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Abstract: Many identity-based digital signature schemes using bilinear pairings have been 
proposed. But the relative computation cost of the pairing is approximately twenty times higher 
than that of the scalar multiplication over elliptic curve group. In order to save the running time 
and the size of the signature, we propose an identity based signature scheme without bilinear 
pairings. With both the running time and the size of the signature being saved greatly, our scheme 
is more practical than the previous related schemes for practical application. 
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1. Introduction 

The concept of identity-based (ID-based) cryptography was first formulated by Shamir [1]. In 
ID-based cryptography, a user’s unique identifier acts as the user’s public key, the corresponding 
private key generated by a trusted Key Generation Center (KGC) acts as the user’s implicit 
certificate, thereby removing the requirement of public key certificate. 

In the first ID-based signature scheme , proposed by Shamir [1], the signature has 2048 bits 
when one uses a 1024-bit RSA modulus. In 1988, Guillou et al.[2] improved Shamir’s scheme and 
shortened the signature size to 1184 bits when one uses a 1024-b RSA modulus and a 160-b hash 
function, e.g., Secure Hash Standard. However, the computation of modular exponentiation 
required by the above schemes make unavailable the application of the schemes in some 
environment, such as mobile devices, where the computation ability and battery capacity of 
mobile devices are limited. Fortunately, Elliptic curve cryptosystem (ECC) [3,4] has significant 
advantages like smaller key sizes, faster computations compared with other public-key 
cryptography. Many IBS schemes using the elliptic curve pairings have been proposed [5-7]. In 
spite of the significant improvements in the computation speed, the pairing is still regarded as the 
most expensive cryptography primitive. The relative computation cost of a pairing is 
approximately twenty times higher than that of the scalar multiplication over elliptic curve group 
[8]. Therefore, IBS schemes without bilinear pairings would be more appealing in terms of 
efficiency. 

In this paper, we present an IBS scheme without pairings. The scheme rests on the elliptic 
curve discrete logarithm problem (ECDLP).With the pairing-free realization, the scheme’s 
overhead is lower than that of previous schemes [5-7] in both computation and the size of 
signature. 

2. Background of elliptic curve group 

We will just give a simple introduction of elliptic curve defined on prime field pF in this part, 
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while the knowledge of elliptic curve defined on binary field can be found in [3,4]. 

Let the symbol / pE F  denote an elliptic curve E  over a prime finite field pF , defined 

by an equation  

baxxy ++= 32
， pFba ∈,              (1) 

and with the discriminant  

3 24 27 0a bΔ = + ≠ .                      (2) 

The points on / pE F  together with an extra point O  called the point at infinity form a 

group  

{( , ) : , , ( , ) 0} { }pG x y x y F E x y O= ∈ = ∪ .  (3) 

Let the order of G  be n . G is a cyclic additive group under the point addition “+” 

defined as follows: Let ,P Q G∈ , l  be the line containing P  and Q  (tangent line to 

/ pE F  if P  = Q ), and R , the third point of intersection of l  with / pE F . Let l′  be the 

line connecting R  and O . Then P  “+” Q  is the point such that l′  intersects / pE F  at 

R  and O  and P “+” Q. Scalar multiplication over / pE F  can be computed as follows:  

(  )tP P P P t times= + + +…              (4). 

The following problems defined over G are assumed to be intractable within polynomial 
time. 

Eliptic curve discrete logarithm problem: For *
R nx Z∈ and P  the generator of G , 

given Q x P= ⋅  compute x . 

3. Our scheme 

3.1.Scheme description 

In this section, we present an ID-based signature scheme without pairing. Our scheme 
consists of four algorithms: Setup, Extract, Sign, and Verify. 

Setup: This algorithm takes a security parameter k  as input, returns system parameters and 
a master key. Given k , KGC does as follows.  

1) Choose a k-bit prime p  and determine the tuple { , / , , }p pF E F G P  as defined in 

Secttion 2. 



2) Choose the master private key *
nx Z∈  and compute the master public key 

pubP x P= ⋅ . 

3) Choose two cryptographic secure hash functions * *
1 :{0,1} nH Z→  and 

* *
2 :{0,1} pH G Z× → . 

4) Publish 1 2{ , / , , , , , }p p pubF E F G P P H H  as system parameters and keep the master 

key x  secretly. 
Extract: This algorithm takes system parameters, master key and a user’s identifier as inputs, 

returns the user’s ID-based private key. With this algorithm, KGC works as follows for each user 

U  with identifier UID . 

1) Choose a random number *
U nr Z∈ , compute U UR r P= ⋅  and 1( , )U U Uh H ID R= . 

2) Compute U U Us r h x= + . 

U ’s private key is the tuple ( ,U Us R ) and is transmitted to U  via a secure out-of-band 

channel. U  can validate her private key by checking whether the equation 

U U U pubs P R h P⋅ = + ⋅  holds. The private key is valid if the equation holds and vice versa. 

Sign: This algorithm takes system parameters, user’s private key ( ,U Us R ) and a message 

m as inputs, returns a signature of the message m . The user U  does as the follows. 

1) Choose a random number *
nl Z∈  to compute R l P= ⋅ . 

2) Compute 2 ( , )h H m R= . 

3) Verify whether the equation gcd( , ) 1l h n+ =  holds. If the equation does not holds,  

return to step 1). 

4) Compute 1( ) modUs l h s n−= + . 

5) Output the signature ( , , ,U UID R R s ). 

Verify: To verify the signature ( , , ,U UID R R s ) for message m , the verifier first computes 

1( , )U U Uh H ID R= , 2 ( , )h H m R=  and then checks whether 

( ) U U pubs R h P R h P⋅ + ⋅ = + ⋅  



Accept if it is equal. Otherwise reject. 

Since R l P= ⋅  and 1( ) modUs l h s n−= + , we have  

1

1

( ) ( ) ( )

( ) ( )
U

U U

U U pub

s R h P l h s l P h P

l h s l h P s P
R h P

−

−

⋅ + ⋅ = + ⋅ ⋅ ⋅ + ⋅

= + ⋅ + ⋅ = ⋅
= + ⋅

        (5) 

Then the correctness of our scheme is proved. 

3.2.Security analysis 

We prove the security of our schemeΣin the random oracle model which treats 1H  and 

2H  as two random oracles [9] using the signature security model defined in [10]. As for the 

security of Σ, the following theorem is provided. 
Theorem 1: Consider an adaptively chosen message attack in the random oracle model 

against Σ. If there is an attacker A  that can break Σwith at most 
2Hq  2H -queries and Sq  

signature queries within time bound t  and probability 
2 2

10( 1)( ) / 2k
H H Sq q qε ≥ + + , then the 

ECDLP can be solved within running time t ≤
2

23 /Hq t ε  and with probability 1/ 9ε ′ ≥ . 

Proof: Suppose that there is an attacker A  for an adaptively chosen message attack against 
Σ. Then, we show how to use the ability of A  to construct an algorithm S  solving the 
ECDLP. 

Suppose S  is challenged with a ECDLP instance ( ,P Q ) and is tasked to compute *
nx Z∈  

satisfying Q x P= ⋅ . To do so, S  sets 1 2{ , / , , , , , }p p pubF E F G P P Q H H=  as the system 

parameter and answers A ’s queries as follows. 

Extract-query: A  is allowed to query the extraction oracle for an identity UID . S  

simulates the oracle as follows. It chooses *,U U na b Z∈  at random and sets 

U U pub UR a P b P= ⋅ + ⋅ , U Us b= , 1( , ) modU U U Uh H ID R a n= ← −   (6) 

Note that ( ,U Us R ) generated in this way satisfies the equation U U U pubs P R h P⋅ = + ⋅  in 

the extract algorithm. It is a valid secret key. S  outputs ( ,U Us R ) as the secret key of UID  and 

stores the value of ( 1, , ( , ),U U U U Us R H ID R ID ) in the 1H -table. 



Signature-query: To answer A ’s signature query on im  (1 Si q≤ ≤ ) and an identity UID , 

S chooses at random *,i i na b Z∈ . Then, it gets 1( , )U U Uh H ID R=  from 1H -table, and 

computes 1 1
i i U i i U pubR a R b P a h P− −= ⋅ − ⋅ + ⋅ ⋅ , is a=  and sets 1( , )i i i ih H m R b= ← and 

adds ( , ,i i im R b ) to the 2H -list. If the pair ( ,i im R ) has been defined in the 2H -table. S  

outputs fail and exits. Since ib  is chosen at random, the probability of fail is no more than 1/ n  

and is negligible. It is straightforward to verify that ( , ,U i iR R s ) is a perfect simulation. A  will 

not be able to tell the difference between the simulation and the reality if S  does not abort. 
If A  can forge a valid signature on message m  with the probability 

2 2
10( 1)( ) / 2k

H H Sq q qε ≥ + + , where m  has not been queried to the signature oracle, then a 

replay of S  with the same random tape but different choice of 2H  will output two valid 

signatures ( , , , ,U i i im R R h s ) and ( , , , ,U i i im R R h s′ ′ ). Then we have  

( )i i U U pubs R h P R h P⋅ + ⋅ = + ⋅ ,                               (7) 

and  

( )i i U U pubs R h P R h P′ ′⋅ + ⋅ = + ⋅ .                               (8) 

Let R r P= ⋅ , U U pub UR a P b P= ⋅ + ⋅ , pubP Q x P= = ⋅ , then we have 

( )i i U U Us r P h P a x P a P h x P⋅ ⋅ + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ ,                (9) 

and  

( )i i U U Us r P h P a x P a P h x P′ ′⋅ ⋅ + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ .                (10) 

then we have 

( )i i i i U i U i Us s r P h P s a x P s a P s h x P′ ′ ′ ′⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ,    (11) 

and  

( )i i i i U i U i Us s r P h P s a x P s a P s h x P′ ′⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ .     (12) 

Hence, we have 

( ) ( )i U i U i U i U i i i i U i i i i Us a s h s a s h x P s s h s a s s h s a P′ ′ ′ ′ ′ ′⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ . (13) 

Let 1( ) modi U i U i U i Uu s a s h s a s h n−′ ′= ⋅ + ⋅ − ⋅ − ⋅  and 

( ) modi i i i U i i i i Uv s s h s a s s h s a n′ ′ ′ ′= ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ,  then, we get modx uv n= . 



According to [10, Lemma 4], the ECDLP can be solved with probability 1/ 9ε ′ ≥  and time 

2
23 /Ht q t ε′ ≤ . 

4. Comparison with previous scheme 

In this section, we will compare the efficiency of our new scheme with Cha et al.’s scheme [5], 
Yi’s scheme [6] and Hess’s scheme [7]. In the computation efficiency comparison, we obtain the 
running time for cryptographic operations using MIRACAL [11], a standard cryptographic library.  

The hardware platform is a PIV 3-GHZ processor with 512-MB memory and a Windows XP 
operation system. For the pairing-based scheme, to achieve the 1024-bit RSA level security, we 

use the Tate pairing defined over the supersingular elliptic curve 2 3/ :pE F y x x= +  with 

embedding degree 2 , where q  is a 160-bit Solinas prime 159 172 2 1q = + +  and p  a 

512-bit prime satisfying 1 12p qr+ = . For the ECC-based schemes, to achieve the same security 

level, we employed the parameter secp160r1[12], recommended by the Certicom Corporation, 

where 160 312 2 1p = − − . The running times are listed in Table 1 where sca.mul. stands for scalar 

multiplication. 
Table 1. Cryptographic Operation Time(in milliseconds) 

Pairing Pairing-based 
sca.mul 

ECC-based 
sca.mul. 

Map-to-point 
hash 

20.04 6.38 2.21 3.04 
To evaluate the computation efficiency of different schemes, we use the simple method from 

[13]. For example, the sign algorithm of our scheme requires one ECC-based scale multiplication; 
thus, the computation time of the sign algorithm is 2.21 × 1 = 2.21 ms; the verify algorithm has to 
carry out three ECC-based scalar multiplications, and the resulting running time is 2.21 × 3 = 6.63 
ms. As another example, in Cha et al.’s scheme[5], the sign algorithm should carry out two 
pairing-based scalar multiplications and a map-to-point hash computation; thus, the computation 
time for a client is 6.38 × 2 +3.04= 15.8 ms; the verify algorithm has to carry out one pairing, and 
the resulting running time is 20.04 × 1 = 20.04 ms. The size of signature is evaluated by the 
overall size of the messages generated by the sign algorithm in a scheme. For example, in our 
scheme, the generated message comprises an identity, two points of elliptic curve and a number in 

*
nZ . Assuming that the size of identity is 4B, the resulting signaling traffic is 4 + 40× 2 + 20 = 

104 B. As another example, in Cha et al.’s scheme, the generated message comprises an identity 
and two points of elliptic curve, then the resulting signaling traffic is 4 + 128×2 = 260 B. Table 2 
shows the results of the performance comparison. 

 
 
 
 



Table 2. Performance comparison of different schemes 
Running time  

Sign Verify 
Size of signature 

Cha et al.’s 
scheme [5] 

15.8 ms 20.04 ms 260 B 

Yi’s scheme [6] 19.14 ms 46.46 ms 260B 
Hess’s scheme 

[7] 
26.42 ms 40.08 ms 132B 

Our scheme 2.21 ms 6.63 ms 104 B 
According to Table 2, the running time of the sign algorithm of our scheme is 13.98% of Cha 

et al.’s schemes, 11.54% of Yi’s et al.’s scheme and 8.36% of Hess’s scheme, the running time of 
the verify algorithm of our scheme is 33.08% of Cha et al.’s schemes, 14.27% of Yi’s et al.’s 
scheme and 16.54% of Hess’s scheme, the size of signature of our scheme is 40% of Cha et al.’s 
schemes, 40% of Yi’s et al.’s scheme and 78.79% of Hess’s scheme. Thus our scheme is more 
useful and efficient than the previous schemes[5-7]. 

5. Conclusion 

In this paper, we have proposed an efficient identity-based digital signature scheme. We also 
prove the security of the scheme under random oracle. Compared with previous scheme, the new 
scheme reduces both the running time and the size of signature. Therefore, our scheme is more 
practical than the previous related schemes for practical application. 
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