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Abstract

The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are
good randomness extractors. Despite its numerous applications, LHL-based extractors suffer
from the following two limitations:

• Large Entropy Loss: to extract v bits from distribution X of min-entropy m which
are ε-close to uniform, one must set v ≤ m − 2 log (1/ε), meaning that the entropy loss

L
def
= m− v ≥ 2 log (1/ε). For many applications, such entropy loss is too large.

• Large Seed Length: the seed length n of (almost) universal hash function required by
the LHL must be at least n ≥ min(u − v, v + 2 log (1/ε))−O(1), where u is the length of
the source, and must grow with the number of extracted bits.

Quite surprisingly, we show that both limitations of the LHL — large entropy loss and large
seed — can be overcome (or, at least, mitigated) in various important scenarios. First, we
show that entropy loss could be reduced to L = log (1/ε) for the setting of deriving secret keys
for a wide range of cryptographic applications. Specifically, the security of these schemes
with an LHL-derived key gracefully degrades from ε to at most ε +

√
ε2−L. (Notice that,

unlike standard LHL, this bound is meaningful even when one extracts more bits than the
min-entropy we have!) Based on these results we build a general computational extractor that
enjoys low entropy loss and can be used to instantiate a generic key derivation function for any
cryptographic application.

Second, we study the soundness of the natural expand-then-extract approach, where one
uses a pseudorandom generator (PRG) to expand a short “input seed” S into a longer “output
seed” S′, and then use the resulting S′ as the seed required by the LHL (or, more generally,
by any randomness extractor). We show that, in general, the expand-then-extract approach is
not sound if the Decisional Diffie-Hellman assumption is true. Despite that, we show that it is
sound either: (1) when extracting a “small” (logarithmic in the security of the PRG) number
of bits; or (2) in minicrypt. Implication (2) suggests that the expand-then-extract approach is
likely secure when used with “practical” PRGs, despite lacking a reductionist proof of security!

Finally, we combine our main results to give a very simple and efficient AES-based extractor,
which easily supports variable-length messages, and is likely to offer our improved entropy loss
bounds for any computationally-secure application, despite having a fixed-length seed.
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1 Introduction

The famous Leftover Hash Lemma [19] (LHL; see also [19] for earlier formulations) has found a huge
number of applications in many areas of cryptography and complexity theory. In its simplest form,
it states that universal hash functions [6] are good (strong) randomness extractors [33]. Specifically,
if X is a distribution of min-entropy m over some space X , H is a family of universal functions
(see Definition 2.2) from X to {0, 1}v , and H is a random member of H, then, even conditioned
on the “seed” H, the statistical distance between H(X) and the uniform distribution Uv on {0, 1}v

is bounded by
√
2−L, where L

def
= m − v. The parameter L is defined as the entropy loss and it

measures the amount of min-entropy “sacrificed” in order to achieve good randomness extraction.
Thus, no application can tell apart the “extracted” randomness H(X) from uniform randomness

Uv, with advantage greater than ε
def
=
√
2−L, even if the seed H is published (as long as H is

independent of X).
The LHL is extremely attractive for many reasons. First, and foremost, it leads to simple

and efficient randomness extractors, and can be used in many applications requiring good secret
randomness. One such major setting is that of cryptographic key derivation, which is needed in
many situations, such as privacy amplification [3], Diffie-Hellman key exchange [15, 27], biomet-
rics [10, 4] and random number generators from physical sources of randomness [2, 1]. Second,
many simple functions, such as the inner product or, more generally, matrix-vector multiplication,
are universal. Such elegant functions have nice algebraic properties which can be used for other
reasons beyond randomness extraction (for a few examples, see [28, 9, 31]). Third, many simple
and efficient constructions of (almost) universal hash functions are known [6, 40, 32, 25], making
LHL-based extractors the most efficient extractors to date. Finally, LHL achieves the optimal value
of the entropy loss L = m − v sufficient to achieve the desired statistical distance ε. Specifically,
LHL achieves L = 2 log (1/ε), which is known to be the the smallest possible entropy loss for any
extractor [36].

Despite these extremely attractive properties, LHL-based extractors are not necessarily appli-
cable or sufficient in various situations. This is primarily due to the following two limitations of
the LHL: large entropy loss and large seed.

Large Entropy Loss. In theory, the entropy loss of 2 log (1/ε) might appear quite insignificant,
especially in the asymptotic sense. However, in practical situations it often becomes a deal-breaker,
especially when applied to the setting of key derivation. In this case the main question is to deter-
mine the smallest min-entropy value m sufficient to extract a v-bit key with security ε. Minimizing
this value m, which we call startup entropy, is often of critical importance, especially in entropy
constrained scenarios, such as Diffie-Hellman key exchange (especially on elliptic curves) 1 or bio-
metrics. For example, for the Diffie-Hellman key exchange, the value m corresponds to the size of
the elliptic curve group, which directly affects efficiency. This is one of the reasons why statistical
extractors are often replaced in practice with heuristic constructions based on cryptographic hash
functions. See Section 3.4 for more on this point.

Large Seed. Another significant hurdle in the use of LHL comes from the fact that universal hash
functions require long description, which means that LHL-based extractors have long seeds. Indeed,
Stinson [40] showed that (perfectly) universal hash functions require the length of the seed to be
linear in the length of the source X. More generally, even “good-enough” almost universal hash

1Notice, in this application the exact source distribution is known, and, in principle, deterministic randomness
extraction might be possible. Interestingly, state-of-the-art deterministic extractors [7] achieve noticeably worse

security for a given entropy loss (see Theorems 8 and 14 of [7]) than the LHL-based (probabilistic) extractors. Thus,
as of now, LHL remains the method of choice for this very important application scenario.
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functions for LHL require seeds of length at least min(|X|−v, v+2 log (1/ε))−O(1) [40], and, thus,
must grow with the number of extracted bits. This large seed length makes it inconvenient in many
applications of extractors (e.g., [5, 37, 27]), including any use of extractors for derandomization,
where one must be able to enumerate over all the seeds efficiently.

Large (and variable-length) seeds are also inconvenient for standardized cryptographic applica-
tions where fixed-size keys, independent of the size of inputs, are favored (as in the case of block
ciphers or cryptographic hash functions). When extractors are used in cryptographic settings, seeds
are viewed as keys and hence fixed-size seeds are very desirable. In applications of extractors, where
the attacker is assumed to be sufficiently limited as to not make the source X dependent on the
seed (e.g., when extracting keys from biometrics, physical measurements or in the Diffie-Hellman
key exchange), one might consider fixing a good public seed, and using it repeatedly with a fast
provably secure extractor. As said, this is not possible with universal hash functions as their seed
length must grow with the length of X.2

Our Results. Quite surprisingly, we show that both limitations of the LHL — large entropy
loss and large seed — can be overcome or, at least, mitigated in various important scenarios. We
describe these results below.

1.1 Reducing the Entropy Loss

At first, reducing the entropy loss L might seem impossible since we already mentioned that any
extractor must have entropy loss L ≥ 2 log (1/ε) − O(1) [36]. However, the impossibility is for
general applications of extractors, where we must ensure that the extracted string R cannot be
distinguished from random by any statistical test D. In contrast, when extractors are used to
derive cryptographic keys, we only care about limited types of statistical tests D. Concretely, the
tests that correspond to the security game between the attacker A and the challenger C. For
example, when deriving the key for a signature scheme, the only tests we care about correspond
to the attacker seeing several signatures and then outputting a new signature. Namely, we only
care that the probability of a successful forgery does not suddenly become non-negligible when the
secret key is obtained using an extractor instead of being random. And since the signature scheme
is assumed to be secure with a truly random key, we can restrict our attention to a very restricted
class of statistical tests which almost never output 1. Similar restrictions on the distinguisher
naturally arise for other cryptographic primitives, which gives us hope that the lower bound of [36]
might be overcome in such settings.

Generalized LHL and Applications. Indeed, we derive a tighter form of the LHL, called
generalized LHL (see Theorem 3.1), which non-trivially depends on the type of distinguisher D
we care about. Our improved bound contains a novel term informally measuring the standard
deviation of the distinguisher’s advantage (the standard LHL is a particular case where this term
is bounded by 1). Applying this new bound to the analysis of cryptographic functions, we obtain
much tighter bounds for the security of a wide class cryptographic applications. These include key
derivation for all “unpredictability” applications, such as signatures, MACs, one-way functions,
identification schemes, etc. More surprisingly, they also include key derivation for some prominent
“indistinguishability” applications that include all stateless encryption schemes, both CPA- and
CCA-secure and in the public- and symmetric-key settings, as well as weak pseudorandom functions.
Specifically, in each of these cases, denote by ε the security of the cryptographic primitive (i.e.,

2In theory one can build (non-LHL-based) extractors where the length of the seed H is roughly logarithmic in the
length of the source X (see [17, 38] and many references therein). However, the resulting constructions are mainly of
theoretical value and lose the extreme simplicity and efficiency of LHL-based extractors.
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the best success probability or advantage of an attacker with certain resources) when keyed with
a perfectly random v-bit key, and by ε′ the corresponding security value when the key is derived
from an imperfect m-bit entropy source via the LHL. We show (recall that L = m − v represents
the entropy loss):

ε′ ≤ ε+
√
ε2v−m = ε+

√
ε2−L (1)

Comparing with Standard LHL. Let us first compare this bound with the regular ε +
√
2−L

LHL bound. The latter required L ≥ 2 log (1/ε) to achieve the same type of security O(ε) as
with the ideal randomness. Using our improved bound, we show that only half of that amount,
L = log (1/ε), already suffices. In fact, not only do we get improved bounds on the entropy loss L,
but we also get meaningful security bounds for arbitrary values of L, even negative ones (when the
entropy loss becomes “entropy gain”)! E.g., standard LHL does not give anything for L ≤ 0, while
we achieve significant ε′ ≈ √ε security for L = 0 (no entropy loss!), and even start to “gracefully
borrow” security from our application when we extract more bits than the min-entropy of the
source, up to L = − log (1/ε) (i.e., v = m+ log (1/ε)).

Computational Extractor with Improved Loss. Although our improved bound, as stated,
is not applicable to all cryptographic applications (the most important omission being pseudoran-
dom functions and stream ciphers), in Section 3.3 we use our results to build general-purpose key
derivation function for any (computationally-secure) cryptographic application, while providing the
full entropy benefits derived from Equation (1). The scheme combines any LHL-based extractor
with any (weak) pseudorandom function family.

1.2 Reducing the Seed Length

Expand-then-Extract. A natural idea to reduce the seed length is to use a pseudorandom
generator (PRG) to expand a short “input seed” S into a longer “output seed” S′, and then use
the resulting S′ as the seed required by the LHL, or, more generally, by any randomness extractor.
Let us call this natural approach expand-then-extract. Of course, as long as one hides the short S
and uses the long S′ as the public seed for the extractor, the extracted bits are pseudorandom. But
is it possible to ensure the pseudorandomness of the extractor’s output if the actual short seed S is
made public? Had this been the case, we would obtain efficient LHL-based extractors with a short
seed and, moreover, an extractor whose seed length is independent of the length of the input, as
desired for the practical scenarios discussed earlier.

Counter-Example. In Section 4.1 we show that the expand-then-extract approach will not
work in general. We construct a simple PRG (which is secure under the Decisional Diffie-Hellman
(DDH) assumption) and an extractor (which is a natural, perfectly universal hash function), where
the output of the extractor — on any (e.g., even uniform) distribution — can be efficiently distin-
guished from random with probability close to 1, when given the short seed S used to generate the
pseudorandom long seed S′ for the extractor. Despite the above, we also show two positive results
which nicely complement our counter-example.

Extracting Few Bits. First, in Section 4.2 we show that the expand-then-extract approach
always works provided the number of extracted bits v is “small”. Here “small” means logarithmic
in the security level of the PRG, which could range from O(log k) to Ω(k) (where k is the security
parameter), depending on whether PRG is assumed to be polynomially or exponentially hard.
Quite interestingly, in this case we do not even have to settle for pseudorandom bits: our small
number v of extracted bits is actually statistically random, as long as the PRG is secure against
circuits whose size is exponential in v. The intuition for this result comes from the fact that we can

3



test, in time exponential in v, whether a given n-bit extractor seed s′ is “good” or “bad” for our
source X. We also know that most random long seeds s′ ← Un must be good. Hence, by the PRG
security, the same must be true for “most” pseudorandom seeds s′ ← Prg(Uk), which is precisely
what we need to show.

Security in minicrypt. Second, although our original counterexample is fairly simple and natural,
it involves an assumption (DDH) from the “public-key world”. In Section 4.3, we show, somewhat
surprisingly, that such “public-key” type assumption is indeed necessary for any counter-example.
We do this by showing that the expand-then-extract approach is sound in minicrypt [23] (i.e. in a
hypothetical world where pseudorandom generators exist, but public-key cryptography does not).
In particular, we construct a simple 2-message protocol (built from a PRG and an extractor) which
constitutes a secure key-agreement (KA) protocol for any PRG/extractor combination for which
the expand-then-extract approach is insecure. Since our protocol only has 2 messages, we even
get semantically secure public-key encryption (PKE). In fact, the protocol has a very special form
which even implies a 2-round oblivious transfer (OT) protocol secure against an honest-but-curious
receiver. Hence, since no such KA/PKE/OT exist in minicrypt, expand-then-extract must be secure.

The protocol (whose slight generalization to handle side information is depicted in Figure 1)
proceeds as follows. Alice samples a random seed S and sends S′ = Prg(S) to Bob. Bob samples
a source X and a random bit b. If b = 0, Bob sends Alice the output Ext(X;S) of the extractor;
otherwise he sends a random string R. Alice, who knows S, can recover b (by assumption). In
contrast, Eve, who only sees S′ = Prg(S), cannot tell apart Ext(X;S) from R (and thus guess b)
as this would mean she can distinguish Prg(S) from uniform.

Practical Interpretation. This leads to the following practical interpretation of our results
indicating that using the expand-then-extract approach with common pseudorandom primitives,
such as AES, is secure in spite of a lack of direct (reductionist) proof of security. Indeed, consider
the expand-then-extract scheme implemented via AES (in some stream cipher mode). Our results
show that, if this extraction scheme fails, then we have found a public-key encryption (and even
oblivious transfer) scheme that is as secure as the AES as a block cipher! Moreover, the resulting
PKE has a very restrictive form, where the secret key is a PRG seed S, and the public-key is the
PRG output S′ = Prg(S). (E.g., in the case of AES, the public key is simply the evaluation of AES
on several distinct points.) As we argue in Section 4.3, the existence of such a PKE appears to be
extremely unlikely, and would be a major breakthrough given current state-of-the-art. Thus, our
results give strong evidence that the expand-then-extract approach might be secure “in practice”,
— when used with “fast” ciphers (like AES), — despite being (generally) insecure “in theory”!

Extensions. We also remark that all our results elegantly handle side information Z the attacker
might have about our source X (as advocated by [10], such “average-case” extractors are very
handy in cryptographic applications), and also generalize to the case of almost universal hash func-
tions. Finally, one can combine our results regarding improved entropy loss in Section 3 with those
regarding the soundness of the expand-then-extract approach in Section 4, to obtain an efficient
(computationally secure) LHL-based extractor with short seed and improved startup entropy. In
Section 5, we give a simple example of such an extractor, by using the AES block cipher and the
inner-product universal hash function. See Equation (25).

1.3 Related Work

Hast [18] also observed that for certain cryptographic applications, the relevant attackers corre-
spond to restricted classes of distinguishers, which allowed him to obtain improved security bounds
when the Goldreich-Levin hardcore bit [16] is used as a “computational” randomness extractor.
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This result is incomparable to ours. On the one hand, we consider general (multi-bit) LHL-based
extractors and not just the single bit inner-product function (which is the form of the Goldreich-
Levin predicate). On the other hand, Hast was working in the computational setting, and had to
make an explicit reduction from the distinguisher to the predictor of the source X, which is not
required in our setting.

We also mentioned the notion of slice extractors defined by Radhakrishnan and Ta-Shma [36],
which limits the type of statistical tests to “rare distinguishers”. To the best of our understanding,
this definition was not motivated by applications, but rather was a convenient “parametrization”
on a road to other results. Still, this notion roughly correspond to the setting of key derivation for
authentication applications, when the attacker rarely succeeds. Interestingly, [36] showed a lower
bound for the entropy loss of slice extractors (which was lower than that of general extractors),
and matched this lower bound by an existential construction. As it turns out, our improved LHL
immediately gives a constructive way to match this lower bound, showing that LHL-based extractors
are optimal slice extractors in terms of the entropy loss. For completeness, this connection is
sketched in Appendix A.

In a very different (non-cryptographic) context of building hash tables, Mitzenmacher and
Vahdan [29] also observed that improved bounds on the “entropy loss” could be obtained when the
standard deviation of the “distinguisher” is much less than 1. In their setting the entropy loss was
the minimum entropy required from the input stream to hash well, and the distinguisher was the
characteristic function of a set of occupied buckets.

We note that our “win-win” result for the expand-then-extract approach is similar in spirit to
several other “win-win” results [13, 34, 11, 35], where a (hypothetical) adversary for one task is
turned into a “surprisingly useful” protocol for a seemingly unrelated task. Among the above, the
result most similar to ours is [13], where a PRG is used to expand the key for “forward secure
storage”, which is a concept related to “locally computable” extractors.

On the more practical side of our results, particularly in what refers to key derivation, it is worth
mentioning the work of [8, 27] that analyze constructions of key derivation functions (KDFs) based
on cryptographic hash functions. These constructions do not use standard, generic assumptions,
such as pseudorandomness, but build on specific modes of operations on their compression function
f , and rely on dedicated, sometimes idealized, assumptions. Under such idealized assumptions,
these schemes support situations where the KDF needs to be modeled as a random oracle, or where
the source only has “unpredictability entropy” [22]. On the other hand, outside of the random oracle
heuristics, much of the analysis of [8, 27] studied sufficient conditions on compression function f
and/or the source input distribution, under which cryptographic hash functions are “universal
enough” so as to apply the standard LHL. As such, these analyses suffer the same drawbacks as
any other LHL-based extractor. In particular, our results regarding the improved entropy loss
for LHL-based extractors should carry over to improve the results of [8, 27], while our results on
the expand-then-extract approach could be viewed as partial justification of the heuristic where a
fixed-description-length compression function is replaced by random in most (but not all) of the
analyses of [8, 27].

2 Standard Leftover Hash Lemma

Notation. For a set S, we let US denote the uniform distribution over S. For an integer v ∈ N,
we let Uv denote the uniform distribution over {0, 1}v , the bit-strings of length v. For a distribution
or random variable X we write x← X to denote the operation of sampling a random x according
to X. For a set S, we write s← S as shorthand for s← US .
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Min-Entropy and Extractors. The min-entropy of a random variable X is defined as
H∞(X)

def
= − log(maxx Pr[X = x]). In cryptographic applications, one often uses the average

min-entropy of a random variable X conditioned on another random variable Z. This is defined as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])

where Ez←Z denotes the expected value over z ← Z, and measures the worst-case predictability of
X by an adversary that may observe a correlated variable Z.

We denote with ∆D(X,Y ) the advantage of a circuit D in distinguishing the random variables

X,Y : ∆D(X,Y )
def
= | Pr[D(X) = 1]−Pr[D(Y ) = 1] |. The statistical distance between two random

variables X,Y is defined by

SD(X,Y )
def
=

1

2

∑

x

|Pr[X = x]− Pr[Y = x]| = max
D

∆D(X,Y )

where the maximum is taken over all (potentially computationally unbounded) D. Given side
information Z, we write ∆D(X,Y |Z) and SD(X,Y |Z) as shorthands for ∆D((X,Z), (Y,Z)) and
SD((X,Z), (Y,Z)), respectively.3

An extractor [33] can be used to extract uniform randomness out of a weakly-random value
which is only assumed to have sufficient min-entropy. Our definition follows that of [10], which is
defined in terms of conditional min-entropy.

Definition 2.1 (Extractors) An efficient function Ext : X × {0, 1}n → {0, 1}v is an (average-
case, strong) (m, ε)-extractor (for space X ), if for all X,Z such that X is distributed over X and
H̃∞(X|Z) ≥ m, we get

SD( Ext(X;S) , Uv | (S,Z)) ≤ ε

where S ≡ Un denotes the coins of Ext (called the seed). The value L = m− v is called the entropy
loss of Ext, and the value n is called the seed length of Ext.

Universal hashing and Leftover Hash lemma. We now recall the definition of universal-
hashing [6, 40] and the leftover-hash lemma [19], which states that universal hash functions are also
good extractors.

Definition 2.2 (ρ-Universal Hashing) A family H of (deterministic) functions h : X →
{0, 1}v is a called ρ-universal hash family (on space X ), if for any x1 6= x2 ∈ X we have
Prh←H[h(x1) = h(x2)] ≤ ρ. When ρ = 1/2v, we say that H is universal.

We can finally state the Leftover Hash Lemma (LHL). (Multiple versions of this lemma have
appeared; we use the formulation of [41, Theorem 8.1], augmented by [10, Lemma 2.4] for the
conditional entropy case; see [19] and references therein for earlier formulations.)

Lemma 2.1 (Leftover-Hash Lemma) Assume that the family H of functions h : X → {0, 1}v
is a 1+γ

2v -universal hash family. Then the extractor Ext(x;h)
def
= h(x), where h is uniform over H, is

an (m, ε)-extractor, where ε = 1
2 ·
√

γ + 2v

2m = 1
2 ·
√

γ + 1
2L

(recall, L = m− v is the entropy loss).

In particular, 1+3ε2

2v -universal hash functions yield (v + 2 log (1/ε) , ε)-extractors with entropy loss
L = 2 log (1/ε).

3Notice, ∆D(X,Y |Z) ≤ Ez←Z [∆D(X|Z=z, Y |Z=z)], but SD(X,Y |Z) = maxD Ez←Z [∆D(X|Z=z, Y |Z=z)].

6



3 Reducing the Entropy Loss

As we mentioned, the entropy loss of 2 log (1/ε) is optimal when one is concerned with general
distinguishers D [36]. As we show, in various cryptographic scenarios we only care about a some-
what restrictive class of distinguishers, which will allow us to reduce the entropy loss for such
applications.

In Section 3.1, we start with a generalization of the LHL (Theorem 3.1), which will include a
novel term measuring the standard deviation of the distinguisher’s advantage, and then derive some
useful special cases (Theorem 3.2). In Section 3.2, we then apply our tighter bound to derive im-
proved entropy loss bounds for various cryptographic applications, including bounds for so called
“strongly secure” applications (Theorem 3.3), all authentication applications (Theorem 3.4) and
some privacy applications (Theorem 3.5), including chosen plaintext secure encryption (Theorem 3.6)
and weak PRFs (Theorem 3.7). In Section 3.3 we further extend our results to get a generic key
derivation function with improved entropy loss for any computationally secure application, includ-
ing stream ciphers and PRFs. In Section 3.4 we compare our bounds to the heuristic bounds
obtained using the random oracle model.

3.1 Generalized LHL

Collision Probability and c-Variance. Given a distribution Y , its collision probability
is Col(Y )

def
=
∑

y Pr[Y = y]2 ≤ 2−H∞(Y ). Given a joint distribution (Y,Z), we let Col(Y |Z)
def
=

Ez[Col(Y |Z = z)] ≤ 2−H̃∞(Y |Z). We also use the notation (UY , Z) to denote the probability
distribution which first samples (y, z) ← (Y,Z), but then replaces y by an independent, uniform
sample from UY . Finally, given a random variable W and a constant c, we define its c-variance as

Varc[W ]
def
= E[(W − c)2] and its c-standard deviation as σc[W ]

def
=
√

Varc[W ]. When c = E[W ], we
recover the standard notion of variance and standard deviation, Var[W ] and σ[W ], and notice that
these are the smallest possible values for Varc[W ] and σc[W ]. Still, we will later find it easier to
use (slightly weaker) bounds obtained with specific values of c ∈ {0, 12}.

We start with an useful lemma of independent interest which generalizes Lemma 4.5.1 of [29].

Lemma 3.1 Assume (Y,Z) is a pair of correlated random variables distribution on a set Y × Z.
Then for any (deterministic) real-valued function f : Y × Z → R and any constant c, we have

| E[f(Y,Z)]− E[f(UY , Z)] | ≤ σc[f(UY , Z)] ·
√
|Y|Col(Y |Z)− 1 (2)

Proof. If suffices to prove the claim for c = 0, by using g(y, z) = f(y, z)− c in place of f(y, z), as
such a change does not affect the left hand side.

Denote qz = Pr[Z = z], py|z = Pr[Y = y | Z = z] and also recall the Cauchy-Schwartz inequality

|∑ aibi| ≤
√

(
∑

a2i ) · (
∑

b2i ). We have
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|E[f(Y,Z)]− E[f(UY , Z)]| =

∣∣∣∣∣
∑

y,z

qz · f(y, z) · py|z −
∑

y,z

qz · f(y, z) ·
1

|Y|

∣∣∣∣∣

=

∣∣∣∣∣
∑

y,z

(√
qz
|Y| · f(y, z)

)
·
(√
|Y|qz ·

(
py|z −

1

|Y|

)) ∣∣∣∣∣

≤

√√√√
(
∑

y,z

qz
|Y| · f(y, z)

2

)
·
(
|Y|
∑

y,z

qz ·
(
py|z −

1

|Y|

)2
)

=

√√√√ E[f(UY , Z)2] · |Y| ·
(
∑

y,z

qz · p2y|z −
1

|Y|

)

= σ0[f(UY , Z)] ·
√
|Y|Col(Y |Z)− 1

�

The useful feature of the bound given in Equation (2) comes from the fact that the value σc[f(UY , Z)]
does not depend on the actual distribution Y used to replace the uniform distribution, while the
value

√
|Y|Col(Y |Z)− 1 does not depend on the function f whose average we are trying to preserve

(by using Y in place of UY). In particular, we get the following corollary which will allow us to
eventually get all our improved bounds.

Theorem 3.1 (Generalized LHL) Let (X,Z) be some joint distribution over X × Z, H = {h :
X → {0, 1}v} be a family of 1+γ

2v -universal hash functions, H be a random member of H, and

let L
def
= H̃∞(X|Z) − v be the entropy loss. Then, for any constant c ∈ [0, 1] and any (possibly

probabilistic) distinguisher D(r, h, z), we have

∆D(H(X), Uv | (H,Z)) ≤ σc

[
Pr
D
[D(Uv ,H,Z) = 1]

]
·
√

γ +
1

2L
(3)

Proof. We use Lemma 3.1 with Y = {0, 1}v × H, Y = (H(X),H) and f(y, z) = f(r, h, z)
def
=

PrD[D(r, h, z) = 1], where the probability is taken only over the coins of D (so that f(Uv,H,Z)
is a random variable, with range [0, 1], over the choice of Uv,H,Z). Comparing the needed bound
in Equation (3) with the given bound in Equation (2), and recalling that L = H̃∞(X|Z) − v, it
suffices to show that

Col((H(X),H) | Z) ≤ 1 + γ + 2v · 2−H̃∞(X|Z)

2v · |H| =
1

|H| ·
(
1 + γ

2v
+ 2−H̃∞(X|Z)

)
(4)

Fix any value Z = z and let Xz be the conditional distribution on X when Z = z. Then, the
value Col(H(Xz),H) can be interpreted as a probability that (H(Xz),H) = (H ′(X ′z),H

′), where
H,H ′,Xz,X

′
z are four independent samples of the appropriate distributions. We get:

Col((H(Xz),H)) = Pr
H,H′,Xz ,X′z

[(H(Xz),H) = (H ′(X ′z),H
′)]

= Pr
H,H′

[H = H ′] · Pr
H,Xz,X′z

[H(Xz) = H(X ′z)]

≤ 1

|H| ·
(

Pr
H,Xz,X′z

[H(Xz) = H(X ′z) | Xz 6= X ′z] + Pr
Xz ,X′z

[Xz = X ′z]

)

≤ 1

|H| ·
(
1 + γ

2v
+ 2−H∞(Xz)

)
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where the last inequality follows from the universality of H and the definition of min-entropy.

Taking expectation over z ← Z, and recalling that 2−H̃∞(X|Z) = Ez←Z [2
−H∞(X|Z=z)], we get the

desired Equation (4). �

Equation (3) bounds the advantage of D in distinguishing real and extracted randomness using two
terms. The second term (under the square root) depends on the universality of H and the entropy
loss L (but not on D). The novel term is the c-standard deviation σc[PrD[D(Uv ,H,Z) = 1]] of D,
which we will simply call c-standard deviation of D and denote σ(D, c). Intuitively, it measures
how “concentrated” the expected output of D is to some value c in the “ideal setting” (when fed
Uv rather than H(X)). We notice that for any D and any c ∈ [0, 1], the c-standard deviation
σ(D, c) ≤ 1. Plugging this trivial bound in Equation (3) removes the dependence on D, and
(essentially)4 gives us the statement of the standard LHL from Lemma 2.1. As mentioned, though,
this forces the entropy loss to be at least 2 log (1/ε) to achieve security ε. Below, we show several
special cases when we can upper bound σ(D, c) by roughly

√
ε, which means that the entropy loss

L only needs to be roughly log (1/ε) (say, with perfectly universal H) to achieve security ε.

Theorem 3.2 Let (X,Z) be some joint distribution over X × Z, H = {h : X → {0, 1}v} be a

family of 1+γ
2v -universal hash functions, H be a random member of H, L def

= H̃∞(X|Z) − v be the
entropy loss, and D(r, h, z) be some (possibly probabilistic) distinguisher. Then, for each of the
values ε defined in scenarios (a)-(c) below it holds:

∆D(H(X), Uv | (H,Z)) ≤
√

ε ·
(
γ +

1

2L

)
(5)

(a) Assume for some c, δ, τ ∈ [0, 1], ε = τ2 + δ and the following condition is satisfied:5

Pr
r←Uv,h←H,z←Z

[ |Pr
D
[D(r, h, z) = 1]− c| ≥ τ ] ≤ δ (6)

(b) Assume Pr[D(Uv,H,Z) = 1] ≤ ε (where probability is taken over Uv,H,Z and the coins of
D).

(c) For fixed r, h, and z, define the distinguisher D′(r, h, z) as follows. First, make two indepen-
dent samples d̃, d ← D(r, h, z). Then, if d̃ = 1, return d else return (1 − d). Assume further
that Pr[D′(Uv,H,Z) = 1] ≤ 1

2 + 2ǫ.

Proof. Each part will follow from Equation (3) by showing that Varc[PrD[D(Uv,H,Z) = 1]] ≤ ε for
some c ∈ [0, 1]. To simplify the notation, let q = (r, h, z), f(q) = PrD[D(q) = 1] andQ = (Uv,H,Z).
Recalling also the definition of c-variance, we need to show that for some c ∈ [0, 1],

Eq←Q[(f(q)− c)2] ≤ ε (7)

Proof of part (a). With our notation, condition (a) states that Prq←Q[(f(q) − c)2] ≥ τ2] ≤ δ.
Since also (f(q)− c)2 ≤ 1 for all q, we get Eq←Q[(f(q)− c)2] ≤ τ2 · (1− δ) + 1 · δ ≤ ε.

Proof of part (b). Here we set c = 0 and note that Eq←Q[(f(q) − c)2] = Eq←Q[f(q)
2] ≤

Eq←Q[f(q)] ≤ ε, where f(q)2 ≤ f(q) because 0 ≤ f(q) ≤ 1.

4The exact bound claimed in Lemma 2.1 follows when σ(D, c) ≤ 1

2
, which is true for c = 1/2.

5Note that the condition below implies |Pr[D(Uv ,H, Z) = 1]− c| ≤ τ + δ.
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Proof of part (c). Here we set c = 1
2 , so it suffices to show that Eq←Q[(f(q)− 1

2)
2] ≤ ε. Recalling

the definition of f and that by assumption 2ε ≥ Eq←Q[Pr[D
′(q) = 1]− 1

2 ], it suffices to show that
for all q we have

Pr[D′(q) = 1]− 1

2
≥ 2 ·

(
Pr[D(q) = 1]− 1

2

)2

Letting a = Pr[D(q) = 1] and b = Pr[D′(q) = 1], this is equivalent to the claim that b ≥ 2(a− 1
2 )

2+
1
2 = a2 + (1− a)2. The latter, however, is immediate from the definition of D′(q), which outputs 1
only if both samples of D(q) are the same. �

In the following section, we demonstrate the use of Theorem 3.2 by concentrating on the im-
portant case of key derivation using LHL, where the value ε will essentially correspond to the
“cryptographic security” of the application at hand.

3.2 Improved LHL for Key Derivation

Consider any cryptographic primitive P (e.g., signature, encryption, etc.), which uses randomness
R ∈ {0, 1}v to derive its secret (and, public, if needed) key(s). Without loss of generality, we can
assume that R itself is the secret key. In the “ideal” setting, R = Uv is perfectly uniform and
independent from whatever side information Z available to the attacker. In the ”real setting”, the
key owner has a randomness source, represented by a random variable X and possibly correlated
with the attacker’s side information Z. It then samples a universal hash function H using (fresh)
public randomness and uses the extracted value R = H(X) as its key. We would like to argue
that if P is “ε-secure” in the ideal setting (against attackers with resources6 less than T ), then P
is also “ε′-secure” in the real setting (against attackers with resources less than T ′ ≈ T ), where
ε′ is not much larger than ε. Of course, to have a hope of achieving this, H must be “universal-
enough” and L = H̃∞(X|Z) − v must “high-enough”. To parameterize this, we will sometimes
explicitly write (L, γ)-real model to denote the real model above, where H is (1 + γ)2−v-universal
and H̃∞(X|Z) ≥ v + L. We formalize this general setting as follows.

Abstract Security Games. We assume that the security of P is defined via an interactive
game between a probabilistic attacker A(h, z) and a probabilistic challenger C(r). Here one should
think of h and z as particular values of the hash function and the side information, respectively,
and r as a particular value used by the challenger in the key generation algorithm of P . We note
that C only uses the secret key r and does not depend on h and z. In the ideal setting, where
r ← Uv, the attacker A does not use the values h and z (and anyway the optimal values of h and
z can be hardwired into A in the non-uniform model), yet, for notation convenience, we will still
pass h and z to A even in the ideal setting.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that the attacker “won
the game”. Since C is fixed by the definition of P (e.g., C runs the unforgeability game for
signature or the semantic security game for encryption, etc.), we denote byDA(r, h, z) the (abstract)
distinguisher which simulates the entire game between A(h, z) and C(r) and outputs the bit b, and
by WinA(r, h, z) = Pr[DA(r, h, z) = 1] the probability that A(h, z) wins the game against C(r).
With this notation, the probability of winning the game in the “real setting” is given by the random
variable WinA(H(X),H,Z), and the same probability in the ideal setting becomes WinA(Uv,H,Z).
Moreover, the difference between these probabilities is simply the distinguishing advantage of DA

6We use the word “resource” to include all the efficiency measures we might care about, such as running time,
circuit size, number of oracle queries, etc.
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of telling apart real and extracted randomness when given H,Z:

|WinA(H(X),H,Z) −WinA(Uv ,H,Z)| = ∆DA
(H(X), Uv | (H,Z)) (8)

As we justify next, to argue the security of P in the real setting assuming its security in the
ideal setting, it is sufficient for us to argue that the above distinguishing advantage is “small” for
all legal attackers A. And since the security of P will usually restrict the power of attackers A
(hence, also the power of abstract distinguishers DA), we may use the results of Theorem 3.2 to
argue better bounds on the entropy loss L = H̃∞(X|Z)− v.

Definition 3.1 Let c = 0 for unpredictability applications P (signature, MAC, one-way func-
tion, etc.) and c = 1

2 for indistinguishability applications P (encryption, pseudorandom func-
tion/permutation, etc.). Fix also the (1 + γ)2−v-universal hash family H and the joint distribution
(X,Z) satisfying H̃∞(X|Z) ≥ v + L, so that the real and the ideal model are well-defined.

We say that P is (T, ε)-secure in the ideal model if for all attackers A with resources less than
T , we have WinA(Uv,H,Z) ≤ c+ ε.

Similarly, P is (T ′, ε′)-secure in the real model if for all attackers A have resources less than
T ′, we have WinA(H(X),H,Z) ≤ c+ ε′.

Triangle inequality coupled with Equation (8) immediately yields the following Corollary.

Lemma 3.2 Fix L and γ defining the real and the ideal models. Assume P is (T, ε)-secure in
the ideal model, and for all attackers A with resources less than T ′ (where T ′ ≤ T ) we have
∆DA

(H(X), Uv | (H,Z)) ≤ δ. Then P is (T ′, ε+ δ)-secure in the (L, γ)-real model.

We are now ready to apply Lemma 3.2 and Theorem 3.2 to various cryptographic primitives
P . Below, we let c ∈ {0, 12} be the constant governing the security of P (0 for unpredictability and
1/2 for indistinguishability applications).

3.2.1 General Bound for “Strongly Secure” Applications

Fix h and z and consider any attacker A. We say that a key r ∈ {0, 1}v is τ -bad w.r.t. A(h, z) if
|WinA(r, h, z) − c| ≥ τ . We then say that P is strongly (T, τ, δ)-secure in the ideal model if for all
h and z and all attackers A(h, z) with resources less than T , we have

Pr
r←Uv

[r is τ -bad w.r.t. A(h, z)] ≤ δ (9)

Namely, the fraction of keys r on which A has advantage more than τ is at most δ. It is easy
to see that strong (T, τ, δ)-security implies (regular) (T, τ + δ)-security, since even on τ -bad keys
the advantage of A is at most 1. On the other hand, strong (T, τ, δ)-security w.r.t. A clearly
implies that the abstract distinguisher DA satisfies Equation (6). Therefore, we can apply part (a)
of Theorem 3.2 to Lemma 3.2 and get:

Theorem 3.3 Fix L and γ defining the real and the ideal models. Assume P is strongly (T, τ, δ)-
secure in the ideal model. Then P is (T, ε)-secure in the ideal model and (T, ε′)-secure in the
(L, γ)-real model, where

ε ≤ τ + δ and ε′ ≤ τ + δ +

√
(τ2 + δ) ·

(
γ +

1

2L

)
(10)

In particular, when τ = δ = ε/2, we get ε′ ≤ ε+
√

ε(γ + 2−L).
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Discussion. Strong security assumes that any attacker really fails on all but a negligible fraction
of keys. Although many cryptographic primitives achieve this level of security, a notable exception
is the one-time pad. Of course, this is not surprising, since we really do not expect to get any better
security bounds for the one-time pad than what is possible with the standard LHL. However, it is
instructive to see what goes wrong. Consider an attacker A who claims to distinguish a message
m0 whose first bit is 0 from a message m1 whose first bit is 1. When getting the ciphertext
e = mb ⊕ r, A outputs the first bit of e (call it b′). Clearly, the overall advantage of A is zero,
as Pr[b = b′] = Pr[r1 = 0] = 1/2, where r1 is the first bit of our key r. However, A is correct
with probability 1 on all keys r whose first bit is 0, and incorrect on all keys r whose first bit is 1.
Thus, as expected, one-time pad is not strongly secure according to our definition, since on every
key r the adversary’s odds of success are bounded away from 1/2. A similar problem happens with
other “deterministic indistinguishability” primitives, such as pseudorandom generators, functions
and permutations.

On the other hand, Theorem 3.3 readily applies to unforgeability applications (corresponding
to c = 0). For example, one can easily show that regular (T, τδ)-security implies strong (T, τ, δ)-
security. This simple observation can already give improved bounds on the entropy loss for this
setting. However, instead of pursuing this (rather loose) implication, in Section 3.2.2 we will directly
prove a much stronger bound: see Theorem 3.4.

Similarly, it appears reasonable to assume that concrete “probabilistic indistinguishability”
primitives, such as many semantically secure encryption schemes, satisfy a decent enough kind
of strong security. Once again, though, we will directly prove good security bounds for such
applications in Section 3.2.3, without making assumptions about their strong security.

To summarize, the bounds arising from strong security are useful and interesting, but better
bounds can often be obtained by direct analysis, as we show in Section 3.2.2 and Section 3.2.3.

3.2.2 Improved Bound for Unpredictability Applications

Recall, authentication applications correspond to c = 0, and include signature schemes, MACs, one-
way functions/permutations, etc. In this case (T, ε)-security in the ideal model implies that for any
T -bounded attacker A, E[WinA(Uv,H,Z)] ≤ ε. Recalling the definition of the abstract distinguisher
DA, this is the same as Pr[DA(Uv,H,Z) = 1] ≤ ε, which is precisely the pre-condition for part (b)
of Theorem 3.2. Thus, combining Equation (5) with Lemma 3.2, we immediate get:

Theorem 3.4 Fix L and γ defining the real and the ideal models. Assume authentication primitive
P (corresponding to c = 0) is (T, ε)-secure in the ideal model. Then P is (T, ε′)-secure in the (L, γ)-
real model, where

ε′ ≤ ε+

√
ε

(
γ +

1

2L

)
(11)

In particular, if γ = 0 and L = log (1/ε), then ε′ ≤ 2ε. Moreover, when γ = 0, the security bound
is meaningful even for negative entropy “loss” 0 ≥ L > − log (1/ε), when one extracts more bits
than the min-entropy H̃∞(X|Z) and “borrows the security deficit” from the ideal security of P .

Intuitively, Theorem 3.4 uses the fact that for authentication applications one only cares about
distinguishers which almost never output 1, since the attacker almost never forges successfully.

3.2.3 Improved Bound for Some Indistinguishability Applications

We now move to the more difficult case of indistinguishability applications, where c = 1/2. In
general, we do not expect to outperform the standard LHL, as illustrated by the one-time pad
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example. Quite surprisingly, we show that the for a class of applications, including stateless chosen
plaintext attack (CPA) secure encryption, one can still get improved bounds as compared to the
standard LHL. Specifically, as long as the primitive P allows the attacker A to “test” its success
before playing the actual “challenge” from C, we still get significant savings. We start by defining
the general type of security games where our technique applies.

Bit-Guessing Games. As usual the game is played by the attacker A = A(h, z) and the challenger
C(r). The game can have an arbitrary structure, except the winning condition is determined as
follows. At some point A asks C for a “challenge”. C flips a random bit b ∈ {0, 1}, and sends A a
value e = e(b, r). The game continues in an arbitrary way and ends with A making a guess b′. A
wins if b = b′.

So far, this still includes all standard indistinguishability games, including the one-time pad.
The extra assumption we make is the following. For any valid attacker A having resources less than
T ′ there exists another valid attacker A′ (having somewhat larger resources T ≥ T ′) such that:

(1) The execution between A′ and C(r) defines four bits b, b′, b̃, b̃′, such that the joint distribution
of (b, b′, b̃, b̃′) is the same as two independent tuples (b, b′) obtained when A runs with C(r).

(2) The bits b and b′ are precisely the secret bit of C and the guess of A′, so that A′ wins iff
b = b′.

(3) A′ learns if b̃ = b̃′ before outputting b′.

We will call such indistinguishability games (T ′, T )-simulatable.

Theorem 3.5 Fix L and γ defining the real and the ideal models. Assume indistinguishability
primitive P (corresponding to c = 1/2) is (T ′, T )-simulatable and (T, ε)-secure in the ideal model.
Then P is (T ′, ε′)-secure in the (L, γ)-real model, where

ε′ ≤ ε+

√
ε

(
γ +

1

2L

)
(12)

In particular, if γ = 0 and L = log (1/ε), ε′ ≤ 2ε. Moreover, when γ = 0, the security bound is
meaningful even for negative entropy “loss” 0 ≥ L > − log (1/ε), when one extracts more bits than
the min-entropy H̃∞(X|Z) and “borrows the security deficit” from the ideal security of P .

Proof. [(of Theorem 3.5)] By Lemma 3.2, it is sufficient to show that for all attackers A with
resources less than T ′ we have

∆DA
(H(X), Uv | (H,Z)) ≤

√
ε(γ + 2−L) (13)

In turn, using part (c) of Theorem 3.2, (13) will follow if we can show that

Pr[D′A[Uv,H,Z] = 1] ≤ 1

2
+ 2ε (14)

where D′A(r, h, z) runs DA twice (with independent coins), and then reverses the second answer if
the first answer is 0.

Let us examine the outputs of DA and D′A more closely. DA outputs a bit d which is 1 iff b = b′

(namely, A won the game). D′A (independently) runs DA twice, and observes the first answer d̃,
which is 1 iff b̃ = b̃′. If so, D′A simply returns the second answer d of DA, which is 1 if b = b′.
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Otherwise, D′A reverses d, which, for the bit-guessing games, is equivalent to reversing the second
output b′ of A to 1− b′.

As we can see, the behavior of D′A is almost identical to the behavior of the legal T -bounded
attacker A′ assumed by the (T ′, T )-simulatability of P . Indeed, the run of A′ defines two indepen-
dent runs of A (by condition (1)). A′ also learns whether the first run was successful (e.g., if d̃ = 1),
by condition (3). The only difference is that A′ always outputs the value b′, which results in the
final bit being d (by condition (2)). On the other hand, D′A reverses its output to 1− b′ if the first
run was not successful. So we can simply define another T -bounded7 attacker Ã who simply flips
the final output bit of A′ if the first run was not successful, which is within the rules by condition
(2). With this in mind, we get a T -bounded attacker Ã which wins the game precisely when D′A
outputs 1; in symbols, DÃ ≡ D′A.

Since Ã is a valid T -bounded attacker and DÃ ≡ D′A, the (T, ε)-security of P implies that
Pr[D′A[Uv,H,Z] = 1] ≤ 1

2 + ε, proving Equation (14). �

Below we show that stateless CPA-secure (public- or symmetric-key) encryption schemes are
simulatable, where, as expected, the “resources” T are roughly doubled compared to T ′. We start
with the slightly simpler public-key setting. In this case the attacker gets the public-key pk, and can
completely simulate the run of the challenger C, including the winning condition, since C does not
use the secret key r. In particular, for any CPA-attacker A we define A′ which first runs A against
“virtual C”, using the public-key to see if A correctly guessed the encrypted message. After that A′

can simply honestly simulate the run of A against the “actual C”. It is obvious that this simulation
satisfies conditions (1)-(3), at the expense of doubling the running time of A′ as compared with
A. We can also easily adjust it to the setting of chosen ciphertext attack (CCA) security, where
the challenger C can decrypt arbitrary ciphertexts for A. In this case, A still needs “actual C” to
simulate the decryption queries during the first “virtual run”. The only slight subtlety is to ensure
that A does not ask to decrypt the second (actual) challenge ciphertext during the first (virtual)
run, but the chances of that are easily seen to be negligible.

Things are similar for the symmetric-key setting, except A no longer gets the public-key, and
needs the help of “actual C” to simulate both the encryption queries and the challenge query of A
during the “virtual” run. Namely, to argue real CPA-security of P against q encryption queries,
we must assume ideal CPA security of P against (2q + 1) encryption queries, where the first q + 1
queries will be used to simulate the q encryption and 1 challenge queries of A during the first run.
Notice, since 2q + 1 ≥ 1, we indeed do not cover the one-time pad (or more generally, one-time
secure symmetric-key encryption), since its security does not allow any encryption queries.

Summarizing the above discussion, and using Theorem 3.5, we get:

Theorem 3.6 Fix L and γ defining the real and the ideal models, and set ε′ = ε+
√

ε(γ + 2−L).
Assume P is public-key encryption scheme which is ε-secure, in the ideal model, against attack-

ers with running time 2t + tenc, where tenc is the runtime of the encryption process. Then P is
ε′-secure, in the (L, γ)-real model, against attackers with running time t.

Similarly, assume P is a stateless symmetric-key encryption scheme which is ε-secure, in the
ideal model, against attackers with running time 2t+ O(1) and making 2q + 1 encryption queries.
Then P is ε′-secure, in the (L, γ)-real model, against attackers with running time t and making q
encryption queries.

Limitations and Extensions. Unfortunately, several other indistinguishability primitives, such
as pseudorandom generators, functions or permutations, do not appear to be simulatable. The

7We assume the decision to flip the output bit does not really change the resources of A′.
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problem seems to be in verifying the winning condition (condition (3) of simulatability), since this
has to be done with respect to the actual secret key r not known to the attacker. For PRFs (or
PRPs), it is tempting to solve the problem by using an equivalent definition, where the attacker
can learn the value of PRF at any point, but then, as a challenge, must distinguish the value of
the PRF at an un-queried point from random. Although this variant allows the attacker to check
the winning condition during the first “virtual” run, it now creates a different problem in that
the challenge point during the second “actual” run might have been queried during the first run,
making such an attacker A′ invalid.

Interestingly, the above “fix” works for a useful relaxation of PRFs, known as weak PRFs
(wPRFs). Here the attacker only gets to see the values of the PRF at several random points,
and has to distinguish a new value from random. Assuming a large enough input domain, the
probability of collision between the PRF values revealed in the first first run and challenged in the
second run, is negligible, which allows to complete the (valid) simulation. Similarly, it works for a
slightly stronger relaxation of PRFs, known as random-challenge PRFs. As with wPRFs, A gets
as the challenge a real-or-random evaluations of the PRF at a random point, but can additionally
query the PRF at arbitrary points different from the challenge point. In Section 3.3 we show that
wPRFs are all we need to apply our results to a generic key derivation function.

3.2.4 Numeric Examples

Strong Security. Assume X is a random element of 160-bit elliptic group, Z is empty, H is
(perfectly) universal, and we wish to extract 128-bit AES key R to be used in some block-cipher
based MAC (e.g., CBC-MAC). Thus, L = 160 − 128 = 32. Using standard LHL, we can achieve
security at most 2−L/2 = 2−16, irrespective of the MAC security. However, assume that (for some
T ) the MAC is strongly secure with τ = 2−50 and δ = 2−70 (i.e., the probability of forgery is at
most 2−50 for all but 2−70 fraction of keys), which seems quite reasonable. Using Equation (10),
we get security ε′ ≤ 2−50 + 2−70 +

√
(2−100 + 2−70)2−32 ≈ 3

2 · 2−50. This bound is not only much
better than 2−16, but is essentially the same as the regular 2−50-security we started from in the
ideal setting!

Unpredictability. Consider again the setting AES-based MAC, where the key size v = 128.
Now, let us assume that (for some T and query bound q ≤ 224) the MAC is 2−80-secure, so ε = 2−80.
As before X is uniform over some elliptic curve group, but now let us consider the group size u as a
parameter, and see how the our security bounds degrade with u. In all the cases, assume perfectly
universal hash family. Using the standard LHL, we get ε′ = ε+ 2(v−u)/2 = 2−80 + 264 · 2−u/2. This
bound is meaningless when group size u ≤ 128, gives very low ε′ ≈ 2−16 for u = 160, and needs
u = 288 to have ε′ = 2ε = 2−79. Using Theorem 3.4, we get ε′ = ε+

√
ε2v−u = 2−80 + 224 · 2−u/2.

For a 128-bit group, it gives a “respectable” ε′ ≈ 2−40, while not losing any entropy. For u = 160,
it gives already good ε′ ≈ 2−56, and only needs the group size u = 208 to achieve ε′ = 2ε = 2−79.
Remarkably, with our bounds one may get non-trivial results even when the group’s entropy u
is smaller than the required output, namely, gaining entropy rather than losing it!. For example,
consider deriving an HMAC-SHA-256 key from a 160-bit group. Assuming HMAC-SHA-256 has
security of 2−180 (against an attacker of certain resources and with a 256-bit random key), our
results show that deriving the key from a much shorter 160-bit group element still provides a
non-trivial security bound of 2−42 while gaining 96 bits of entropy.

Indistinguishability. Consider the AES-CBC encryption setting with keys of size v = 128. Let
us assume that (for some t) the resulting CBC encryption is 2−50-secure (so ε = 2−50) against
CPA attacker running in time 2t + tenc and making a million encryption queries. As before, X
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is uniform over some elliptic curve group and we will consider the group size u as a parameter.
In all the cases, assume a perfectly universal hash family. Using the standard LHL, we get ε′ =
ε + 2(v−u)/2 = 2−50 + 264 · 2−u/2 (although do not need to lose a factor of 2 in the run-time and
the number of encryption queries). This bound is meaningless when group size u ≤ 128, gives very
low ε′ ≈ 2−16 for u = 160, and needs u = 228 to have ε′ = 2ε = 2−49. Using Theorem 3.6, we
get ε′ = ε +

√
ε2v−u = 2−50 + 239 · 2−u/2. This bound is non-trivial even for u = 100 bits, despite

extracting 128 bits! For 128-bit group, it gives a decent ε′ ≈ 2−25, while not losing any entropy.
For u = 160, it gives already good ε′ ≈ 2−41, and only needs the group size u = 188 to achieve
ε′ = 2ε = 2−49.

Note that all of the above examples apply to deriving keys from Diffie-Hellman values gxy

over the corresponding groups assuming the Decisional Diffie-Hellman assumption and setting the
conditioning variable Z to the pair (gx, gy).

3.3 A Generic Key Derivation Function

So far we have discussed the applications of our generalized Leftover Hash Lemma and Theorem 3.2
to the derivation of cryptographic keys in entropy-constraint environments for specific applications.
Although our analysis covers many such applications, it does not cover all, including PRFs and
stream ciphers. In this section we make a simple observation which allows us to overcome this
limitation and design a generic key derivation function (KDFs) which is (computationally) secure
for any cryptographic application while still enjoying the same entropy loss savings. The idea is to
compose universal hash functions a weak PRF (wPRF), where the random input to the wPRF now
becomes part of the extractor seed, and use the fact that wPRFs fall under the class of simulatable
applications as defined in Section 3.2.3.

Specifically, we define the KDF Ext on the basis of a (1 + γ)/2v-universal hash family H with
v-bit outputs and a wPRF F taking a k-bit input w and a v-bit key r. Without loss of generality, we
assume the output length of Fr(w) is also v bits, as one can always turn an ℓ-bit output wPRF F ′,

where ℓ < v, into a v-bit output wPRF F , by setting Fr(w1, . . . , wt)
def
= (F ′r(w1) . . . F

′
r(wt)), where

t = ⌈v/ℓ⌉. The public seed s for the KDF Ext is a pair s = (h,w), where h is a random universal

function from H and w is a random element in the domain of F . We then define Ext(x, (h,w))
def
=

Fh(x)(w); i.e., the initially extracted value h(x) is used as a wPRF key, which is then used to
evaluate F on w.

Theorem 3.7 Assume F,H,Ext are defined as above, which fixes the values of v, k and γ. Let X
be any distribution of min-entropy m ≥ v + L, and assume that F is an ε-secure wPRF against
attackers A with of size 2t learning one value of F before the (random) challenge:

|Pr[A(W1,W2, FR(W1), FR(W2)) = 1]− Pr[A(W1,W2, FR(W1), Uv) = 1]| ≤ ε

Then no attacker B of size t can distinguish the output of Ext from uniform with advantage better

than ε′
def
= ε+

√
ε(γ + 2−L) + 1

2k
. Namely,

|Pr[B(Ext(X, (H,W )), H, W, Z)) = 1]− Pr[B(Uv, H, W, Z) = 1]| ≤ ε′

In particular, if the extracted bits are used as a key for any application P having δ-security against
attackers of size t′ ≤ t in the ideal model, then P is δ+ε′ secure against the same class of attackers
in the (L, γ)-real model.

Proof. Follows in the same manner as the proof of Theorem 3.6 for symmetric-key encryption
with q = 0, with wPRF playing the role of symmetric-key encryption, since the pseudorandomness
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of the extracted bits Ext(X, (H,W )) = FH(X)(w) corresponds to wPRF security in the real model

under no message attack (q = 0). The extra term 1/2k in ε′ corresponds to the probability of
collision between the simulated run and the real run. �

We also notice that if one needs to extract multiple keys for several applications, we can simply
use the output of our computational KDF as a seed of a regular PRG or PRF, since such applications
are now “covered”.

Remark 3.1 For the case of deriving multiple keys, as above, we notice that the wPRF step is
not needed provided all the keys are for cryptographic applications covered by our technique (i.e.,
strongly secure, unpredictable, or simulatable primitives). Namely, in such a case we can directly
use the initially extracted key H(X) as a seed for the (regular) PRF/PRG to derive all the required
keys. This allows us to avoid increasing the seed length by k bits, and saves one application of
wPRF. The proof of this claim follows by a simple hybrid argument (which we omit). In general,
though, the wPRF-based solution is preferable, as it adds considerable generality at a relatively
moderate cost. Additionally, the wPRF security ε (against a single query) in Theorem 3.7 might
be considerably lower than the security δ of the application P for which we extract of key (e.g.,
if P is a stateless CPA-secure encryption scheme based on wPRFs). In this case, the error term√

ε(γ + 2−L) in Theorem 3.7 might be much smaller than the corresponding term
√

δ(γ + 2−L),
obtained by direct analysis using tools in Section 3.2.

3.4 Comparison to Random Oracle

It is also instructive to compare our new generalized LHL (GLHL) bound with the heuristic “dream”
bound obtained by using cryptographic hash functions H as extractors. In the latter case, we claim
that, when extracting a v-bit key for a primitive P with security ε using a random oracle (RO), the
security degrades by roughly ε2−L, where the “entropy loss” L is still defined to be m−v.8 Indeed,
in the RO model the value H(X) can be distinguished from random only if the attacker queried
the random oracle of X. Since X has min-entropy m, this happens with probability at most T/2m,
where T is an upper bound on the adversary’s running time. Also, since our our application P is
ε-secure against attackers of complexity T , we must have ε ≤ T/2v , since the attacker should not
be able to find the correct key by exhaustive search with probability more that ε (moreover, this
bound might be tight for many practical applications, where v is equal to the security parameter).
Thus, T ≈ ε · 2v, and the attacker’s chance of distinguishing H(X) from uniform is at most

εRO =
T

2m
≈ ε · 2v

2v+L
= ε2−L

In contrast, our GLHL analysis achieved security degradation εGLHL =
√
ε2−L (recall also that

traditional LHL analysis had degradation εLHL =
√
2−L). Thus, not surprisingly, the heuristic

random oracle bound is still better than the GLHL bound, as it does not involve the square root
operation. Of course, it is achieved by resorting to an idealized heuristic, while the GLHL bound
applies to very simple extractors in a rigorous and provable way. Moreover, our results show, for the
first time, that the dependency on the security of the cryptographic primitive (represented by ε) is
not just the property of idealized functions but applies to any LHL-based extractor. In particular,
just like the RO bound (and unlike standard LHL), our GLHL bound is meaningful even for the

8Of course, one can always make the output length v arbitrarily large in the random oracle model, much like
in the standard model one can (computationally) amplify v using a pseudorandom generator. So, for a meaningful
comparison between LHL and RO, one should think of v as equal to security parameter in both settings.
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entropy gain situations 0 ≥ L > − log (1/ε), where we “borrow” the security from the application
at hand.

In practical terms, the RO heuristic allows min-entropy m = v to achieve comparable security
εRO = O(ε), GLHL analysis permits m = v + log (1/ε) for εGLHL = O(ε), while the standard LHL
analysis requires m = v + 2 log (1/ε) for εLHL = O(ε). Thus, while our analysis does not quite
match the RO heuristic, it significantly narrows the gaps between provable and heuristic startup
entropy bounds.

4 Reducing the Seed Length

In this section we study the soundness of the natural expand-then-extract approach described
in the Introduction. After providing the needed definitions below, in Section 4.1 we show that,
unfortunately, the expand-then-extract approach will not work. In general (under the DDH as-
sumption). We show two positive results which nicely complement our counter-example. First,
in Section 4.2 we show that the expand-then-extract approach always works (and even gives a
regular, not just computational, extractor!) provided the number of extracted bits v is “small”.
Second, in Section 4.3 we show that the expand-then-extract approach is sound in minicrypt, which
shows that (1) any counter-example must use assumptions from cryptomania (such as DDH); (2)
the expand-then-extract approach is likely secure when used with “practical” PRGs, despite the
lack of a reductionist proof.

Negligible and Friends. We use k to denote a security parameter. A function µ : N → [0, 1]
is negligible if for any c > 0 there is a k0 such that µ(k) ≤ 1/kc for all k ≥ k0. To the contrary, µ
is non-negligible if for some c > 0 we have µ(k) ≥ 1/kc for infinitely many k. Throughout, negl(k)
denotes a negligible function in k.

A function τ(·) : N → [0, 1] is overwhelming if 1 − τ(·) is negligible. A function φ : N → [0, 1]
is noticeable if for some c > 0 there is an k0 such that φ(k) ≥ 1/kc for all k ≥ k0. Note that

non-negligible is not the same as noticeable. For example, µ(k)
def
= k mod 2 is non-negligible but

not noticeable.

Computational Extractors and PRGs. Recall that with ∆D(X,Y )
def
= | Pr[D(X) = 1] −

Pr[D(Y ) = 1] | we denote the advantage of a circuit D in distinguishing the random variables X and
Y . Let Dt denote the class of all probabilistic circuits of size t. With CDt(X,Y ) = maxD ∆D(X,Y )
we denote the computational distance of X and Y , here the maximum is over D ∈ Dt. When
t = ∞ in unbounded, we recover the notion of statistical distance SD(X,Y ). When X = Xk

and Y = Yk are families of distributions indexed by the security parameter k, we will say that
X and Y are computationally indistinguishable, denoted X ≈c Y , if for every polynomial t(.),
CDt(k)(Xk, Yk) = negl(k).

Definition 4.1 (Computational Extractor) We say that an efficient function Ext : X×{0, 1}n →
{0, 1}v is an (average-case, strong) computational m-extractor (for space X ), if for all efficiently
samplable X,Z such that X is distributed over X and H̃∞(X|Z) ≥ m (here X , n, v,m are all
indexed by a security parameter k)

(Ext(X;S), S, Z) ≈c (Uv , S, Z)

Definition 4.2 (Pseudorandom Generator) A length increasing function Prg : {0, 1}k → {0, 1}n
is a pseudorandom generator (PRG) if9 Prg(Uk) ≈c Un. We also say that Prg is (T, δ)-secure if

9In order to avoid an extra parameter, we simply assume wlog that the seed length of our PRG is equal to the
security parameter k.

18



CDT (Prg(Uk), Un) ≤ δ.

Computational Extractors with Short Seeds? We are ready to formalize our main ques-
tion: Is it safe to expand an extractor seed using a PRG?

Hypothesis 1 [Expand-then-Extract] If Ext is an (m(k), ε(k))-extractor with seed length n(k)
where ε(.) is negligible and Prg : {0, 1}k → {0, 1}n(k) is a pseudorandom generator, then Ext′

defined as
Ext′(x; s) = Ext(x;Prg(s))

is a computational m-extractor.

4.1 Counter-Example: Expanding Seeds is Insecure in General

In this section we show that, unfortunately, Hypothesis 1 is wrong in general.

Theorem 4.1 (Hypothesis 1 wrong assuming DDH) Under the DDH assumption, there ex-
ists a pseudorandom generator Prg(.) and a strong extractor Ext(.; .) (which is a perfectly universal

hash function) such that Ext′(x; s)
def
= Ext(x;Prg(s)) can be efficiently distinguished from uniform

on any input distribution (i.e. Ext′ is not a computational extractor.)

Proof. [of Theorem 4.1] Let G be a prime order p cyclic group with generator g where the DDH
problem is hard. Then Prg : Z3

p → G6 defined as

Prg(a, b, c) = (ga, gb, gab, gac, gbc, gabc) (15)

is a a secure pseudorandom generator [30]. Let Ext : Z3
p × G6 → G2 be

Ext((x, y, z); (A,B,C,D,E, F )) = (AxByCz,DxEyF z)

It is easy to see that Ext is a perfectly universal hash function from Z
3
p → G2 (and, by Lemma 2.1,

strong (2 log p+ 2 log (1/ε) , ε)-extractor). Now consider the distribution

[Ext((x, y, z);Prg(a, b, c)) , (a, b, c)] = [(gaxgbygabz , gacxgbcygabcz) , (a, b, c)] (16)

The distribution (16) is not pseudorandom as any tuple (α, β), (a, b, c) ∈ G2 × Z
3
p of the form (16)

satisfies αc = β, which can be efficiently verified, while a random distribution will satisfy this
relation only with probability 1/p. �

4.2 Expanding Seeds is Safe when Extracting Few Bits

By the following theorem, the expand-then-extract Hypothesis does hold, if the pseudorandom
generator Prg used for expansion is sufficiently strong. The required hardness depends exponentially
on the output length v of the extractor.

Theorem 4.2 Assume Ext : X × {0, 1}n → {0, 1}v is a (m, ε)-extractor with running time tExt,
and Prg : {0, 1}k → {0, 1}n is a (T,

√
ε)-pseudorandom generator, for some

T ∈ O
(
22v(n+ v)tExt/ε

)
(17)

Then Ext′(x; s)
def
= Ext(x;Prg(s)) is a (m, 4

√
ε)-extractor. In particular, if the running time of Ext

is polynomial in k, its error ε(k) = negl(k), its output size v = O(log k), and Prg is secure against
polynomial (in k) size distinguishers, then Ext′ is an (m, ε′)-extractor for ε′(k) = negl(k).
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Proof. [(of Theorem 4.2)] Consider any distribution (X,Z) where H̃∞(X|Z) ≥ m. Given fixed
z ∈ Z, let Xz be the distribution of X conditioned on Z = z. Also, for a given s′ ∈ {0, 1}n and
z ∈ Z, define

φ(s′, z)
def
= SD(Ext(Xz ; s

′) , Uv |Z = z , s′ ) (18)

We start with the following auxiliary claim which, roughly, states that the values φ(s′, z) can
be approximated by circuits of size exponential in the number of extracted bits v:

Claim 4.1 For any z ∈ Z there is a circuit Cz of size T = O
(
22v(n+ v)tExt/ε

)
outputting a real

number (up to some accuracy) such that, for all s′ ∈ {0, 1}n, we have |Cz(s
′)− φ(s′, z)| <

√
ε
2 .

Proof. [of Claim] Recall that

φ(s′, z) =
1

2

∑

w∈{0,1}v

∣∣∣∣Pr[Ext(Xz; s
′) = w]− 1

2v

∣∣∣∣ (19)

Thus, to prove the claim, it suffices to show the existence of circuit C ′z(s
′) of size O(T ) which

outputs 2v estimates {pw | w ∈ {0, 1}v} for all probabilities Pr[Ext(Xz ; s
′) = w], where each pw is

within accuracy δ
def
=
√
ε
2 · 1

2v from its true value: |pw − Pr[Ext(Xz; s
′) = w]| < δ.

Using the Chernoff bound, we observe that for any s′ ∈ {0, 1}n and any w ∈ {0, 1}v , we can
approximate the probability Pr[Ext(Xz; s

′) = w] with accuracy δ and error probability strictly less

than τ
def
= 2−n−v, using “only” N

def
= O(log(1/τ)/δ2) = O((n + v)22v/ε) independent samples of

Xz. Taking the union bound over all such s′ and w, we get that there exist N particular values
of x1, . . . , xN ∈ X such that for all s′ ∈ {0, 1}n and w ∈ {0, 1}v , all the empirical probabilities
that Ext(Xz; s

′) = w (computed by averaging the xi’s above) are within δ of their true values.
Hardwiring these N values of x1 . . . xN into our circuit C ′z(s

′) and running the extractor Ext(xi, s
′)

on these values to compute all the empirical probabilities, we indeed get the required circuit C ′z(s
′)

of size O(T ) = O(NtExt). �

Consider now a distinguisher Dz(s
′) defined as follows:

Dz(s
′) =

{
1 if Cz(s

′) > 3
√
ε

2
0 otherwise

Since Dz has size T and our PRG is (T,
√
ε)-secure, we have

Pr[Dz(Prg(Uk)) = 1] ≤ Pr[Dz(Un) = 1] +
√
ε

Recalling the definition of Dz above, and that the circuit Cz approximates φ(s′, z) with accuracy√
ε/2 (by Claim), we get that for any value of z ∈ Z,

Pr[φ(Prg(Uk), z) > 2
√
ε] ≤ Pr

[
Cz(Prg(Uk)) >

3
√
ε

2

]
= Pr[Dz(Prg(Uk)) = 1]

≤ Pr[Dz(Un) = 1] +
√
ε = Pr

[
Cz(Un) >

3
√
ε

2

]
+
√
ε

≤ Pr[φ(Un, z) >
√
ε] +
√
ε

Taking the expectation over Z, we get

Pr[φ(Prg(Uk), Z) > 2
√
ε] ≤ Pr[φ(Un, Z) >

√
ε] +
√
ε (20)
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Recalling now the definition of φ(s′, z) from Equation (18), and using Equation (20), we get

SD(Ext′(X;S) , Uv |Z , S ) = SD(Ext(X;Prg(S)) , Uv |Z , S )

= Es←Uk,z←Z[φ(Prg(s), z)]

≤ Pr[φ(Prg(Uk), Z) > 2
√
ε] · 1 + 1 · 2

√
ε

≤ Pr[φ(Un, Z) >
√
ε] + 3

√
ε

Finally, because Ext is (m, ε)-extractor, we must have

ε ≥ SD(Ext(X;S′) , Uv |Z , S′ ) = Es′,z[φ(s
′, z)] ≥ Pr[φ(Un, Z) >

√
ε] ·
√
ε

which means that Pr[φ(Un, Z) >
√
ε] ≤ √ε and SD(Ext′(X;S) , Uv |Z , S ) ≤ 4

√
ε. �

Discussion. It is interesting to examine the best possible seed length one can obtain by using
Theorem 4.2, even with exponentially-secure PRGs. Replacing ε by

√
ε, we get that in order to

obtain (m, ε)-secure v-bit extractor, we need a PRG which is (T,O(ε))-secure against circuits of
size Õ(4v/ε2). Clearly, such a PRG must have a seed of length k ≥ log T = Ω(v + log (1/ε)).
Conversely, under an exponential assumption on the PRG, such a seed length suffices. Assuming a
PRG with such a seed length is not unreasonable, provided that the length of the extracted key v is
not too large. I.e., for v = 128 and ε = 2−80, it seems plausible that a seed length of size, say, 1000
might already suffice. The bad news is that we can achieve the same seed length O(v + log (1/ε))
using almost universal hash functions [40, 39], without any computational assumptions, and without
too much (if any) efficiency degradation. Thus, the result of Theorem 4.2 is mainly of theoretical
interest, since better constructions for the same goal are easily achievable.

4.3 Expanding Seeds is Safe in Minicrypt

Before we can state the main result of this section, we need a few more definitions.

Bit-Agreement. Bit-agreement is a protocol between two efficient parties, which we refer to as
Alice and Bob. They get the security parameter k in unary (denoted 1k) as a common input and can
communicate over an authentic channel. Finally, Alice and Bob output a bit bA and bB, respectively.
The protocol has correlation ǫ = ǫ(k), if for all k, Pr[bA = bB] ≥ (1 + ǫ(k))/2. Furthermore, the
protocol has security δ = δ(k), if for every efficient adversary Eve, which can observe the whole
communication C, and for all k, Pr[Eve(1k, C) = bB] ≤ 1− δ(k)/2.

Key-Agreement & PKE. If ǫ(·) and δ(·) are overwhelming then such a protocol achieves key-
agreement. Using parallel repetition and privacy amplification, it is known [21, 20] that any protocol
which achieves bit-agreement with noticeable correlation ǫ(·) and overwhelming security δ(·) can
be turned into a key-agreement protocol, without increasing the number of rounds. A 2-message
key-agreement protocol is equivalent to public-key encryption (PKE).

Theorem 4.3 (Hypothesis 1 holds in minicrypt) If there exists a secure pseudorandom genera-

tor Prg and a strong extractor Ext where Ext′(.; .)
def
= Ext(Prg(.); .) is not a computational extractor,

then the protocol from Figure 1 is a two-message bit-agreement protocol with noticeable correlation
and overwhelming security (and thus implies PKE).

Remark 4.1 In the above theorem not being a secure computational extractor means that there
exists an efficient uniform D that can distinguish Ext(Prg(.); .) with noticeable advantage (in the
security parameter k). If Ext(Prg(.); .) is only insecure against non-uniform adversaries, then also
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the resulting protocol (which uses D) will be non-uniform. If the distinguisher D only has non-
negligible advantage (i.e. only works for infinitely many, but not all, security parameters k), then
also the protocol will work for infinitely many k. This issue is inherent in win-win type results
where an adversary is turned into a “useful” protocol [13, 34, 11, 35]. It roots in the fact that
in cryptography we usually put weak requirements for adversaries to be considered efficient (can
be non-uniform and only have non-negligible advantage), whereas we usually require from practical
algorithms to be uniform and secure for all (sufficiently large) security parameters.

Proof. [of Theorem 4.3] Let Ext : X × {0, 1}n → {0, 1}v , Prg : {0, 1}k → {0, 1}n be as in the
Theorem, i.e. where for some efficiently samplable distribution (X,Z) s.t. H̃∞(X|Z) ≥ m = m(k),
there exists a distinguisher D such that for some noticeable µ = µ(k), with s← Uk , r ← Uv

Pr[D(Ext(x;Prg(s)), s, z) = 1]− Pr[D(r, s, z) = 1] ≥ µ(k) (21)

Claim 4.2 The protocol has overwhelming security.

Proof. [of Claim] An adversary Eve observing the communication between Alice and Bob sees either

Z0 ≡ (Ext(x;Prg(s)),Prg(s), z) if bB = 0 or Z1 ≡ (Uv ,Prg(s), z) if bB = 1

It follows directly from the security of Prg and Ext that Z0 and Z1 are pseudorandom, and thus
computationally indistinguishable. I.e.

Pr[Eve(1k, {r, s′, z}) = bB] = 1/2 + negl(k) = 1− δ(k)

2
.

for an overwhelming δ(k). �

Claim 4.3 The protocol has noticeable correlation µ(k).

Proof. [of Claim] By Equation (21) and the definition of the protocol (where bA = D(s, r) with
r ≡ Ext(x;Prg(s)) if bB = 0 and r ≡ Uv if bB = 1) we get

Pr[bA = 1|bB = 1]− Pr[bA = 1|bB = 0] ≥ µ

Which implies noticeable correlation µ

Pr[bA = bB] = Pr[bB = 1]︸ ︷︷ ︸
=1/2

Pr[bA = 1|bB = 1] + Pr[bB = 0]︸ ︷︷ ︸
=1/2

Pr[bA = 0|bB = 0]︸ ︷︷ ︸
=1−Pr[bA=1|bB=0]

≥ 1

2
(Pr[bA = 1|bB = 1] + 1− Pr[bA = 1|bB = 0]) =

1 + µ

2

�

�

We obtain the following corollary whose proof is immediate from Figure 1 and our proof of
Theorem 4.3.
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Alice
s← Uk; s

′ ← Prg(s)

bA ← D(r, s, z)

Bob
(x, z)←(X,Z)

bB←U1

if bB = 0 then r← Ext(x; s′)
else if bB = 1 then r ← Uv

s′

r, z

Figure 1: A bit agreement protocol from any Prg,Ext that constitute a counterexample (via distin-
guisher D) to Hypothesis 1.

Corollary 4.1 Assume Prg is a secure pseudorandom generator. Assume further that there exists
no public-key encryption scheme (with non-negligible gap between security and decryption correct-
ness) having: (a) pseudorandom ciphertexts, (b) secret key equal to the seed of Prg and public key
equal to the output of Prg; (c) tight security reduction to the security of Prg. Then the expand-
then-extract hypothesis is true for Prg.

Discussion. Corollary 4.1 reduces the soundness of the expand-then-extract approach to the
impossibility of constructing public-key encryption which is as secure as the given PRG, and,
moreover, has a very particular form: its ciphertexts are pseudorandom and, more importantly,
the key-generation algorithm samples a random s and sets sk = s, pk = Prg(s). Of course, specific
number-theoretic PRGs, such as the PRG from Equation (15) used in our counter-example, might
very well give such an encryption scheme. E.g., a simple variant of ElGamal encryption scheme
would be the desired encryption scheme for the DDH-based PRG used in our counter-example.
However, to the best of our knowledge, this impossibility assumption seems very likely for “prac-
tical” PRGs, such as AES (in counter mode, say), which are not based on number theory and do
not seem to have any algebraic structure. For example, not only there is no black-box construction
of PKE (or key agreement) from a PRG alone, as shown by Impagliazzo and Rudich [24], but, in
fact, it is entirely consistent with current knowledge that these two tasks are separable, in the sense
that there is some computational model/complexity class (e.g., perhaps some extension of BQP or
AM ∩ coAM) that is powerful enough to break all public key schemes, but not powerful enough to
break AES. If this is the case, then the AES-bases expand and extract scheme is secure with respect
to all efficient input distributions and distinguishers (even those that are based on public key tools
such as factoring, lattices etc.), since the resulting (hypothetical) PKE cannot be as secure as AES.
Moreover, we do not know any black-box construction of PKE from PRG and any other “cryptoma-
nia” assumption (like non-interactive zero-knowledge proofs, fully-homomorphic or identity-based
encryption, etc.), where the public key of the PKE is simply the output of the PRG, even if the
reduction is allowed to bo loose (which is not allowed in our case). To summarize, our results give
strong evidence that the expand-then-extract approach is secure using any “practical” PRG (like
AES), despite being generally insecure in theory (e.g., when used with “number-theoretic” PRGs).

Concrete Security. Assuming one believes the assumptions of Corollary 4.1, we can try to
informally estimate the concrete (computational) security ε′ of Ext′ as a function of (statistical)
security ε of Ext and (computational) security δ of Prg. Examining the proof of Theorem 4.3, we can
see that the key agreement protocol achieves (computational) semantic security ε+ δ, and achieves
a non-negligible gap between this security and correctness of decryption as long as the hypothetical
distinguisher D breaks the expand-then-extract approach with advantage slightly more than ε+ δ.
Thus, it is reasonable to conjecture that, with a “friendly” PRG, Ext′ achieves concrete security
only negligibly worse than ε + δ, which was precisely the naive hope one might have had at the

23



beginning.

Oblivious Transfer. In fact, notice that the PKE that we obtained from our PRG has the
following property: if one replaces the public key of the PKE from pseudorandom pk = Prg(s) to
truly random pk ← Un, then the encrypted bit b is statistically hidden. It is easy to see that such
a special PKE easily yields a 2-round oblivious transfer protocol secure against honest-but-curious
receiver, which is one of the the strongest primitives in cryptomania. Indeed, imagine Alice has a
choice bit b ∈ {0, 1}. She then sets pkb ← Prg(S) and pk1−b ← Un and sends pk0, pk1 to Bob. Bob,
who holds two bits σ0 and σ1, uses our PKE to encrypt σ0 and σ1 under pk0 and pk1, respectively.
Alice can then recover σb and gets no information about σ1−b.

Remark 4.2 So far we stated the expand-then-extract approach assuming that the original “long-
seed” extractor Ext is a statistical extractor. However, everything we said also holds if Ext itself is
a “long-seed” computational extractor, such as the one designed in Section 3.3.

5 Extractor Standard

Although we leave the detailed exploration of this direction to future work, one can easily combine
the results of Section 3 and Section 4 to get a concrete randomness extractor — leading perhaps
to an “extractor standard” advocated in the Introduction — with an improved entropy loss and a
fixed-length seed. The idea is to use a pseudorandom function F , such as AES, to first implement
the general-purpose (long-seed) computational extractor from Section 3.3, and then use the expand-
then-extract approach, with the same PRF in the counter mode, to provide the long seed required
by this computational extractor. As explained in Remark 4.2, this approach is still sound and
will provide the improved entropy loss bounds with a fixed-length seed, as long as one believes
the assumptions stated in Corollary 4.1. Moreover, under proper optimizations, the efficiency of
our approach will likely be comparable with (or faster than) that of existing cryptographic hash
functions.

Of course, figuring out the optimal (almost) universal hash function, as well as the best set-
ting of parameters to compose such a hash functions with a practical PRF, requires non-trivial
engineering effort, and will likely depend on a particular scenario as hand (e.g., hardware support
for fast field arithmetic, availability of cryptographic co-processor, etc.) Therefore, we leave this
interesting research to future work, here only providing an extremely simple implementation of such
an extractor, based on the AES block cipher and the simple inner-product universal hash function.
Although our implementation might not be the fastest way to instantiate our general approach, its
efficiency is already compatible with the speed of existing cryptographic hash functions.

Concrete Proposal. We will use the AES block cipher which has key, input and output
size equal to k = 128 bits, and use the notation AESs(w) to denote the evaluation of AES with
key s and input w. Given a (variable-length) n-block input X = (x1 . . . xn), we let xn+1 = 〈n〉
denote a block holding the length of X, which we append to X to ensure suffix-freeness. We
will also use the following simple inner product function IP(X;S), whose (variable-length) input
X = (x1 . . . xn, xn+1) and seed S = (s1 . . . sn+1) are both interpreted as n elements of the finite field
GF [2128] (thus, addition ‘+’ and multiplication ‘·’ are interpreted according to the corresponding
finite field operation):

IP(X;S) = IP((x1, x2, . . . xn, xn+1); (s1, s2, . . . sn+1))
def
= x1 ·s1+x2 ·s2+. . .+xn ·sn+xn+1 ·sn+1 (22)

It is well known that the above inner-product function is perfectly universal (so γ = 0) even for
variable-length inputs X (this is why we set xn+1 = 〈n〉). We will first apply the technique from
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Section 3.3, and use a seed S′ = (w,S), where w ∈ GF [2128] is a random point required for the
wPRF application. Namely, we define

Ext′(X;S′) = Ext′(X; (w,S))
def
= AESIP(X;S)(w) = AESx1·s1+...+xn+1·xn+1

(w) (23)

Finally, we will use the expand-then-extract approach to expand a single 128-bit seed s to generate
the required (n + 2) blocks of the long seed S′, and define our final computational extractor as
follows:

Ext(X; s)
def
= Ext′(X; (AESs(0),AESs(1), . . . ,AESs(n))) (24)

= AESx1·AESs(1)+...+xn+1·AESs(n+1)(AESs(0)) (25)

Supporting Longer Outputs. We notice that our final extractor Ext only extracts k = 128
bits. Of course, if the application needs to extract v > 128 bits, we can always use a pseudorandom
generator to expand our extracted 128-bit key to produce the desired number of bits. E.g., in the
case of using AES, we can simply use the value r = Ext(X; s) and output AESr(1), . . . ,AESr(t),
where t = ⌈v/128⌉. Assuming the counter mode of AES is a good stream cipher (which is anyway
needed to apply the expand-then-extract approach), the resulting v bits will be pseudorandom as
long as the initial key r is such.

Efficiency Notes. We notice that the key schedule for AES can be reused and (pre-)computed
only once when evaluating AESs(0),AESs(1), . . .. Similar reuse of the key schedule can also be done
when the output of our extractor needs to be longer than 128 bits, as explained above. Finally,
our computational extractor is friendly to variable-length streaming sources X = x1, x2, . . ., as the
intermediate AES key x1 ·AESs(1)+ . . .+xn+1 ·AESs(n+1) can be easily computed on-line, without
a-priori knowing the number of blocks n.

Concrete Security. Assume the min-entropy of X is m = 128+L, where L is the entropy loss.
Consider also some application P which requires a random v-bit key r, and has ideal security δ in
this case (against some class of attackers). For simplicity, we assume v = 128, as longer outputs can
be computed pseudorandomly from a 128-bit output, as explained above. We now derive bounds
of the “real” security δ′ of P when we use the extracted values IP(X;S) (see Equation (22)),
Ext′(X;S′) (see Equation (23)) and Ext(X; s) (see Equation (25)), respectively, as the “real” key
for P .

Using IP(X;S). Applying the standard LHL to the perfectly universal inner product function IP,
we get δ′ ≤ δ +

√
2−L. For the common case when P is a “GLHL-friendly” application (e.g.,

MAC or stateless CPA encryption scheme), the results form Section 3.2 give an improved
bound

δ′ ≤ δ +
√
δ · 2−L (26)

Using Ext′(X;S′). Here we no longer need to assume that P is “GLHL”-friendly, and can use the
computational results from Section 3.3. Namely, let ε be the wPRF security of AES (against
the same complexity attackers as P ) against a single wPRF query, as defined in Theorem 3.7.
Then, Theorem 3.7 implies that

δ′ ≤ δ + ε+
√
ε2−L +

1

2128
(27)

This bound has two advantages over the bound in Equation (26), when using IP(X;S) as the
key. First, we no longer need to settle for “GLHL”-friendly applications (e.g., P could be a
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stream cipher). Second, in practice we often expect δ ≫ ε, since ε is a the security of AES
against very limited wPRF attackers (who only learn the real AES value at one random point).
In this case, to achieve δ′ = O(δ), the previous analysis requires entropy loss L = log(1/δ),
while the new analysis only needs entropy loss L = 2 log(1/δ)− log (1/ε) < log(1/δ), as δ ≫ ε.

Using Ext(X; s). The previous two extractors IP and Ext′ had long (potentially variable-length)
seeds S and S′ = (S,w). Our final extractor Ext uses a short 128-bit seed s, and will be
a good computational extractor assuming AES satisfies the conditions of Corollary 4.1.10

Specifically, let ε′ be the security of AES as a stream cipher in the counter mode (against the
same complexity attackers as P ). In practice we suspect that ε′ ≈ ε (where, recall, ε is the
wPRF security of AES). As argued at the end of Section 4.3, although it is hard to precisely
assess the security of Ext, it seems reasonable to assume that its computational security δ′ is
only “negligibly worse” than ε′ plus the computational security of Ext′ given in Equation (27).
In particular, it seems reasonable to conjecture that

δ′ = O(δ + ε′ + ε+
√
ε2−L) (28)

Since the above bound already includes the AES stream cipher security ε′, the same bound
also holds when the extracted key Ext(X; s) is used in the stream cipher mode to output more
than 128 output bits.

Acknowledgements: We would like to thank Russell Impagliazzo, Ronen Shaltiel and Daniel
Wichs for useful discussions, and Gil Segev for pointing out the our construction in Section 4.3 also
implies oblivious transfer.

References

[1] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with
applications to /dev/random. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors,
ACM Conference on Computer and Communications Security, pages 203–212. ACM, 2005.

[2] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure in
a changing environment. In Cryptographic Hardware and Embedded Systems – CHES ’03,
volume 2779 of LNCS, pages 166–180. Springer, 2003.

[3] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[4] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Secure re-
mote authentication using biometric data. In Ronald Cramer, editor, Advances in Cryptology—
EUROCRYPT 2005, volume 3494 of LNCS, pages 147–163. Springer-Verlag, 2005.

[5] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Bart Preneel, editor, Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer-Verlag, 2000.

[6] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 18:143–154, 1979.

10As explained in Remark 4.2, Corollary 4.1 also applies when the original long-seed extractor is computationally
secure, such as Ext′ above.

26
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Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science,
pages 423–436. Springer, July 7-11 2008.

[36] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and depth-
two superconcentrators. SIAM Journal on Computing, 13(1):2–24, 2000.

[37] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy from an arbitrarily
weak secret. In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of
LNCS, pages 78–95. Springer-Verlag, 2003.

28



[38] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
EATCS, 77:67–95, 2002.

[39] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM J.
Computing, 28(4):1433–1459, 1999.

[40] D. R. Stinson. Universal hashing and authentication codes. Designs, Codes, and Cryptography,
4(4):369–380, 1994.

[41] D. R. Stinson. Universal hash families and the leftover hash lemma,
and applications to cryptography and computing. Journal of Combinato-
rial Mathematics and Combinatorial Computing, 42:3–31, 2002. Available at
http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html.

A Slice Extractors

For completeness, we also show that universal hash function also give nearly optimal slice extractors
— a primitive defined by [36]. This application is similar to our improvements of the LHL for
authentication application, but we use a slightly different notation (based on that of [36]).

We say that a distinguisher D is δ-rare on a distribution X, if Pr[D(X) = 1] ≤ δ. We recall the
definition of slice extractors from [36].

Definition A.1 (Slice Extractors) We say that an efficient function Ext : X ×{0, 1}n → {0, 1}v
is an (average-case, strong) (m, ε, δ)-slice extractor (for space X ), if for all X,Z such that X is
distributed over X and H̃∞(X|Z) ≥ m, and all δ-rare distinguishers D on (Uv , S, Z), we have

∆D( Ext(X;S), Uv | (S,Z) ) ≤ ε

where S ≡ Un denotes the coins of Ext (called the seed). In particular,

Pr[ D(Ext(X;S), S, Z) = 1 ] ≤ Pr[ D(Uv, S, Z) = 1 ] + ε ≤ δ + ε

As usual, the value L = m− v is called the entropy loss of Ext, and the value n is called the seed
length of Ext.

Radhakrishnan and Ta-Shma showed (Lemma 2.5 in [36]) that the entropy loss of (m, ε, δ)-slice
extractors must be at least L ≥ 2 log (1/ε) − log (1/δ) −O(1). We now state our improved variant
of LHL for slice extractors, which constructively matches the bound above.

Lemma A.1 (“Sliced LHL”) Assume that the family H of functions h : X → {0, 1}v is a

ρ-universal hash family, where ρ ≤ 1
2v (1 + ε2/δ). Then the extractor Ext(x;h)

def
= h(x), where h is

uniform over H, is an (m, ε, δ)-slice extractor, as long as m ≥ v + 2 log (1/ε) − log (1/δ) + 1.
Hence, ρ-universal hash functions yield slice extractors with entropy loss L = 2 log (1/ε) −

log (1/δ) + 1 and seed length n = log |H|. In particular, when δ = ε, we get (m, ε, ε)-slice extractor
with entropy loss L = log (1/ε) + 1.

Proof. Follows from part (b) of Theorem 3.2 by renaming variables. �

29

http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html

	Introduction
	Reducing the Entropy Loss
	Reducing the Seed Length
	Related Work

	Standard Leftover Hash Lemma
	Reducing the Entropy Loss
	Generalized LHL
	Improved LHL for Key Derivation
	General Bound for ``Strongly Secure'' Applications
	Improved Bound for Unpredictability Applications
	Improved Bound for Some Indistinguishability Applications
	Numeric Examples

	A Generic Key Derivation Function
	Comparison to Random Oracle

	Reducing the Seed Length
	Counter-Example: Expanding Seeds is Insecure in General
	Expanding Seeds is Safe when Extracting Few Bits
	Expanding Seeds is Safe in Minicrypt

	Extractor Standard
	Slice Extractors

