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Abstract

The problem of secure multiparty computation – performing some computation based on
distributed, private inputs – has been studied intensively for more than twenty years. This work
includes both “one shot” applications as well as reactive tasks, where the exact computation is
not known in advance. We extend this line of work by asking whether it is possible to efficiently
both update and query secret data. A clearer formulation is, perhaps, to ask whether is it
possible to construct efficient datastructures based on secure multiparty computation primitives.

It is possible to construct arbitrary secure datastructures based on an oblivious RAM
(ORAM). However, current state of the art information theoretically secure solutions incur
a poly-logarithmic overhead on both secure computation and memory. The overhead is much
smaller when considering computationally secure solutions, however, this requires secure evalu-
ation of a one-way function as a primitive, which may reintroduce a considerable overhead.

By constructing a secure priority queue we show that practical datastructures are possible.
The ideas are radically different than those used in any ORAM implementation: The present
solution accesses data in a deterministic manner, whereas all ORAMs randomize the access pat-
tern in order to hide it. The priority queue operations – insertion into the structure and deletion
of the minimal element contained therein – both require O(log2 n) invocations of the crypto-
graphic primitives (secure arithmetic and comparison) amortized in O(1) rounds amortized,
where n is the overall number of operations performed.

Keywords: Secure multiparty computation; reactive functionalities; and datastructures
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1 Introduction

Secure function evaluation (SFE) considers the problem of evaluating a function f on data held in
a distributed manner, i.e. on (x1, . . . , xN ) where xi is held by party Pi. The core goal is privacy :
to have the parties learn f (x1, . . . , xN ), but do so without revealing any information about the
xi to anyone underway (except what can be inferred based on the output and any known inputs).
The problem was originally proposed by Yao nearly thirty years ago [Yao82], and has since then
been rigorously studied in the cryptographic community. The notion can be extended to secure
multiparty computation (MPC), which considers reactive tasks as well. I.e. an MPC protocol
may consist of multiple sequential function evaluations, where each evaluation depends on – and
potentially updates – a secret state.

Depending on the desired goals, one can consider either passive or active security. In the former
case, all parties follow the protocol, but some may collude, combining information, e.g. messages
sent and received, in an attempt to break the privacy of other parties. In the case of active
security, they not only pool their data, they may also misbehave arbitrarily. Hence protocols
ensuring security against an active adversary (controlling all misbehaving parties) must be fully
robust. The classic results of secure computation demonstrate that any function can be computed
with active security and a polynomial overhead given a fully connected, synchronous network, with
authenticated (and in the information theoretic (i.t.) case (where the adversary is computationally
unbounded), also secure) channels, [GMW87, BGW88, CCD88].

In addition to this, many specialized protocols for specific, well-motivated problems have been
proposed – auctions and data mining are two popular examples. Utilizing domain specific knowledge
and focusing solely on the task at hand often allows considerable efficiency gains. However, though
the solutions may require MPC rather than SFE, the tasks considered are rarely reactive themselves.
Put differently, the topic of datastructures based on MPC primitives has received surprisingly little
attention.

1.1 Contribution

With the exception of realizations of the oblivious RAM (ORAM; see related work below), we
propose the first datastructure based on MPC. We construct an efficient priority queue (PQ) based
on protocols providing secure arithmetic over a ring, ZM . The specifics of the underlying protocols
are irrelevant, hence the construction is presented in a hybrid model, where the parties have access
to secure black-box arithmetic, i.e. we assume access to secure protocols implementing simple
arithmetic operations on secure data. With respect to security properties, the solution inherits
those of the underlying primitives; hence to ensure security in the presence of active adversaries –
i.e. to ensure that the protocol is fully robust – it suffices to require this of the underlying primitives.
These exist for both the computational and the i.t. settings.

The construction is a variation of the bucket heap of Brodal et al. [BFMZ04] and allows two
operations: INSERT(p, x) which inserts a secret1 element, x, into the queue with secret priority
p; and GETMIN() which deletes and returns (in secret shared or encrypted form) the element with
minimal priority. Both operations use O(log2 n) primitive operations (MPC multiplications and
comparisons – with the latter constructed from arithmetic) in O(1) rounds, i.e. only a constant
number of messages are sent per pair of parties. All measures are amortized – they apply on
average, though individual executions may require more operations and a non-constant numbers of
rounds.

1Secret shared or encrypted.
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The overall approach taken in this paper is to construct a datastructure where the actions per-
formed are completely independent of the inputs. From there it is merely a matter of implementing
the operations using MPC primitives. This strategy presents an immediate path to the present
goal, however, it is not at all clear that it is the only one, or indeed the best one.

1.2 Related Work

There are essentially three areas of related work: incremental cryptography (IC) due to Bellare
et al. [BGG94, BGG95]; history independent (HI) datastructures introduced by Naor and Teague
[NT01] which builds on the oblivious datastructures of Micciancio [Mic97]; and Oblivious RAMs
proposed by Goldreich and Ostrovky [GO96].

IC considers evaluating some cryptographic function – e.g. a digital signature – on known,
changing data without recomputing that function from scratch every time. HI datastructures on the
other hand focus the problem of eliminating unintentional information leakages when datastructures
containing known data are passed on to other parties. E.g. the shape of the structure itself may
reveal information on the operations performed. Both consider security and structuring data, but
are fundamentally different as the data is known by the structuring party.

The closest related concept is that of the ORAM. There, a CPU (with only constant size,
private memory) runs some program residing in the main memory. An adversary observes the
memory access pattern (but not the data/program instructions retrieved) and attempts to extract
information from this. Damg̊ard et al. have observed that (as hinted by Goldreich and Ostrovky)
implementing the CPU using MPC primitives allows array indexing to be securely realized using
MPC primitives, [DMN10]. Through “pointers” this allows datastructures.

Oblivious RAMs hide the access pattern by randomizing it. [GO96] achieved this through access
to a random oracle, instantiated by a one-way function. This was recently improved by Pinkas and
Reinman, [PR10], who brought the computational overhead down to O(log2 n) and the memory
overhead down to O(1). This approach has two drawbacks: The use of one-way functions implies
that the solution cannot provide information theoretic security. Moreover, the one-way function
must be evaluated using MPC; this can always be done using general techniques, however, it is not
clear that this will result in a practical protocol overall. Independently, Ajtai [Ajt10], and Damg̊ard
et al. [DMN10] have proposed information theoretic ORAMs. Though the solutions are different,
in both cases, both the computation and memory overhead is poly-logarithmic.

Where the ORAM provides a completeness theorem, the present work focuses on whether
different strategies may provide more efficient means of reaching specific goals. Indeed, the present
approach is radically different than those used when constructing ORAMs: in stark contrast to the
above, the access pattern of the PQ solution presented is completely deterministic, whereas any
i.t. secure realization of the ORAM require at least log n bits of randomness per operation, where n
is the overall size of the memory, [DMN10]. This is possible since the overall “program” (the task
to be performed by a MPC protocol) is known; actions taken may therefore depend on the task at
hand.

Despite the common ground, oblivious RAMs do not provide all answers regarding MPC datas-
tructures, at least not presently. In addition to the above, instantiating an oblivious RAM with
present state of the art solutions incurs at least a computational overhead of O(log2 n) on every
read/write operation – this equals the entire cost of our PQ operations. Moreover, the sequential
nature of the ORAM implies that it cannot provide round-efficient solutions. Also, both i.t. secure
ORAMs have a poly-logarithmic overhead on memory usage, whereas the present construction does
not. Thus, the present work contains the only i.t. secure datastructure with constant memory over-
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head. Finally, there are no obvious reasons why the secure PQ could not be improved significantly,
while an i.t. secure ORAM with constant overhead seems less plausible, hence for specific tasks it
appears as if tailored solutions will always be preferable, even under big-O.

1.3 The Structure of this Paper

Section 2 introduces underlying, cryptographic primitives in the form of an ideal functionality, the
arithmetic black-box. Section 3 then extends this model and introduces higher-level constructs.
The problem is then formalized in Sect. 4 in the form of an ideal functionality, which is then
realized in Sect. 5. Section 6 contains concluding remarks and lists open problems and possible
future avenues of research.

2 The Basic Model of Secure Computation

We consider a setting where N parties P1, . . . , PN are pairwise connected by authenticated channels
in a synchronous network. They perform multiparty computation based on linear primitives; this
could, for example, be additively homomorphic secret sharing or encryption. We do not specify
the actual, underlying cryptographic primitives. Rather, we construct the priority queue based on
an ideal functionality – the arithmetic black-box (ABB) FABB of Damg̊ard and Nielsen [DN03] –
whose definition captures the required properties. The model may essentially be viewed as if the
parties have oracle access to a trusted third party providing secure storage of elements of a ring, say
ZM , as well as providing arithmetic on the stored values. This approach hides irrelevant details of
the underlying scheme, and simplifies the security proof tremendously, since an attacker can only
influence the well-behaved FABB in very few ways. We stress that any protocols with the desired
properties can be utilized, not just those of [DN03]; loosely speaking, we require only secure storage
and arithmetic, and that the honest parties “agree on the state.” This can be achieved in multiple
ways, e.g. based on secret sharing [Sha79, BGW88] or homomorphic encryption, [Pai99, CDN01]

2.1 The Arithmetic Black-box

[DN03] presents FABB in the UC framework of Canetti [Can00] and realizes it efficiently based on
Paillier encryption [Pai99], i.e. M is an RSA modulus. The protocols are shown secure against an
active, adaptive adversary corrupting a minority of the parties. This implies an efficient, UC-secure
realization of our protocols, as they are shown secure in the FABB hybrid model. (Note that we
present a slight variation of the original FABB to better represent the required operations; indeed,
the original version is quite “implementation specific.”)

• Input: If party Pi sends “Pi : x← v” and at least ⌈(N−1)/2⌉ other parties send “Pi : x←?”
then FABB stores value v under the variable name x,2 and sends “Pi : x←?” to all parties.

• Output: When a majority of parties provide the order “output(x)”, then assuming that
value v was stored under x, FABB sends “x = v” to all parties as well as the adversary.

• Arithmetic: Upon receiving “x ← y + z” from a majority of parties, FABB computes the
sum of the values stored under y and z and stores the result as x. Similarly, upon receiving
“x← y · z” from a majority of parties, the product is stored under x.

2For simplicity, consider these distinct, i.e. each value is stored indefinitely and never overwritten.
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The protocols of [DN03] are quite complex, hence to explain the intuition behind FABB, a simpler
example is better. Consider a passive adversary, and MPC based on Shamir’s secret sharing scheme
over ZM = FM for prime M [Sha79]. Secret sharing allows one party to store a value privately and
robustly among multiple others. If and only if sufficiently many agree, the value will be revealed.
Input (respectively output) simply refers to secret sharing a value (respectively reconstructing a
secret shared value). Shamir’s scheme is linear hence addition is simply addition of shares, while
secure multiplication can be obtained through the protocols of Ben-Or et al. [BGW88].

It can be shown (given secure communication between all pairs of players, and assuming that
all parties agree on the secure computation being performed) that these protocols realize FABB with
perfect security in the presence of passive adversaries. Further, the protocols of [BGW88] even
realize FABB in the presence of active adversaries if the corruption threshold is reduced to N/3.

Reducing the corruption threshold of FABB does not invalidate our construction. Indeed, the
above presentation of FABB is a lot more rigid than required. Whether malicious adversaries are
allowed, whether security is computational or information theoretical, etc, are merely details which
do not affect our construction. Note further, that while the protocols [DN03] do not guarantee
termination if more than N/2 players are corrupt, privacy is not compromised. Thus, FABB could
even be modified to allow up to N − 1 corruptions (which includes the two-party setting) at the
cost of guaranteed termination. For simplicity, we retain the above definition.

2.2 Complexity

As abstract primitives are used, it is not possible to provide an exact measure of computation or
communication complexity. One can merely count the number of operations performed by FABB.
These correspond directly to the computation and communication of the underlying primitives.

We focus on communication complexity of the operations. Recalling that we assume linear
primitives, clearly this implies that addition (and multiplication by public values) is costless, as it
consists of purely local computation. For simplicity, we will not distinguish between the complexities
of the remaining operations, input; output; and multiplication of two unknowns. We remark
that multiplication is in general the most expensive operation and also the most used one. Our
construction does not require input/output, except as occurring in existing sub-protocols, whose
main cost also originates from multiplications.

Regarding instantiations of FABB, the basic operations are typically reasonably cheap. For
passive adversaries, typically only O(1) ring elements are communicated per player or pair of
players. E.g. performing a passively secure multiplication of Shamir shared values can be done
by having each party reshare the product of its shares (plus local computation), i.e. two field
elements per pair. The dominating term of the Paillier based protocols of [DN03] – and in other
actively secure constructions – is O(N) Byzantine agreements on ring elements (e.g. encryptions)
per (non-costless) operation, i.e. O(1) Byzantine agreements per player. Unless a broadcast channel
is assumed, such an overhead is required to guarantee robustness in the face of actively malicious
adversaries.

A second measure of complexity of protocols is the sequential number of rounds required (the
number of times messages are exchanged between parties). For simplicity of the presentation above,
this was left out, however, it is easily incorporated into the ABB: first assume that all operations
take the same, constant number of rounds. Now, rather than receiving one instruction from each
party, the parties send lists of independent instructions to be performed by the functionality. Each
invocation of the functionality now refers to one round of operations, which in turn translates to
some number of rounds of communication. Naturally, it is unlikely that all sub-protocols require
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the same number of rounds, however, the approach simplifies the model at little loss.
While the straightline program notation used below improves readability, it has a drawback: The

description of the protocols is detached from the actual execution in the FABB hybrid model. Hence,
complexity analysis becomes slightly more complicated, as the description does not explicitly state
which operations can be performed in parallel. The possibility of providing clearer descriptions
easily makes up for this, though.

3 Extending the Arithmetic Black-box

The secure priority queue is not constructed directly based on FABB. Instead, we extend that
functionality, adding additional operations, which the parties can specify. These are realized using
nothing more than the basic operations of the arithmetic black-box. This section can be viewed as
containing preliminaries in the sense that it introduces a number of known constructions.

3.1 Secure Comparison

In order for the priority queue to make sense, there must be some notion of order with respect to
the stored elements. Further, when FABB holds values, it must be possible to determine which is
the larger. I.e. the arithmetic black-box must be extended with an additional action for this, that
the parties can order it to perform.

• Comparison: Upon receiving “x← y
?
> z” from a majority of the parties, FABB determines

if y is larger than z, and stores the result as x; 1 for true and 0 for false.

As an example, consider values taken from ZM and the natural “integer” ordering. If M is prime,
a secure comparison computation completely within the arithmetic black-box, e.g. [DFK+06]. For
this example, the best general solutions3 known to the author requires O(logM) operations (mul-
tiplications as well as input/output) in O(1) rounds, e.g. [NO07]. When M is an RSA modulus
– e.g. a public Paillier key – complexity is increased to O(N logM), where N is the number of
parties; this is simply due to more expensive sub-protocols. However, it is stressed that these are
merely options; any secure computation and any ordering will work.

For simplicity of the present analysis, it is assumed that the comparison computation requires
only a constant number of rounds. We do not specify the number of ABB-operations though.
Instead, the number of comparisons used is counted separately from the basic operations due to its
(in general) much higher cost. It is straightforward to multiply by the actual cost when a specific
realization is given.

3.2 Secure Conditional Swap

Based on the ability to compare, it is possible to perform conditional swaps: given two values
stored by FABB, swap them if the latter is larger than the former. This can be viewed as sorting
lists of length two, and is easily constructed within the ABB by simply computing the maximal
and minimal of the two.

max←

(

a
?
> b

)

(a− b) + b; min← a+ b−max

3In specific settings other solutions may be preferable, e.g. [Tof11].
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These two expressions are easily translated to messages to be passed from the parties to the extended
FABB. Clearly the whole operation requires only constant work – O(1) basic operations and a single
comparison – in a constant number of rounds, and naturally, multiple swaps may be executed in
parallel. The swap computation can be generalized to multi-element values, say pairs consisting of
a priority and a data element. It is simply a question of having a well-defined comparison operator
and using its output to choose between the two candidates on a single element basis.

3.3 Secure Merging

The main, large-scale primitive of the construction is the ability to merge two sorted lists, both of
some known length ℓ, stored within FABB. This will be written MERGE (X,Y ), where X and Y refer to
lists of stored values. A construction for this primitive is obtained from sorting networks – sorting
algorithms created directly based on conditional swaps. These do not perform any branching, hence
they are oblivious to the inputs – except for the problem size, ℓ – as well as being deterministic.
This allows the parties to specify the relevant operations to FABB.

Any sorting network can be utilized to merge, by simply viewing the whole input as a single
unsorted list. However, as the only requirement is merging, we merely take the inner workings
of Batcher’s odd-even mergesort [Bat68]. The whole sorting network requires O(ℓ log2 ℓ) condi-
tional swaps, however, merging alone requires only O(ℓ log ℓ) conditional swaps in O(log ℓ) rounds.
Further, the constants are low, implying that the solution is practical.

A primitive for merging lists of differing lengths, ℓ 6= ℓ′, is also required. To do this, the shorter
list is simply padded – assume that some element, e∞, which is greater than all others is reserved for
this – such that they become of equal length. At this point the lists can be merged using the above
solution. Finally, the padding must be removed. It consists of elements greater than any valid
ones, hence all such elements are pushed to one side. As the size of the padding is known, those
elements can be removed by truncating the list. Complexity is O(max(ℓ log ℓ; ℓ′ log ℓ′)) operations in
O(max(log ℓ, log ℓ′)) rounds. We overload the meaning of MERGE (·, ·) to avoid introducing additional
notation.

We present a final, needed primitive which is highly related to merging: merge-split. This
operation, denoted MERGESPLIT (X,Y ), takes two lists as input as above. As the name suggests,
the goal is to merge two lists into one, which is then split (cut into two parts whose concatenation
is the sorted list). The only requirement is that lengths of the new lists must equal the lengths of
the old ones. The effect of a merge-split is that the most significant elements end up in one of the
lists, while the least significant ones end up in the other. Naturally, both new lists are still sorted.
Clearly this operation is equivalent to a merge, as the split merely renames variables. Hence, its
complexity is the same as merging.

4 The Goal: a Secure Priority Queue

At this point we are ready to present the desired goal, an ideal functionality for a priority queue, FPQ.
However, we will not simply introduce a priority queue. The data of a datastructure is not separated
from the rest of the world in general. Inputs to the datastructure do not necessarily originate at
some party. It could equally well be the result of previous computation – even computation involving
operations on the datastructure in question. Thus, the goal is not to simply construct the priority
queue. The goal is to extend the arithmetic black-box with a priority queue.

This is done in the exact same manner as the previous section, where a comparison operation
was added. Here, all operations of the datastructure in question must simply be included. Hence,
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FPQ contains the operations of (the extended) FABB in addition to the following two:

• INSERT(p, x):4 Upon receiving “PQinsert(p, x)” from a majority of parties, where p and x
are variables over ZM , FPQ stores the values associated with the pair (p, x) in an internal,
initially empty list, L. Finally, all parties are notified that the command has terminated.

• GETMIN(): Upon receiving “y ←PQgetmin()” from a majority of parties, FPQ determines and
deletes from L the pair in L with the lowest p-value. The corresponding x-value is stored as
y, and the parties are notified that the assignment to y has been performed.

Naturally, parties engaging in a protocol may interleave these two operations arbitrarily with
other computation. This could even contain operations for additional priority queues. We present
only the case of a single instance for simplicity. Note, though, that the ideal functionality must
treat the priority queue operations on a given PQ as atomic with respect to each other. Operations
on the same queue cannot be interleaved. Thus, correctness is only guaranteed when all parties
send the same insert/getmin order, and that order is executed completely before the next one is
sent.

It is noted that there is a small issue with the above description: the behaviour of FPQ is not
specified if GETMIN() is executed when the queue is empty. In this case, FPQ may simply discard the
operation and do nothing. There are no consequences of doing this, as all parties always know the
exact number of elements in the queue, as they are notified by FPQ whenever something is inserted
or deleted.

5 The Secure Bucket Heap

An standard binary heap is not directly implementable using MPC primitives. The difficulty
encountered is that it is not possible to branch – one cannot traversing the tree from root to leaf by
a path that depends on secret data. Instead, the efficient realization of FPQ is based off of the bucket
heap of Brodal et al. [BFMZ04]. However, two significant changes are made. Jumping ahead a
bit, the original solution merges sorted lists in the “natural” way, i.e. using linear scans – this does
not work in the present setting. However, Batcher’s solution of Sect. 3.3 does; thus, all merging is
performed in this manner instead. A second difference is also made to better tie in the high-level
solution with the MPC primitives. This change actually causes the name bucket heap to be slightly
misleading, as a rigid structure (with respect to the priorities) is imposed on the contents within
the buckets. The name is retained, though.

The changes are made possible by considering a simpler problem than the one solved by the
original bucket heap: the decrease-key operation has been eliminated. This ensures that the actual
content can be ignored, while focus is kept on the priorities of that content. The motivation for
doing this is that it eliminates the need for operations that would at best be expensive. The change
also allows a clearer presentation.

5.1 The Intuition of the Secure Bucket Heap

Before going into details, the intuition behind the bucket heap is explained. The main idea is
essentially to store a list, D, containing all the data in sorted order. However, doing this naively
makes inserts too costly, as a newly inserted element can end up anywhere. Thus, rather than

4For simplicity, this will be referred to as INSERT(p) below. The element, x, is left implicit to avoid clutter.

8



inserting directly into that list, elements are placed in buffers until sufficiently many have arrived
to pay for the combined cost of all insertions.

More formally, the data is split into sub-lists (buckets), D0, D1, D2, . . ., where the elements of
Di are less than those of Di+1. The size of the Di double with each step (or level) – |Di| = 2i. In
addition to this, at each level, i, there is a buffer, Bi, of the same length as the data; see Fig. 1.

D0

B0

D1

B1

D2

B2

Di

Bi

Figure 1: The structure of the bucket heap

Inserting new data means placing it in the uppermost buffer, B0. The (very loose) intuition is
now, that whenever a buffer Bi is full, its contents are processed. The elements that “belong at
this level” are moved to Di, while the rest are pushed down to Bi+1. The Di can be viewed as a
sorted list of “buckets” of elements, where the elements increase with each step. Thus, “belong at”
intuitively means that an element is smaller than some p ∈ Di.

The minimal is obtained by returning the contents of D0. This may then be output by FABB.
For subsequent GETMIN()’s, D0 may be empty. In general the desired element is in the top-most,
non-empty bucket. Thus, the element is easily found, and the remainder of the content of the
bucket is used to fill all the buckets above the level in question.

Strictly speaking, the above description is not correct at all. It does, however, explain the
overall ideas quite nicely: elements are inserted in the top buffer and move downwards through the
buffers until reaching the correct level (bucket). Deletions then work by pulling the contents of the
buckets upwards. With this intuition in mind, we are ready to proceed to the details – the trick
of the construction is to ensure that we know exactly where all the data is placed, while keeping
secret which data went where.

5.2 Invariants

Data is stored as specified above, but with a few additional requirements on the data buckets, Di,
and the buffers, Bi. Bucket Di can contain 2i elements, and it is either completely full or completely
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empty, i.e. |Di| ∈ {0, 2
i}. The buffers are slightly different as the Bi must contain strictly less than

2i elements. They may temporarily exceed this limit, though – this is referred to as the buffer being
full – at which point the contents will be processed. Finally, the elements of buffer Bi are greater
than (have higher priority than) the elements of the higher-lying buckets, Dj , j < i.

In difference to the original bucket heap, the contents of the buckets and buffers are stored as
lists sorted by priority. This is the rigid structure referred to above. Note that the concatenation
of the Di can be viewed as one long, sorted list.

5.3 The operations

The datastructure must be maintained using only the operations of the arithmetic black-box. There
are two operations to construct, the insertion of a new value and the extraction the present minimal.
The main parts of these operations are seen as Protocols 1 and 2.

The insert operation, INSERT(p), is performed by placing p in the top buffer, B0. This fills it and
it must be flushed using Protocol 1. The GETMIN() operation is realized by extracting the element
stored in the top-level bucket (or at least attempting to extract; the bucket may be empty). This
is done by executing DELMIN (0); the details are seen as Protocol 2.

Protocol 1 FLUSH(i) – flushing buffer Bi at level i

Require: Full buffer, Bi, at level i.
Operation: Flush Bi, moving the elements contained into data or subsequent buffers.

if |Di| = 0 and i is the lowest level then
Di ← Bi(1..2

i)
Bi ← Bi((2

i + 1)..|Bi|)
if |Bi| ≥ 2i then

5: FLUSH(i)
end if

else

(Di, Bi)← MERGESPLIT (Di, Bi)
Bi+1 ← MERGE (Bi, Bi+1)

10: Set Bi empty
if |Bi+1| ≥ 2i+1 then

FLUSH(i+ 1)
end if

end if

5.4 Correctness

To show correctness, it suffices to show that the invariants hold and that these imply the desired
behavior. First off, it is clear that for the starting position – an empty priority queue – all invariants
hold. All buckets are empty which is acceptable; further, as there are no elements at all, the required
ordering between elements of different buckets and buffers as well as the internal ordering are clearly
satisfied.

An INSERT(p) operation places p in B0 which is a list of length 1. Except for this full buffer, the
invariant holds, as no relationship between the elements of a buffer and the ones of the associated
bucket is specified. Nor is this the case for those of any buckets or buffers below. After this, the
buffer is flushed.
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Protocol 2 DELMIN(i) – return the 2i smallest elements from level i and below (or everything if
there are fewer than 2i elements)

Require: Non-empty bucket heap; all levels above the i’th are completely empty.
Operation: DELMIN(i) – determine and return the 2i minimal elements

if |Di| = 2i then
(Di, Bi)← MERGESPLIT (Di, Bi)
Return Di and set it empty

else if i is the lowest level then
5: Return Bi and set it empty

else

Bi+1 ← MERGE (Bi, Bi+1)
Set Bi empty
if |Bi+1| ≥ 2i+1 then

10: FLUSH(i+ 1)
end if

D̃ ← DELMIN (i+ 1)
if |D̃| ≥ 2i+1 then

Bi+1 ← D̃(2i+1 + 1..|D̃|)
15: Di ← D̃(2i + 1..2i+1)

Return D̃(1..2i))
else

Return D̃
end if

20: end if

There are two possible states when flushing a buffer, as seen from the “outer” if-statement of
Protocol 1: either this is the lowest level and Di is empty; or there is data here or below. In the
first case, we may simply move the 2i smallest elements into the data bucket (the buffer is only
flushed when it is full, i.e. when it contains at least 2i elements). As all the elements in the buffer
are bigger than the elements in the buckets above, then the new relationship with all buckets hold.

Alternatively, there may be data in the present bucket or below the present level. By the
invariant, all elements are greater than the elements of the buckets above. Thus, after performing
the merge-split, line 8, all invariants still hold with respect to the levels above. The same is true
for any levels below. The merge-split ensures that the smallest elements of the level end up in the
bucket. These are at most as big as the previous largest element of the bucket, and must therefore
be smaller than the elements of the levels below. At this point it is guaranteed that the elements of
Di are smaller than those of Bi, hence the latter can be pushed into the buffer below. All invariant
still hold, except that Bi+1 may now have become full; if so, it must be flushed

The minimal element contained in the PQ is obtained using DELMIN(0), which extracts the
minimal from the top-most level. The intuition behind Protocol 2 is that the minimal element
must come from a bucket. Only if there are no elements in any buckets can an element be taken
from a buffer, line 5.

From the invariant, it is clear that the minimal element will either be in the top-most, non-empty
bucket or a buffer above that. Hence, starting with level 0, the buffers are flushed (merged with
the buffer below) one after the other until a non-empty bucket is found, lines 7 and 12. Note that
this simply merges buffered elements above any full buckets, hence it does not affect the invariant.
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Once a non-empty bucket is found, it is merge-split with the buffer at that level to ensure that
it contains the 2i smallest elements, not only at this level, but overall : buckets and buffers above
are empty, and any element in the bucket is less significant than any at a level below. The present
bucket is then emptied into the buckets above, which fills them and leaves one element that can
be returned – this task is trivial as the elements of the bucket are sorted, and the concatenation of
the buckets above should be a sorted list. It is easily verified that the invariants hold at this point.

If all buckets are empty, then all buffers are merged until only a single non-empty one exists (at
the lowest level, i). Viewing Bi as a sorted list, its contents may be distributed to the top buckets
above, exactly as with the emptying of a bucket above, except that there may be “excess elements.”
For |Bi| = 2j +k, with k < 2j , the minimal element can returned and the j top-most buckets filled.
This leaves the k largest elements; these are placed in the buffer Bj+1. As before, the elements of
the initial list, Bi, are easily distributed such that the invariant holds, as it is sorted.

5.5 Complexity

Complexity of both INSERT(p) and DELMIN(0) is O(log2 n) amortized, where n is the overall number
of operations. This follows from a coin argument, where each coin pays for a conditional swap.

When inserting an element into B0, Θ(log2 n) coins are placed on it. The invariant is that every
element in buffer Bi has Θ(((log n) − i) log n) coins, which is clearly satisfied for both the initial
(empty) datastructure and for the newly inserted element. These coins will pay for the flushes
caused by full buffers, the secure computation of Protocol 1.

Moving elements from the buffer to the empty bucket at the lowest level is costless. In the other
case, the buffer Bi at level i must be merged with the bucket, Di, (in the merge-split) and with
the buffer below, Bi+1. Both merges require O(2i log 2i) conditional swaps – the three lists are at
most a constant factor longer than 2i. This cost can therefore be paid using Θ(2i logn) coins from
the elements of Bi.

The merge-split potentially moves elements between the buffer and bucket, however, the number
of elements in the buffer remains the same. The second merge then moves the contents of the buffer
to the level below. As Bi was full, it contained at least 2i elements, thus it suffices if each one moved
pays Θ(log n) coins. As the entire contents of the buffer is pushed one level down, the elements
only require Θ(((log n) − (i + 1)) log n) to ensure that the invariant holds. Hence even when each
element pays the Θ(logn) coins needed for the flush, the invariant holds. Overall, this implies the
stated complexity for the insert operation.

A similar argument is needed for deletion, DELMIN(0). However, rather than placing coins
on the elements themselves, the deletion coins are placed on the buffers. Each operation places
Θ(log n) coins on each of the buffers, Bi; this requires Θ(log2 n) coins overall. The invariant is, that
every buffer, Bi, has Ω(k log n) coins, where k is the combined size of the empty buckets above,
i.e. k =

∑i−1
j=0;|Dj |=0 2

j .

Whenever DELMIN(i) is called, it implies that the buckets of all levels j < i above are empty.
Hence, the buffer Bi has Ω((2i − 1) log n) coins implying that it can pay for a merge at level i,
either with the contents of bucket Di or the buffer below. Either way, all buckets above are filled,5

implying that the buffer does not need any coins to satisfy the invariant presently (except below,
which has not been touched). Thus, the previous delete operations pay for the required merge.

Regarding the number of rounds, both operations require at most a constant number of merges

5The only possible exception occurs when all buckets are empty, but the structure is so “sparse” that not all
buckets above can be filled. In this case a “completely full” structure is constructed from scratch so no coins are
needed.
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for each level. Hence, worst-case complexity is O(log2 n). Amortized complexity, however, is only
constant. The lower levels are rarely processed (Ω(2i) operations occur between the ones “touching”
level i) and the upper levels are cheap to process (only O(i) rounds are required to merge at level
i). Hence for n operations,

logn
∑

i=0

n

2i
i2

rounds are needed overall which implies O(1) rounds on average.
We conclude with a sketch of the actual complexities when FABB is instantiated. For the case

of passively secure MPC from Shamir’s secret sharing scheme, the O(log2 n) conditional swaps
translate into O(logM · log2 n) basic operations of FABB, which in turn require O(logM · log2 n)
transfers of elements of ZM between each pair of parties. Considering the Paillier based, actively
secure protocols of [DN03], this increases to O(N · logM · log2 n) broadcasts of elements per player,
where N is the overall number of players, due to the increased cost of the comparison protocol.

5.6 Security

Intuitively, security of the bucket heap follows directly from the security of FABB. An adversary, A,
can only learn information when the ideal functionality outputs a value, i.e. when the underlying
primitives explicitly reveal information. However, at no point in the present computation is an
output command given by any of the honest parties. Hence, as A does not control what amounts
to a qualified set, it cannot make FABB perform an output operation. By similar reasoning, it can
be seen that no adversary – i.e. set of parties behaving incorrectly – can influence the computation
resulting in incorrect values stored in FABB.

The above is of course only the intuitive explanation. Formally, the view of A must be simu-
lated. The required simulator, however, is easily constructed. It simply “executes” the realizing
PQ computation, except that for every operation that FABB should be instructed to perform, the
simulator will simply play the role of FABB towards the corrupt players. It will receive their com-
mands and send the messages (acknowledgments) to the corrupt players that they expect to receive.
This is clearly indistinguishable from the point of view of any adversary. For each PQ operation,
it simply sees a fixed set of messages, namely the ones corresponding to the secure computation
implementing the operation, which it “knows” is being executed.

6 Conclusions and Open Questions

In this paper, a priority queue based on secure multiparty computation primitives was constructed.
It allows a set of parties to efficiently maintain a set of secret values from which the minimal element
is efficiently extractable. The amortized complexity of every operation is poly-logarithmic in the
problem size. Though general solutions are possible based on the ORAM, the overhead incurred by
present state of the art solutions may be prohibitive. E.g. one must either accepts a non-constant
overhead on memory, or evaluate a one-way function using MPC primitives.

The present strategy for constructing the PQ was to make the operations performed oblivious
to the inputs. The construction demonstrates that non-trivial, deterministic secure datastructures
are possible. This is surprising, since accessing all data with every operation appears – at least
intuitively, since branching is impossible – to be required. The term input-independent datastruc-
tures is coined for such constructions, and and it is noted that these can always be implemented
using MPC primitives.
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