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Abstract—This paper shows that a turbo-coded communication
system can be made secure with a little bit of complexity cost.
The classical permutation ciphers are revisited and analyzed.
Firstly, the ideal stream permutation ciphers are shown to be
asymptotically information-theoretically secure in the sense that
the channel from plaintext to ciphertext has a vanished capacity,
while the practical stream permutation ciphers are shown to
be more secure than the classical stream ciphers in terms of
protecting keys. Secondly, a necessary condition to break down
a block permutation cipher is derived, which is then utilized
to guarantee the computational security of a modified block
permutation cipher. Thirdly, turbo ciphers (turbo-like codes with
private interleavers) are proposed and analyzed.

I. INTRODUCTION

Applications of error-correcting codes to cryptosystems be-
gan in 1978 when McEliece introduced a public-key cryptosys-
tem [1] (which is called McEliece scheme in the literature)
based on the fact that the decoding problem for a general
linear code is an NP-hard problem [2]. Since then many public-
and private-cryptosystems have been introduced, for example,
see [3], [4], [5], etc. All there schemes are based on algebraic
codes. In this paper, we will show that turbo codes [6] can be
made secure with a little bit of complexity cost by combing
with the classical permutation ciphers. The classical turbo code
consists of two recursive and systematic convolutional codes
concatenated parallelly by an interleaver π. The codeword
from the turbo encoder can be written as c = (u, p(0), p(1)),
where u is the systematic bits, p(0) is the parity check bits
from the first encoder, and p(1) is the parity check bits from the
second encoder. Assume that c is transmitted over an insecure
channel where an eavesdropper (called Oscar) exists. Assume
that Oscar knows the turbo encoder except the interleaver
π (called a key). After receiving r = (x, y(0), y(1)), a noisy
version of c, what can Oscar do for estimating the data
sequence u? The maximum likelihood estimator is to solve
such a problem as

max
u′

Pr(r|u′) = max
π′∈S

max
u′

Pr(r|u′, π′), (1)

where S is a subset of interleavers that contains the key π and
has been determined by Oscar. The inner optimization can be
solved approximately by turbo decoding algorithms. But, for
the outer optimization, we make an assumption that no efficient
algorithms exist. That is, we assume that the complexity of
the outer optimization in (1) is of order |S|. Hereafter, the

cardinality of a finite set X is denoted by |X |. Even if Oscar
solves the problem, there is not a shred of evidence that

argu′ max
π′∈S

max
u′

Pr(r|u′, π′) = argmax
u′

Pr(r|u′, π). (2)

Now we may conclude that, for Oscar to break the system
especially when the channel is noisy, what Oscar must do is
to find the key π or reduce the size of S to be as small as
possible based on (u, c) pairs (or other information) that he
has collected (or selected) up to the present time. So what we
need to do is to prevent Oscar from getting what he needs to
attack the key.

The main results of this paper are outlined as follows.
Firstly, we show that it requires at least ⌈log2 L⌉ plaintext-
ciphertext pairs to recover a private interleaver of size L.
Motivated by this necessary condition, we propose a method
to amend the block permutation cipher to be computationally
secure. Secondly, we show that the encryption in a stream
permutation cipher serves as a “channel” linking plaintext and
ciphertext. We also show that this channel has an asymp-
totically vanished capacity. This implies that, asymptotically,
Oscar can not get any useful information from ciphertexts.
Compared with the classical stream ciphers, the stream per-
mutation ciphers may have even higher security in terms of
protecting the keystream. But, it is not secure in terms of
protecting plaintexts having extremely low (or extremely high)
weights. Finally, turbo codes with private interleavers, called
turbo ciphers, are proposed, which can be considered as secret
error-correcting codes [9]. Turbo ciphers provide both data
security and data reliability, which may find applications in
wireless communications.

II. PERMUTATION CIPHERS

A. Terminology

Let A be a finite set consisting of |A| symbols. Let x =
(x0, x1, · · · , xL−1) be a sequence in AL. A block interleaver
of size L is a device that accepts x as input and delivers
y = (y0, y1, · · · , yL−1) as output such that yπ(i) = xi, where
π : i → π(i) is a one-to-one mapping from the index set I =
{0, 1, · · · , L−1} onto itself. For simplicity, the relation of y to
x is written as y = π(x). An interleaver is uniquely determined
by the index-mapping, which is also called a permutation in
group theory. Consider symmetric group SL consisting of all
L! different permutations of length L. A uniform interleaver
U is a random variable which takes a particular permutation in
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Fig. 1. A permutation cipher system with an adversary.

SL with probability 1/L!. In words, a uniform interleaver U
is a probabilistic device that works as a particular permutation
π ∈ SL with probability 1/L!.

As shown in Fig. 1, two parties, called Alice and Bob as in
the literature, want to communicate with each other through
an insecure channel, where a potential opponent, called Oscar,
exists. Let X = (x(0), x(1), . . . , x(t), · · · ) be a sequence (finite
or infinite), where x(t) ∈ AL is referred to as a plaintext
at time t. Let Π = (π0, π1, · · · , πt, · · · ) be a sequence of
permutations from SL. Let Y = (y(0), y(1), · · · , y(t), · · · ),
where y(t) = πt(x

(t)) is referred to as a ciphertext at time
t. For Alice to send Bob a plaintext x(t) at time t, she sends
y(t). Upon receiving ŷ(t) from the channel-0, Bob does the
inversion x̂(t) = π−1

t (ŷ(t)) to recover the plaintext. Note that
the error probability Pr{x̂(t) ̸= x(t)} may not be zero due
to the existence of the channel-0. Assume that the sequence
of permutations Π is pseudo-randomly generated using an
algorithm driven by a binary string k of length Lk. The binary
string k is referred to as a key, which is randomly chosen by
Alice and Bob while kept away from Oscar. We assume that
the channel-1 is noiseless in the following analysis.
B. Block Permutation Ciphers

The system described above and shown in Fig. 1 is called
a block permutation cipher if πt = π for all t ≥ 0. Oscar
attempts to find k, to find π, or to decrypt a ciphertext y(t) at
time t. Note that finding k is the most difficult task, whereas
finding x(t) is the least difficult task. There are several cases.

1) Ciphertext only attack:
Oscar can observe ciphertexts. Assume that A consists
of English letters and that plaintexts are meaningful
English texts. For small Lk, Oscar may use exhaustive
search to see which plaintext is more meaningful. For
large Lk, Oscar may use statistical analysis to find the
plaintext [10][11]. Now assume that plaintexts are first
encoded into binary bits by a known algorithm and
then bit-interleaved. That is, assume that x ∈ {0, 1}L.
Then it is not obvious how to find the plaintext using
statistical analysis. In the case when ASCII codes are
used, for example, there will be 35 binary sequences of
length 7 that may represent the letter “E” as well as
the letter “F”, which, definitely, leads to many problems
when computing frequencies and higher-order statistics.

Hereafter, we will assume that plaintexts are selected
from {0, 1}L.

2) Known plaintext attack:
Oscar has collected N ≥ ⌈log2 L⌉ plaintext-ciphertext
pairs. Then, under the assumption that the plaintexts are
uniformly distributed over {0, 1}L, the probability that
Oscar can determine the interleaver is

L!

2NL

(
2N

L

)
=

∏
0≤i≤L−1

(
1− i

2N

)
, (3)

which approaches 1 as N becomes large. But if N <
⌈log2 L⌉, Oscar may not be able to determine the inter-
leaver even using exhaustive search. Consider a simple
example with L = 3. If Oscar knows (0, 1, 1) → (0, 1, 1)
and (0, 1, 0) → (0, 0, 1), then he can determine that π is
the transposition (1, 2). But if he only knows (0, 1, 1) →
(0, 1, 1), after exhaustive search, he will find that there are
two possible permutations that are indistinguishable when
operating on the ciphertext (0, 1, 1). So it is impossible
for Oscar to determine the private key for this example.

3) Chosen plaintext attack:
Oscar is able to choose plaintexts and observe the
corresponding ciphertexts. Then Oscar may choose as
plaintexts the rows from the following matrix of size
⌈log2 L⌉ × L,

Mx =



0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

...
0 0 0 0 1 · · ·
0 0 1 1 0 · · ·
0 1 0 1 0 · · ·


, (4)

where the i-th column is the binary representation of the
index i(0 ≤ i ≤ L− 1).

4) Chosen ciphertext attack: Oscar is able to choose cipher-
texts and observe the corresponding plaintexts. This case
is equivalent to chosen plaintext attack.

In summary, we have
Proposition 1: Suppose that Oscar has obtained (in any

way) N pairs of plaintext and ciphertext, denoted by
(x(i), y(i)), 0 ≤ i ≤ N − 1. Then a necessary condition
for Oscar to find a unique permutation π satisfying that
y(i) = π(x(i)) for all 0 ≤ i ≤ N − 1 is that the matrices

Mx =


x(0)

x(1)

...
x(N−1)

 or My =


y(0)

y(1)

...
y(N−1)

 (5)

have distinct columns. Hence, it is necessarily required that
N ≥ ⌈log2 L⌉.

Proof: It is omitted.
Motivated by the above necessary condition, we propose

the following method to amend the block permutation cipher
to be computationally secure. Let f(D) = 1 + f1D +



· · · + fν−1D
ν−1 + fνD

ν be a primitive polynomial [12]
of degree ν over F2, which is known to Oscar. Let x =
(xν , xν+1, · · · , xL−1) be the plaintext of length L − ν to be
transmitted. The encrypter works as follows.

S1. Add random padding p of length ν to x, that is, x̃
△
=

(p||x).
S2. Calculate ut = x̃t +

∑
1≤i≤ν fiut−i for 0 ≤ t ≤ L − 1,

where ut = 0 for t < 0.
S3. Check whether or not the Hamming weight of u (denoted

by WH(u)) is greater than a preset threshold wmin. If not,
go to S1; otherwise go to next step.

S4. Calculate the ciphertext y = π(u).
It can be seen that u is randomly varied even if the plaintext

x is fixed. At the receiver, an estimation of u (denoted by û)
is first obtained by û = π−1(ŷ). The decrypter then checks
if the Hamming weight of û is greater than wmin. If not,
report a failure and/or just randomly inverse some digits to
meet this requirement. Finally, the plaintext is calculated by
x̂t = ût +

∑
1≤i≤ν fiût−i for ν ≤ t ≤ L − 1. We have the

following remarks.
• The information rate loss is negligible if ν/L is small.
• If û = u, we have x̂ = x. Therefore the frame-error-

rate will not be worsened. Also note that one digit error
occurring in û affects at most ν bits of x̂.

• The parameter ν is chosen to be large (say ν > 80),
while wmin is chosen to make

(
L

wmin

)
to be large. As an

example, for L = 4096 and wmin = 5,
(

L
wmin

)
> 253.

We assume that only x and/or y can be reached by Oscar.
That is, Oscar can neither observe nor construct the interme-
diate sequence u. How much effort is it required to find a pair
(u, y)? One possible way is to search over the random padding
p to see if x̃ can generate a sequence u of the same weight as
y. The other possible way is to search over π to see if π−1(y)
generates the correct x. The former has complexity of order
2ν , while the latter has complexity of order at least

(
L

wmin

)
.

C. Stream Permutation Ciphers

We have seen that, to break down a block permutation
cipher, one needs at least ⌈log2 L⌉ plaintext-ciphertext pairs.
This also suggests us that the security of permutation ci-
phers can be guaranteed by (pseudo-)randomly changing the
interleavers every frame. The resulting system is called a
stream permutation cipher. That is, the key stream Π =
(π0, π1, · · · , πt, · · · ) shown in Fig. 1 is assumed to be a
pseudo-random sequence and have an extremely large period.
If this is the case, Oscar can only have one plaintext-ciphertext
pair for a given permutation πt. Therefore, Oscar may not
be able to determine the interleaver πt even using exhaustive
search.

It is easily to see that the permutation cipher does not
provide perfect secrecy [7]. Especially, the all-zero sequence
and the all-one sequence cannot convey any secret information.
However, we will show that the stream permutation cipher is
asymptotically information-theoretically secure. Assume that
the key stream πt is sampled independently from a uniform
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Fig. 2. The classical stream cipher.

interleaver. As mentioned by Shannon [7], the encryption
serves as a channel that transforms a plaintext into a ciphertext
according to the following probability law

Pr(y|x) =

{
1

(Lw)
, WH(y) = WH(x) = w

0, otherwise
. (6)

We have the following theorem.
Theorem 1: The capacity of the channel that links X and

Y is log(L+ 1).
Proof: Let p(x) be an arbitrary distribution over {0, 1}L.

Define pw = Pr{WH(X) = w} and qw = Pr{WH(Y ) = w}.
Then pw = qw and p(y) = pw

(Lw)
where w = WH(y). Therefore,

H(Y ) =
∑

0≤w≤L

pw

(
log

(
L

w

)
− log pw

)
H(Y |X) =

∑
0≤w≤L

pw log

(
L

w

)
I(X;Y ) = H(Y )−H(Y |X)

= −
∑

0≤w≤L

pw log pw ≤ log(L+ 1).

This theorem shows that the maximum information provided
by a ciphertext is log(L+1) bits, which actually corresponds to
the weight of the plaintext. In other words, the average leaking
information log(L+1)/L approaches zero as L → ∞. When
the plaintexts are uniformly distributed, a typical ciphertext
provides essentially no useful information. However, if the
plaintexts take only those sequences with different weights,
the cipher is then collapsed down.

Corollary 1: lim
L→∞

1
LH(X|Y )= lim

L→∞
1
LH(X)

∆
= H(X).

Proof: From I(X;Y ) = H(X) − H(X|Y ), we have
H(X) − log(L + 1) ≤ H(X|Y ) ≤ H(X), which completes
the proof by dividing L and taking limitation.

The above corollary means that the asymptotic equivocation
is equal to the entropy of the source, and hence the system is
said to be asymptotically information-theoretically secure [8].

In practice, the assumption of the independent uniformly
distribution of the key stream is unrealistic. In the sequel,
we assume that the key stream is a sequence of pseudo-
random interleaves and show that the stream permutation



cipher system as shown in Fig. 1 is more secure (against key-
recovery attacks) than the classical stream cipher system as
shown in Fig. 2. To break these two stream ciphers, Oscar
must be able to predict the output (called keystream) from
the Pseudo-Random Bit Generator (PRBG) or the Pseudo-
Random Interleaver Generator (PRIG). Assume that Oscar
has collected (or chosen) T consecutive plaintexts X =
(x(0), x(1), · · · , x(T−1)), while the corresponding ciphertexts
are Y = (y(0), y(1), · · · , y(T−1)) for the classical stream
cipher and Y ′ = (y′(0), y′(1), · · · , y′(T−1)) for the stream
permutation cipher.

For the classical stream cipher system, Oscar can easily
obtain the keystream by calculating Z = X+Y mod 2. Since
the output from the PRBG is not truly random, Oscar may
derive some relations from Z that can be used to predict the
future keystream.

For the stream permutation cipher system, Oscar knows
y′(t) = πt(x

(t)). But it should be very difficult for him to know
πt exactly. This is because, to know πt, Oscar must observe
several input-output pairs for πt, as discussed in Section II-B.
So Oscar must know when πt appears in the keystream and
choose (or collect) as many as required plaintext-ciphertext
pairs corresponding to the specific πt. Therefore he needs
more resources for the stream permutation system than what
he needs for the classical stream cipher system.

Compared with the classical stream ciphers, the stream
permutation ciphers have higher complexity and cause an
undesired delay, which, however, will not be issues when
implemented together with turbo-like codes.

III. TURBO CIPHERS

A. Secret Error-Correcting Codes

The concept of secret error-correcting code (SECC) was
first introduced by Hwang and Rao [9]. The SECC scheme
provides both data security and data reliability by using
a key-controlled error-correcting code. For comparison, the
conventional secure communication system and the secure
communication system using a SECC are shown in Fig. 3 (a)
and (b), respectively.

The conventional system shown in Fig. 3 (a) works as
follows. Alice encrypts a binary plaintext x using an encryp-
tion algorithm and a private key from the key generator. The
ciphertext y is then put into the channel encoder (including
modulation). The resulting signal sequence, denoted by s, is
then transmitted. Bob observes a noisy version of s through
the channel-0, denoted by r. Then Bob performs the channel
demodulation/decoding algorithms to get an estimation of y,
denoted by ŷ. Finally, Bob decrypts ŷ into x̂. The probability
that x̂ ̸= x is the same as the probability that ŷ ̸= y. However,
one bit error in y may cause many errors in x. At the same
time, Oscar observes a noisy version of s through the channel-
1, denoted by r1. Since Oscar knows the channel encoder,
he is assumed to be able to perform demodulation/decoding
algorithms to get ŷ

1
. If the channel-1 is not too bad, it is

reasonable to assume that ŷ
1

= y. Therefore, traditionally,
Oscar is assumed to know the ciphertext y. Oscar attempts to
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Fig. 3. (a) The conventional secure communication system. (b) The secure
communication system using a secret error-correcting code.

find the key or the plaintext x based on what he has collected
up to the present time, including plaintext-ciphertext pairs.

The secure communication system using a SECC shown in
Fig. 3 (b) is different. The channel encoder (as well as the
decoder) is secret, which can be easily configured using the
private key k. Alice puts directly the plaintext x into the secret
channel encoder, resulting in a signal sequence s. For this
system, s can be considered as the ciphertext. Bob observes a
noisy version of s through the channel-0, denoted by r. Then
Bob performs the channel demodulation/decoding algorithms
to get an estimation of x, denoted by x̂. For Oscar, he observes
a noisy version of s, denoted by r1. Depending upon the
channel-1, the probability that r1 ̸= s may be non-neglected. If
this is the case, Oscar can not even get an error-free ciphertext,
a distinguished feature over the traditional secure system.

In the sequel, we assume that the secret channel encoder
consists of a turbo code with private interleavers. The structure
of the channel encoder/decoder is known to Oscar with the
exception of the key to generate the interleaver. Note that the
original turbo code can not be used here directly because Oscar
may make hard decisions on systematic bits or decode only the
first code to get û without knowing π. The estimation û may
have erroneous bits but still contains lots of secrets especially
when the bit-error-rate is far less than 1/2. To avoid such
attacks, the plaintext is transmitted in its interleaved version.
That is, a codeword c = (π(u), p(0), p(1)) consists of the
interleaved version of plaintext, the parity check bits from the



first encoder and the parity check bits from the second one.
B. Stream Turbo Ciphers

Assume that the private key k is utilized to drive a PRIG,
which outputs a sequence of interleavers. Since the interleavers
are pseudo-randomly changed for every frame, we call such a
system a stream turbo cipher.

As discussed in Section II-C, the stream turbo cipher will
be at least as secure as the traditional stream cipher in terms of
protecting the keystream even if the channel-1 is noiseless.But
it is not secure in terms of protecting plaintexts with small
or relatively large Hamming weights when the channel-1 is
noiseless. A possible attack is as follows. Suppose that the
error-free π(u) has Hamming weight w. Then Oscar may
encode each binary sequence with weight w to check if the
parity checks are correctly produced. The complexity of such
an exhaustive search is of order

(
L
w

)
. Therefore, plaintexts

with extremely low weights (or extremely high weights) are
not protected well. If L = 4096, then there are about 253

sequences which have weight 5. So we may conclude that
plaintexts having weight 5 ≤ w ≤ 4091 for L = 4096 cannot
be recovered efficiently. But it is easy to decrypt ciphertexts
having lower weights, say, 1 or 0. However, this attack works
only when the channel-1 is error-free.
C. Block Turbo Ciphers

Assume that a random interleaver is generated using a public
algorithm driven by the private-key k and fixed “forever”.
Since the interleaver is unchanged for many frames, we
call such a system a block turbo cipher. As discussed in
Section II-B, the block turbo cipher is insecure against known-
plaintext attacks provided that the channel-1 is noiseless. To
make the block turbo cipher secure when the channel-1 is
noiseless, we may turn to the method proposed in Section II-B
which has a rate loss ν/L.

IV. FURTHER REMARKS AND CONCLUSIONS

We have proposed turbo ciphers, which provide both data
security and data reliability and may find applications in
wireless communications. The ideal stream turbo ciphers can
be asymptotically information-theoretically secure, while the
practical stream turbo ciphers are even more secure than the
classical stream ciphers against recovering the key-stream.

The block turbo ciphers are very different from the conven-
tional block ciphers. Traditionally, an encryption is usually
defined as a key-dependent transformation from FL

2 to FL
2 .

For the block turbo ciphers, the encryption is a key-dependent
transformation from F(L−ν)

2 to FL′

2 , where L− ν is the length
of the binary plaintext and L′ is the length of the ciphertext
to be transmitted over the physical channel. Compared with
the existing block ciphers, the block turbo ciphers have the
following features.

1) One plaintext can have thousands of bits. Therefore,
we can choose ν > 100 without sacrificing too much
information rate. This makes block turbo ciphers secure
against Struik-Tilburg attacks [13] and Meijers-Tilburg
attacks [14].

2) One plaintext can results in lots of different ciphertexts.
This makes it unclear how to implement differential
attacks [15] on block turbo ciphers.

3) Ciphertexts can be real vectors when AWGN exists in
the channel for Oscar. This makes it unclear how to
implement linear attacks [16] on block ciphers.

4) Changing few bits in a ciphertext may not affect the de-
livered plaintext. This could be a useful property against
possible chosen-ciphertext attacks. Actually, Oscar is not
able to choose error-free ciphertexts because he does not
know what sequences are legal codewords.

In addition, it appears that differential attacks and linear
attacks are only applicable to iterated cryptosystems based on
iterating a weaker round function [17]. It is desired to develop
new attacks on the block turbo ciphers. The intended attacks
should focus on obtaining error-free input-output pairs for the
private interleaver. To conclude this paper, we remind readers
of a fact that a randomly-chosen interleaver performs almost as
well as an optimized deterministic interleaver in the low-SNR
region especially when the data length is large.
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