
4

7:
4

0:
0

7:
1 0

011100101110 010 000001

001:
0

0

11 0

0: other algorithms

4
bi

ts

M
od

ul
o-
16

co
un

te
r

4-
st

ag
e

FI
FO

LUT256

7:
5

LUT128

7:
5

LUT192

7:
5

Read address

4:0

Fig. 11. Generation of the 8 least significant bits of read and write addresses.



Modulo-256 counter:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k0,7← k0,6 ⊕ k0,3
k1,7← k1,6 ⊕ k1,3
k2,7← k2,6 ⊕ k2,3
k3,7← k3,6 ⊕ k3,3

K7

k0,6← k0,5 ⊕ k0,2
k1,6← k1,5 ⊕ k1,2
k2,6← k2,5 ⊕ k2,2
k3,6← k3,5 ⊕ k3,2

k1,4← S(k2,3)⊕ k1,0
k2,4← S(k3,3)⊕ k2,0
k3,4← S(k0,3)⊕ k3,0

k0,4← S(k1,3)⊕ k0,0 ⊕ RC[1]
K4

k0,5← k0,4 ⊕ k0,1
k1,5← k1,4 ⊕ k1,1
k2,5← k2,4 ⊕ k2,1
k3,5← k3,4 ⊕ k3,1

K0K3 K4 K1 K5 K2 K6 K3

K5 K6

+
4(
N

k
−

1)
=
12

+
4N

k
=
16

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Write addresses (register file and key memory):

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Read addresses (register file):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read addresses (key memory):

Fig. 12. Address generation during AES-128 key expansion.

110 5 10 15 4 9 14 3 8 13 2 7 12 1 6

110 5 10 15 4 9 14 3 8 13 2 7 12 1 6

110 5 10 15 4 9 14 3 8 13 2 7 12 1 6

110 5 10 15 4 9 14 3 8 13 2 7 12 1 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Write addresses (register file):

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Round key 1

Read addresses (register file):
AES encryption (AddRoundKey)

Read addresses (key memory):

Modulo-256 counter:

Modulo-16 counter:

A0 A0 A0 A0 Ã0Ã0Ã0Ã0

Round key 0 Round key 0Round key 0 Round key 0

Write addresses (register file):

Read addresses (register file):
AES encryption (first round)

Read addresses (key memory):

Modulo-256 counter:
16 17 18 2019 21 22 23 24 25 26 2827 29 30 31

Modulo-16 counter:

A0 A0 A0 A0 Ã0Ã0Ã0Ã0

Round key 1 Round key 1Round key 1

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 13. Address generation during AES encryption.

a2,2, and a3,3

i-th round

Read addresses:
Address generator

Port A (read operations):
Register file

Write addresses:

Port B (write operations):

a0,0, a1,1,
i-th round

D = 8 clock cycles

1112 1 6 0 5 10 15 4 9 14 3 8 13 2 7 12

0 1 2 3 4 5 6 7

1112 1 6 0 5 10 15 4 9 14 3 8 13 2 7 12

14 15 0 1 2 3 44 5 6 7 8 9 10 11 12 13

8 9 10 11 12

5 6 7

1 6 11

1 6 11

12 13 14 15 12 13 14

(i + 1)-th round

Fig. 14. Latency between two encryption rounds.



0 1013 7 4 1 14 11 8 5 2 15 12 9 6 3

0 1013 7 4 1 14 11 8 5 2 15 12 9 6 3

0 1013 7 4 1 14 11 8 5 2 15 12 9 6 3

160 170173 167 164 161 174 171 168 165 162 175 172 169 166 163

0 1013 7 4 1 14 11 8 5 2 15 12 9 6 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Write addresses (register file):
0 1013 7 4 1 14 11 8 5 2 15 12 9 6 3

AES-128 decryption (AddRoundKey)

Modulo-256 counter:

Modulo-16 counter:

A0 A0 A0 A0 Ã0Ã0Ã0Ã0

Round key 10 Round key 10Round key 10 Round key 10

Write addresses (register file):

Read addresses (register file):
AES-128 decryption (first round)

Read addresses (key memory):

Modulo-256 counter:
16 17 18 2019 21 22 23 24 25 26 2827 29 30 31

Modulo-16 counter:

A0 A0 A0 A0 Ã0Ã0Ã0Ã0

Round key 9 Round key 9Round key 9

Read addresses (register file):

Read addresses (key memory):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

Round key 9

Fig. 15. Address generation during AES-128 decryption.

TABLE VI
TIMINGS ACHIEVED ON VIRTEX-5 AND VIRTEX-6 FPGAS.

Algorithm # cycles
Throughput [Mbps]
Virtex-5 Virtex-6

AES-128
Key expansion 365 – –
Encryption/decryption 231 198.9 219.9

AES-192
Key expansion 421 – –
Encryption/decryption 273 168.3 186.1

AES-256
Key expansion 476 – –
Encryption/decryption 315 145.8 161.3

ECHO-256 6605 83.4 92.3
ECHO-512 8333 44.1 48.7

our architecture. The average throughput for encryption
and decryption (including the key schedule that is per-
formed on-the-fly) is equal to 2.18 Mbps (3691 clock
cycles are needed to encrypt a 128-bit plaintext block).
On a Virtex-5 FPGA, the same design would achieve
much better performance: the clock frequency would be
higher (Xilinx produces the Virtex-5 family in a 65 nm
CMOS process, whereas the Spartan-II family was based
on a 0.18 µm CMOS technology) and the number of
slices would be roughly divided by two (a Virtex-5 slice
contains four function generators configurable as 6-input
LUTs or dual-output 5-input LUTS, whereas a Spartan-
II slice includes only two 4-input LUTs). Therefore, the
8-bit ASIP should have a slightly better area–time trade-
off than our coprocessor for short messages (according
to Table VI, our coprocessor requires 596 clock cycles
to perform the key expansion step and encrypt a 128-
bit plaintext block). For long messages, our architecture
should be a better choice.

• Hämäläinen et al. [24] have designed several AES-128
cores implementing encryption and key expansion. The
throughput varies between 121 Mbps and 232 Mbps

according to the optimization criterion (area, power, or
speed). Since they have synthesized their core to gate
level using a 0.13 µm standard-cell CMOS technology,
it is again difficult to make a comparison between their
work and our architecture.

• Helion Technology [28] is selling a tiny AES core that
implements encryption, decryption, and key expansion at
all levels of security. The coprocessor occupies only 97
Virtex-5 slices and achieves a throughput of 78 Mbps
in the case of AES-128. The slice count is reduced to
88 on a Virtex-6 device, and the throughput of AES-128
is equal to 83 Mbps. Our coprocessor is twice as big,
but we achieve a better encryption/decryption rate and
improve the area–time product compared to the tiny AES
core designed by Helion Technology. Thus, combining
the hash function ECHO with the AES does not impact
the overall performance of the latter.

B. Low-Resource SHA-1 and SHA-2 Cores

Table VII summarizes the result reported by Helion Tech-
nology [27] for their family of compact SHA-1 and SHA-
2 cores on Virtex-6 FPGAs. The unified core for SHA-1,



15 95 175 255 79 159 239 63

127111957963473115

143 223 47 127

143 159 175

Po
rt

B
:A

(i
) ,
A

(i
+
4)

,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25525425325225125024924824724624524424324224124015

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 1111

A15 A15 A15 A15 Ã15Ã15Ã15Ã15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25525425325225125024924824724624524424324224124015

11 240 245 250 255 244 249 254 254 248 253 242 247 252 241 246 2510 5 10 15 4 9 14 3 8 13 2 7 12 1 6

192 16 96

176 192 208 224

64 144 224 48

64 80 96 112

128 208 32 112

128 144 1600 16 32 48

0 80 160 240

Modulo-16 counter:

BIG.SubWords

Write addresses:

Read addresses:

A0 A0 A0 A0 Ã0Ã0Ã0Ã0

BIG.MixColumns

Write addresses:

Read addresses:

BIG.Final (ECHO-224/256)

Write addresses:

Read addresses:

1

A
(i
+
8)

,a
nd

A
(i
+
12
)

191

207 31 111 191

207 223 239 255240

176

1 1 1 2 2 2 2 3 3 3 3

0 64 128 192 1 65 129 193 2 66 130 194 3 67 131 195

0 0 0 0 60 60 60 60 61 61 61 61 62 62 62 62 63 63 63 63

60 124 188 252 61 125 189 253 62 126 190 254 63 127 191 255

M
(i
+
4)

,a
nd

M
(i
+
8)

Po
rt

A
:V

(i
−
1)

,M
(i
) ,

Modulo-256 counter:

Fig. 16. Address generation during the BIG.SubWords, BIG.MixColumns, and BIG.Final steps.



SHA-224/256, and SHA-384/512 turns out to be larger and
slightly slower than our coprocessor. Furthermore, the Helion
commercial core must be supplemented with an AES core
to provide the same functionalities as our architecture. If we
assume that the security of ECHO is at least as good as the one
of SHA-2, ECHO is a clear winner for resource-constrained
devices.

C. Round Two SHA-3 Candidates

A few researchers have proposed compact implementations
of a subset of round two SHA-3 candidates. Table VIII pro-
vides the reader with a comparison of coprocessors optimized
for Virtex-5 devices (note that BLAKE and Keccak have been
selected as finalists in December 2010).

We have designed a low-area ALU for BLAKE and Blue
Midnight Wish (BMW) on Xilinx devices [9]. Thanks to our
approach, the BLAKE and BMW implementations reported
in [9] and [15], respectively, rank among the smallest SHA-
3 coprocessors. However, the datapath depends on the level
of security one wishes to achieve: both algorithms involve
arithmetic operations on 32-bit unsigned integers to produce
224- or 256-bit digests. The computation of 384- and 512-
bit digests requires a 64-bit datapath. To the best of our
knowledge, no one has proposed yet a low-area coprocessor
for BLAKE or BMW providing the user with all levels of
security. However, combining the 32 datapath with the 64
datapath will almost certainly increase the area (additional
multiplexers to select the datapath, more complex control unit,
etc.). Assuming that ECHO offers at least the same security
guarantees as BLAKE or BMW, ECHO seems to be a better
choice when all digest sizes and the AES are required.

Compared to the ECHO-256 coprocessor we described
in [8], our new architecture also provides the user with ECHO-
512 and the AES (encryption, decryption, and key expansion
at all levels of security) at the cost of 66 slices. Thanks to a
better pipelining, we also managed to achieve a slightly higher
clock frequency in this work.

Shabal [11] ranks first in terms of throughput and area–
time trade-off. Detrey et al. [14] noted that only a small
fraction of the internal state of Shabal is used at any step
of the algorithm. They exploited this fact and minimized
the area of the circuit by taking advantage of the dedicated
shift register resources available in the recent Xilinx devices
(SRL16 primitive). Combined with a tiny AES core, Shabal is
an excellent candidate for low-area implementations on Xilinx
devices. However, porting this coprocessor to FPGAs that do
not embed SRL16-like primitives might have an important
impact on the overall performance. The architecture described
in this work includes only a small number of SRL16 primitives
in order to synchronize control signals. Therefore, it should
be more portable than the Shabal coprocessor designed by
Detrey et al. [14].

Several researchers provided the scientific community with
comparisons of parallel architectures for the 14 round two
SHA-3 candidates (see for instance [25]). The main criti-
cism leveled at ECHO is its poor throughput to area ratio

when compared to most of the round two SHA-3 candidates.
Our results contradict previous studies: as long as compact
implementations are concerned, ECHO offers for instance
a better area–time trade-off than Keccak or BMW. When
the coprocessor must offer several digest sizes and AES
encryption/decryption, ECHO should also perform better than
BLAKE.

VI. CONCLUSION

We described a low-area coprocessor for the AES (encryp-
tion, decryption, and key expansion) and the cryptographic
hash function ECHO at all levels of security. Our architecture
is built around an 8-bit datapath and the ALU performs a
single instruction that allows for implementing both algo-
rithms. Thanks to a careful organization of AES and ECHO
internal states in the register file, the control unit remains
simple, despite the various addressing schemes required for
the different steps of the AES and ECHO: all read and write
addresses are generated by means of a modulo-16 counter and
a modulo-256 counter. Our results show that:
• At the cost of 66 slices, one can modify the ECHO-

256 coprocessor we described in [8] in order to include
ECHO-512 and the AES (encryption, decryption, and key
expansion at all levels of security). Thanks to a better
pipelining, the throughput of our novel architecture is
even slightly improved.

• Our coprocessor improves the area–time product com-
pared to the tiny AES core designed by Helion Tech-
nology [28]. Combining ECHO with the AES does not
impact the overall performance of the latter.

• Assuming that the security guarantees of ECHO are at
least as good as the ones of the SHA-3 finalists BLAKE
and Keccak, ECHO is a better candidate for low-area
cryptographic coprocessors.

Furthermore, we believe that the design strategy we pro-
posed in this work can be applied to the SHA-3 finalist
Grøstl [21]. We expect to obtain a much more compact unified
coprocessor (AES and Grøstl) than the one described by
Järvinen [26].

ACKNOWLEDGEMENTS

The authors would like to thank Francisco Rodrı́guez-
Henrı́quez for his valuable comments.

REFERENCES

[1] D.F. Aranha, J.-L. Beuchat, J. Detrey, and N. Estibals. Optimal Eta
pairing on supersingular genus-2 binary hyperelliptic curves. Cryptology
ePrint Archive, Report 2010/559, 2010.

[2] J.-P. Aumasson, L. Henzen, W. Meier, and R.C.-W. Phan. SHA-3 pro-
posal BLAKE (version 1.3). Available at http://www.131002.net/blake,
2009.

[3] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R.P. McEvoy, W. Pan,
and W.P. Marnane. FPGA implementations of SHA-3 candidates:
CubeHash, Grøstl, LANE, Shabal and Spectral Hash. Cryptology ePrint
Archive, Report 2009/342, 2009.

[4] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W.P. Marnane. A hardware wrapper for the SHA-3 hash algorithms.
Cryptology ePrint Archive, Report 2010/124, 2010.



TABLE VII
COMPACT IMPLEMENTATIONS OF SHA-1 AND SHA-2 ON A VIRTEX-6 DEVICE [27]. EACH COPROCESSOR EMBEDS A SINGLE 36K MEMORY BLOCK.

Algorithm(s)
Area Frequency Throughput [Mbps]

[slices] [MHz] SHA-1 SHA-224/256 SHA-384/512
SHA-1 81 298 74 – –

SHA-224/256 110 277 – 65 –
SHA-1/224/256 149 256 63 60 –

SHA-1/224/256/384/512 243 273 67 64 46

TABLE VIII
COMPACT IMPLEMENTATIONS OF SHA-3 CANDIDATES ON VIRTEX-5 FPGAS.

Algorithm FPGA
Area 36k memory Frequency Throughput

[slices] blocks [MHz] [Mbps]
Beuchat et al. [9] BLAKE-32 xc5vlx50-2 56 2 372 225
Aumasson et al. [2] BLAKE-32 xc5vlx110 390 – 91 575
Beuchat et al. [9] BLAKE-64 xc5vlx50-2 108 3 358 314
Aumasson et al. [2] BLAKE-64 xc5vlx110 939 – 59 533

El-Hadedy et al. [16] BMW-256 xc5vlx110 84 2 116 28
El-Hadedy et al. [15] BMW-256 xc5vlx110 51 3 141 68
El-Hadedy et al. [15] BMW-512 xc5vlx110 105 3 115 112

Beuchat et al. [8] ECHO-256 xc5vlx50-2 127 1 352 72

Bertoni et al. [7] Keccak xc5vlx50-3 448 – 265 52

Baldwin et al. [3] Shabal xc5vlx220-2 2307 – 222.22 1330
Feron and Francq [19] Shabal not specified 596 – 109 1142
Detrey et al. [14] Shabal xc5vlx30-2 153 – 256 2051

[5] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Rob-
shaw, and Y. Seurin. SHA-3 proposal: ECHO. Available at http:
//crypto.rd.francetelecom.com/echo, 2009.

[6] R. Benadjila, O. Billet, S. Gueron, and M.J.B. Robshaw. The Intel
AES instructions set and the SHA-3 candidates. In M. Matsui, editor,
Advances in Cryptology–ASIACRYPT 2009, number 5912 in Lecture
Notes in Computer Science, pages 162–178. Springer, 2009.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge
function family main document (version 2.0). Available at http://keccak.
noekeon.org, 2009.

[8] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. A compact FPGA
implementation of the SHA-3 candidate ECHO. Cryptology ePrint
Archive, Report 2010/364, 2010.

[9] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. Compact implementations
of BLAKE-32 and BLAKE-64 on FPGA. In J. Bian, Q. Zhou, and
K. Zhao, editors, Proceedings of the 2010 International Conference
on Field-Programmable Technology–FPT 2010, pages 170–177. IEEE
Press, 2010.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In C. Boyd, editor, Advances in Cryptology–ASIACRYPT 2001,
number 2248 in Lecture Notes in Computer Science, pages 514–532.
Springer, 2001.

[11] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,
A. Gouget, T. Icart, J.F. Misarsky, M. Naya-Plasencia, P. Paillier,
T. Pornin, J.R. Reinhard, C. Thuillet, and M. Videau. Shabal, a submis-
sion to NIST’s cryptographic hash algorithm competition. Available at
http://www.shabal.com, 2008.

[12] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy.
Implementation of the AES-128 on Virtex-5 FPGAs. In S. Vaudenay,
editor, Progress in Cryptology–AFRICACRYPT 2008, number 5023 in
Lecture Notes in Computer Science, pages 16–26. Springer, 2008.

[13] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
[14] J. Detrey, P. Gaudry, and K. Khalfallah. A low-area yet performant

FPGA implementation of Shabal. Cryptology ePrint Archive, Report
2010/292, 2010.

[15] M. El-Hadedy, D. Gligoroski, and S.J. Knapskog. Single core imple-
mentation of Blue Midnight Wish hash function on VIRTEX 5 platform.
Available at http://tinyurl.com/3xhvx6c, October 2010.

[16] M. El-Hadedy, M. Margala, D. Gligoroski, and S.J. Knapskog.

Resource-efficient implementation of Blue Midnight Wish-256 hash
function on Xilinx FPGA platform. In The Second SHA-3 Candidate
Conference, August 2010.

[17] N. Estibals. Compact hardware for computing the Tate pairing over 128-
bit-security supersingular curves. In M. Joye, A. Miyaji, and A. Otsuka,
editors, Pairing-Based Cryptography–Pairing 2010, Lecture Notes in
Computer Science. Springer, 2010. To appear.

[18] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication
for RFID systems using the AES algorithm. In M. Joye and J.-J.
Quisquater, editors, Cryptographic Hardware and Embedded Systems–
CHES 2004, number 3156 in Lecture Notes in Computer Science, pages
357–370. Springer, 2004.

[19] R. Feron and J. Francq. FPGA implementation of Shabal: Our first
results. Available at http://www.shabal.com, 2010.

[20] K. Gaj and P. Chodowiec. FPGA and ASIC implementations of the
AES. In Ç.K. Koç, editor, Cryptographic Engineering, pages 235–294.
Springer, 2009.

[21] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S.S. Thomsen. Grøstl – a SHA-3 candidate.
Available at http://www.groestl.info, 2008.

[22] T. Good and M. Benaissa. AES on FPGA from the fastest to the
smallest. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware
and Embedded Systems–CHES 2005, number 3659 in Lecture Notes in
Computer Science, pages 427–440. Springer, 2005.

[23] T. Good and M. Benaissa. Very small FPGA application-specific
instruction processor for AES. IEEE Transactions on Circuits and
Systems–I: Regular Papers, 53(7):1477–1486, July 2006.

[24] P. Hämäläinen, T. Alho, M. Hännikäinen, and T.D. Hämäläinen. De-
sign and implementation of low-area and low-power AES encryption
hardware core. In Ninth Euromicro Conference on Digital System
Design: Architectures, Methods and Tools–DSD’06, pages 577–583.
IEEE Computer Society, 2006.

[25] E. Homsirikamol, M. Rogawski, and K. Gaj. Comparing hardware
performance of fourteen round two SHA-3 candidates using FPGAs.
Cryptology ePrint Archive, Report 2010/445, 2010.

[26] K. Järvinen. Sharing resources between AES and the SHA-3 second
round candidates Fugue and Grøstl. In The Second SHA-3 Candidate
Conference, August 2010.



[27] Helion Technology. FULL DATASHEET–Tiny hash core family for
Xilinx FPGA. Revision 2.0 (11/06/2010).

[28] Helion Technology. OVERVIEW DATASHEET–Ultra-low resource
AES (Rijndael) cores for Xilinx FPGA. Revision 1.3.0.

[29] J. Wolkerstorfer. An ASIC implementation of the AES-MixColumn
operation. In P. Rössler and A. Döderlein, editors, Proceedings of
Austrochip 2001, pages 129–132, 2001.

[30] J. Zhai, C.M. Park, and G.-N. Wang. Hash-based RFID security protocol
using randomly key-changed identification procedure. In M. Gavrilova,
O. Gervasi, V. Kumar, C.J. Kenneth Tan, D. Taniar, A. Laganà, Y. Mun,
and H. Choo, editors, Computational Science and Its Applications–
ICCSA 2006, number 3983 in Lecture Notes in Computer Science, pages
296–305. Springer, 2006.


