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Abstract. We show that Katz-Wang’s duplicating key and ciphertext technique can be extended
to a generic method that can be used in a certain category of Identity-Based Encryption (IBE)
schemes for the purposes of improving their security reductions. We further develop two refined
approaches by adapting the randomness reuse technique in the Katz-Wang technique: one is public
key duplication, and the other is master key duplication. Compared to the Katz-Wang technique,
our two refined approaches do not only improve the performances of the resulting IBE schemes but
also enable a reduction algorithm to deal with decryption queries correctly and therefore can achieve
chosen ciphertext security. As case studies, we apply these two approaches to modify the Boneh-
Franklin IBE scheme and the Boneh-Boyen IBE scheme, respectively. Both of the modifications
improve the tightness of security reductions, compared to the original schemes, with a reasonably
low cost.
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1 Introduction

It is well known that a tight security reduction is crucial to cryptographic schemes, not only
from theoretical aspects, but also from practical aspects [2, 13].

A common method of reducing the security of an IBE scheme E to the hardness of some
underlying problem P is following the partitioning strategy [13, 19]. In the random oracle
model [3, 11], it is done by modeling the identity hash function H(·) as a random oracle, then
creating a reduction algorithm B who utilizes the programmability of H(·) to partition the iden-
tity space V into two orthogonal subspaces V1 and V2, (1) V1 - identities for which B can create
private keys with some trapdoor information; and (2) V2 - identities for which B can generate
the challenge ciphertext embedded with the instance of P. The reduction algorithm B expects
that the identities of private key queries comes from V1 and the challenge (target) identity I∗

comes from V2. The two subspaces are always orthogonal, i.e. V = V1 ∪ V2 and V1 ∩ V2 = Ø.

During the reduction, B may abort for two reasons: (1) B can not generate the private keys
for some identity Ii (Ii /∈ V1) when answering the private key queries; (2) B can not embed
the challenge instance of P into the challenge ciphertext under I∗ (I∗ /∈ V2). Let p1 be the
probability that B does not abort due to Reason 1, p2 be the probability that B does not abort
due to Reason 2. Thereby the probability that B does not abort throughout the simulation is
Pr[abort] = p1p2. For example, denote the maximum number of private key queries and random
oracle queries by Qe and Qh, for the Boneh-Franklin IBE scheme (BF-IBE for short) [6] that
is Pr[abort] = (1 − δ)Qe · δ for some 0 < δ < 1; for the Sakai-Kasahara IBE scheme (SK-IBE
for short) [10, 17] that is Pr[abort] = (1 − Qe/Qh) · 1/(Qh − Qe). We stress that the overall
looseness of security reduction comes from two aspects, one is Pr[abort], while the other is the
probability p3 that B works out the right solution of P based on the outputs of the adversary
or the associated random oracle queries logs. Note that the notation introduced in this section
will be used throughout the paper.



Two Types of Reduction Technique. In the realm of the random oracle model, the security
reduction technique of for IBE schemes can be classified into two types. The first type is that
the reduction algorithm outputs its solution to P based on the adversary’s output in {0, 1}.
Most of the schemes based on some decisional number-theoretic problem P belong to this type.
Informally speaking, with the goal to determine whether the input value T is the right solution
of P, the reduction algorithm embeds the challenge instance of P into the challenge ciphertext
C∗ of Mβ. If the value T is the right solution, then the adversary has the advantage ε to guess
the right bit β. Otherwise, the adversary’s advantage is negligible since Mβ is information-
theoretically hidden from the adversary. The second type is that the reduction algorithm outputs
its solution to P based on the lists used in the simulation for random oracles, i.e., extracting
the desired answer from the entries in the associated random oracle query lists. Interestingly,
Type-1 proofs can be easily transformed to Type-2 proofs by wrapping the wanted term in a
hash function which will be treated as a random oracle. When the simulation is finished, the
reduction algorithm can determine whether T is the right solution of P by checking if T appears
with some form in the corresponding random query list. For this reason, we assume that all the
IBE schemes proven secure in the random oracle model follow the Type-2 style proof.

1.1 Related Work and Motivation

Katz and Wang [15] proposed a FDH-/PFDH-like signature scheme achieving a tight security
reduction without using a random salt. They also pointed out that their technique can be
extended to allow a tighter security proof for Boneh-Franklin IBE scheme (BF-IBE for short) [6].
In their modified BF-IBE, for any ID there are two “public keys” PKID,0 = H(ID||0) and
PKID,1 = H(ID||1) (for hash function H modeled as a random oracle); to encrypt a message
M under identity ID, a sender now encrypts the same message with respect to both of the two
public keys, the resulting cipheretext is C = 〈C0, C1〉, where C0 is the encrypted with PKID,0

and C1 is the encrypted with PKID,1. The PKG (Private Key Generator), however, only gives
ID one of the corresponding private keys (either SKID,0 or SKID,1 but not both). Note that a
single private key is sufficient to enable correct decryption. A simulation can be bulit in which
through the control of the random oracle H the reduction algorithm knows exactly one private
key for every ID. This allows all the private key extraction queries can be answered by the
reduction algorithm, while ensuring that encryption to any non exposed ID remains secret. The
successful adversary partially decrypts the challenge ciphertext with the “wrong” private key
with probability 1/2, thus giving the reduction algorithm useful information. A disadvantage of
their modified scheme is its cost: the ciphertext of their modified scheme is twice as much as
that of BF-IBE, and the efficiency of encryption is reduced by a factor of two. Besides, Katz
and Wang did not explain how to achieve chosen ciphertext security with their scheme.

Attrapadung et al. [1] enhanced Katz-Wang’s idea with some sophisticated techniques to
propose a scheme named TightIBE based on BF-IBE, which has a tight reduction of chosen ci-
phertext security. However, they did not discuss how their idea can be used in other IBE schemes.
They also concluded that combining the Katz-Wang technique and the Fujisaki-Okamoto trans-
formation [12] straightforwardly cannot provide achieve chosen ciphertext security and tighter
reduction for BF-IBE simultaneously. To see this, consider the following attack: when the ad-
versary gets a challenge ciphertext C∗ = 〈C0, C1〉 (of the message Mβ that it is asked to
distinguish), it picks a random message M ′ ∈ {0, 1}n and creates two ciphertexts 〈C ′0, C1〉 and
〈C0, C

′
1〉, where C ′0 is the encryption of M ′ under PKID,0 and C ′1 is the encryption of M ′ under

PKID,1. Then by querying the decryption oracle with 〈C ′0, C1〉 and 〈C0, C
′
1〉, it would learn the

message Mβ with probability 1, since one of C0 and C1 would be decrypted when the challenger
answers the decryption queries 〈C ′0, C1〉 and 〈C0, C

′
1〉. So the scheme directly derived from the

Katz-Wang technique and Fujisaki-Okamoto transformation is not immune to chosen ciphertext
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attack. The underlying reason is that the two parts of the ciphertext are mutual independent,
thus the ill-formed decryption queries 〈C0, C1〉 (where C0 and C1 are the ciphertext under same
identity but of different messages) would not be detected and get rejected. Clearly, to achieve
IND-ID-CCA security, it is necessary that the equality of the underlying messages in the two
parts of the ciphertext could be tested.

As far as we know, the application of Katz-Wang’s technique in IBE is confined to only
BF-IBE [6], and the costs to achieve tighter security reduction is a bit expensive. Thus it is
natural to ask if the Katz-Wang technique can be extended to other IBE schemes? What kind
of IBE scheme can benefit from it? Can the Katz-Wang technique be improved? Does there
exist an approach to make the Katz-Wang technique and the Fujisaki-Okamoto transformation
work together to provide a tighter reduction of chosen ciphertext security?

1.2 Our Contributions

Our first contribution is showing that the Katz-Wang technique can be extended to a generic
method of improving the tightness of security reductions (minimize Pr[abort]) for a category
of IBE schemes, which satisfy the following conditions:

– An IBE scheme E is provably secure in the random oracle model, and in its security reduction,
for any identity the reduction algorithm can generate the corresponding private key with
probability 1/2. In other words, the reduction algorithm can partition the whole identity
space in some way to make |V1| = |V2|. That will maximize the probability p3 that the
reduction algorithm can solve the underlying problem P, as well as ensure the responses to
the private key queries are indistinguishable from the adversary’s view.

Then we can double E to obtain E2 using the Katz-Wang technique. In Section 3 we prove that
the reduction for E2 is 1/(2Pr[abort]) times tighter compared to the reduction for the original
scheme E .

Among pairing-based IBE schemes [7], we observe that in the random oracle model the
full domain hash IBE family [6] and the commutative blinding IBE family [4] meet the above
conditions. Thus the IBE schemes from these two families can benefit from our generic method.
However, directly using the Katz-Wang technique for the transformation has two drawbacks.
First, the resulting scheme E2 only has chosen plaintext security. Second, the ciphertext size
and the computation cost of E2 are twice as much as them the original scheme E .

Be aware that in the above transformation, one message is encrypted twice under two public
keys using two independent randomnesses r0 and r1. Thus in the ciphertext C = 〈C0, C1〉 of E2,
two components C0 and C1 are mutual independent. This happens to be the reason that directly
combining Katz-Wang’s technique with any existing CPA-to-CCA transformation, e.g., the
Fujisaki-Okamoto transformation, cannot lead to CCA security. We observe that the randomness
r0 and r1 are not necessarily to be independent in E2. More surprisingly, the randomness reuse
when doubling the encryption will not only enable us to shrink the ciphertext size, reduce the
computation cost, but also can bind C0 and C1 together. Therefore adapting the randomness
reuse technique with such a CPA-to-CCA transformation (in the paper we use the Fujisaki-
Okamoto transformation as an example) to E , the resulting scheme E2

hy would be CCA secure
with a tighter security reduction. Intuitively, the randomness reuse enables the decryption oracle
to delect/reject the ill-formed ciphertexts.

To further explain our ideas we recall the encryption algorithm of an IBE scheme as follows:
(1) choose a randomness r and then encapsulate it using algorithm Encaps, the results consist
of a value U = OW(mpk, PKID, r) (U is part of the final ciphertext) and a session key k =
KDF(mpk, PKID, r), where mpk is the public parameters, OW is a one-way function and KDF
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is a key derivation function; (2) use the session key k to mask the message M . Obviously, the
technique obstacle arising from the randomness reuse when doubling encryption is that the
reduction algorithm must be able to generate the challenge ciphertext without knowing the real
randomness, i.e., the ciphertext U of r of the added encryption must be the same as what of
the original encryption. Our second contribution is further proposing two refined approaches
according to the different constructions of the one-way function.

– Refined Approach I if the one-way function is of the form OW(mpk, r).
When the one-way function of an IBE scheme E takes only the public parameters mpk and
a randomness r, then the value U is unrelated to the public key of ID, Refined Approach
I which extends the Katz-Wang technique with randomness reuse and the Fujisaki-Okamoto
transformation can transform E to an CCA secure IBE scheme E2

hy with a tighter reduction.

The crux is that in the reduction for E2
hy, the reduction algorithm can create the value

U = OW(mpk, r) (which is a part of the challenge ciphertext) the same way as it does in
the security reduction of E . We note that the one-way function in the full domain hash IBE
family is exactly of this construction, thus the IBE schemes from this family can benefited
from Refined Approach I.

– Refined Approach II if the one-way function is of the form OW(mpk, PKID, r).
Notice that in the Katz-Wang IBE system, one identity has two public keys PKID,0 and
PKID,1. If we apply the Katz-Wang technique to E , in the reduction for the resulting scheme,
the reduction algorithm is only able to generate OW(mpk, PKID,0, r) or OW(mpk, PKID,1, r)
as it does in the reduction for E . The added ciphertext can not be generated since the
randomness r is unknown to it. To overcome this obstacle, we expect that one identity still
has one public key and at the same time the reduction algorithm can generate a private
key for any identity. We propose Refined Approach II which manage to this by doubling
the master secret key. In the resulting scheme E2

hy, the PKG generates two different master
secret keys named msk0 and msk1 and the corresponding master public parameters mpk0

and mpk1, while one identity still has one public key as the usual IBE schemes but has two
private keys with respect to the two master secret keys. However, the PKG only generates
one private key for identity ID with a randomly picked master secret key (either msk0 or
msk1). A message is encrypted under one identity and two sets of public parameters using
one randomness, while a single private key is sufficient to guarantee decrypting correctly. In
contrast to the public key duplication of the Katz-Wang technique, we call the trick used
in Refined Approach II the master secret key duplication. A simulation for E2

hy can then
be set up in which one master secret key is known and the other one is unknown to the
reduction algorithm. For any identity ID, the reduction algorithm programs H(ID) into V1

with probability 1/2; for a private key query 〈ID〉, if H(ID) ∈ V1 it extracts the private
key as it does in the security reduction for E , otherwise it extracts the private key using
the master secret key known to itself. This trick allows the reduction algorithm can answer
all the private key queries. At the same time, since one identity only has one private key,
the probability that the adversary can embed the challenge instance of P into the challenge
ciphertext is 1/2 since H(ID∗) falls into V1 with probability 1/2. Therefore we have p2 = 1/2.
The successful adversary partially decrypts the challenge ciphertext with “another” private
key with probability 1/2, giving the reduction algorithm useful information.

1.3 Outline

In Section 3, we present a generic method of improving the security reductions for a certain
category of IBE schemes. Section 4 and Section 6 describe two refined approaches with respect
to the different constructions of one-way function. These sections start with the descriptions
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of each approach and conclude with the proofs of security. Section 5 applies Refined Approach
I to BF-IBE, and Section 7 applies Refined Approach II to BB1-IBE. We provide some further
discussions in Section 8 and conclude in Section 9.

2 Preliminaries

2.1 Bilinear Maps

We briefly review the facts about groups with efficiently computable bilinear map. Let G and
GT be two groups of large prime order p, and e : G×G→ GT be the bilinear map between these
two groups. A bilinear map satisfying the following three properties is said to be an admissible
bilinear map.

1. Bilinearity. The map e : G×G→ GT is bilinear if e(ua, vb) = e(u, v)ab for all u, v ∈ G and
arbitrary a, b ∈ Zp.

2. Non-degeneracy. The map does not send all pairs in G×G to the identity in GT .

3. Computability. There is an efficient algorithm to compute e(u, v) for any u, v ∈ G.

Bilinear Map Parameter Generator. We say that a randomized algorithm G is a Bilinear
Map parameter generator if (1) G takes a security parameter κ ∈ Z+, (2) G runs in polynomial
time in κ, and (3) G outputs a κ bits prime number p, the description of two groups G, GT

of order p, and the description of an admissible bilinear map e : G × G → GT . We denote the
output of G by G(1κ) = 〈G,GT , p, e〉.

2.2 Bilinear Diffie-Hellman Assumption

The BDH problem [5, 14, 18] in G is as follows: given a tuple g, gx, gy, gz ∈ G as input, output
e(g, g)xyz ∈ GT . An algorithm A has advantage ε in solving BDH in G if

Pr[A(g, gx, gy, gz) = e(g, g)xyz] ≥ ε

where the probability is over the random choice of generator g in G∗, the random choice of
x, y, z ∈ Zp.

Definition 2.1 The (t, ε)-BDH assumption holds if no t-time adversary has advantage at least
ε in solving the BDH problem in G.

Without loss of generality, for a number-theoretic assumption P we say (t, ε)-P assumption
holds if no t-time adversary has advantage at least ε in solving the problem P.

2.3 Basic Definitions

2.4 Basic Definitions

Extending the usual syntax of IBE [6], we describe an IBE scheme E with chosen plaintext
security in the random oracle model by the following four fine-grained algorithms:

Setup. Takes a security parameter κ and returns the master public key mpk and the master
secret key msk. Let H1 be the identity map function which maps an identity ID ∈ {0, 1}n to
the underlying public key PKID, H2 be a cryptographic hash function which maps a session key
k ∈ K to a one-time-pad in {0, 1}n. Denote the randomness space by R. Wlog assume that the
message space is M∈ {0, 1}n for some integer n.
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Extract. Takes as input mpk, msk, and PKID, returns a corresponding private key SKID; we
write SKID ← Extract(mpk,msk, PKID), where PKID = H1(ID).

Encrypt. Takes as input mpk, PKID, a plaintext M and a randomness r, returns a ciphertext;
we write C ← Encrypt(mpk, PKID,M, r) (in our context it is important to make explicit the
randomness used in the algorithms). The algorithm Encrypt can be decomposed as: (1) compute
(U, k)← Encaps(r,mpk, PKID), where Encaps is an encapsulation algorithm, U is a part of the
final ciphertext and k is a random session key k; (for the ease of future analysis, we further
decompose algorithm Encaps into an one-way function OW and a key derivation function KDF,
where U ← OW(mpk, PKID, r) and k ← KDF(mpk, PKID, r).) (2) set V = M ⊕ H2(k). Thus
the ciphertext C is of the form 〈U, V 〉.
Decrypt. Takes as input mpk, private key SKID, and a ciphertext C, returns the corresponding
plaintext M ; we write M ← Decrypt(mpk, SKID, C). The algorithm Decrypt can be decomposed
as: (1) get back the session key via computing k ← Decaps(mpk, SKID, U), where Decaps is the
corresponding decapsulation algorithm; (2) return M = V ⊕H2(k).

For consistency, we require that for all (PKID, SKID), and all randomness r ∈ R,

Pr[Decaps(mpk, SKID, U) = k | (U, k)← Encaps(mpk, PKID, r)] = 1

2.5 Security Notions

Chosen Ciphertext Security for IBE. An IBE scheme E is said to be secure against adap-
tively chosen ciphertext attack (IND-ID-CCA) if no probabilistic polynomial time (PPT) adver-
sary has a non-negligible advantage against the challenger in the following game [6]:

Setup. The challenger takes the security parameter and runs the Setup algorithm. It gives the
adversary the resulting system parameters mpk and keeps the master secret msk to itself.

Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract to generate a
private key di corresponding to IDi. It sends di to the adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm Extract to generate
the private key di corresponding to IDi. It then runs algorithm Decrypt to decrypt the
ciphertext Ci using the private key di. It sends the resulting plaintext to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on the replies to
q1, . . . , qi−1.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plain-
texts M0,M1 ∈M and an identity ID on which it wishes to be challenged. The only constraint
is that ID did not appear in any private key extraction query in Phase 1. The challenger picks
a random bit β ∈ {0, 1} and sets C = Encrypt(mpk, ID,Mβ). It sends C as the challenge to the
adversary.

Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:

– Extraction query 〈IDi〉 6= ID. The challenger responds as in Phase 1.

– Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. The challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary A’s ad-
vantage over the scheme E by AdvCCA

A,E (κ) =
∣∣Pr[β = β′]− 1

2

∣∣, where κ is the security parameter.
The probability is over the random bits used by the challenger and the adversary. Similarly,
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the IND-ID-CPA security notion can be defined by using a similar game as the one above but
disallowing decryption queries. The corresponding advantage of an adversary A is defined by
AdvCPA

A,E (κ) =
∣∣Pr[β = β′]− 1

2

∣∣.
Definition 2.2 We say that an IBE scheme E is (t, Qe, Qd, ε) chosen ciphertext secure if for
any t-time IND-ID-CCA adversary A that makes at most Qe chosen private key queries and at
most Qd chosen decryption queries we have that AdvCCA

A,E < ε. As shorthand, we say that E is
(t, Qe, Qd, ε) IND-ID-CCA secure.

Definition 2.3 We say that an IBE scheme E is (t, Qe, ε) chosen plaintext secure if for any
t-time IND-ID-CPA adversary A that makes at most Qe chosen private key queries we have that
AdvCPA

A,E < ε. As shorthand, we say that E is (t, Qe, ε) IND-ID-CPA secure.

3 Generic Method to Achieve Tighter CPA Security

Rather than proceed in an ad hoc manner, in this section we present a generic method directly
from the Katz-Wang technique which improves IBE schemes in terms of the (CPA) security
reduction. The generic method transforms a CPA secure IBE scheme E to an IBE scheme E2

as follows:

Setup2. The same as E .

Extract2. For a given identity ID, picks a random bit b ∈ {0, 1}, returns a private key SK2
ID =

(b, SKID,b) = (b,Extract(mpk,msk, PKID,b)), where PKID,b = H1(ID||b).
Encrypt2. To encrypt a message M under ID, computes C0 = Encrypt(mpk, PKID,0,M, r0) and
C1 = Encrypt(mpk, PKID,1,M, r1), where C0 = 〈U0, V0〉, C1 = 〈U1, V1〉, where r0 and r1 are two
independent random values used by the algorithm. The ciphertext is C = 〈U0, V0, U1, V1〉.
Decrypt2. Computes M = Decrypt(mpk, SKID,b, Cb) using SK2

ID = (b, SKID,b).

If E satisfies two constraints as addressed before: (1) provably secure in the random oracle
model; (2) the δ in the original security reduction for E could be 1/2, then we have the following
theorem about the security of E2.

Theorem 3.1 If E is (t, Qe, ε) IND-ID-CPA secure assuming (t′, p1p2p3ε)-P holds, then E2 is
(t, Qe, ε) IND-ID-CPA secure assuming (t′, 1

2p3ε)-P holds.

Proof. Suppose A1 is a (t, Qe, ε) IND-ID-CPA adversary against E . According to the assumption
in the theorem, there exists a (t′, p1p2p3ε) adversary B1 against P, who interacts with A1 in an
IND-ID-CPA game (Game 1) as follows:

Setup. B1 builds the mpk of E from the given challenge instance of P, while the corresponding
msk is unknown to B1. B1 starts by initializing one empty list Li for each random oracle Hi.

H1-queries. When A1 queries random oracle H1 at point ID, B1 programs H1(ID) to be an
element in V1 with probability δ, in V2 with probability 1− δ.
H2-queries. B1 handles the queries to H2 in an obvious way, by producing a randomly sampled
element from the appropriate codomain, and adding both query and answer to the L2 list.

Phase 1 - Private key queries. When A1 queries the private key for ID, if H1(ID) belongs
to V1, B1 is able to generate the corresponding private key, otherwise B1 aborts.

Challenge. A1 submits two messages M1, M2 and an identity ID∗ which it wishes to be chal-
lenged on. If H1(ID∗) belongs to V1, B1 aborts. Otherwise, B1 picks a random bit β and generates
the challenge ciphertext C∗ = 〈U∗, V ∗〉 of Mβ embedded with the challenge instance of P.
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Phase 2 - Private key queries. The same as Phase 1.

Guess. A1 outputs β′ ∈ {0, 1}. B1 outputs its answer based on the entries on the L2 list.

This finishes the description of Game 1. �

Let A2 be a (t, Qe, ε) IND-ID-CPA adversary against E2, and we build an adversary B2 against
P. Concretely speaking, B2 interacts with A2 in an IND-ID-CPA game (Game 2) as follows:

Setup. The same as Game 1.

H1-queries. When A2 queries random oracle H1 at point ID|∗ (∗ denotes 0 or 1), B2 picks a
random bit b ∈ {0, 1} and programs H1(ID||b) to be an element in V1, H1(ID||b̄) to be an element
in V2. It is easy to see that H1(ID||0) and H1(ID||1) are uniform in V and are independent of
A2’s current view.

Phase 1 - Private key queries. When A2 queries the private key of ID,

– If H1(ID||0) ∈ V1, B2 generates SKID,0 for H1(ID||0) with the trapdoor information as B1

does in Game 1, then responds with SK2
ID = (0, SKID,0).

– Otherwise B2 generates SKID,1 for to H1(ID||1) with the trapdoor information as B1 does
in Game 1, then responds with SK2

ID = (1, SKID,1).

Note that B2 can answer all the private key queries.

Challenge. A2 submits two messages M1, M2, and an identity ID∗ which it wishes to be
challenged on. Suppose H1(ID∗||b) ∈ V2, B2 picks a random bit β and generates C∗b of Mβ as
B1 does in Game 1 (C∗b is embedded with the challenge instance of P). Additionally, B2 picks a
random value r∗

b̄
and computes C∗

b̄
= Encrypt(mpk, PKID∗||b̄,Mβ, r

∗
b̄
). The challenge ciphertext

of Mβ is 〈C∗b , C∗b̄ 〉.
Phase 2 - Private key queries. The same as Phase 1.

Guess. A2 outputs its guess β′ ∈ {0, 1}. B2 outputs its answer to P based on the entries in the
L2 list.

This finishes the description of Game 2. �

Claim. B2 outputs the correct solution of P with probability 1
2p3ε.

Proof of claim. For adversary B2, we have:

– p′1 = 1. B2 can answer all the private key queries.
– p′2 = 1. For any challenge identity ID∗, B2 can generate the challenge ciphertext embedded

with the challenge instance of P.
– p′3 = p3/2. Because the bit b is information-theoretically hidden from A2, the probability

that A2 decrypts Mβ using the part of C∗ embedded with the challenge instance of P is at
least 1/2.

This finishes the proof of Theorem 3.1. �

4 Refined Approach I

When the one-way function in the encapsulation algorithm Encaps of E takes on the form of
OW(mpk, r), that is, the encryption result of the randomness r is unrelated of the public key
PKID, we can improve the generic approach proposed in Section 3. We name the improved
approach Refined Approach I, which transforms a CPA-secure IBE scheme E to a CCA-secure
IBE scheme E2

hy with a tighter security reduction. It works as follows:

Setup2
hy. As in E . In addition, picks a cryptographic hash function H3 : {0, 1}n×{0, 1}n → R,

and a cryptographic hash function H4 : {0, 1}n → {0, 1}n.
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Extract2
hy. The same as E2 in Section 3.

Encrypt2
hy. To encrypt a message M under ID do the following:

1. Compute PKID,0 = H1(ID||0) and PKID,1 = H1(ID||1);

2. Pick a random σ ∈ {0, 1}n, then compute r = H3(σ,M) and U = OW(mpk, r);

3. Compute k0 = KDF(mpk, PKID,0, r) and k1 = KDF(mpk, PKID,1, r);

4. Set V0 = σ ⊕H2(k0) and V1 = σ ⊕H2(k1);

5. Compute W = M ⊕H4(σ). The ciphertext C is 〈U, V0, V1,W 〉.
Decrypt2

hy. To decrypt C using the private key SK2
ID = (b, SKID,b), the algorithm does the

following steps:

1. Compute kb = Decaps(mpk, SKID,b, U) and return σ = Vb ⊕H2(kb);

2. Compute M = W ⊕H4(σ) and set r = H3(σ,M);

3. Test that if U = OW(mpk, r). If not, reject the ciphertext.

4. Compute kb̄ = KDF(mpk, PKID,b̄, r), set σ′ = Vb̄ ⊕H2(kb̄). Test that if σ = σ′. If so, output
M as the decryption of C. If not, reject the ciphertext.

We have the following theorem regarding to the security of E2
hy:

Theorem 4.1 If E is (t, Qe, ε) IND-ID-CPA secure assuming (t′, p1p2p3ε)-P holds, then E2
hy is

(t, Qe, Qd, ε) IND-ID-CCA secure assuming (t′, 1
2p3ε)-P holds.

Proof. Suppose A1 is a (t, Qe, ε) IND-ID-CPA adversary against E . According to the assumption
the theorem, there exists a (t′, p1p2ε) adversary B1 against P. B1 interacts with A1 in an
IND-ID-CPA game (Game 1). Game 1 is exactly the same as that described in the proof of
the general approach in Section 3. Let A2 be a (t, Qe, Qd, ε) adversary against E2

hy, we build an
adversary B2 against P, who interacts with A2 in an IND-ID-CCA game (Game 3) as follows:

Setup. The same as the Game 2 presented in Section 3.

H1-queries. The same as the Game 2 described in Section 3.

H2-queries. The same as the Game 2 described in Section 3.

Phase 1 - Private key queries. The same as the Game 2 presented in Section 3.

Phase 1 - Decryption queries. Upon receiving the decryption query 〈C, ID〉, B2 decrypts C
using the private key SK2

ID normally. Note that B2 can generate the private key for any identity,
thus it can answer all the decryption queries.

Challenge. A2 submits two messages M1, M2, and the identity ID∗ which it wishes to be
challenged on. Suppose H1(ID∗||b) ∈ V2, B2 picks a random bit β, random σ∗ ∈ {0, 1}n. B2

generates U∗ and V ∗b the same way as B1 generates U∗ and V ∗ in Game 1, while the only
difference is replacing Mβ with σ∗. B2 computes V ∗

b̄
= Mβ ⊕ H2(k∗

b̄
) using the private key

SK2
ID∗ = (b̄, SKID∗,b̄), where k∗

b̄
= Decaps(mpk, SKID∗,b̄, U

∗). Finally, B2 setsW ∗ = Mβ⊕H4(σ∗).
The challenge ciphertext C∗ = 〈U∗, V ∗b , V ∗b̄ ,W

∗〉.
Phase 2 - Private key queries. Handled the same way as Phase 1.

Phase 2 - Decryption queries. Handled the same way as Phase 1.

Guess. A2 outputs its guess β′ ∈ {0, 1}. B2 outputs its answer to P based on the entries in the
L2 list.

This finishes the description of Game 3. �

Claim. B2 outputs the correct solution of P with advantage 1
2p3ε.
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Proof of claim. For adversary B2, we have:

– p′1 = 1. Since B2 can answer all the private key queries.
– p′2 = 1. For any challenge identity ID∗, B2 can always generate the challenge ciphertext

embedded with the challenge instance of P.
– p′3 = p3/2. Since the bit b is information-theoretically hidden from A2.

This finishes the proof of Theorem 4.1. ut

5 A Variant of BF-IBE with Tight Security Reduction

In this section, we apply the Refined Approach I to the BF-IBE (BasicIdent) [6]. The resulting
scheme is as follows:
Setup. To generate system parameters, picks a random generator g ∈ G∗, a random integer
s ∈ Z∗p and sets X = gs. Chooses four cryptographic hash functions: H1 : {0, 1}∗ → G∗,
H2 : GT → {0, 1}n for some integer n, H3 : {0, 1}n × {0, 1}n → Z∗p, and H4 : {0, 1}n → {0, 1}n.
The mpk is (g,X), while the msk is s. The message space isM = {0, 1}n. The ciphertext space
is C = G∗ × {0, 1}n × {0, 1}n × {0, 1}n.

KeyGen. To generate the private key SKID for an identity ID ∈ {0, 1}∗, the algorithm does
the following steps: (1) pick a random bit b ∈ {0, 1} and compute Qb = H1(ID||b) ∈ G∗, (2) set
the private key SKID to be (b,Qsb) where s is the master secret key.

Encrypt. To encrypt a message M ∈ {0, 1}n under an identity ID, the algorithm does the
following steps:

1. Compute Q0 = H1(ID||0) and Q1 = H1(ID||1);

2. Choose a random σ ∈ {0, 1}n and compute r = H3(σ,M);

3. Set the ciphertext to be C = 〈U, V0, V1,W 〉 = 〈gr, σ⊕H2(e(Q0, X)r), σ⊕H2(e(Q1, X)r),M⊕
H4(σ)〉.

Decrypt. To decrypt a given ciphertext C = 〈U, V0, V1,W 〉 under ID using the private key
SKID = (b,Qsb), the algorithm does the following steps:

1. Compute Vb ⊕H2(e(Qsb, U)) = σ.

2. Compute W ⊕H4(σ) = M .

3. Set r = H3(σ,M). Test that U = gr. If not, reject the ciphertext.

4. Compute Vb̄⊕H2(e(Qb̄, X)r) = σ′. Test that if σ = σ′. If so, output the plaintext M . If not,
reject the ciphertext.

Theorem 5.1 Our variant of BF-IBE is IND-ID-CCA secure provided that H1 and H2 are two
random oracles and the CBDH assumption holds in G. Concretely, if there is an IND-ID-CCA
adversary A that has advantage ε against the scheme. Suppose A makes at most Qh2 > 0 hash
queries to H2. Then there is an algorithm B that solves the CBDH problem in G with advantage
at least: AdvB ≥ ε/Qh2.

Proof. Suppose A has advantage ε in attacking the system. We build an algorithm B that
solves the BDH problem. Algorithm B is given as input a random 4-tuple (g, gx, gy, gz) =
(g, g1, g2, g3) with the goal to output T = e(g, g)xyz. Algorithm B works by interacting with A
in an IND-ID-CCA game as follows.
Setup. B set the mpk to be (g,X), where X = gx. This operation implicitly sets msk = x.
From the perspective of the adversary A the distribution of the public parameters are identical
to the real construction.
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H1-queries. At any time A can query the random oracle H1. To respond to these queries B
maintains a list of tuples 〈ID, c,mc, Qc,mc̄, Qc̄〉 as explained below. We refer to this list as the
L1 list, which is initially empty. When A queries the oracle H1 at a point ID||b (b could be 0 or
1) algorithm B responds as follows:

1. If ID already appears on the L1 list in a tuple (ID, c,mc, Qc,mc̄, Qc̄), then algorithm B
responds with H1(ID||b) = Qb.

2. Otherwise, B picks a random bit c ∈ {0, 1}, mc,mc̄ ∈ Z∗p and computes Qc = gmc and Qc̄ =
gmc̄

2 . B inserts 〈ID, c,mc, Qc,mc̄, Qc̄〉 into the L1 list, and responds to A with H1(ID||b) = Qb.

Note that H1(ID||b) is uniformly distributed over G∗ and independent of A’s view.

H2-queries. B handles the queries to H2 the obvious way, by producing a randomly sampled
element from the appropriate codomain, and adding both query and answer to the L2 list.

Phase 1 - Private key queries. Upon receiving the private key extraction query for an identity
ID, let 〈ID, c,mc, Qc,mc̄, Qc̄〉 be the corresponding tuple in the L1 list. B responds the private
key SKID = (c,Qxc ) = (c,Xmc). Note that SKID is a valid private key of ID since Qc = gmc .

Phase 1 - Decryption queries. Upon receiving the decryption query 〈C, ID〉, B decrypts M
using the private key SKID normally. Note that B can generate the private key for any identity,
thus it can answer all the decryption queries.

Challenge. The adversary A submits two messages M0,M1 ∈ {0, 1}n and an identity ID∗ where
it wishes to be challenged. Suppose 〈ID∗, c,mc, Qc,mc̄, Qc̄〉 is the corresponding entry on the L1

list. B flips a fair coin β ∈ {0, 1}, picks random bits σ ∈ {0, 1}n, a random string R ∈ {0, 1}n,
set the challenge ciphertext C∗ to be

U∗ = g3, V
∗
c = σ ⊕H2(e(Qc, X)z), V ∗c̄ = σ ⊕R,W = M ⊕ σ.

This operation implicitly sets r = z, R = H2(e(Qc̄, X)r) = H2(e(gmc̄
2 , g1)z) = H2(Tmc̄). B

obtains e(Qc, X)z by computing e(Qxc , U
∗) using the private key SKID∗ = (c,Qxc ) of ID∗.

Phase 2 - Private key queries. Handled the same way as Phase 1.

Phase 2 - Decryption queries. Handled the same way as Phase 1.

Guess. Finally, the adversary A outputs its guess β′ for β. At this point B picks a random
tuple 〈T̂ , R̂〉 from the L2 list and outputs T̂m

−1
c̄ as the solution to the given instance of BDH

problem.

Claim. The responses to H1-queries and H2 queries are as in the real attack. All responses to
private key extraction queries and decryption queries are valid. Since the bit c is information-
theoretically hidden from the view of adversary A. The desired T̂ will appear on some entry in
the L2 list with probability at least ε.

This shows that B’s advantage is at least ε/Qh2 as required. ut

6 Refined Approach II

In IBE schemes, we can further split mpk into two parts, one part we denote by mpk∗ which
is independent of msk, the other part we denote by mpk′ which is related to msk. We have
mpk = (mpk∗,mpk′). When the one-way function of the encapsulation algorithm in E takes on
the form of OW(mpk∗, PKID, r), that is, the value U is unrelated to mpk′, we can improve the
generic method proposed in Section 3 using master secret key duplication. We name the refined
approach Refined Approach II, which transforms a CPA-secure IBE scheme E to a CCA-secure
IBE scheme E2

hy with a tighter reduction. It works as follows:
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Setup2
hy. Doubles msk to obtain msk0 and msk1, generates the corresponding mpk′0 and mpk′1,

keep mpk∗ unaltered. The resulting public parameter is mpk = mpk0 ∩mpk1, where mpk0 =
(mpk∗,mpk′0) and mpk1 = (mpk∗,mpk′1). In addition, picks a cryptographic hash function
H3 : {0, 1}n × {0, 1}n → R, and a cryptographic hash function H4 : {0, 1}n → {0, 1}n.

Extract2
hy. For a given an identity ID, picks a random bit b ∈ {0, 1}, returns a private key

SK2
ID = (b,Extract(mpkb,mskb, PKID)), where PKID = H1(ID).

Encrypt2
hy. To encrypt a message M under ID do the following:

1. Compute PKID = H1(ID);

2. Pick a random σ ∈ {0, 1}n, compute r = H3(σ,M), U = OW(mpk∗, PKID, r);

3. Compute k0 = KDF(mpk0, PKID, r) and k1 = KDF(mpk1, PKID, r);

4. Set V0 = σ ⊕H2(k0) and V1 = σ ⊕H2(k1);

5. Compute W = M ⊕H4(σ). The ciphertext C is 〈U, V0, V1,W 〉.

Decrypt2
hy. To decrypt C using the private key SK2

ID = (b, SKID,b), the algorithm does the
following steps:

1. Compute the session key kb = Decaps(mpkb, SKID,b, U) and return σ = Vb ⊕H2(kb);

2. Compute M = W ⊕H4(σ) and r = H3(σ,M).

3. Test that if U = OW(mpk∗, PKID, r). If not, reject the ciphertext.

4. Compute kb̄ = KDF(mpkb̄, PKID, r), set σ′ = Vb̄ ⊕ kb̄. Test that if σ = σ′. If so, output the
plaintext M . If not, reject the ciphertext.

We have the following theorem regarding to the security of E2
hy:

Theorem 6.1 If E is (t, Qe, ε) IND-ID-CPA secure assuming (t′, p1p2p3ε)-P holds, then E2
hy is

(t, Qe, Qd, ε) secure IND-ID-CCA assuming (t′, 1
4p3ε)-P holds.

Proof. Suppose A1 is a (t, Qe, ε) IND-ID-CPA adversary against E . According to the assumption
in the theorem, there exists a (t′, p1p2p3ε) adversary B1 against P. B1 interacts with A1 in an
IND-ID-CPA game (Game 1) as described in Section 3. Let A2 be a (t, Qe, Qd, ε) IND-ID-CCA ad-
versary against E2

hy, we build an adversary B2 against P, who interacts withA2 in an IND-ID-CPA
game (Game 4) as follows:

Setup. B2 picks a random bit b, then generates mpk∗ and mpk′b as B1 does in Game 1, while
mskb is unknown to B2. In addition, B2 picks mskb̄ itself, and generates the associated mpk′

b̄
accordingly.

H1-queries. For a given identity ID, B2 programs H1(ID) to be an element in V1 with probability
1/2, in V2 with probability 1/2. Note that either way H1(ID) is uniform in V and is independent
of A2’s current view.

H2-queries. The same as the Game 2 presented in Section 3.

Phase 1 - Private key queries. When A1 queries the private key of ID,

– If H1(ID) belongs to V1, B2 generates SKID with the trapdoor information as B1 does in
Game 1, then responds with the private key SK2

ID = (b, SKID) (related to mskb), where b is
the hidden bit.

– Otherwise, B2 generates SKID using mskb̄, then responds with the private key SK2
ID =

(b̄, SKID).

It is clearly that B2 can answer all the private key queries.
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Phase 1 - Decryption queries. Upon receiving the decryption query 〈C, ID〉, B2 decrypts C
using the private key SKID normally. Note that B2 can generate the private key for any identity,
thus it can answer all the decryption queries.

Challenge. A2 submits two messages M1, M2, and an identity ID∗ which it wishes to be
challenged on. If H1(ID∗) ∈ V1, B2 aborts. Otherwise, B2 picks a random bit β, random σ ∈
{0, 1}n, and computes r∗ = H3(σ∗,Mβ), B2 generates U∗ and V ∗b the same way as B1 generates
U∗ and V ∗ in Game 1, while the only difference is replacing Mβ with σ∗. B2 computes V ∗

b̄
=

Mβ⊕H2(k∗
b̄
) using the private key SK2

ID∗ = (b̄, SKID∗,b̄), where k∗
b̄

= Decaps(mpkb̄, SKID∗,b̄, U
∗).

Finally, B2 sets W ∗ = Mβ ⊕H4(σ∗). The challenge ciphertext C∗ = 〈U∗, V ∗b , V ∗b̄ ,W
∗〉.

Phase 2 - Private key queries. Handled the same way as Phase 1.

Phase 2 - Decryption queries. Handled the same way as Phase 1.

Guess. A2 outputs its answer. B2 outputs its answer to P based on the entries in the L2 list.

This finishes the description of Game 4. �

Claim. B2 outputs the correct solution of P with advantage 1
4p3ε.

Proof of claim. For adversary B2, we have:

– p′1 = 1. Since B2 can answer all the private key queries.

– p′2 = 1/2. For any challenge identity ID∗, B2 can generate the challenge ciphertext embedded
with the challenge instance of P with probability 1/2.

– p′3 = p3/2. Since the bit b is information-theoretically hidden from A2.

This finishes the proof of Theorem 6.1. ut

7 A Variant of BB1-IBE with Tight Security Reduction

Boneh and Boyen [4] proposed two efficient IBE schemes BB1-IBE and BB2-IBE which are
proven secure in the standard model. However, they only have selective-ID security [8]. Inter-
estingly, BB1-IBE can also be proven fully secure in the random oracle model if we model its
identity map function as a random oracle. In this section, we apply the Refined Approach II to
BB1-IBE. The resulting scheme is as follows:

Setup. To generate system parameters, selects two random integers x0, x1 ∈ Zp, two random
elements g, Y ∈ G and computes X0 = gx0 , X1 = gx1 . Next, picks four cryptographic hash
functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n, H3 : {0, 1}n×{0, 1}n → Z∗p, and H4 : {0, 1}n →
{0, 1}n. The mpk is (g,X0, X1, Y ). The msk is (Y0 = Y x0 , Y1 = Y x1). The message space is
M = {0, 1}n. The ciphertext space is C = G×G× {0, 1}n × {0, 1}n × {0, 1}n.

KeyGen. To generate the private key SKID for an identity ID ∈ {0, 1}∗, picks a random r ∈ Zp
and a random bit b, sets SKID = (d0, d1, d2) = (b, YbQ

r, gr), where Q = H1(ID) can be viewed
as the public key of ID.

Encrypt. To encrypt a message M under the identity ID, picks a random σ ∈ {0, 1}n, computes
Q = H1(ID) and z = H3(σ,M), sets the ciphertext to be: C = 〈U, V,W0,W1, S〉 = 〈gz, Qz, σ ⊕
H2(e(Q,X0)z), σ ⊕H2(e(Q,X1)z),M ⊕H4(σ)〉.
Decrypt. To decrypt a given ciphertext C = 〈U, V,W0,W1, S〉 under ID using the private key
SKID = (b, d1, d2) does:

1. Compute e(d1, U)/e(d2, V ) = e(YbQ
r, gz)/e(gr, Qz) = e(Xb, Y )z;

2. Compute Wb ⊕H2(e(Xb, Y )z) = σ, S ⊕H4(σ) = M , H3(σ,M) = z;

3. Test that if U = gz and V = Qz, if not, reject the ciphertext.
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4. Compute Wb̄⊕H2(e(Xb̄, Y )z) = σ′. If σ = σ′, output the plaintext M . Otherwise, reject the
ciphertext.

Theorem 7.1 The above variant of BB1-IBE is IND-ID-CCA secure provided that H1, H2

are random oracles and the CBDH assumption holds in G. Concretely, suppose there is an
IND-ID-CCA adversary A that has advantage ε against the scheme. If A makes at most Qh2 > 0
queries to H2. Then there is an algorithm B that solves the CBDH problem with advantage at
least: AdvB ≥ ε/2Qh2.

Proof. Suppose A has advantage ε in attacking the variant of BB1-IBE. We build an algorithm
B that solves the BDH problem. Algorithm B is given as input a random 4-tuple (g, g1, g2, g3) =
(g, gx, gy, gz), with the goal to output T = e(g, g)xyz. Algorithm B works by interacting with A
in an IND-ID-CCA game as follows.
Setup. B randomly picks b ∈ {0, 1}, s ∈ Zp, set mpk to be (g,X0, X1, Y ), where Xb = gx,
Xb̄ = gs. The msk is (Yb = Y x, Yb̄ = Y s), while Yb is unknown to B. From the perspective of
the adversary A the distribution of the public parameters are identical to the real construction.

H1-queries. At any time A can query the random oracle H1. To respond to these queries B
maintains a list of tuples 〈ID, v, w〉 as explained below. We refer to this list as the L1 list, which
is initially empty. When A queries the oracle H1 at a point ˆID algorithm B responds as follows:

1. If ˆID already appears on the L1 list in a tuple 〈 ˆID, v̂, ŵ〉 then algorithm B responds with
H1( ˆID) = gv̂Y ŵ ∈ G.

2. Otherwise, B picks random v̂ ∈ Zp, ŵ ∈ {0, 1} and adds the tuple 〈 ˆID, v̂, ŵ〉 to the L1 list.

B responds to A with H1( ˆID) = gv̂Y ŵ.

Note that H1(ID) is uniformly distributed over G, and the bit ŵ is perfectly hidden from A’s
view.

H2-queries. B handles the queries to H2 the obvious way, by producing a randomly sampled
element from the appropriate codomain, and adding both query and answer to the L2 list.

Phase 1 - Private key queries. Upon receiving the private key extraction query for an
identity ˆID, B runs the above algorithm to obtain H1( ˆID). Let 〈 ˆID, v̂, ŵ〉 be the corresponding
tuple on the L1 list, B randomly picks r ∈ Zp,
– If ŵ = 0, and constructs the private key using mskb̄ = Yb̄ as

SK = (d0, d1, d2) = (b̄, Yb̄Q
r, gr)

– Otherwise, B constructs the private key as follows: Let r̂ = r − x, we have

d0 = b

d1 = gv̂rX−v̂b Y r = Y x(gv̂Y )r−x = Y x(H( ˆID))r̂ = YbQ
r̂

d2 = grX−1
b = gr−x = gr̂

d = (b, YbQ
r̂, gr̂) is a valid private key of ID for the real randomness r̂.

Note that either way d is a valid private key of ID.

Phase 1 - Decryption queries. Upon receiving the decryption query 〈C, ID〉, B decrypts M
using the private key SKID normally. Note that B can generate the private key for any identity,
thus it can answer all the decryption queries.

Challenge.A submits two messagesM0,M1 and an identity ID where it wishes to be challenged.
Suppose 〈ID∗, v∗, w∗〉 is the corresponding entry on the L1 list. If w∗ 6= 0, B aborts and outputs
a random element from GT as the answer to the BDH challenge. Otherwise B generates the
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private key SKID∗ = (b̄, Yb̄Q
r, gr) of ID∗, flips a fair coin β ∈ {0, 1}, picks a random σ∗ ∈ {0, 1}n,

a random string R ∈ {0, 1}n, set the challenge ciphertext C∗ = (U∗, V ∗,W ∗0 ,W
∗
1 , S

∗) to be:

U∗ = gz, V ∗ = (gz)v
∗

= (Q∗)z,W ∗b = σ∗ ⊕R,W ∗b̄ = σ∗ ⊕H2(e(Xb̄, Y )z), S∗ = Mβ ⊕H4(σ∗)

This operation implicitly sets R = H2(T ), where T = e(Xb, Y )z is the solution to the BDH
problem. Note that V ∗ = (gz)v

∗
= (gv

∗
Y w∗

)z = (Q∗)z since w∗ = 0. B obtains e(Xb̄, Y )z via
computing e(d1, U

∗)/e(d2, V
∗) We remark that C∗ is a not valid ciphertext. However, this does

not affect the final result of security reduction.

Phase 2 - Private key queries. Handled the same way as Phase 1.

Phase 2 - Decryption queries. Handled the same way as Phase 1.

Guess. Finally, the adversary A outputs its guess β′ for β. B randomly picks an entry 〈T,R〉
from the L2 list and outputs T as its answer to the BDH problem.

Claim. The responses toH1-queries,H2-queries are as in the real attack. All responses to private
key extraction queries and decryption queries are valid. The bit b is information-theoretically
hidden from A, therefore if B does not abort, the desired T will appear in some entry of the L2

list with probability ε.

The probability that B aborts during the simulation is 1/2. This shows that B’s advantage is
at least ε/2Qh2 as required. ut

8 Further Discussions

Throughout this paper, all the security proofs follows the Type-2 style as previously remarked in
the introduction part. We emphasize that Type-1 style proof can not be employed in the schemes
characterized with Katz-Wang “double encryption” technique. Type-1 style proofs hold on the
condition that when T is the right solution of P the adversary A has advantage ε to output the
right β′, otherwise its advantage is negligible since Mβ is information-theoretically hidden from
A. After adopting the Katz-Wang technique (no matter whether combining with the Fujisaki-
Okamoto transformation), the above condition does not hold anymore, because at least one
part of the challenge is always a valid ciphertext (in the original scheme) of Mβ, which is a
natural result brought by the redundancy due to the Katz-Wang technique. In this situation
the adversary’s outputs β′ ∈ {0, 1} could be totally independent of the challenge (suppose the
adversary has the ability to “fully” decrypt the ciphertext, not just partially decrypt), thus the
reduction fails.

Both our variant of BF-IBE presented in Section 5 and our variant of BB1-IBE presented
in Section 7 are proven secure based on the CBDH problem. Obviously, they can be tightly re-
duced to the decisional BDH (DBDH) problem or the gap BDH (GBDH) problem [16]. However,
either DBDH assumption or GBDH assumption is stronger than CBDH assumption. An alter-
native approach to achieve tight security reduction without resorting to stronger assumptions
is adapting the twin technique presented in [9].

We tabulate the efficiency of our variants described in 5 and 7, and compare them to the
related schemes, in Table 1.

9 Conclusion

In this paper, we first presented a generic method based on the Katz-Wang technique which
can greatly improve the security reductions for a category of IBE schemes. By employing the
randomness reuse technique, we further proposed two refined approaches with respect to the
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Scheme Assumption IND-ID-X Ciphertext size Reduction Cost Encryption Decryption

BF-IBE [6] CBDH CCA |G|+ κ+ |M | O(1/QeQh) 1P+2E 1P+1E

BF-IBE [6]+KW03 [15] CBDH CPA 2|G|+ 2|M | O(1/Qh) 2P+2E 1P+1E

TightIBE [1] CBDH CCA |G|+ 2κ+ |M | O(1/Qh) 2P+2E 2P+2E

BF-IBE [6]+Approach I CBDH CCA |G|+ 2κ+ |M | O(1/Qh) 2P+2E 2P+2E

BB1-IBE [4] DBDH CPA 2|G|+ κ O(1/Qh) 3E 2P

BB1-IBE [4]+KW03 [15] DBDH CPA 4|G|+ 2κ O(1) 6E 2P

BB1-IBE [4]+Approach II DBDH CCA 2|G|+ 2κ O(1) 3E 2P+3E

We assume all the schemes are constructed on a symmetric pairing e : G × G → GT . P denotes a
pairing operation, and E denotes a group exponentiation in G or GT . κ is the security parameter. |G|
denotes the bits of an element of G. If using point compression trick, we have |G| ≈ κ. There are
also the computational costs due to the multiplication/inversion operations in group G or GT and hash
function/block cipher evaluations, but they can be done quite efficiently. For simplicity concern, we drop
these terms in the table.

Table 1. Comparison between the related IBE Schemes

different constructions of the one-way function in the IBE schemes. Compared to the original
schemes, the new schemes derived from them using the two refined approaches achieve tighter
CCA reductions with the reasonable costs in ciphertext size and efficiency.
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