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Abstract—This paper proposes a novel fault-propagation 
pattern based differential fault analysis method - FPP-DFA, 
and proves its feasibility on SPN structure block ciphers using 
bitwise permutation, such as PRESENT and PRINTcipher. 
Simulated experiments demonstrate that, with the fault model 
of injecting one nibble fault into the r-2th round substitution 
layer, on average 8 and 16 faulty samples can reduce the 
master key search space of PRESENT-80/128 to 214.7 and 221.1 

respectively, and 12 and 24 effective faulty samples can reduce 
the master key search space of PRINTcipher-48/96 to 213.7 and 
222.8 respectively; with the fault model of injecting one nibble 
fault into the r-3th round substitution layer, 8 samples can 
reduce the master key search space of PRINTCipher-96 to 218.7.  

Fault-propagation pattern; fault-propagation path; 
differential fault analysis; bitwise permutation; SPN block cipher; 
PRESENT; PRINTcipher (key words) 

I.  INTRODUCTION  
The new emerging pervasive computing demands have 

made low-end devices, such as smart cards, RFID tags, IC-
printing applications more and more popular. Such tiny 
computing devices are used in many applications and 
environments, leading to an ever increasing need of security. 
This has spurred the development of lightweight 
cryptography. Many ultra-lightweight block ciphers have 
been developed such as mCrypton[1], HIGHT[2], SEA[3], 
DESXL[4], KATAN[5], MIBS[6].  

PRESENT[7] and PRINTcipher[8] are two hardware-
optimized ultra-lightweight block ciphers presented by 
Bogdanov, A et al in CHES 2007 and CHES 2010 
respectively. Both of the ciphers apply the SPN structure and 
bitwise permutation, except that the substitution- 
permutation sequences are different. PRESENT adopts the 
substitution-permutation sequence, while PRINTcipher 
adopts the permutation-substitution sequence. In the 
proposals, the cipher designers analyzed the security of 
PRESENT and PRINTcipher with respect to the main known 
cryptanalytic methods, and showed that they were quite 
secure from the mathematics-based cryptanalysis. However, 
the cipher designers didn’t consider the resilience of them 
against side-channel attacks. In this paper, we try to fill up 
this gap through cryptanalysis of the two ciphers against 
fault-based side channel attacks.  

Fault attacks were first introduced by Boneh et al.[9] on 
RSA public key cryptosystem in 1997. Shortly after, Biham, 
E. et al[10] proposed an attack on secret key cryptosystems 
called Differential Fault Analysis (DFA), which combined 
the ideas of fault attack and differential attack. DFA attacks 

derived information about the secret key by examining the 
differences between correct and faulty ciphertexts. After that, 
various cryptosystems have been attacked by DFA technique, 
such as ECC[11], 3DES[12], AES[13], Camellia[14][15][16], 
MIBS[17], RC4[18], GRAIN-128[19],HC-128[20], Rabbit[21] etc. 
However, to the best of our knowledge, few work except 
[22] and [23] has been done on DFA against PRESENT, and 
there is no publication about DFA on PRINTcipher. 

Previous Works. Li et al[22] proposed the first DFA on 
PRESENT-80. Suppose one nibble fault was injected 
between the r-2th and the r-1th round substitution input, they 
utilized the S-box output difference set of one bit S-box input 
difference as a distinguisher to filter the ideal faulty sample, 
and showed that, on average 40-50 effective faulty samples 
can recover 64-bit post-whitening key, and reduce the master 
key search space of PRESENT-80 to 216. Wang et al[23] 
proposed the first DFA on PRESENT-80 key schedule. 
Suppose one nibble fault was injected into the 80-bit 
intermediate updated key register while generating the 30th 
and 31th round keys, they used about 64 pairs of faulty 
samples to obtain 51-bit of the 64-bit post-whitening key, 
and reduced the master key search space of PRESENT-80 to 
229. 

Our Results. In this paper, we present a novel fault 
analysis method based on DFA, we name it as fault-
propagation pattern based differential fault analysis—FPP-
DFA. The main idea of FPP-DFA is using the output fault-
propagation pattern to infer the fault location, predict the 
fault-propagation path, and then apply the traditional DFA 
technique for further key analysis. As to DFA on SPN block 
ciphers with bitwise permutation, the recovery of the fault-
propagation path means the recovery of the S-box input 
difference, which is the most difficult part of DFA on SPN 
block ciphers. We show that FPP-DFA is quite efficient on 
SPN block ciphers with bitwise permutation, and apply it to 
PRESENT and PRINTcipher successfully. 

In FPP-DFA on PRESENT, we adopt the fault model of 
injecting one nibble fault before the r-2th round substitution 
layer. Through the analysis of the fault-propagation path and 
S-box differential pattern two distinguishers, the fault 
location and the rth round substitution input difference can be 
deduced. Combing the traditional DFA technique, the post-
whitening secret key and the rth round key can be obtained. 

As PRINTcipher applies a key-dependent permutation, a 
part of the secret key is embedded into the algorithm 
description, so algorithms with different secret keys will be 
subtly different from others. Thus, FPP-DFA on 
PRINTcipher is more difficult than PRESENT. In the attack, 
we adopt the fault model of injecting one nibble fault before 



the r-2th or r-3th round substitution layer. Firstly, we compute 
the faulty index set of the ciphtertext difference, and 
combine the fault propagating path distinguisher of 
PRINTcipher to predict the exact fault location. According to 
the faulty difference before and after the rth round key-
dependent permutation, we propose a method to compute the 
permutation related key. After that, we can take the 
permutation off, and convert DFA on PRINTcipher to a 
problem with known cipher algorithm. Combining the 
recovered permutation and fault location, we can compute 
the input and output difference of the r-1th round substitution, 
then apply the traditional DFA technique to deduce the round 
key.  

We analyze the attack complexity of FPP-DFA on 
PRESENT and PRINTcipher, and verify it through concrete 
simulation experiments. Experimental results show that, with 
the fault model of injecting one nibble fault into the r-2th 
round, on average 8 and 16 faults can reduce the master key 
search space of PRESENT-80/128 to 214.7 and 221.1 

respectively, which is more efficient than previous DFA 
works [22][23] on PRESENT-80; on average 12 and 24 
effective faults can reduce the master key search space of 
PRINTcipher-48/96 to 213.7 and 222.8 respectively. With the 
fault model of injecting one nibble fault into the r-3th round, 
on average 8 effective faults can reduce the master key 
search space of PRINTCipher-96 to 218.7.  

Organization of the Paper. This paper is organized as 
follows. The main idea of FPP-DFA is proposed in Section II. 
The detailed FPP-DFA attacks on PRESENT and 
PRINTcipher are described in Section III and Section IV 
respectively, and the conclusions are presented in section V. 

II. MAIN IDEA OF FPP-DFA  
Next, we present the main idea of the FPP-DFA. It is 

mainly composed of the following two phases: 
1) Fault location analysis 
In this phase, the attacker learns the fault-propagation 

pattern, and then builds the distinguisher for the enumerable 
faulty locations based on the fault model. As to FPP-DFA 
on SPN block ciphers with substitution-permutation 
sequence, such as PRESENT[1], the possible fault locations 
can be deduced by patterns of the rth round S-box output(or 
faulty ciphertext) differences. As to FPP-DFA on SPN 
block cipher with permutation-substitution sequence, such 
as PRINTCipher[8], the exact injected fault location can be 
deduced by the faulty ciphertext nibble index set.  

2) DFA based Key extraction 
As to SPN block ciphers with bitwise permutation, after 

the fault location is deduced, the predicted fault location can 
be used to deduce the fault-propagation path, and compute 
the input difference of the S-box, which is the crucial part of 
DFA on SPN block ciphers (at most cases, only the S-box 
output difference can be computed directly from the 
ciphertext difference, and the input difference is unknown). 
Finally, combing the traditional DFA method, the secret key 
can be recovered. 

It should be noted that the FPP-DFA technique above is 
a general framework of DFA on SPN block ciphers using 
bitwise permutation. In FPP-DFA on specific ciphers, the 

two phases above can be divided into several steps as 
needed. 

 As shown in Section III and Section IV, we take 
PRESENT and PRINTCipher as two examples, and apply 
the FPP-DFA technique to prove its feasibility and 
efficiency. 

III. PROPOSED FPP-DFA ATTACK ON PRESENT  

A. Description of PRESENT Algorithm 
PRESENT is a 31-round SPN type block cipher with 

block size of 64 bits. It supports 80 and 128-bit secret key. 
Firstly, the plaintext Xored the subkey K1 as the input of the 
1st round. After 31 rounds iterations, the 31th round output 
Xored with the subkey K32 is the ciphertext. Each 
encryption round is composed of the following 3 steps. 

1) addRoundKey—AK. At the beginning of each round, 
64 bits output of the last round is Xored with the subkey.  

2) sBoxlayer—SL. 16 identical 4-bit to 4-bit S-boxes are 
used in parallel.  

3) pLayer—PL. The ith bit is moved to bit position P(i) 
by a constant permutation table P. 

PRESENT can take keys of either 80 or 128 bits. Below 
is the key schedule of 80-bit version. The 80-bit key is stored 
in a register K=k79||k78||…||k0. At round r (1≤r≤31), the 64-bit 
round key Kr is equal to the 64 leftmost bits of K. After Kr is 
extracted, K is rotated by 61 bit positions to the left, then a S-
box is applied to the left-most 4 bits of K and finally the 
round-counter r is Xored with bits k19||k18||k17||k16||k15 of K. 

B. Notations 
Here we introduce some notations in order to make our 

discussion conveniently. Bits are numbered from zero with 
bit zero on the right of a block. 

 We denote plaintext and ciphertext as X, Y, the output of 
the ith round AK, SL, PL function as Ai,Bi,Ci (1≤i≤31). The 
faulty variables above can be denoted as X’,Y’,Ai’,Bi’,Ci’, 
and the jth bit of the variables above can be denoted as 
Xj,Yj,Aj

i,Bj
i,Cj

i (0≤j≤63). The differences between correct and 
faulty variables above can be denoted as ∆X, ∆Y, ∆Ai, ∆Bi, 
∆Ci, and the jth nibble of the variables above can be denoted 
as NXj, NYj, NAj

i, NBj
i, NCj

i (0≤j≤15). The nibble difference 
of the variables above can be denoted as ∆NXj, ∆NYj, ∆NAj

i, 
∆NBj

i, NCj
i (0≤j≤15), and the related nibble length is 4. The 

faulty nibble and bit index set of the variables above can be 
denoted as SX, SY, SAi, SBi, SCi

 and sx, sy, sai, sbi, sci. 

C. Fault Model 
The fault model of paper is shown as follows. 
1) One random nibble fault is induced into the input of 

the r-2th (29th) round substitution. The attacker knows neither 
the location nor the concrete value of the fault. 

2) For any plaintext adaptively selected, two different 
ciphertexts under the control of the same secret key are 
available, the right and the faulty one. How to induce the 
specific fault is not covered in this paper, since this is not the 
main concern of our paper and many literatures on fault 
inductions are available in [24].  

3) Only one master key is used in one attack. 



Fig.1 shows the fault-propagation path of the above fault 
model (the faulty nibble index is 15) with the maximal fault 
propagating width, and the output difference of every faulty 
S-box is (1111)2. 

 
Figure 1.  One nibble fault-propagation path of PRESENT 

D. FPP-DFA procedure 
FPP-DFA on PRESENT is composed of the following 

steps. 
1) Fault location analysis 
a) Learn the fault-propagation path  
Based on the fault model above, the fault-propagation 

path of the 16 possible fault locations (i) can be built.  

TABLE I.  FAULT-PROPAGATION PATH  OF  PRESENT  

i sa30(∆NAi
30) SA30 sa31(∆NAi

31) 

0 0,16,32,48(0001)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2 

1 1,17,33,49(0010)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2 

2 2,18,34,50(0100)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2 

3 3,19,35,51(1000)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2 

4 4,20,36,52(0001)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2 

5 5,21,37,53(0010)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2 

6 6,22,38,54(0100)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2 

7 7,23,39,55(1000)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2 

8 8,24,40,56(0001)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2 

9 9,25,41,57(0010)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2 

10 10,26,42,58(0100)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2 

11 11,27,43,59(1000)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2 

12 12,28,44,60(0001)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2 

13 13,29,45,61(0010)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2 

14 14,30,46,62(0100)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2 

15 15,31,47,63(1000)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2 

 

Table I is the PRESENT faulty nibble and bit index set 
with maximal fault-propagation width after the 30th, 31th 
round substitution. It’s obvious to see that at most 4 and 16 
nibbles after the 30th and 31th round substitution become 
faulty, and all faulty nibbles of ∆NA31=i/4+1, so there are 
only 4 possible ∆NA31 value for 16 fault locations. 

b) Learn the patterns of PRESENT differential S-box 
Suppose a denotes the S-box index, f1 and f2 denotes the 

S-box input and output difference. a, f1, f2 are all 4-bit 
variable satisfying 

S[A]⊕S[A⊕F1]=F2                                                                 (1) 

Table II displays all the possible f2 value when only one 
bit of f1 is 1 in PRESENT S-box. It’s clear to see that at 
least 2 bits of f2 is 1, which means that after 2 round fault 
propagation, at least 4 and at most 16 nibbles of the 
ciphertext become faulty, and f2 related column value set 
can become a distinguisher for f1. 

TABLE II.  PATTERNS OF PRESENT DIFFERENTIAL S-BOX  

f2(f1=(0001)2) f2(f1=(0010)2) F2(f1=(0100)2) F2(f1=(1000)2) 

(0011)2,(0111)2,
(1001)2, (1101)2

(0011)2,(0101)2,  
(0110)2, (1010)2, 
(1100)2,(1101)2,  

(1110)2  

(0101)2,(0110)2, 
(0111)2, (1001)2, 
(1010)2,(1100)2, 

(1110)2 

(0011)2,(0111)2, 
(1001)2, (1011)2, 
(1101)2, (1111)2 

 
c) Deduce the fault location 
Firstly, the 31th round substitution output difference can 

be computed by ∆B31=PL-1(∆Y31). For each nonzero ∆NBi
31, 

according to the 4 distinguishers of Table II, the possible 
f1 candidate set Si  can be deduced, and the intersection set 
of Si is the final possible f1 candidate set. Then, according 
to the location distinguishers in Table I, the fault location 
set can be obtained. The more faulty nibbles in ∆B31, the 
less candidates of ∆A31 can be deduced.  

2) DFA based Key extraction 
a) Deduce the round Key K32  
From above, limited candidates of ∆A31 can be computed. 

As ∆B31 can be computed by ∆B31=PL-1[Y]⊕PL-1[Y’], then 
for each nonzero nibble of ∆NAi

31 and ∆NBi
31, NAi

31 
satisfying  

SL[NAi
31]⊕SL[NAi

31⊕∆NAi
31]= ∆NBi

31         (2) 
would be the correct candidate.  

1 1 1 1

1 1 1 1(4* 3) (4* 2) (4* 1) ( * )i

32 32 32 32
(4* 3) (4* 2) (4* 1) (4* )

31 32 32 32 32
4

|| || ||

[ ] || || ||
P i P i P i P i

P i P i P i P i−+ + +

Then applying equation (3), 4-bit of K32 can be 
recovered. As about 4-16 nibbles of B31 is faulty, applying 
the technique above, 4-16 nibbles of K32 can be obtained, 
and full 64-bit of K32 can be recovered through more sample 
analysis.  

     (3) K K K K

SL NA Y Y Y Y

− − − −

− − −

+ + +

= ⊕

b) Deduce the round Key K31 
After K32 was deduced, ∆B30 can be computed by 

∆B30=SL-1[PL-1(Y)]⊕SL-1[PL-1(Y’)]                (4) 
Using the distinguishers in Table II, ∆A30 can be deduced. 

And then applying the same DFA technique above, 2-4 
nibbles of K31 can be obtained. K31 can be recovered through 



more sample analysis. Noted that, as to the wrong K32 
candidate, after the DFA analysis with about 4 faulty 
samples, some bits of K31 can always get an empty set, 
which can be used to eliminate the wrong K32 candidates. 

c) Deduce the master Key K 
Combining K31, K32, PRESENT key schedule, the master 

key K can be recovered. 

E. Complexity Analysis 
According to the patterns of the PRESENT differential 

S-box in Table II, at least 2-4 nibbles of B30 become faulty, 
which can be used to deduce 2-4 nibbles of K31, and at least 
4-16 nibbles of B31 become faulty, which can be used to 
deduce 4-16 nibbles of K32. As approximately two times 
analysis of the faulty nibble with the same index can recover 
one nibble key, about 8 faults can obtain K32 and limited 
candidates of K31, which are enough to recover the 
PRESENT-80 master key. 16 faults can obtain K32 and K31, 
which are enough to obtain the PRESENT-128 master key. 

F. Experimental Results 
We have implemented our attack on a PC using Visual 

C++ 6.0 Compiler on a 1.81 GHz Athlon with 1GB memory, 
the fault induction was simulated by computer software. 

 
(a) Fault number and K32 search space 

 
(b) Fault number and K31 search space  

Figure 2.  Experimental results of 10 times PRESENT attack  

In PRESENT-80 on, on average 8 samples can reduce 
the K32 search space to 27.6 (Fig.2(a)). Combining the step 5, 
wrong candidates of K32 can be eliminated, and possible 
candidates of K31 can be predicted. Then, the master key 
search space of PRESENT-80 can be further reduced to 214.7. 
Comparing with the previous PRESENT-80 attacks [22][23], 
our attacks are much more efficient, and the result is also 
well agreed with the previous theoretical analysis. 

Compared with the DFA on the encrypt procedure of 
PRESENT-80 by Li et al.[22], they supposed one nibble fault 
was injected between the r-2th and r-1th round substitution, 
and judged the effective faulty samples by whose 2-7 

nibbles of B31 are faulty. Utilizing the S-box output 
differential distinguisher when only one bit of the S-box 
input nibble difference is 1, the nonzero nibble of ∆A31 was 
deduced one by one, and K32 can be deuced by A31 and ∆B31. 
About 40-50 samples are required to obtain K32. But this 
may discard those faulty samples which 8-16 nibbles are 
faulty, but still satisfied the one bit distinguisher and fault 
model above.  

While the attack proposed in this paper can make full 
use of the faulty samples. We started by learning the fault-
propagation path of the model, and utilized the one bit 
distinguisher of Table II to deduce the possible 4 candidates 
of 64-bit ∆A31, finally recovered K32 by ∆A31 and ∆B31. 
Moreover, after some candidates of K32 have been deduced, 
we use it to compute ∆B30, and apply the one bit 
distinguisher of Table II again to predict ∆A30. Then the key 
search space of K31 can be reduced, and some wrong K32 
candidates can also be eliminated. Finally, combing the 
recovered K32 and K31 candidates, the search space of 
PRESENT-80 master key can be further reduced.  

Our attack technique can be adjusted to DFA on 
PRESENT-128 very easily without changing the fault 
model. In FPP-DFA attack on PRESENT-128, we shown 
that, on average 16 samples can reduce the K32 search space 
to 21.8, the K31 search space to 216.3(Fig.2(b)) and the 
PRESENT-128 master key search space to 221.1. 

IV. THE PROPOSED FPP-DFA METHOD ON PRINTCIPHER 

A. Description of PRINTcipher Algorithm  
PRINTcipher is a key dependant SPN structure block 

cipher with b-bit blocks and b rounds, b ∈ {48, 96}, and an 
effective key length of 5b/3 bits. The 5b/3 bits user-supplied 
key sk is consisted of two subkey components sk =sk1||sk2 
where sk1 is a fixed b bits secret key, and sk2 is a 2b/3 bits 
sub-key to generate the key-dependent permutations and 
derive an additional of security via the secret algorithm 
variability. PRINTcipher has two variants decides by b: 
PRINTcipher-48 and PRINTcipher-96. Each encryption 
round consists of the following 5 steps. 

1) Key xor—KX. The b-bit current state of the cipher is 
Xored with a b-bit subkey sk1, sk1 is identical in all rounds. 

2) Linear diffusion—LD. Bit i of the current state is 
moved to bit position P(i) 

3  mod 1   for 0 2  
( )

1                  for 1   
i b i b

P i
b i b
× − ≤ ≤ −⎧

= ⎨ − = −⎩
       (5) 

3) Round counter RCi  xor—RX. The least significant n-
bit (n = log2r) of the cipher state is Xored with a round 
constant RCi. 

4) Keyed permutation—KP. The b-bit cipher state is 
divided into b/3 3-bit nibbles. sk2 are divided into b/3 sets 
of two bits, and each two bits quantity a1||a0 is used to pick 
one of four available permutations of the three input bits 
state nibble. Specifically, the three input bits c2||c1||c0 are 
permuted by a1||a0. 



1 0 2 1 0

1 0 1 2 0
2 1 0

1 0 2 0 1

1 0 0 1 2

 =00  : || ||
 =01  : || ||

: || ||
 =10  : || ||
 =11  : || ||   

case a || a output c c c
case a || a output c c c

input c c c
case a || a output c c c
case a || a output c c c

⎧
⎪
⎪⇒ ⎨
⎪
⎪⎩

      (6)  

5) sBoxLayer—SL. b/3 identical 3-bit to 3-bit S-boxes 
are used in parallel. 

Noted that PRINTCipher has no key schedule, the 
master key sk is used in every round. 

B. Notations 
We denote the plaintext and ciphertext as X, Y, the 

output of the ith round KX, LD, KP, SL function as 
Ai,Bi,Ci,Di(0≤i≤b-1). The faulty variants above can be 
denoted as X’,Y’,Ai’,Bi’,Ci’,Di’, the jth bit of the variants 
above can be denoted as Xj,Yj,Aj

i,Bj
i,Cj

i,Dj
i(0≤i,j≤b-1). The 

difference between correct and faulty variants above can be 
denoted as ∆Xj, ∆Yj, ∆Aj

i, ∆Bj
i, ∆Cj

i, ∆Dj
i, the jth nibble of 

the variants above can be denoted as NXj, NYj, NAj
i, NBj

i, 
NCj

i, NDj
i(0≤j≤b-1/a), and the related nibble length a is 3. 

The jth nibble difference of the variants above can be 
denoted as ∆NXj, ∆NYj, ∆NAj

i, ∆NBj
i, NCj

i, NDj
i, and the 

nonzero faulty nibble and bit index set of the variant above 
can be denoted as SX, SY, SAi, SBi, SCi, SDi.and sx, sy, sai, 
sbi, sci, sdi. 

C. Fault Model 
The fault model of FPP-DFA on PRINTCipher is the 

same with PRESENT, except that the injected faulty round 
m has subtle difference. As to PRINTCipher-48, m= 46, and 
as to PRINTCipher-96, m= 94 or 93. Next we take FPP-
DFA on PRINTCipher-48 as an example. 

 

Figure 3.  One nibble fault-propagation path of PRINTCipher-48  

Fig.3 is the fault propagating procedure of one nibble 
fault injecting into the 15th nibble before the 46th round 
substitution with the maximized width, in which all of the S-
box output difference is (111)2. 

D. FPP-DFA procedure 
FPP-DFA on PRINTCipher is shown as follows. 
1) Fault location analysis 
a) Learn the fault-propagation path  
Based on the fault model above,  

Table III is the faulty nibble index set of PRINTCipher-
48 with maximal fault-propagation width after the 47th, 48th 
round substitution, and at most 3 and 9 nibbles after the 47th 
and 48th round substitution become faulty. 

b) Deduce the fault location 
Take injecting fault into the 15th nibble before the 46th 

round substitution as an example. According to the 
ciphertext difference, a distinct faulty nibble index set SD48 

can be computed. Suppose SD48={7,…,15}, according to 
Table III, we can deduce that the faulty nibble index is 15. 
And we store it as an effective fault sample. Interestingly, if 
the exact injected fault location i of the 46th round can be 
deduced, either all 3 nibbles of ∆D47 with consecutive 
indices (SD47={13,14,15}) become faulty, or 2 nibbles of 
∆D47 with nonconsecutive indices (SD47={13,15}) become 
faulty, which also means that ∆NDi

46 can be either (101)2 or 
(111)2. After the fault location is deduced, both ∆B47 and 
∆B48 can be obtained. 

TABLE III.  FAULT-PROPAGATION PATH  OF PRINTCIPHER-48  

i SD47 SD48 i SD47 SD48 

0 0,1,2 0,1,2;3,4,5;6,7,8 8 8,9,10 8,9,10;11,12,13;14
,15,0 

1 3,4,5 9,10,11;12,13,14;
15,0,1 9 11,12,13 1,2,3;4,5,6;7,8,9 

2 6,7,8 2,3,4;5,6,7;8,9,10 10 14,15,0 10,11,12;13,14,15;
0,1,2 

3 9,10,11 11,12,13;14,15,0;
1,2,3 11 1,2,3 3,4,5;6,7,8;9,10,11

4 12,13,14 4,5,6;7,8,9;10,11,
12 12 4,5,6 12,13,14;15,0,1;2,

3,4 

5 15,0,1 13,14,15;0,1,2;3,
4,5 13 7,8,9 5,6,7;8,9,10;11,12,

13 

6 2,3,4 6,7,8;9,10,11;12,
13,14 14 10,11,12 14,15,0;1,2,3;4,5,6

7 5,6,7 15,0,1;2,3,4;5,6,7 15 13,14,15 7,8,9;10,11,12;13,
14,15 

 
2) DFA based Key extraction 
a) Deduce the permutation related key sk2  
After the exact fault location is deduced, the permutation 

related key sk2 can be obtained by following algorithm. 
∆C48← SL-1[D48]⊕SL-1[D48’] 
∆B48

 can be deduced by ∆D48 
For each index i in SD48  

{ 
   j←faulty index bit of ∆NBi

48 
   If(j == 2)     

{ 
     ∆NBi

48←(100)2 
     If (∆NBi

48 == (100)2)             
sk22*i=(0)2 

     else if (∆NBi
48 == (010)2)    

    sk22*i+1||sk22*i=(01)2 
     else if (∆NBi

48 == (000)2)      
  sk22*i+1||sk22*i=(11)2   

 } 
   If(j == 1)     
{ 

     ∆NBi
48←(010)2 

     If (∆NBi
48 == (010)2)       

sk22*i+1||sk22*i={(00)2,(11)2} 
     else if (∆NBi

48 == (100)2) 
 sk22*i+1||sk22*i={01}2 



     else if (∆NBi
48 == (001)2)  

sk22*i+1||sk22*i={10}2   

} 
If(j==0)    
{ 

     ∆NBi
48←(001)2 

     If (∆NBi
48 == (001)2)       

sk22*i+1={0}2 
     else if (∆NBi

48 == (100)2)  
sk22*i+1||sk22*i={11}2 

     else if (∆NBi
48 == (010)2)  

sk22*i+1||sk22*i={10}2   
}  

} 
Applying the algorithm above, after one sample analysis, 

at most 18 bits of sk2 can be recovered, and after more 
sample analysis, full 32 bits of sk2 can be obtained. 

b) Deduce the secret key sk1 
Once sk2 was recovered, ∆D47 can be computed by  

∆D47 = LD-1(KP-1(SL-1[D48]⊕SL-1[D48’]))      (7) 
Take recovering sk147||sk146||sk145 as an example, 

according to Fig.3, ∆NB47 can be computed, and 
∆NB15

47=(100)2, then ∆NC15
47 can be deduced by 

KP(∆NB15
47). Candidates of NC15

47 satisfying  
SL[NC15

47]⊕SL[NC15
47⊕∆NC15

47]= ∆ND15
47      (8) 

would be the possible one. Then  
sk147||sk146||sk145=SL[NC15

47]⊕  
LD-1(RX-1(KP-1(SL-1[D48])))                                           (9) 
Applying the same method above, after one sample 

analysis, at most  9 bits of sk1 can be recovered, and after 
more sample analysis, full 48 bits of sk1can be obtained. 

c) Deduce the master key sk 
The master key sk equals to sk1||sk2. 

E. Complexity Analysis 
1) Probability of effective fault location deducing  
Suppose the S-box index is a, the input and output 

difference is f1and f2, a, f1, f2 are all 3-bit variable and 
satisfy equation 1.  

Table IV displays all the possible candidates of f2 when 
only one bit of f1 is 1. According to sub-section D and Table 
III, if the fault location i was deduced, ∆NDi

46 can be either 
(101)2 or (111)2, the probability is 2/7. The 1st bit of the 
output difference ∆NDj

47 propagated by the 1st bit of ∆NDi
46 

should be 1, and its probability is 16/24. The 3rd output 
difference ∆NDj

47 propagated by the 3rd bit of ∆NDi
46 should 

be 1, and its probability is 16/24. So the overall fault location 
deducing probability is 12.7% (2/7*((16/24)*(16/24))). 

TABLE IV.  PATTERNS OF PRINTCIPHER DIFFERENTIAL S-BOX  

a f2(f1=(001)2) f2(f1=(010)2) f2(f1=(100)2) 

(000)2 (001)2 (011)2 (111)2 

(001)2 (001)2 (111)2 (101)2 

(010)2 (101)2 (011)2 (110)2 

(011)2 (101)2 (111)2 (100)2 

(100)2 (011)2 (010)2 (111)2 

(101)2 (011)2 (110)2 (101)2 

(110)2 (111)2 (010)2 (110)2 

(111)2 (111)2 (110)2 (100)2 

 
2) Complexity analysis of sk2 deducing  
Once the fault location is exactly located, at least 2 

nibbles, at most 9 nibbles, on average 5.5 nibbles of B48 have 
become faulty. According sub-section D, if one nibble faulty 
difference after the KP layer changed, 2-bit of sk2 can be 
deduced directly. Else, either one bit of sk2 can be deduced 
directly, or 2 bits of sk2 are equal. So on average, 5/3 bits of 
sk2 can be deduced for each faulty B48 nibble. Then about 
16/(5.5*(5/3))=3.5 faulty samples are needed to recover sk2. 

3) Complexity analysis of sk1 deducing  
According sub-section D, once the fault location is 

exactly located, on average 2.5 nibbles of ∆NB47 become 
faulty and be used to deduce sk1. As shown in Table IV, if 
only one bit of ∆NB47

 is 1, on average 2 candidates of a can 
be deduced, the key search space of one sk1 nibble can be 
reduced from 8 to 2, and two times analysis of the nibble 
with the same index can recover the related sk1 nibble. So 
1.25 nibbles of sk1 can be deduced and about 12.8 (16/1.25) 
samples are required to obtain sk1. 

F. Experimental Results 
Fig.4-(a) is the effective fault number of 10 times FPP-

DFA experiment on PRINTCipher-48 with 10000 samples. 
The average fault location deducing probability is 13.1%, 
which is close to the theoretical value 12.7%.  

 
(a) Effective fault number statistics 

 
(b)  Fault number and sk2 search space  

 
(c)  Fault number and sk1 search space 



  
  (d)     Fault number and sk search space         

Figure 4.  Experimental results of PRINTCipher-48 attack 

Fig 4-(b),(c),(d) show the relationships between the fault 
number and the key search space of sk2, sk1, sk. It’s clear to 
see that, 4 effective faults can reduce the sk2 key search 
space from 232 to 29.1, 12 effective faults can reduce the sk1 
search space from 248 to 22.1, 12 effective faults can reduce 
the master key search space from 280 to 213.7, the results are 
well agreed with previous theoretical analysis. 

Under the r-2th round fault model, we have applied the 
FPP-DFA on PRINTCipher-96. The fault-propagation path 
is shown in appendix Table V, on average 24 effective faults 
can reduce the 160-bit master key search space to 222.8. 

Meanwhile, based on the fault model of injecting one 
nibble into the r-3th round substitution, we have also applied 
the FPP-DFA on PRINTCipher-96. The fault-propagation 
path is shown in appendix Table VI, on average 8 effective 
faults can reduce the 160-bit master key search space to 218.7.  

V. CONCLUSION 
We have proposed a novel fault-propagation pattern 

based DFA techniques on SPN structure block ciphers with 
bitwise permutation, applied it to PRESENT and 
PRINTcipher, and proved its efficiency through concrete 
simulated experiments. We show that, implementing SPN 
structure block ciphers with bitwise permutation should take 
certain countermeasures of fault-based attacks; at least last 3 
rounds of PRESENT-80/128, PRINTCipher-48, and at least 
last 4 rounds of PRINTCipher-96 should be protected.  
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TABLE V.  FAULT-PROPAGATION PATH  OF PRINTCIPHER-96 (94TH ROUND NIBBLE FAULT MODEL) 

i SD95 SD96 i SD95 SD96 
0 0,1,2 0,1,2,3,4,5,6,7,8 16 16,17,18 16,17,18,19,20,21,22,23,24 
1 3,4,5 9,10,11,12,13,14,15,16,17 17 19,20,21 25,26,27,28,29,30,31,0,1 
2 6,7,8 18,19,20,21,22,23,24,25,26 18 22,23,24 2,3,4,5,6,7,8,9,10 
3 9,10,11 27,28,29,30,31,0,1,2,3 19 25,26,27 11,12,13,14,15,16,17,18,19 
4 12,13,14 4,5,6,7,8,9,10,11,12 20 28,29,30 20,21,22,23,24,25,26,27,28 
5 15,16,17 13,14,15,16,17,18,19,20,21 21 31,0,1 29,30,31, 0,1,2, 3,4,5 
6 18,19,20 22,23,24,25,26,27,28,29,30 22 2,3,4 6,7,8, 9,10,11, 12,13,14 
7 21,22,23 31,0,1,2,3,4,5,6,7 23 5,6,7 15,16,17, 18,19,20, 21,22,23 
8 24,25,26 8,9,10,11,12,13,14,15,16 24 8,9,10 24,25,26, 27,28,29, 30,31,0 
9 27,28,29 17,18,19,20,21,22,23,24,25 25 11,12,13 1,2,3, 4,5,6, 7,8,9 
10 30,31,0 26,27,28,29,30,31,0,1,2 26 14,15,16 10,11,12, 13,14,15, 16,17,18 
11 1,2,3 3,4,5,6,7,8,9,10,11 27 17,18,19 19,20,21, 22,23,24, 25,26,27 
12 4,5,6 12,13,14,15,16,17,18,19,20 28 20,21,22 28,29,30, 31,0,1, 2,3,4 
13 7,8,9 21,22,23,24,25,26,27,28,29 29 23,24,25 5,6,7, 8,9,10, 11,12,13 
14 10,11,12 30,31,0,1,2,3,4,5,6 30 26,27,28 14,15,16, 17,18,19, 20,21,22 
15 13,14,15 7,8,9,10,11,12,13,14,15 31 29,30,31 23,24,25, 26,27,28, 29,30,31 

TABLE VI.  FAULT-PROPAGATION PATH  OF PRINTCIPHER-96  (93TH ROUND NIBBLE FAULT MODEL  

i SD94 SD95 SD96 

0 0,1,2 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 

1 3,4,5 9,10,11,12,13,14,15,16,17 27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 

2 6,7,8 18,19,20,21,22,23,24,25,26 22,23,24,25,26,27,  28,29,30, 31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 

3 9,10,11 27,28,29,30,31,0,1,2,3 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11 

4 12,13,14 4,5,6,7,8,9,10,11,12 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6 

5 15,16,17 13,14,15,16,17,18,19,20,21 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1 

6 18,19,20 22,23,24,25,26,27,28,29,30 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 

7 21,22,23 31,0,1,2,3,4,5,6,7 29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 

8 24,25,26 8,9,10,11,12,13,14,15,16 24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 

9 27,28,29 17,18,19,20,21,22,23,24,25 19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13 

10 30,31,0 26,27,28,29,30,31,0,1,2 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8 

11 1,2,3 3,4,5,6,7,8,9,10,11 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3 

12 4,5,6 12,13,14,15,16,17,18,19,20 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 

13 7,8,9 21,22,23,24,25,26,27,28,29 31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 

14 10,11,12 30,31,0,1,2,3,4,5,6 26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

15 13,14,15 7,8,9,10,11,12,13,14,15 21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

16 16,17,18 16,17,18,19,20,21,22,23,24 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10 

17 19,20,21 25,26,27,28,29,30,31,0,1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5 

18 22,23,24 2,3,4,5,6,7,8,9,10 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0 

19 25,26,27 11,12,13,14,15,16,17,18,19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 

20 28,29,30 20,21,22,23,24,25,26,27,28 28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 

21 31,0,1 29,30,31,0,1,2,3,4,5 23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 

22 2,3,4 6,7,8,9,10,11,12,13,14 18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12 

23 5,6,7 15,16,17,18,19,20,1,22,23 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7 

24 8,9,10 24,25,26,27,28,29,30,31,0 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2 

25 11,12,13 1,2,3,4,5,6,7,8,9 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 

26 14,15,16 10,11,12,13,14,15,16,17,18 30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 



i SD94 SD95 SD96 

27 17,18,19 19,20,21,22,23,24,25,26,27 25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 

28 20,21,22 28,29,30,31,0,1,2,3,4 20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 

29 23,24,25 5,6,7,8,9,10,11,12,13 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9 

30 26,27,28 14,15,16,17,18,19,20,21,22 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4 

31 29,30,31 23,24,25,26,27,28,29,30,31 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 
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