
Fault-propagation Pattern Based DFA on SPN Structure Block Ciphers using
Bitwise Permutation, with Application to PRESENT and PRINTcipher

XinJie Zhao1, Tao Wang1, ShiZe Guo2,3

1(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
2(The Institute of North Electronic Equipment, Beijing 100083, China)

3(School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract—This paper proposes a novel fault-propagation
pattern based differential fault analysis method - FPP-DFA,
and proves its feasibility on SPN structure block ciphers using
bitwise permutation, such as PRESENT and PRINTcipher.
Simulated experiments demonstrate that, with the fault model
of injecting one nibble fault into the r-2th round substitution
layer, on average 8 and 16 faulty samples can reduce the
master key search space of PRESENT-80/128 to 214.7 and 221.1

respectively, and 12 and 24 effective faulty samples can reduce
the master key search space of PRINTcipher-48/96 to 213.7 and
222.8 respectively; with the fault model of injecting one nibble
fault into the r-3th round substitution layer, 8 samples can
reduce the master key search space of PRINTCipher-96 to 218.7.

Fault-propagation pattern; fault-propagation path;
differential fault analysis; bitwise permutation; SPN block cipher;
PRESENT; PRINTcipher (key words)

I. INTRODUCTION
The new emerging pervasive computing demands have

made low-end devices, such as smart cards, RFID tags, IC-
printing applications more and more popular. Such tiny
computing devices are used in many applications and
environments, leading to an ever increasing need of security.
This has spurred the development of lightweight
cryptography. Many ultra-lightweight block ciphers have
been developed such as mCrypton[1], HIGHT[2], SEA[3],
DESXL[4], KATAN[5], MIBS[6].

PRESENT[7] and PRINTcipher[8] are two hardware-
optimized ultra-lightweight block ciphers presented by
Bogdanov, A et al in CHES 2007 and CHES 2010
respectively. Both of the ciphers apply the SPN structure and
bitwise permutation, except that the substitution-
permutation sequences are different. PRESENT adopts the
substitution-permutation sequence, while PRINTcipher
adopts the permutation-substitution sequence. In the
proposals, the cipher designers analyzed the security of
PRESENT and PRINTcipher with respect to the main known
cryptanalytic methods, and showed that they were quite
secure from the mathematics-based cryptanalysis. However,
the cipher designers didn’t consider the resilience of them
against side-channel attacks. In this paper, we try to fill up
this gap through cryptanalysis of the two ciphers against
fault-based side channel attacks.

Fault attacks were first introduced by Boneh et al.[9] on
RSA public key cryptosystem in 1997. Shortly after, Biham,
E. et al[10] proposed an attack on secret key cryptosystems
called Differential Fault Analysis (DFA), which combined
the ideas of fault attack and differential attack. DFA attacks

derived information about the secret key by examining the
differences between correct and faulty ciphertexts. After that,
various cryptosystems have been attacked by DFA technique,
such as ECC[11], 3DES[12], AES[13], Camellia[14][15][16],
MIBS[17], RC4[18], GRAIN-128[19],HC-128[20], Rabbit[21] etc.
However, to the best of our knowledge, few work except
[22] and [23] has been done on DFA against PRESENT, and
there is no publication about DFA on PRINTcipher.

Previous Works. Li et al[22] proposed the first DFA on
PRESENT-80. Suppose one nibble fault was injected
between the r-2th and the r-1th round substitution input, they
utilized the S-box output difference set of one bit S-box input
difference as a distinguisher to filter the ideal faulty sample,
and showed that, on average 40-50 effective faulty samples
can recover 64-bit post-whitening key, and reduce the master
key search space of PRESENT-80 to 216. Wang et al[23]
proposed the first DFA on PRESENT-80 key schedule.
Suppose one nibble fault was injected into the 80-bit
intermediate updated key register while generating the 30th
and 31th round keys, they used about 64 pairs of faulty
samples to obtain 51-bit of the 64-bit post-whitening key,
and reduced the master key search space of PRESENT-80 to
229.

Our Results. In this paper, we present a novel fault
analysis method based on DFA, we name it as fault-
propagation pattern based differential fault analysis—FPP-
DFA. The main idea of FPP-DFA is using the output fault-
propagation pattern to infer the fault location, predict the
fault-propagation path, and then apply the traditional DFA
technique for further key analysis. As to DFA on SPN block
ciphers with bitwise permutation, the recovery of the fault-
propagation path means the recovery of the S-box input
difference, which is the most difficult part of DFA on SPN
block ciphers. We show that FPP-DFA is quite efficient on
SPN block ciphers with bitwise permutation, and apply it to
PRESENT and PRINTcipher successfully.

In FPP-DFA on PRESENT, we adopt the fault model of
injecting one nibble fault before the r-2th round substitution
layer. Through the analysis of the fault-propagation path and
S-box differential pattern two distinguishers, the fault
location and the rth round substitution input difference can be
deduced. Combing the traditional DFA technique, the post-
whitening secret key and the rth round key can be obtained.

As PRINTcipher applies a key-dependent permutation, a
part of the secret key is embedded into the algorithm
description, so algorithms with different secret keys will be
subtly different from others. Thus, FPP-DFA on
PRINTcipher is more difficult than PRESENT. In the attack,
we adopt the fault model of injecting one nibble fault before

the r-2th or r-3th round substitution layer. Firstly, we compute
the faulty index set of the ciphtertext difference, and
combine the fault propagating path distinguisher of
PRINTcipher to predict the exact fault location. According to
the faulty difference before and after the rth round key-
dependent permutation, we propose a method to compute the
permutation related key. After that, we can take the
permutation off, and convert DFA on PRINTcipher to a
problem with known cipher algorithm. Combining the
recovered permutation and fault location, we can compute
the input and output difference of the r-1th round substitution,
then apply the traditional DFA technique to deduce the round
key.

We analyze the attack complexity of FPP-DFA on
PRESENT and PRINTcipher, and verify it through concrete
simulation experiments. Experimental results show that, with
the fault model of injecting one nibble fault into the r-2th
round, on average 8 and 16 faults can reduce the master key
search space of PRESENT-80/128 to 214.7 and 221.1

respectively, which is more efficient than previous DFA
works [22][23] on PRESENT-80; on average 12 and 24
effective faults can reduce the master key search space of
PRINTcipher-48/96 to 213.7 and 222.8 respectively. With the
fault model of injecting one nibble fault into the r-3th round,
on average 8 effective faults can reduce the master key
search space of PRINTCipher-96 to 218.7.

Organization of the Paper. This paper is organized as
follows. The main idea of FPP-DFA is proposed in Section II.
The detailed FPP-DFA attacks on PRESENT and
PRINTcipher are described in Section III and Section IV
respectively, and the conclusions are presented in section V.

II. MAIN IDEA OF FPP-DFA
Next, we present the main idea of the FPP-DFA. It is

mainly composed of the following two phases:
1) Fault location analysis
In this phase, the attacker learns the fault-propagation

pattern, and then builds the distinguisher for the enumerable
faulty locations based on the fault model. As to FPP-DFA
on SPN block ciphers with substitution-permutation
sequence, such as PRESENT[1], the possible fault locations
can be deduced by patterns of the rth round S-box output(or
faulty ciphertext) differences. As to FPP-DFA on SPN
block cipher with permutation-substitution sequence, such
as PRINTCipher[8], the exact injected fault location can be
deduced by the faulty ciphertext nibble index set.

2) DFA based Key extraction
As to SPN block ciphers with bitwise permutation, after

the fault location is deduced, the predicted fault location can
be used to deduce the fault-propagation path, and compute
the input difference of the S-box, which is the crucial part of
DFA on SPN block ciphers (at most cases, only the S-box
output difference can be computed directly from the
ciphertext difference, and the input difference is unknown).
Finally, combing the traditional DFA method, the secret key
can be recovered.

It should be noted that the FPP-DFA technique above is
a general framework of DFA on SPN block ciphers using
bitwise permutation. In FPP-DFA on specific ciphers, the

two phases above can be divided into several steps as
needed.

 As shown in Section III and Section IV, we take
PRESENT and PRINTCipher as two examples, and apply
the FPP-DFA technique to prove its feasibility and
efficiency.

III. PROPOSED FPP-DFA ATTACK ON PRESENT

A. Description of PRESENT Algorithm
PRESENT is a 31-round SPN type block cipher with

block size of 64 bits. It supports 80 and 128-bit secret key.
Firstly, the plaintext Xored the subkey K1 as the input of the
1st round. After 31 rounds iterations, the 31th round output
Xored with the subkey K32 is the ciphertext. Each
encryption round is composed of the following 3 steps.

1) addRoundKey—AK. At the beginning of each round,
64 bits output of the last round is Xored with the subkey.

2) sBoxlayer—SL. 16 identical 4-bit to 4-bit S-boxes are
used in parallel.

3) pLayer—PL. The ith bit is moved to bit position P(i)
by a constant permutation table P.

PRESENT can take keys of either 80 or 128 bits. Below
is the key schedule of 80-bit version. The 80-bit key is stored
in a register K=k79||k78||…||k0. At round r (1≤r≤31), the 64-bit
round key Kr is equal to the 64 leftmost bits of K. After Kr is
extracted, K is rotated by 61 bit positions to the left, then a S-
box is applied to the left-most 4 bits of K and finally the
round-counter r is Xored with bits k19||k18||k17||k16||k15 of K.

B. Notations
Here we introduce some notations in order to make our

discussion conveniently. Bits are numbered from zero with
bit zero on the right of a block.

 We denote plaintext and ciphertext as X, Y, the output of
the ith round AK, SL, PL function as Ai,Bi,Ci (1≤i≤31). The
faulty variables above can be denoted as X’,Y’,Ai’,Bi’,Ci’,
and the jth bit of the variables above can be denoted as
Xj,Yj,Aj

i,Bj
i,Cj

i (0≤j≤63). The differences between correct and
faulty variables above can be denoted as ∆X, ∆Y, ∆Ai, ∆Bi,
∆Ci, and the jth nibble of the variables above can be denoted
as NXj, NYj, NAj

i, NBj
i, NCj

i (0≤j≤15). The nibble difference
of the variables above can be denoted as ∆NXj, ∆NYj, ∆NAj

i,
∆NBj

i, NCj
i (0≤j≤15), and the related nibble length is 4. The

faulty nibble and bit index set of the variables above can be
denoted as SX, SY, SAi, SBi, SCi

 and sx, sy, sai, sbi, sci.

C. Fault Model
The fault model of paper is shown as follows.
1) One random nibble fault is induced into the input of

the r-2th (29th) round substitution. The attacker knows neither
the location nor the concrete value of the fault.

2) For any plaintext adaptively selected, two different
ciphertexts under the control of the same secret key are
available, the right and the faulty one. How to induce the
specific fault is not covered in this paper, since this is not the
main concern of our paper and many literatures on fault
inductions are available in [24].

3) Only one master key is used in one attack.

Fig.1 shows the fault-propagation path of the above fault
model (the faulty nibble index is 15) with the maximal fault
propagating width, and the output difference of every faulty
S-box is (1111)2.

Figure 1. One nibble fault-propagation path of PRESENT

D. FPP-DFA procedure
FPP-DFA on PRESENT is composed of the following

steps.
1) Fault location analysis
a) Learn the fault-propagation path
Based on the fault model above, the fault-propagation

path of the 16 possible fault locations (i) can be built.

TABLE I. FAULT-PROPAGATION PATH OF PRESENT

i sa30(∆NAi
30) SA30 sa31(∆NAi

31)

0 0,16,32,48(0001)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2

1 1,17,33,49(0010)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2

2 2,18,34,50(0100)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2

3 3,19,35,51(1000)2 0,4,8,12 0,16,32,48,4,20,36,52,8,24,40,5
6,12,28,44,60(0001)2

4 4,20,36,52(0001)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2

5 5,21,37,53(0010)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2

6 6,22,38,54(0100)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2

7 7,23,39,55(1000)2 1,5,9,13 1,17,33,49,5,21,37,53,9,25,41,5
7,13,29,45,61(0010)2

8 8,24,40,56(0001)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2

9 9,25,41,57(0010)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2

10 10,26,42,58(0100)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2

11 11,27,43,59(1000)2 2,6,10,14 2,18,34,50,6,22,38,54,10,26,42,
58,14,30,46,62(0100)2

12 12,28,44,60(0001)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2

13 13,29,45,61(0010)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2

14 14,30,46,62(0100)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2

15 15,31,47,63(1000)2 3,7,11,15 3,19,35,51,7,23,39,55,11,27,43,
59,15,31,47,63(1000)2

Table I is the PRESENT faulty nibble and bit index set
with maximal fault-propagation width after the 30th, 31th
round substitution. It’s obvious to see that at most 4 and 16
nibbles after the 30th and 31th round substitution become
faulty, and all faulty nibbles of ∆NA31=i/4+1, so there are
only 4 possible ∆NA31 value for 16 fault locations.

b) Learn the patterns of PRESENT differential S-box
Suppose a denotes the S-box index, f1 and f2 denotes the

S-box input and output difference. a, f1, f2 are all 4-bit
variable satisfying

S[A]⊕S[A⊕F1]=F2 (1)

Table II displays all the possible f2 value when only one
bit of f1 is 1 in PRESENT S-box. It’s clear to see that at
least 2 bits of f2 is 1, which means that after 2 round fault
propagation, at least 4 and at most 16 nibbles of the
ciphertext become faulty, and f2 related column value set
can become a distinguisher for f1.

TABLE II. PATTERNS OF PRESENT DIFFERENTIAL S-BOX

f2(f1=(0001)2) f2(f1=(0010)2) F2(f1=(0100)2) F2(f1=(1000)2)

(0011)2,(0111)2,
(1001)2, (1101)2

(0011)2,(0101)2,
(0110)2, (1010)2,
(1100)2,(1101)2,

(1110)2

(0101)2,(0110)2,
(0111)2, (1001)2,
(1010)2,(1100)2,

(1110)2

(0011)2,(0111)2,
(1001)2, (1011)2,
(1101)2, (1111)2

c) Deduce the fault location
Firstly, the 31th round substitution output difference can

be computed by ∆B31=PL-1(∆Y31). For each nonzero ∆NBi
31,

according to the 4 distinguishers of Table II, the possible
f1 candidate set Si can be deduced, and the intersection set
of Si is the final possible f1 candidate set. Then, according
to the location distinguishers in Table I, the fault location
set can be obtained. The more faulty nibbles in ∆B31, the
less candidates of ∆A31 can be deduced.

2) DFA based Key extraction
a) Deduce the round Key K32
From above, limited candidates of ∆A31 can be computed.

As ∆B31 can be computed by ∆B31=PL-1[Y]⊕PL-1[Y’], then
for each nonzero nibble of ∆NAi

31 and ∆NBi
31, NAi

31
satisfying

SL[NAi
31]⊕SL[NAi

31⊕∆NAi
31]= ∆NBi

31 (2)
would be the correct candidate.

1 1 1 1

1 1 1 1(4* 3) (4* 2) (4* 1) (*)i

32 32 32 32
(4* 3) (4* 2) (4* 1) (4*)

31 32 32 32 32
4

|| || ||

[] || || ||
P i P i P i P i

P i P i P i P i−+ + +

Then applying equation (3), 4-bit of K32 can be
recovered. As about 4-16 nibbles of B31 is faulty, applying
the technique above, 4-16 nibbles of K32 can be obtained,
and full 64-bit of K32 can be recovered through more sample
analysis.

 (3) K K K K

SL NA Y Y Y Y

− − − −

− − −

+ + +

= ⊕

b) Deduce the round Key K31
After K32 was deduced, ∆B30 can be computed by

∆B30=SL-1[PL-1(Y)]⊕SL-1[PL-1(Y’)] (4)
Using the distinguishers in Table II, ∆A30 can be deduced.

And then applying the same DFA technique above, 2-4
nibbles of K31 can be obtained. K31 can be recovered through

more sample analysis. Noted that, as to the wrong K32
candidate, after the DFA analysis with about 4 faulty
samples, some bits of K31 can always get an empty set,
which can be used to eliminate the wrong K32 candidates.

c) Deduce the master Key K
Combining K31, K32, PRESENT key schedule, the master

key K can be recovered.

E. Complexity Analysis
According to the patterns of the PRESENT differential

S-box in Table II, at least 2-4 nibbles of B30 become faulty,
which can be used to deduce 2-4 nibbles of K31, and at least
4-16 nibbles of B31 become faulty, which can be used to
deduce 4-16 nibbles of K32. As approximately two times
analysis of the faulty nibble with the same index can recover
one nibble key, about 8 faults can obtain K32 and limited
candidates of K31, which are enough to recover the
PRESENT-80 master key. 16 faults can obtain K32 and K31,
which are enough to obtain the PRESENT-128 master key.

F. Experimental Results
We have implemented our attack on a PC using Visual

C++ 6.0 Compiler on a 1.81 GHz Athlon with 1GB memory,
the fault induction was simulated by computer software.

(a) Fault number and K32 search space

(b) Fault number and K31 search space

Figure 2. Experimental results of 10 times PRESENT attack

In PRESENT-80 on, on average 8 samples can reduce
the K32 search space to 27.6 (Fig.2(a)). Combining the step 5,
wrong candidates of K32 can be eliminated, and possible
candidates of K31 can be predicted. Then, the master key
search space of PRESENT-80 can be further reduced to 214.7.
Comparing with the previous PRESENT-80 attacks [22][23],
our attacks are much more efficient, and the result is also
well agreed with the previous theoretical analysis.

Compared with the DFA on the encrypt procedure of
PRESENT-80 by Li et al.[22], they supposed one nibble fault
was injected between the r-2th and r-1th round substitution,
and judged the effective faulty samples by whose 2-7

nibbles of B31 are faulty. Utilizing the S-box output
differential distinguisher when only one bit of the S-box
input nibble difference is 1, the nonzero nibble of ∆A31 was
deduced one by one, and K32 can be deuced by A31 and ∆B31.
About 40-50 samples are required to obtain K32. But this
may discard those faulty samples which 8-16 nibbles are
faulty, but still satisfied the one bit distinguisher and fault
model above.

While the attack proposed in this paper can make full
use of the faulty samples. We started by learning the fault-
propagation path of the model, and utilized the one bit
distinguisher of Table II to deduce the possible 4 candidates
of 64-bit ∆A31, finally recovered K32 by ∆A31 and ∆B31.
Moreover, after some candidates of K32 have been deduced,
we use it to compute ∆B30, and apply the one bit
distinguisher of Table II again to predict ∆A30. Then the key
search space of K31 can be reduced, and some wrong K32
candidates can also be eliminated. Finally, combing the
recovered K32 and K31 candidates, the search space of
PRESENT-80 master key can be further reduced.

Our attack technique can be adjusted to DFA on
PRESENT-128 very easily without changing the fault
model. In FPP-DFA attack on PRESENT-128, we shown
that, on average 16 samples can reduce the K32 search space
to 21.8, the K31 search space to 216.3(Fig.2(b)) and the
PRESENT-128 master key search space to 221.1.

IV. THE PROPOSED FPP-DFA METHOD ON PRINTCIPHER

A. Description of PRINTcipher Algorithm
PRINTcipher is a key dependant SPN structure block

cipher with b-bit blocks and b rounds, b ∈ {48, 96}, and an
effective key length of 5b/3 bits. The 5b/3 bits user-supplied
key sk is consisted of two subkey components sk =sk1||sk2
where sk1 is a fixed b bits secret key, and sk2 is a 2b/3 bits
sub-key to generate the key-dependent permutations and
derive an additional of security via the secret algorithm
variability. PRINTcipher has two variants decides by b:
PRINTcipher-48 and PRINTcipher-96. Each encryption
round consists of the following 5 steps.

1) Key xor—KX. The b-bit current state of the cipher is
Xored with a b-bit subkey sk1, sk1 is identical in all rounds.

2) Linear diffusion—LD. Bit i of the current state is
moved to bit position P(i)

3 mod 1 for 0 2
()

1 for 1
i b i b

P i
b i b
× − ≤ ≤ −⎧

= ⎨ − = −⎩
 (5)

3) Round counter RCi xor—RX. The least significant n-
bit (n = log2r) of the cipher state is Xored with a round
constant RCi.

4) Keyed permutation—KP. The b-bit cipher state is
divided into b/3 3-bit nibbles. sk2 are divided into b/3 sets
of two bits, and each two bits quantity a1||a0 is used to pick
one of four available permutations of the three input bits
state nibble. Specifically, the three input bits c2||c1||c0 are
permuted by a1||a0.

1 0 2 1 0

1 0 1 2 0
2 1 0

1 0 2 0 1

1 0 0 1 2

 =00 : || ||
 =01 : || ||

: || ||
 =10 : || ||
 =11 : || ||

case a || a output c c c
case a || a output c c c

input c c c
case a || a output c c c
case a || a output c c c

⎧
⎪
⎪⇒ ⎨
⎪
⎪⎩

 (6)

5) sBoxLayer—SL. b/3 identical 3-bit to 3-bit S-boxes
are used in parallel.

Noted that PRINTCipher has no key schedule, the
master key sk is used in every round.

B. Notations
We denote the plaintext and ciphertext as X, Y, the

output of the ith round KX, LD, KP, SL function as
Ai,Bi,Ci,Di(0≤i≤b-1). The faulty variants above can be
denoted as X’,Y’,Ai’,Bi’,Ci’,Di’, the jth bit of the variants
above can be denoted as Xj,Yj,Aj

i,Bj
i,Cj

i,Dj
i(0≤i,j≤b-1). The

difference between correct and faulty variants above can be
denoted as ∆Xj, ∆Yj, ∆Aj

i, ∆Bj
i, ∆Cj

i, ∆Dj
i, the jth nibble of

the variants above can be denoted as NXj, NYj, NAj
i, NBj

i,
NCj

i, NDj
i(0≤j≤b-1/a), and the related nibble length a is 3.

The jth nibble difference of the variants above can be
denoted as ∆NXj, ∆NYj, ∆NAj

i, ∆NBj
i, NCj

i, NDj
i, and the

nonzero faulty nibble and bit index set of the variant above
can be denoted as SX, SY, SAi, SBi, SCi, SDi.and sx, sy, sai,
sbi, sci, sdi.

C. Fault Model
The fault model of FPP-DFA on PRINTCipher is the

same with PRESENT, except that the injected faulty round
m has subtle difference. As to PRINTCipher-48, m= 46, and
as to PRINTCipher-96, m= 94 or 93. Next we take FPP-
DFA on PRINTCipher-48 as an example.

Figure 3. One nibble fault-propagation path of PRINTCipher-48

Fig.3 is the fault propagating procedure of one nibble
fault injecting into the 15th nibble before the 46th round
substitution with the maximized width, in which all of the S-
box output difference is (111)2.

D. FPP-DFA procedure
FPP-DFA on PRINTCipher is shown as follows.
1) Fault location analysis
a) Learn the fault-propagation path
Based on the fault model above,

Table III is the faulty nibble index set of PRINTCipher-
48 with maximal fault-propagation width after the 47th, 48th
round substitution, and at most 3 and 9 nibbles after the 47th
and 48th round substitution become faulty.

b) Deduce the fault location
Take injecting fault into the 15th nibble before the 46th

round substitution as an example. According to the
ciphertext difference, a distinct faulty nibble index set SD48

can be computed. Suppose SD48={7,…,15}, according to
Table III, we can deduce that the faulty nibble index is 15.
And we store it as an effective fault sample. Interestingly, if
the exact injected fault location i of the 46th round can be
deduced, either all 3 nibbles of ∆D47 with consecutive
indices (SD47={13,14,15}) become faulty, or 2 nibbles of
∆D47 with nonconsecutive indices (SD47={13,15}) become
faulty, which also means that ∆NDi

46 can be either (101)2 or
(111)2. After the fault location is deduced, both ∆B47 and
∆B48 can be obtained.

TABLE III. FAULT-PROPAGATION PATH OF PRINTCIPHER-48

i SD47 SD48 i SD47 SD48

0 0,1,2 0,1,2;3,4,5;6,7,8 8 8,9,10 8,9,10;11,12,13;14
,15,0

1 3,4,5 9,10,11;12,13,14;
15,0,1 9 11,12,13 1,2,3;4,5,6;7,8,9

2 6,7,8 2,3,4;5,6,7;8,9,10 10 14,15,0 10,11,12;13,14,15;
0,1,2

3 9,10,11 11,12,13;14,15,0;
1,2,3 11 1,2,3 3,4,5;6,7,8;9,10,11

4 12,13,14 4,5,6;7,8,9;10,11,
12 12 4,5,6 12,13,14;15,0,1;2,

3,4

5 15,0,1 13,14,15;0,1,2;3,
4,5 13 7,8,9 5,6,7;8,9,10;11,12,

13

6 2,3,4 6,7,8;9,10,11;12,
13,14 14 10,11,12 14,15,0;1,2,3;4,5,6

7 5,6,7 15,0,1;2,3,4;5,6,7 15 13,14,15 7,8,9;10,11,12;13,
14,15

2) DFA based Key extraction
a) Deduce the permutation related key sk2
After the exact fault location is deduced, the permutation

related key sk2 can be obtained by following algorithm.
∆C48← SL-1[D48]⊕SL-1[D48’]
∆B48

 can be deduced by ∆D48
For each index i in SD48

{
 j←faulty index bit of ∆NBi

48
 If(j == 2)

{
 ∆NBi

48←(100)2
 If (∆NBi

48 == (100)2)
sk22*i=(0)2

 else if (∆NBi
48 == (010)2)

 sk22*i+1||sk22*i=(01)2
 else if (∆NBi

48 == (000)2)
 sk22*i+1||sk22*i=(11)2

 }
 If(j == 1)
{

 ∆NBi
48←(010)2

 If (∆NBi
48 == (010)2)

sk22*i+1||sk22*i={(00)2,(11)2}
 else if (∆NBi

48 == (100)2)
 sk22*i+1||sk22*i={01}2

 else if (∆NBi
48 == (001)2)

sk22*i+1||sk22*i={10}2

}
If(j==0)
{

 ∆NBi
48←(001)2

 If (∆NBi
48 == (001)2)

sk22*i+1={0}2
 else if (∆NBi

48 == (100)2)
sk22*i+1||sk22*i={11}2

 else if (∆NBi
48 == (010)2)

sk22*i+1||sk22*i={10}2
}

}
Applying the algorithm above, after one sample analysis,

at most 18 bits of sk2 can be recovered, and after more
sample analysis, full 32 bits of sk2 can be obtained.

b) Deduce the secret key sk1
Once sk2 was recovered, ∆D47 can be computed by

∆D47 = LD-1(KP-1(SL-1[D48]⊕SL-1[D48’])) (7)
Take recovering sk147||sk146||sk145 as an example,

according to Fig.3, ∆NB47 can be computed, and
∆NB15

47=(100)2, then ∆NC15
47 can be deduced by

KP(∆NB15
47). Candidates of NC15

47 satisfying
SL[NC15

47]⊕SL[NC15
47⊕∆NC15

47]= ∆ND15
47 (8)

would be the possible one. Then
sk147||sk146||sk145=SL[NC15

47]⊕
LD-1(RX-1(KP-1(SL-1[D48]))) (9)
Applying the same method above, after one sample

analysis, at most 9 bits of sk1 can be recovered, and after
more sample analysis, full 48 bits of sk1can be obtained.

c) Deduce the master key sk
The master key sk equals to sk1||sk2.

E. Complexity Analysis
1) Probability of effective fault location deducing
Suppose the S-box index is a, the input and output

difference is f1and f2, a, f1, f2 are all 3-bit variable and
satisfy equation 1.

Table IV displays all the possible candidates of f2 when
only one bit of f1 is 1. According to sub-section D and Table
III, if the fault location i was deduced, ∆NDi

46 can be either
(101)2 or (111)2, the probability is 2/7. The 1st bit of the
output difference ∆NDj

47 propagated by the 1st bit of ∆NDi
46

should be 1, and its probability is 16/24. The 3rd output
difference ∆NDj

47 propagated by the 3rd bit of ∆NDi
46 should

be 1, and its probability is 16/24. So the overall fault location
deducing probability is 12.7% (2/7*((16/24)*(16/24))).

TABLE IV. PATTERNS OF PRINTCIPHER DIFFERENTIAL S-BOX

a f2(f1=(001)2) f2(f1=(010)2) f2(f1=(100)2)

(000)2 (001)2 (011)2 (111)2

(001)2 (001)2 (111)2 (101)2

(010)2 (101)2 (011)2 (110)2

(011)2 (101)2 (111)2 (100)2

(100)2 (011)2 (010)2 (111)2

(101)2 (011)2 (110)2 (101)2

(110)2 (111)2 (010)2 (110)2

(111)2 (111)2 (110)2 (100)2

2) Complexity analysis of sk2 deducing
Once the fault location is exactly located, at least 2

nibbles, at most 9 nibbles, on average 5.5 nibbles of B48 have
become faulty. According sub-section D, if one nibble faulty
difference after the KP layer changed, 2-bit of sk2 can be
deduced directly. Else, either one bit of sk2 can be deduced
directly, or 2 bits of sk2 are equal. So on average, 5/3 bits of
sk2 can be deduced for each faulty B48 nibble. Then about
16/(5.5*(5/3))=3.5 faulty samples are needed to recover sk2.

3) Complexity analysis of sk1 deducing
According sub-section D, once the fault location is

exactly located, on average 2.5 nibbles of ∆NB47 become
faulty and be used to deduce sk1. As shown in Table IV, if
only one bit of ∆NB47

 is 1, on average 2 candidates of a can
be deduced, the key search space of one sk1 nibble can be
reduced from 8 to 2, and two times analysis of the nibble
with the same index can recover the related sk1 nibble. So
1.25 nibbles of sk1 can be deduced and about 12.8 (16/1.25)
samples are required to obtain sk1.

F. Experimental Results
Fig.4-(a) is the effective fault number of 10 times FPP-

DFA experiment on PRINTCipher-48 with 10000 samples.
The average fault location deducing probability is 13.1%,
which is close to the theoretical value 12.7%.

(a) Effective fault number statistics

(b) Fault number and sk2 search space

(c) Fault number and sk1 search space

 (d) Fault number and sk search space

Figure 4. Experimental results of PRINTCipher-48 attack

Fig 4-(b),(c),(d) show the relationships between the fault
number and the key search space of sk2, sk1, sk. It’s clear to
see that, 4 effective faults can reduce the sk2 key search
space from 232 to 29.1, 12 effective faults can reduce the sk1
search space from 248 to 22.1, 12 effective faults can reduce
the master key search space from 280 to 213.7, the results are
well agreed with previous theoretical analysis.

Under the r-2th round fault model, we have applied the
FPP-DFA on PRINTCipher-96. The fault-propagation path
is shown in appendix Table V, on average 24 effective faults
can reduce the 160-bit master key search space to 222.8.

Meanwhile, based on the fault model of injecting one
nibble into the r-3th round substitution, we have also applied
the FPP-DFA on PRINTCipher-96. The fault-propagation
path is shown in appendix Table VI, on average 8 effective
faults can reduce the 160-bit master key search space to 218.7.

V. CONCLUSION
We have proposed a novel fault-propagation pattern

based DFA techniques on SPN structure block ciphers with
bitwise permutation, applied it to PRESENT and
PRINTcipher, and proved its efficiency through concrete
simulated experiments. We show that, implementing SPN
structure block ciphers with bitwise permutation should take
certain countermeasures of fault-based attacks; at least last 3
rounds of PRESENT-80/128, PRINTCipher-48, and at least
last 4 rounds of PRINTCipher-96 should be protected.

REFERENCES
[1] Lim, C., Korkishko, T.: mCrypton - A Lightweight Block Cipher for

Security of Low-cost RFID Tags and Sensors. In: Song, J., Kwon, T.,
Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258,
Springer, Heidelberg(2006).

[2] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C.,
Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A
New Block Cipher Suitable for Low-Resource Device. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

[3] Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A
Scalable Encryption Algorithm for Small Embedded Applications. In:
Domingo-Ferrer, J.,Posegga, J., Schreckling, D. (eds.) CARDIS 2006.
LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)

[4] Leander, G., Paar, C., Poschmann, A., Schramm, K.: New
Lightweight DES Variants. In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 196–210. Springer, Heidelberg (2007)

[5] de Cannièe, C., Dunkelman, O., Knežević, M.: KATAN and
KTANTAN–A Family of Small and Efficient Hardware-Oriented

Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 272–288. Springer, Heidelberg (2009)

[6] Maryam Izadi, Babak Sadeghiyan, Seyed Saeed Sadeghian, et al.:
MIBS: A New Lightweight Block Cipher[A]. J.A. Garay, A. Miyaji,
and A. Otsuka (Eds.): CANS 2009[C], LNCS, vol.5888, Springer, pp.
334–348.(2009)

[7] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., et al.:
PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P.,
Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

[8] Knudsen, L., Leander, G., Poschmann, A., and Robshaw, M.J.B.:
PRINTcipher: A Block Cipher for IC-Printing. In: S. Mangard and F.-
X. Standaert (Eds.): CHES 2010, LNCS, vol. 6225, pp. 16–32,
Springer, Heidelberg (2010)

[9] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of
checking cryptographic protocols for faults. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer,
Heidelberg. (1997)

[10] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key
Cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 513–525. Springer, Heidelberg (1997)

[11] Biehl, I., Meyer, B., Muller, V. Differential fault analysis on elliptic
curve cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol.
1880, pp. 131–146. Springer, Heidelberg. (2000)

[12] Hemme, L.: A differential fault attack against early rounds of (Triple-)
DES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol.
3156, pp. 254–267. Springer, Heidelberg. (2004)

[13] Piret, G., Quisquater, J.J.: A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and Khazad. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol.
2779, pp. 77–88. Springer, Heidelberg. (2003)

[14] Zhou, Y.B., Wu, W.L., Xu, N.N, e tal.: Differential Fault Attack on
Camellia. Chinese Journal of Electronics, Vol.18, No.1, pp. 13–19.
(2009)

[15] Zhao, X.J., Wang, T.: An Improved Differential Fault Attack on
Camellia. Cryptology ePrint Archive, Report 2009/585 (2009)

[16] Zhao, X.J., Wang, T.: Further Improved Differential Fault Analysis
on Camellia by Exploring Fault Width and Depth. Cryptology ePrint
Archive, Report 2010/026 (2010)

[17] Zhao, X.J., Wang, T., Wang, S.Z., et al: Research on deep differential
fault analysis against MIBS. Journal on Communications, Vol. 31,
No.12, pp: 89-98. (2010)

[18] Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253.
Springer, Heidelberg. (2004)

[19] Alexandre Berzati, C´ecile Canovas, Guilhem Castagnos, et al.: Fault
Analysis of GRAIN-128. HOST 2009, pp.7-14.(2009)

[20] Aleksandar Kircanski and Amr M. Youssef.: Differential Fault
Analysis of HC-128. In D.J. Bernstein and T. Lange (Eds.):
AFRICACRYPT 2010[C], LNCS, vol. 6055, pp. 261–278. Springer,
Heidelberg. (2010)

[21] Alexandre Berzati, C´ecile Canovas-Dumas, and Louis Goubin.: Fault
Analysis of Rabbit: Toward a Secret Key Leakage[A]. B. Roy and N.
Sendrier (Eds.): INDOCRYPT 2009[C], LNCS, vol. 5922, pp. 72–87.
Springer, Heidelberg. (2009)

[22] Li, J.R., Gu, D.W.: Differential Fault Analysis on PRESENT.
CHINACRYPT 2009(in chinese), pp.3-13. (2009)

[23] Wang, G.L., Wang, S.S.: Differential Fault Analysis on PRESENT
Key Schedule. In Proc of International Conference on Computational
Intelligence and Security (CIS 2010), pp.362-366. IEEE Computer
society. (2010)

[24] Giraud, C., Thiebeauld, H.: A survey on fault attacks. In Proc
of 6th International Conference on Smart Card Research and
Advanced Applications (CARDIS’O4), France, pp. 22–27.
(2004)

TABLE V. FAULT-PROPAGATION PATH OF PRINTCIPHER-96 (94TH ROUND NIBBLE FAULT MODEL)

i SD95 SD96 i SD95 SD96
0 0,1,2 0,1,2,3,4,5,6,7,8 16 16,17,18 16,17,18,19,20,21,22,23,24
1 3,4,5 9,10,11,12,13,14,15,16,17 17 19,20,21 25,26,27,28,29,30,31,0,1
2 6,7,8 18,19,20,21,22,23,24,25,26 18 22,23,24 2,3,4,5,6,7,8,9,10
3 9,10,11 27,28,29,30,31,0,1,2,3 19 25,26,27 11,12,13,14,15,16,17,18,19
4 12,13,14 4,5,6,7,8,9,10,11,12 20 28,29,30 20,21,22,23,24,25,26,27,28
5 15,16,17 13,14,15,16,17,18,19,20,21 21 31,0,1 29,30,31, 0,1,2, 3,4,5
6 18,19,20 22,23,24,25,26,27,28,29,30 22 2,3,4 6,7,8, 9,10,11, 12,13,14
7 21,22,23 31,0,1,2,3,4,5,6,7 23 5,6,7 15,16,17, 18,19,20, 21,22,23
8 24,25,26 8,9,10,11,12,13,14,15,16 24 8,9,10 24,25,26, 27,28,29, 30,31,0
9 27,28,29 17,18,19,20,21,22,23,24,25 25 11,12,13 1,2,3, 4,5,6, 7,8,9
10 30,31,0 26,27,28,29,30,31,0,1,2 26 14,15,16 10,11,12, 13,14,15, 16,17,18
11 1,2,3 3,4,5,6,7,8,9,10,11 27 17,18,19 19,20,21, 22,23,24, 25,26,27
12 4,5,6 12,13,14,15,16,17,18,19,20 28 20,21,22 28,29,30, 31,0,1, 2,3,4
13 7,8,9 21,22,23,24,25,26,27,28,29 29 23,24,25 5,6,7, 8,9,10, 11,12,13
14 10,11,12 30,31,0,1,2,3,4,5,6 30 26,27,28 14,15,16, 17,18,19, 20,21,22
15 13,14,15 7,8,9,10,11,12,13,14,15 31 29,30,31 23,24,25, 26,27,28, 29,30,31

TABLE VI. FAULT-PROPAGATION PATH OF PRINTCIPHER-96 (93TH ROUND NIBBLE FAULT MODEL

i SD94 SD95 SD96

0 0,1,2 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

1 3,4,5 9,10,11,12,13,14,15,16,17 27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

2 6,7,8 18,19,20,21,22,23,24,25,26 22,23,24,25,26,27, 28,29,30, 31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

3 9,10,11 27,28,29,30,31,0,1,2,3 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11

4 12,13,14 4,5,6,7,8,9,10,11,12 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6

5 15,16,17 13,14,15,16,17,18,19,20,21 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1

6 18,19,20 22,23,24,25,26,27,28,29,30 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28

7 21,22,23 31,0,1,2,3,4,5,6,7 29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23

8 24,25,26 8,9,10,11,12,13,14,15,16 24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

9 27,28,29 17,18,19,20,21,22,23,24,25 19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13

10 30,31,0 26,27,28,29,30,31,0,1,2 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8

11 1,2,3 3,4,5,6,7,8,9,10,11 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3

12 4,5,6 12,13,14,15,16,17,18,19,20 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30

13 7,8,9 21,22,23,24,25,26,27,28,29 31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

14 10,11,12 30,31,0,1,2,3,4,5,6 26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

15 13,14,15 7,8,9,10,11,12,13,14,15 21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

16 16,17,18 16,17,18,19,20,21,22,23,24 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10

17 19,20,21 25,26,27,28,29,30,31,0,1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5

18 22,23,24 2,3,4,5,6,7,8,9,10 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0

19 25,26,27 11,12,13,14,15,16,17,18,19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

20 28,29,30 20,21,22,23,24,25,26,27,28 28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

21 31,0,1 29,30,31,0,1,2,3,4,5 23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

22 2,3,4 6,7,8,9,10,11,12,13,14 18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12

23 5,6,7 15,16,17,18,19,20,1,22,23 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7

24 8,9,10 24,25,26,27,28,29,30,31,0 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2

25 11,12,13 1,2,3,4,5,6,7,8,9 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29

26 14,15,16 10,11,12,13,14,15,16,17,18 30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

i SD94 SD95 SD96

27 17,18,19 19,20,21,22,23,24,25,26,27 25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

28 20,21,22 28,29,30,31,0,1,2,3,4 20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

29 23,24,25 5,6,7,8,9,10,11,12,13 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4,5,6,7,8,9

30 26,27,28 14,15,16,17,18,19,20,21,22 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,0,1,2,3,4

31 29,30,31 23,24,25,26,27,28,29,30,31 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

	I. Introduction
	II. Main idea of FPP-DFA
	III. Proposed FPP-DFA Attack on PRESENT
	A. Description of PRESENT Algorithm
	B. Notations
	C. Fault Model
	D. FPP-DFA procedure
	E. Complexity Analysis
	F. Experimental Results
	IV. The proposed FPP-DFA method on PRINTcipher
	A. Description of PRINTcipher Algorithm
	B. Notations
	C. Fault Model
	D. FPP-DFA procedure
	E. Complexity Analysis
	F. Experimental Results

	V. Conclusion
	References

