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Abstra
t. We propose a new approa
h to pra
ti
al two-party 
omputation se
ure against an a
tive

adversary. All prior pra
ti
al proto
ols were based on Yao's garbled 
ir
uits. We use an OT-based

approa
h and get e�
ien
y via OT extension in the random ora
le model. To get a pra
ti
al proto
ol

we introdu
e a number of novel te
hniques for relating the outputs and inputs of OTs in a larger


onstru
tion.

We also report on an implementation of this approa
h, that shows that our proto
ol is more e�
ient

than any previous one: For big enough 
ir
uits, we 
an evaluate more than 20000 Boolean gates per

se
ond. As an example, evaluating one oblivious AES en
ryption (∼ 34000 gates) takes 64 se
onds, but
when repeating the task 27 times it only takes less than 3 se
onds per instan
e.
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1 Introdu
tion

Se
ure two-party 
omputation (2PC), introdu
ed by Yao [Yao82℄, allows two parties to jointly


ompute any fun
tion of their inputs in su
h a way that 1) the output of the 
omputation is 
orre
t

and 2) the inputs are kept private. Yao's proto
ol is se
ure only if the parti
ipants are semi-honest

(they follow the proto
ol but try to learn more than they should by looking at their trans
ript of the

proto
ol). A more realisti
 se
urity de�nition 
onsiders mali
ious adversaries, that 
an arbitrarily

deviate from the proto
ol.

A large number of approa
hes to 2PC have been proposed, falling into three main types, those

based on Yao's garbled 
ir
uit te
hniques, those based on some form of homomorphi
 en
ryption

and those based on oblivious transfer. Re
ently a number of e�orts to implement 2PC in pra
ti
e

have been reported on; In sharp 
ontrast to the theory, almost all of these are based on one type of

2PC, namely Yao's garbled 
ir
uit te
hnique. One of the main advantages of Yao's garbled 
ir
uits

is that it is primarily based on symmetri
 primitives: It uses one OT per input bit, but then uses

only a few 
alls to, e.g., a hash fun
tion per gate in the 
ir
uit to be evaluated. The other approa
hes

are heavy on publi
-key primitives whi
h are typi
ally orders of magnitude slower than symmetri


primitives.

However, in 2003 Ishai et al. introdu
ed the idea of extending OTs e�
iently [IKNP03℄�their

proto
ol allows to turn κ seed OTs based on publi
-key 
rypto into any polynomial ℓ = poly(κ)
number of OTs using only O(ℓ) invo
ations of a 
ryptographi
 hash fun
tion. For big enough ℓ the

ost of the κ seed OTs is amortized away and OT extension essentially turns OT into a symmetri


primitive in terms of its 
omputational 
omplexity. Sin
e the basi
 approa
h of basing 2PC on OT

in [GMW87℄ is e�
ient in terms of 
onsumption of OTs and 
ommuni
ation, this gives the hope

that OT-based 2PC too 
ould be pra
ti
al. This paper reports on the �rst implementation made to

investigate the pra
ti
ality of OT-based 2PC.

Our starting point is the e�
ient passive-se
ure OT extension proto
ol of [IKNP03℄ and passive-

se
ure 2PC of [GMW87℄. In order to get a
tive se
urity and preserve the high pra
ti
al e�
ien
y

of these proto
ols we 
hose to develop substantially di�erent te
hniques, di�erentiating from other

works that were only interested in asymptoti
 e�
ien
y [HIKN08,Nie07,IPS08℄. We report a number

of 
ontributions to the theory and pra
ti
e of 2PC:

1. We introdu
e a new te
hni
al idea to the area of extending OTs e�
iently, whi
h allows to

dramati
ally improve the pra
ti
al e�
ien
y of a
tive-se
ure OT extension. Our proto
ol has

the same asymptoti
 
omplexity as the previously best proto
ol in [HIKN08℄, but it is only a

small fa
tor slower than the passive-se
ure proto
ol in [IKNP03℄.

2. We give the �rst implementation of the idea of extending OTs e�
iently. The proto
ol is a
tive-

se
ure and generates 500,000 OTs per se
ond, showing that implementations needing a large

number of OTs 
an be pra
ti
al.

3. We introdu
e new te
hni
al ideas whi
h allow to relate the outputs and inputs of OTs in a

larger 
onstru
tion, via the use of information theoreti
 tags. This 
an be seen as a new �avor

of 
ommitted OT that only requires symmetri
 
ryptography. In 
ombination with our �rst


ontribution, our proto
ol shows how to e�
iently extend 
ommitted OT. Our proto
ols assume

the existen
e of OT and are se
ure in the random ora
le model.

4. We give the �rst implementation of pra
ti
al 2PC not based on Yao's garbled 
ir
uit te
h-

nique. Introdu
ing a new pra
ti
al te
hnique is a signi�
ant 
ontribution to the �eld in itself. In

addition, our proto
ol shows favorable timings 
ompared to the Yao-based implementations.
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1.1 Comparison with Related Work

The question on the asymptoti
al 
omputational overhead of 
ryptography was (essentially) settled

in [IKOS08℄. On the other hand, there is growing interest in understanding the pra
ti
al overhead of

se
ure 
omputation, and several works have perfe
ted and implemented proto
ols based on Yao gar-

bled 
ir
uits [MNPS04,BDNP08,LPS08,KS08,PSSW09,HKS

+
10,MK10,LP11,SS11,HEK

+
11℄, pro-

to
ols based on homomorphi
 en
ryption [IPS09,DO10,JMN10,BDOZ11℄ and proto
ols based on

OT [IPS08,LOP11,CHK

+
11℄.

Se
urity Model Rounds Time

(a) DK [DK10℄ (3 parties) Passive SM O(d) 1.5s

(b) DK [DK10℄ (4 parties) A
tive SM O(d) 4.5s

(
) sS [SS11℄ A
tive SM O(1) 192s

(d) HEKM [HEK

+
11℄ Passive ROM O(1) 0.2s

(e) IPS-LOP [IPS08,LOP11℄ A
tive SM O(d) 79s

(f) This (single) A
tive ROM O(d) 64s

(g) This (27, amortized) A
tive ROM O(d) 2.5s

Table 1. Brief 
omparison with other implementations.

A brief 
omparison of the time needed for

oblivious AES evaluation for the best known

implementations are shown in Table 1.

4

The

proto
ols in rows (a-b) are for 3 and 4 parties

respe
tively, and are se
ure against at most

one 
orrupted party. One of the goals of the

work in row (
) is how to e�
iently support

di�erent outputs for di�erent parties: in our

OT based proto
ol this feature 
omes for free.

The time in row (e) is an estimate made by

[LOP11℄ on the running time of their opti-

mized version of the OT-based proto
ol in [IPS08℄. The 
olumn Round indi
ates the round 
om-

plexity of the proto
ols, d being the depth of the 
ir
uit while the 
olumn Model indi
ates whether

the proto
ol was proven se
ure in the standard model (SM) or the random ora
le model (ROM).

The signi�
an
e of this work is shown in row (g). The reason for the dramati
 drop between

row (f) and (g) is that in (f), when we only en
rypt one blo
k, our implementation prepro
esses for

many more gates than is needed, for ease of implementation. In (g) we en
rypt 27 blo
ks, whi
h is

the minimum value whi
h eats to up all the prepro
essed values. We 
onsider these results positive:

our implementation is as fast or faster than any other 2PC proto
ol, even when en
rypting only one

blo
k. And more importantly, when running at full 
apa
ity, the pri
e to pay for a
tive se
urity is

about a fa
tor 10 against the passive-se
ure proto
ol in (d). We stress that this is only a limited


omparison, as the di�erent experiments were run on di�erent hardware and network setups: when

several options were available, we sele
ted the best time reported by the other implementations.

See Se
t. 7 for more timings and details of our implementation.

1.2 Overview of Our Approa
h

We start from a 
lassi
 textbook proto
ol for two-party 
omputation [Gol04, Se
. 7.3℄. In this

proto
ol, Ali
e holds se
ret shares xA, yA and Bob holds se
ret shares xB , yB of some bits x, y
s.t. xA ⊕ xB = x and yA ⊕ yB = y. Ali
e and Bob want to 
ompute se
ret shares of z = g(x, y)
where g is some Boolean gate, for instan
e the AND gate: Ali
e and Bob need to 
ompute a random

sharing zA, zB of z = xy = xAyA ⊕ xAyB ⊕ xByA ⊕ xByB. The parties 
an 
ompute the AND of

their lo
al shares (xAyA and xByB), while they 
an use oblivious transfer (OT) to 
ompute the


ross produ
ts (xAyB and xByA). Now the parties 
an iterate for the next layer of the 
ir
uit, up

to the end where they will re
onstru
t the output values by revealing their shares.

4

Oblivious AES has be
ome one of the most 
ommon 
ir
uits to use for ben
hmarking generi
 MPC proto
ols, due

to its reasonable size (about 30000 gates) and its relevan
e as a building blo
k for 
onstru
ting spe
i�
 purpose

proto
ols, like private set interse
tion [FIPR05℄.
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This proto
ol is se
ure against a semi-honest adversary: assuming the OT proto
ol to be se
ure,

Ali
e and Bob learn nothing about the intermediate values of the 
omputation. It is easy to see

that if a large 
ir
uit is evaluated, then the proto
ol is not se
ure against a mali
ious adversary: any

of the two parties 
ould repla
e values on any of the internal wires, leading to a possibly in
orre
t

output and/or leakage of information.

F
2PC

F
Deal

aOT aAND

aBit

EQOT

Se
t. 3

Se
t. 5 and 6

Se
t. 4

Fig. 1. Paper outline. This order of

presentation is 
hosen to allow the

best progression in introdu
tion of

our new te
hniques.

To 
ope with this, we put MACs on all bits. The starting point

of our proto
ol is oblivious authenti
ation of bits. One party, the

key holder, holds a uniformly random global key ∆ ∈ {0, 1}κ. The
other party, the MAC holder, holds some se
ret bits (x, y, say).
For ea
h su
h bit the key holder holds a 
orresponding uniformly

random lo
al key (Kx,Ky ∈ {0, 1}
κ
) and the MAC holder holds the


orresponding MAC (Mx = Kx ⊕ x∆, My = Ky ⊕ y∆). The key

holder does not know the bits and the MAC holder does not know

the keys. Note that Mx ⊕My = (Kx ⊕ Ky) ⊕ (x ⊕ y)∆. So, the

MAC holder 
an lo
ally 
ompute a MAC on x ⊕ y under the key

Kx ⊕Ky whi
h is non-intera
tively 
omputable by the key holder.

This homomorphi
 property 
omes from �xing ∆ and we exploit it

throughout our 
onstru
tions. From a bottom-up look, our proto
ol

is 
onstru
ted as follows (see Fig. 1 for the main stru
ture):

Bit Authenti
ation: We �rst implement oblivious authenti
ation of bits (aBit). As detailed

in Se
t. 4, to 
onstru
t authenti
ated bits we start by extending a few (say κ = 640) seed

(2
1

)

-OTs into many (say ℓ = 220) OTs, using OT extension. Then, if A wants to get a bit x
authenti
ated, she 
an input it as the 
hoi
e bit in an OT, while B 
an input (Kx,Kx ⊕ ∆),
playing the sender in the OT. Now A re
eives Mx = Kx ⊕ x∆. It should, of 
ourse, be ensured

that even a 
orrupted B uses the same value ∆ in all OTs. I.e., it should hold for all produ
ed

OTs that the XORs of the o�ered message pairs are 
onstant�this 
onstant value is then taken

to be ∆. It turns out, however, that when using the highly e�
ient passive-se
ure OT extender

in [IKNP03℄ and starting from seed OTs where the XORs of message pairs are 
onstant, one also

produ
es OTs where the XORs of message pairs are 
onstant, and we note that for this use the

proto
ol in [IKNP03℄ happens to be a
tive-se
ure! Using 
ut-and-
hoose we ensure that most of

the XORs of message pairs o�ered in the seed OTs are 
onstant, and with a new and inexpen-

sive tri
k we o�er priva
y and 
orre
tness even if few of these XORs have di�erent values. This


ut-and-
hoose te
hnique uses one 
all to a box EQ for 
he
king equality.

Authenti
ated lo
al AND: From aBits we then 
onstru
t authenti
ated lo
al ANDs (aAND),
where the MAC holder lo
ally holds random authenti
ated bits a, b, c with c = ab. To 
reate

authenti
ated lo
al ANDs, we let one party 
ompute c = ab for random a and b and get

authenti
ations on a, b, c (when 
reating aANDs, we assume the aBits are already available).

The 
hallenge is to ensure that c = ab. We 
onstru
t an e�
ient proof for this fa
t, again using

the box EQ on
e. This proof might, however, leak the bit a with small but noti
eable probability.

We 
orre
t this using a 
ombiner.

Authenti
ated OT: From aBits we also 
onstru
t authenti
ated OT s (aOT), whi
h are normal

(2
1

)

-OTs of bits, but where all input bits and output bits are obliviously authenti
ated. This is

done by letting the two parties generate aBits representing the sender messages x0, x1 and the

re
eiver 
hoi
e bit c. To produ
e the re
eiver's output, �rst a random aBit is sampled. Then this

bit is �
orre
ted� in order to be 
onsistent with the run of an OT proto
ol with input messages

5



x0, x1 and 
hoi
e bit c. This 
orre
tion might, however, leak the bit c with small but noti
eable

probability. We 
orre
t this using an OT 
ombiner. One 
all to the box EQ is used.

2PC: Given two aANDs and two aOTs one 
an evaluate in a very e�
ient way any Boolean gate:

only 4 bits per gate are 
ommuni
ated, as the MACs 
an be 
he
ked in an amortized manner.

That e�
ient 2PC is possible given enough aBits, aANDs and aOTs is no surprise. In some

sense, it is the standard way to base passive-se
ure 2PC on passive-se
ure OT enhan
ed with a

parti
ular �avor of 
ommitted OT (as in [CvdGT95,Gar04℄). What is new is that we managed to

�nd a parti
ular 
ommitted OT-like primitive whi
h allows both a very e�
ient generation and a

very e�
ient use: while previous result based on 
ommitted OT require hundreds of exponentiations

per gate, our 
ost per gate is in the order of hundreds of hash fun
tions. To the best of our knowledge,

we present the �rst pra
ti
al approa
h to extending a few seed OTs into a large number of 
ommitted

OT-like primitives. Of more spe
i�
 te
hni
al 
ontributions, the main is that we manage to do all

the proofs e�
iently, thanks also to the prepro
essing nature of our proto
ol: Creating aBits, we get
a
tive se
urity paying only a 
onstant overhead over the passive-se
ure proto
ol in [IKNP03℄. In the

generation of aANDs and aOTs, we repla
e 
ut-and-
hoose with e�
ient, slightly leaky proofs and

then use a 
ombiner to get rid of the leakage: When we prepro
ess for ℓ gates and 
ombine B leaky

obje
ts to get ea
h potentially unleaky obje
t, the probability of leaking is (2ℓ)−B = 2− log2(ℓ)(B−1)
.

As an example, if we prepro
ess for 220 gates with an overhead of B = 6, then we get leakage

probability 2−100
.

As a 
orollary to being able to generate any ℓ = poly(κ) a
tive-se
ure aBits from O(κ) seed OTs

and O(ℓ) 
alls to a hash-fun
tion, we get that we 
an generate any ℓ = poly(κ) a
tive-se
ure
(2
1

)

-OTs
of κ-bit strings from O(κ) seed OTs and O(ℓ) 
alls to a hash-fun
tion, mat
hing the asymptoti



omplexity of [HIKN08℄ while dramati
ally redu
ing their hidden 
onstants.

2 Preliminaries and Notation

We use κ (and sometimes ψ) to denote the se
urity parameter. We require that a poly-time adversary

break the proto
ol with probability at most poly(κ)2−κ. For a bit-string S ∈ {0, 1}∗ we de�ne

0S
def

= 0|S| and 1S
def

= S. For a �nite set S we use s ∈
R

S to denote that s is 
hosen uniformly at

random in S. For a �nite distribution D we use x← D to denote that x is sampled a

ording to D.

The UC Framework We prove our results stati
, a
tive-se
ure in the UC framework [Can01℄,

and we assume the reader to be familiar with it. We will idiosyn
rati
ally use the word box instead

of the usual term ideal fun
tionality. To simplify the statements of our results we use the following

terminology:

De�nition 1. We say that a box A is redu
ible to a box B if there exist an a
tively se
ure imple-

mentation π of A whi
h uses only one 
all to B. We say that A is lo
ally redu
ible to B if the parties

of π do not 
ommuni
ate (ex
ept through the one 
all to B). We say that A is linear redu
ible to B

if the 
omputing time of all parties of π is linear in their inputs and outputs. We use equivalent to

denote redu
ibility in both dire
tions.

It is easy to see that if A is (linear, lo
ally) redu
ible to B and B is (linear, lo
ally) redu
ible

to C, then A is (linear, lo
ally) redu
ible to C.
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Hash Fun
tions We use a hash fun
tion H : {0, 1}∗ → {0, 1}κ, whi
h we model as a random

ora
le (RO). We sometimes use H to mask a message, as in H(x) ⊕M . If |M | 6= κ, this denotes
prg(H(x)) ⊕M , where prg is a pseudo-random generator prg : {0, 1}κ → {0, 1}|M |

. We also use a


ollision-resistant hash fun
tion G : {0, 1}2κ → {0, 1}κ.

As other 2PC proto
ols whose fo
us is e�
ien
y [KS08,HEK

+
11℄, we are 
ontent with a proof

in the random ora
le model. What is the exa
t assumption on the hash fun
tion that we need for

our proto
ol to be se
ure, as well as whether this 
an be implemented under standard 
ryptographi


assumption is an interesting theoreti
al question, see [AHI10,CKKZ11℄.

Oblivious Transfer We use a box OT(τ, ℓ) whi
h 
an be used to perform τ
(2
1

)

-oblivious transfers

of strings of bit-length ℓ. In ea
h of the τ OTs the sender S has two inputs x0, x1 ∈ {0, 1}ℓ, 
alled
the messages, and the re
eiver R has an input c ∈ {0, 1}, 
alled the 
hoi
e bit. The output to R is

xc = c(x0 ⊕ x1)⊕ x0. No party learns any other information.

Equality Che
k We use a box EQ(ℓ) whi
h allows two parties to 
he
k that two strings of length

ℓ are equal. If they are di�erent the box leaks both strings to the adversary, whi
h makes se
ure

implementation easier. We de�ne and use this box to simplify the exposition of our proto
ol. In

pra
ti
e we implement the box by letting the parties 
ompare ex
hanged hash's of their values: this

is a se
ure implementation of the box in the random ora
le model.

For 
ompleteness we give a proto
ol whi
h se
urely implements EQ in the RO model. Let

H : {0, 1}∗ → {0, 1}κ be a hash fun
tion, modeled as a RO. Let κ be the se
urity parameter.

1. A 
hooses a random string r ∈R {0, 1}
κ
, 
omputes c = H(x||r) and sends it to B.

2. B sends y to A.

3. A sends x, r to B. A outputs x
?

= y.

4. B outputs (H(x||r)
?

= c) ∧ (x
?

= y).

This is a se
ure implementation of the EQ(ℓ) fun
tionality in the RO model. If A is 
orrupted,

the simulator extra
ts x, r from the simulated 
all to the RO, if the hash fun
tion was queried with

an input whi
h yielded the c sent by A. Then, it inputs x to EQ and re
eives (x, y) from the ideal

fun
tionality (if x 6= y). If the hash fun
tion was not queried with an input whi
h yielded the c sent
by A, then the simulator inputs a uniformly random x to EQ and re
eives (x, y). It then sends y
to the 
orrupted A. On input x′, r′ from A, if (x′, r′) 6= (x, r) the simulator inputs �abort� to the

EQ fun
tionality on behalf of A, or �deliver� otherwise. If (x′, r′) = (x, r), simulation is perfe
t. If

they are di�erent, the only way that the environment 
an distinguish is by �nding (x′, r′) 6= (x, r)
s.t. H(x||r) = H(x′||r′) or by �nding (x′, r′) su
h that c = H(x′||r′) for a c whi
h did not result from

a previous query. In the random ora
le both events happen with probability less than poly(κ)2−κ,
as the environment is only allowed a polynomial number of 
alls to the RO.

If B is 
orrupted, then the simulator sends a random value c ∈R {0, 1}
ℓ
to B. Then, on input y

from B it inputs this value to the EQ box and re
eives (x, y). Now, it 
hooses a random r ∈R {0, 1}
κ

and programs the RO to output c on input x||r, and sends x and r to B. Simulation is perfe
t,

and the environment 
an only distinguish if it had already queried the RO on input x||r, and this

happens with probability poly(κ)2−κ, as r ∈ {0, 1}κ is uniformly random, and the environment is

only allowed a polynomial number of 
alls to the RO.
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Leakage Fun
tions We use a notion of a 
lass L of leakage fun
tions on τ bits. The 
ontext is that

there is some uniformly random se
ret value ∆ ∈
R

{0, 1}τ and some adversary A wants to guess ∆.

To aid A, she 
an do an atta
k whi
h might leak some of the bits of ∆. The atta
k, however, might

be dete
ted. Ea
h L ∈ L is a poly-time sampleable distribution on (S, c) ∈ 2{1,...,τ} × {0, 1}. Here
c spe
i�es if the atta
k was dete
ted, where c = 0 signals dete
tion, and S spe
i�es the bits to be

leaked if the atta
k was not dete
ted. We need a measure of how many bits a 
lass L leaks. We do

this via a game for an unbounded adversary A.

1. The game pi
ks a uniformly random ∆ ∈
R

{0, 1}τ .
2. A inputs L ∈ L.
3. The game samples (S, c)← L. If c = 0, A loses. If c = 1, the game gives {(i,∆i)}i∈S to A.

4. Let S = {1, . . . , τ}\S. A inputs the guesses {(i, gi)}i∈S . If gi = ∆i for all i ∈ S, A wins, otherwise

she loses.

We say that an adversary A is optimal if she has the highest possible probability of winning the

game above. If there were no leakage, i.e., S = ∅, then it is 
lear that the optimal A wins the game

with probability exa
tly 2−τ . If A is always given exa
tly s bits and is never dete
ted, then it is


lear that the optimal A 
an win the game with probability exa
tly 2s−τ . This motivates de�ning

the number of bits leaked by L to be leakL
def

= log2(successL) + τ , where successL is the probability

that the optimal A wins the game. It is easy (details below) to see that if we take expe
tation over

random (S, c) sampled from L, then leakL = maxL∈L log2
(

E
[

c2|S|
])

.

We say that L is κ-se
ure if τ − leakL ≥ κ, and it is 
lear that if L is κ-se
ure, then no A 
an

win the game with probability better than 2−κ.
We now rewrite the de�nition of leakL to make it more workable.

It is 
lear that the optimal A 
an guess all∆i for i ∈ S with probability exa
tly 2|S|−τ . This means

that the optimal A wins with probability

∑τ
s=0 Pr [(S, c)← L : |S| = s ∧ c = 1] 2s−τ . To simplify this

expression we de�ne index variables Is, Js ∈ {0, 1} where Is is 1 i� c = 1 and |S| = s and Js is 1 i�

|S| = s. Note that Is = cJs and that

∑

s Js2
s = 2|S|. So, if we take expe
tation over (S, c) sampled

from L, then we get that

τ
∑

s=0

Pr [(S, c)← L : |S| = s ∧ c = 1] 2s =

τ
∑

s=0

E [Is] 2
s

= E

[

τ
∑

s=0

Is2
s

]

= E

[

τ
∑

s=0

cJs2
s

]

= E

[

c
τ

∑

s=0

Js2
s

]

= E
[

c2|S|
]

.

Hen
e successL = 2−τ E
[

c2|S|
]

is the probability of winning when using L and playing optimal.

Hen
e successL = maxL∈L(2
−τ E

[

c2|S|
]

) and log2(successL) = −τ + log2 maxL∈L
(

E
[

c2|S|
])

, whi
h

shows that

leakL = max
L∈L

log2

(

E
[

c2|S|
])

,

as 
laimed above.

3 The Two-Party Computation Proto
ol
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F
2PC

F
Deal

aOT aANDaBit

Fig. 2. Se
t. 3 outline.

We want to implement the box F
2PC

for Boolean two-party se
ure 
om-

putation as des
ribed in Fig. 4. We will implement this box in the F
Deal

-

hybrid model of Fig. 5. This box provides the parties with aBits, aANDs
and aOTs, and models the prepro
essing phase of our proto
ol. We intro-

du
e notation in Fig. 3 for working with authenti
ated bits. The proto
ol

implementing F
2PC

in the dealer model is des
ribed in Fig. 6. The dealer

o�ers random authenti
ated bits (to A or B), random authenti
ated lo
al AND triples and random

authenti
ated OTs. Those are all the ingredients that we need to build the 2PC proto
ol. Note

that the dealer o�ers randomized versions of all 
ommands: this is not a problem as the �standard�

version of the 
ommands (the one where the parties 
an spe
ify their input bits instead of getting

them at random from the box) are linearly redu
ible to the randomized version, as 
an be easily

dedu
ed from the proto
ol des
ription. The following result is proven in App. B:

Theorem 1. The proto
ol in Fig. 6 se
urely implements the box F
2PC

in the F
Deal

-hybrid model

with se
urity parameter κ.

Global Key: We 
all ∆A,∆B ∈ {0, 1}
κ
the two global keys, held by B and A respe
tively.

Authenti
ated Bit: We write [x]A to represent an authenti
ated se
ret bit held by A. Here B knows a key

Kx ∈ {0, 1}
κ
and A knows a bit x and a MAC Mx = Kx ⊕ x∆A ∈ {0, 1}

κ
. Let [x]A

def

= (x,Mx,Kx).
a

If [x]A = (x,Mx,Kx) and [y]A = (y,My ,Ky) we write [z]A = [x]A ⊕ [y]A to indi
ate [z]A = (z,Mz,Kz)
def

=
(x⊕ y,Mx ⊕My, Kx ⊕Ky). Note that no 
ommuni
ation is required to 
ompute [z]A from [x]A and [y]A.
It is possible to authenti
ate a 
onstant bit (a value known both to A and B) b ∈ {0, 1} as follows: A sets

Mb = 0κ, B sets Kb = b∆A, now [b]A
def

= (b,Mb,Kb). For a 
onstant b we let [x]A ⊕ b
def

= [x]A ⊕ [b]A, and we

let b[x]A be equal to [0]A if b = 0 and [x]A if b = 1.
We say that A reveals [x]A by sending (x,Mx) to B who aborts if Mx 6= Kx ⊕ x∆A. Alternatively we say

that A announ
es x by sending x to B without a MAC.

Authenti
ated bits belonging to B are written as [y]B and are de�ned symmetri
ally, 
hanging side of all the

values and using the global value ∆B instead of ∆A.

Authenti
ated Share: We write [x] to represent the situation where A and B hold [xA]A, [xB]B and x = xA⊕xB,
and we write [x] = ([xA]A, [xB ]B) or [x] = [xA|xB].
If [x] = [xA|xB ] and [y] = [yA|yB] we write [z] = [x] ⊕ [y] to indi
ate [z] = ([zA]A, [zB ]B) = ([xA]A ⊕
[yA]A, [xB ]B ⊕ [yB ]B). Note that no 
ommuni
ation is required to 
ompute [z] from [x] and [y].
It is possible to 
reate an authenti
ated share of a 
onstant b ∈ {0, 1} as follows: A and B 
reate [b] = [b|0].
For a 
onstant value b ∈ {0, 1}, we de�ne b[x] to be equal to [0] if b = 0 and [x] if b = 1.
When an authenti
ated share is revealed, the parties reveal to ea
h other their authenti
ated bits and abort

if the MACs are not 
orre
t.

a

Sin
e ∆A is a global value we will not always write it expli
itly. Note that in x∆A, x represents a value, 0 or 1,
and that in [x]A, Kx andMx it represents a variable name. I.e., there is only one key (MAC) per authenti
ated

bit, and for the bit named x, the key (MAC) is named Kx (Mx). If x = 0, then Mx = Kx. If x = 1, then
Mx = Kx ⊕∆A.

Fig. 3. Notation for authenti
ated and shared bits.

Why the global key queries? The F
Deal

box (Fig. 5) allows the adversary to guess the value

of the global key, and it informs it if its guess is 
orre
t. This is needed for te
hni
al reasons:

When F
Deal

is proven UC se
ure, the environment has a

ess to either F
Deal

or the proto
ol

implementing F
Deal

. In both 
ases the environment learns the global keys∆A and∆B. In parti
ular,
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Rand: On input (rand, vid) from A and B, with vid a fresh identi�er, the box pi
ks r ∈
R

{0, 1} and stores

(vid , r).
Input: On input (input,P, vid , x) from P ∈ {A,B} and (input,P, vid , ?) from the other party, with vid a fresh

identi�er, the box stores (vid , x).
XOR: On 
ommand (xor, vid1, vid2, vid3) from both parties (if vid1, vid2 are de�ned and vid3 is fresh), the box

retrieves (vid1, x), (vid2, y) and stores (vid3, x⊕ y).
AND: As XOR, but store (vid3, x · y).
Output: On input (output,P, vid) from both parties, with P ∈ {A,B} (and vid de�ned), the box retrieves

(vid , x) and outputs it to P.

At ea
h 
ommand the box leaks to the environment whi
h 
ommand is being exe
uted (keeping the value x in

Input se
ret), and delivers messages only when the environment says so.

Fig. 4. The box F
2PC

for Boolean Two-party Computation.

Initialize: On input (init) from A and (init) from B, the box samples ∆A,∆B ∈ {0, 1}
κ
, stores them and

outputs ∆B to A and ∆A to B. If A (resp. B) is 
orrupted, she gets to 
hoose ∆B (resp. ∆A).

Authenti
ated Bit (A): On input (aBIT,A) from A and B, the box samples a random [x]A = (x,Mx,Kx)
with Mx = Kx⊕ x∆A and outputs it (x,Mx to A and Kx to B). If B is 
orrupted he gets to 
hoose Kx. If

A is 
orrupted she gets to 
hoose (x,Mx), and the box sets Kx = Mx ⊕ x∆A.

Authenti
ated Bit (B): On input (aBIT,B) from A and B, the box samples a random [x]B = (x,Mx,Kx)
with Mx = Kx⊕x∆B and outputs it (x,Mx to B and Kx to A). As in Authenti
ated Bit (A), 
orrupted

parties 
an 
hoose their own randomness.

Authenti
ated lo
al AND (A): On input (aAND,A) from A and B, the box samples random [x]A,[y]A and

[z]A with z = xy and outputs them. As in Authenti
ated Bit (A), 
orrupted parties 
an 
hoose their own

randomness.

Authenti
ated lo
al AND (B) De�ned symmetri
ally.

Authenti
ated OT (A-B): On input (aOT,A,B) from A and B, the box samples random [x0]A,[x1]A,[c]B and

[z]B with z = xc = c(x0 ⊕ x1) ⊕ x0 and outputs them. As in Authenti
ated Bit, 
orrupted parties 
an


hoose their own randomness.

Authenti
ated OT (B-A): De�ned symmetri
ally.

a

Global Key Queries: The adversary 
an at any point input (A, ∆) and be told whether ∆ = ∆B . And it 
an

at any point input (B,∆) and be told whether ∆ = ∆A.

a

The dealer o�ers aOTs in both dire
tions. Noti
e that the dealer 
ould o�er aOT only in one dire
tion and

the parties 
ould then �turn� them: as regular OT, aOT is symmetri
 as well.

Fig. 5. The box F
Deal

for dealing prepro
essed values.

the environment learns ∆A even if B is honest. This requires us to prove the sub-proto
ol for F
Deal

se
ure to an adversary knowing ∆A even if B is honest: to be be able to do this, the simulator

needs to re
ognize ∆A if it sees it�hen
e the global key queries. Note, however, that in the 
ontext

where we use F
Deal

(Fig. 6), the environment does not learn the global key ∆A when B is honest:

A 
orrupted A only sees MACs on one bit using the same lo
al key, so all MACs are uniformly

random in the view of a 
orrupted A, and B never makes the lo
al keys publi
.

Amortized MAC 
he
ks. In the proto
ol of Fig. 6, there is no need to send MACs and 
he
k

them every time we do a �reveal�. In fa
t, it is straightforward to verify that before an Output


ommand is exe
uted, the proto
ol is perfe
tly se
ure even if the MACs are not 
he
ked. Noti
e

then that a keyholder 
he
ks a MAC Mx on a bit x by 
omputing M ′
x = Kx ⊕ x∆ and 
omparing

M ′
x to the Mx whi
h was sent along with x. These equality 
he
ks 
an be deferred and amortized.

Initially the MAC holder, e.g. A, sets N = 0κ and the key holder, e.g. B, sets N ′ = 0κ. As long
as no Output 
ommand is exe
uted, when A reveals x she updates N ← G(N,H(Mx)) for the

MAC Mx she should have sent along with x, and B updates N ′ ← G(N ′,H(M ′
x)). Before exe
uting
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Initialize: When a
tivated the �rst time, A and B a
tivate F
Deal

and re
eive ∆B and ∆A respe
tively.

Rand: A and B ask F
Deal

for random authenti
ated bits [rA]A, [rB]B and stores [r] = [rA|rB] under vid .
Input: If P = A, then A asks F

Deal

for an authenti
ated bit [xA]A and announ
es (i.e., no MAC is sent together

with the bit) xB = x⊕ xA, and the parties build [xB ]B and de�ne [x] = [xA|xB]. The proto
ol is symmetri


for B.

XOR: A and B retrieve [x], [y] stored under vid1, vid2 and store [z] = [x]⊕ [y] under vid3. For brevity we drop

expli
it mentioning of variable identi�ers below.

AND: A and B retrieve [x], [y] and 
ompute [z] = [xy] as follows:
1. The parties ask F

Deal

for a random AND triplet [u]A, [v]A, [w]A with w = uv.
A reveals [f ]A = [u]A ⊕ [xA]A and [g]A = [v]A ⊕ [yA]A.
The parties 
ompute [xAyA]A = f [yA]A ⊕ g[xA]A ⊕ [w]A ⊕ fg.

2. Symmetri
ally the parties 
ompute [xByB ]B.
3. The parties ask F

Deal

for a random authenti
ated OT [u0]A, [u1]A, [c]B, [w]B with w = uc.
They also ask for an authenti
ated bit [rA]A.
Now B reveals [d]B = [c]B ⊕ [yB]B.
A reveals [f ]A = [u0]A ⊕ [u1]A ⊕ [xA]A and [g]A = [rA]A ⊕ [u0]A ⊕ d[xA]A.
Compute [sB ]B = [w]B ⊕ f [c]B ⊕ g. Note that at this point [sB]B = [rA ⊕ xAyB ]B.

4. Symmetri
ally the parties 
ompute [sA]A = [rB ⊕ xByA]A.
A and B 
ompute [zA]A = [rA]A ⊕ [sA]A ⊕ [xAyA]A and [zB]B = [rB ]B ⊕ [sB ]B⊕ [xByB ]B and let [z] = [zA|zB ].

Output: The parties retrieve [x] = [xA|xB]. If A is to learn x, B reveals xB. If B is to learn x, A reveals xA.

Fig. 6. Proto
ol for F
2PC

in the F
Deal

-hybrid model

an Output, A sends N to B who aborts if N 6= N ′
. Se
urity of this 
he
k is easily proved in the

random ora
le model. The optimization brings the 
ommuni
ation 
omplexity of the proto
ol down

from O(κ|C|) to O(|C|+ oκ), where o is the number of rounds in whi
h outputs are opened. For a


ir
uit of depth O(|C|/κ), the 
ommuni
ation is O(|C|).

Implementing F
Deal

. In the following se
tions we show how to implement F
Deal

. In Se
t. 4 we

implement just the part with the 
ommands Authenti
ated Bits. In Se
t. 5 we show how to extend

with the Authenti
ated OT 
ommands, by showing how to implement many aOTs from many

aBits. In Se
t. 6 we then show how to extend with the Authenti
ated lo
al AND 
ommands, by

showing how to implement many aANDs from many aBits. We des
ribe the extensions separately,

but sin
e they both maintain the value of the global keys, they will produ
e aANDs and aOTs with
the same keys as the aBits used, giving an implementation of F

Deal

.

4 Bit Authenti
ation

aBit

WaBit

LaBit

OTEQ

Fig. 7. Se
t. 4 outline.

In this se
tion we show how to e�
iently implement (oblivious) bit au-

thenti
ation, i.e., we want to be in a situation where A knows some bits

x1, . . . , xℓ together with MACs M1, . . . ,Mℓ, while B holds a global key

∆A and lo
al keys K1, . . . ,Kℓ s.t.Mi = Ki⊕xi∆A, as des
ribed in F
Deal

(Fig. 5). Given the 
omplete symmetry of F
Deal

, we only des
ribe the


ase where A is MAC holder.

If the parties were honest, we 
ould do the following: A and B run an

OT where B inputs the two messages (Ki,Ki ⊕∆A) and A 
hooses xi, to re
eive Mi = Ki ⊕ xi∆A.

However, if B is dishonest he might not use the same ∆A in all OTs. The main ideas that make the

proto
ol se
ure against 
heating parties are the following:

1. For reasons that will be apparent later, we will a
tually start in the opposite dire
tion and let

B re
eive some authenti
ated bits yi using an OT, where A is supposed to always use the same
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global key ΓB. Thus an honest A inputs (Li, Li⊕ΓB) in the OTs and B re
eives Ni = Li⊕yiΓB .
To 
he
k that A is playing honest in most OTs, the authenti
ated bits are randomly paired and

a 
he
k is performed, whi
h restri
ts A to 
heat in at most a few OTs.

2. We then noti
e that what A gains by using di�erent ΓB 's in a few OTs is no more than learning

a few of B's bits yi. We 
all this a leaky aBit, or LaBit.

3. We show how to turn this situation into an equivalent one where A (not B) re
eives authenti
ated

random bits xi's (none of whi
h leaks to B) under a �slightly inse
ure� global key ΓA. The
inse
urity 
omes from the fa
t that the leakage of the yi's turns into the leakage of a few bits of

the global key ΓA towards A. We 
all this an aBit with weak global key, or WaBit.

4. Using priva
y ampli�
ation, we amplify the previous setting to a new one where A re
eives

authenti
ated bits under a (shorter) fully se
ure global key ∆A, where no bits of ∆A are known

to A, �nally implementing the aBit 
ommand of the dealer box.

We will pro
eed in reverse order and start with step 4 in the previous des
ription: we will start with

showing how we 
an turn authenti
ated bits under an �inse
ure� global key ΓA into authenti
ated

bits under a �se
ure� (but shorter) global key ∆A.

4.1 Bit Authenti
ation with Weak Global Key (WaBit)

We will �rst de�ne the box providing bit authenti
ation, but where some of the bits of the global

key might leak. We 
all this box WaBit (bit authenti
ation with weak global key) and we formally

des
ribe it in Fig. 8. The box WaBitL(ℓ, τ) outputs ℓ bits with keys of length τ . The box is also

parametrized by a 
lass L of leakage fun
tions on τ bits. The box aBit(ℓ, ψ) is the box WaBitL(ℓ, ψ)
where L is the 
lass of leakage fun
tions that never leak.

Honest Parties:

1. The box samples ΓA ∈R {0, 1}
τ
and outputs it to B.

2. The box samples and outputs [x1]A, . . . , [xℓ]A. Ea
h [xi]A = (xi,M
′
i ,K

′
i) ∈ {0, 1}

1+2τ
s.t.M ′

i = K′
i⊕xiΓA.

Corrupted Parties:

1. If A is 
orrupted, then A may 
hoose a leakage fun
tion L ∈ L. Then the box samples (S, c) ← L. If
c = 0 the box outputs fail to B and terminates. If c = 1, the box outputs {(i, (ΓA)i)}i∈S to A.

2. If A is 
orrupted, then A 
hooses the xi and the M ′
i and then K′

i =M ′
i ⊕ xiΓA.

3. If B is 
orrupted, then B 
hooses ΓA and the K′
i.

Global Key Queries: The adversary 
an input Γ and will be told if Γ = ΓA.

Fig. 8. The box WaBitL(ℓ, τ ) for Bit Authenti
ation with Weak Global Key

1. The parties invoke WaBitL(ℓ, τ ) with τ = 22
3
ψ. The output to A is ((M ′

1, x1), . . . , (M
′
ℓ, xℓ)). The output to

B is (ΓA,K
′
1, . . . ,K

′
ℓ).

2. B samples A ∈
R

{0, 1}ψ×τ
, a random binary matrix with ψ rows and τ 
olumns, and sends A to A.

3. A 
omputes Mi = AM ′
i ∈ {0, 1}

ψ
and outputs ((M1, x1), . . . , (Mℓ, xℓ)).

4. B 
omputes ∆A = AΓA and Ki = AK′
i and outputs (∆A,K1, . . . ,Kℓ).

Fig. 9. Subproto
ol for redu
ing aBit(ℓ, ψ) to WaBitL(ℓ, τ ).

In Fig. 9 we des
ribe a proto
ol whi
h takes a box WaBit, where one quarter of the bits of the
global key might leak, and ampli�es it to a box aBit where the global key is perfe
tly se
ret. The

proto
ol is des
ribed for general L and it is parametrized by a desired se
urity level ψ. The proof

of the following theorem 
an be found in App. C.
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Theorem 2. Let τ = 22
3 ψ and L be a

(

3
4τ

)

-se
ure leakage fun
tion on τ bits. The proto
ol in Fig. 9

se
urely implements aBit(ℓ, ψ) in the WaBitL(ℓ, τ)-hybrid model with se
urity parameter ψ. The

ommuni
ation is O(ψ2) and the work is O(ψ2ℓ).

4.2 Bit Authenti
ation with Leaking Bits (LaBit)

We now show another inse
ure box for aBit. The new box is inse
ure in the sense that a few of

the bits to be authenti
ated might leak to the other party. We 
all this box an aBit with leaking

bits, or LaBit and formally des
ribe it in Fig. 10. The box LaBitL(τ, ℓ) outputs τ authenti
ated bits

with keys of length ℓ, and is parametrized by a 
lass of leakage fun
tions L on τ -bits. We show that

WaBitL 
an be redu
ed to LaBitL. In the redu
tion, a LaBit that outputs authenti
ated bits [yi]B
to B 
an be turned into a WaBit that outputs authenti
ated bits [xj ]A to A, therefore we present the

LaBit box that outputs bits to B. The redu
tion is strongly inspired by the OT extension te
hniques

in [IKNP03℄.

Honest Parties:

1. The box samples ΓB ∈R {0, 1}
ℓ
and outputs it to A.

2. The box samples and outputs [y1]B, . . . , [yτ ]B. Ea
h [yi]B = (yi, Ni, Li) ∈ {0, 1}
1+2ℓ

s.t. Ni = Li ⊕ yiΓB .
Corrupted Parties:

1. If A is 
orrupted, then A may input a leakage fun
tion L ∈ L. Then the box samples (S, c)← L. If c = 0
the box outputs fail to B and terminates. If c = 1, the box outputs {(i, yi)}i∈S to A.

2. Corrupted parties get to spe
ify their outputs as in Fig. 8.

Choi
e Bit Queries: The adversary 
an input ∆ and will be told if ∆ = (y1, . . . , yτ ).

Fig. 10. The box LaBitL(τ, ℓ) for Bit Authenti
ation with Leaking Bits

1. A and B invoke LaBitL(τ, ℓ). B learns ((N1, y1), . . . , (Nτ , yτ )) and A learns (ΓB , L1, . . . , Lτ ).
2. A lets xj be the j-th bit of ΓB and Mj the string 
onsisting of the j-th bits from all the strings Li,

i.e. Mj = L1,j ||L2,j || . . . ||Lℓ,j .
3. B lets ΓA be the string 
onsisting of all the bits yi, i.e. ΓA = y1||y2|| . . . ||yℓ, and lets Kj be the string


onsisting of the j-th bits from all the strings Ni, i.e. Kj = N1,j ||N2,j || . . . ||Nℓ,j .
4. A and B now hold [xj ]A = (xj ,Mj ,Kj) for j = 1, . . . , ℓ.

Fig. 11. Subproto
ol for redu
ing WaBitL(ℓ, τ ) to LaBitL(τ, ℓ)

Theorem 3. For all ℓ, τ and L the boxes WaBitL(ℓ, τ) and LaBitL(τ, ℓ) are linear lo
ally equivalent,
i.e., 
an be implemented given the other in linear time without intera
tion.

Proof. The �rst dire
tion (redu
ing WaBit to LaBit) is shown in Fig. 11. The other dire
tion

(LaBit is linear lo
ally redu
ible to WaBit) will follow by the fa
t that the lo
al transformations

are reversible in linear time. One 
an 
he
k that for all j = 1, . . . , τ , [xj ]A is a 
orre
t authenti
ated

bit. Namely, from the box LaBit we get that for all i = 1, . . . , ℓ, Ni = Li ⊕ yiΓB . In parti
ular

the j-th bit satis�es Ni,j = Li,j ⊕ yi(ΓB)j , whi
h 
an be rewritten (using the same renaming as

in the proto
ol) as Kj,i = Mj,i ⊕ (ΓA)ixj , and therefore Mj = Kj ⊕ xjΓA, as we want. It is easy

so see (as the proto
ol only 
onsists of renamings) that leakage on the 
hoi
e bits is equivalent to

leakage on the global key under this transformation, and guesses on ΓA are equivalent to guesses

on (y1, . . . , yτ ), so giving a simulation argument is straight-forward when L is the same for both

boxes. ✷
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Note that sin
e we turn LaBitL(ℓ, τ) into WaBitL(τ, ℓ), if we 
hoose ℓ = poly(ψ) we 
an turn

a relatively small number (τ = 22
3 ψ) of authenti
ated bits towards one player into a very larger

number (ℓ) of authenti
ated bits towards the other player.

4.3 A Proto
ol For Bit Authenti
ation With Leaking Bits

In this se
tion we show how to 
onstru
t authenti
ated bits starting from OTs. The proto
ol ensures

that most of the authenti
ated bits will be kept se
ret, as spe
i�ed by the LaBit box in Fig. 10.

The main idea of the proto
ol, des
ribed in Fig. 12, is the following: many authenti
ated bits

[yi]B for B are 
reated using OTs, where A is supposed to input messages (Li, Li ⊕ ΓB). To 
he
k

that A is using the same ΓB in every OT, the authenti
ated bits are randomly paired. Given a pair

of authenti
ated bits [yi]B, [yj ]B, A and B 
ompute [zi]B = [yi]B ⊕ [yj]B ⊕ di where di = yi ⊕ yj is
announ
ed by B. If A behaved honestly, she knows the MAC that B holds on zi, otherwise she has 1
bit of entropy on this MAC, as shown below. The parties 
an 
he
k if A knows the MAC using the

EQ box des
ribed in App. 2. As B reveals yi⊕yj, they waste [yj ]B and only use [yi]B as output from

the proto
ol�as yj is uniformly random yi ⊕ yj leaks no information on yi. Note that we 
annot

simply let A reveal the MAC on zi, as a mali
ious B 
ould announ
e 1⊕ zi: this would allow B to

learn a MAC on zi and 1 ⊕ zi at the same time, thus leaking ΓB. Using EQ for
es a thus 
heating

B to guess the MAC on a bit whi
h he did not see, whi
h he 
an do only with negligible probability

2−ℓ.

1. A samples ΓB ∈R {0, 1}
ℓ
and for i = 1, . . . , T samples Li ∈R {0, 1}

ℓ
, where T = 2τ .

2. B samples (y1, . . . , yT ) ∈
R

{0, 1}T .
3. They run T OTs, where for i = 1, . . . , T party A o�ers (Yi,0, Yi,1) = (Li, Li ⊕ ΓB) and B sele
ts yi and

re
eives Ni = Yi,yi = Li ⊕ yiΓB . Let [y1]B, . . . , [yT ]B be the 
andidate authenti
ated bits produ
ed so far.

4. B pi
ks a uniformly random pairing π (a permutation π : {1, . . . , T } → {1, . . . , T } where ∀i, π(π(i)) = i),
and sends π to A. Given a pairing π, let S(π) = {i|i ≤ π(i)}, i.e., for ea
h pair, add the smallest index to

S(π).
5. For all τ indi
es i ∈ S(π):

(a) B announ
es di = yi ⊕ yπ(i).
(b) A and B 
ompute [zi]B = [yi]B ⊕ [yπ(i)]B ⊕ di.
(
) Let Zi and Wi be the MAC and the lo
al key for zi held by A respe
tively B. They 
ompare these using

EQ and abort if they are di�erent.

The τ 
omparisons are done using one 
all on the τℓ-bit strings (Zi)i∈S(π) and (Wi)i∈S(π).

6. For all i ∈ S(π) A and B output [yi]B.

Fig. 12. The proto
ol for redu
ing LaBit(τ, ℓ) to OT(2τ, ℓ) and EQ(τℓ).

Note that if A uses di�erent ΓB in two paired instan
es, Γi and Γj say, then the MAC held by B

on yi⊕ yj (and therefore also zi) is (Li⊕ yiΓi)⊕ (Lj ⊕ yjΓj) = (Li⊕Lj)⊕ (yi⊕ yj)Γj ⊕ yi(Γi⊕Γj).
Sin
e (Γi ⊕ Γj) 6= 0ℓ and yi ⊕ yj is �xed by announ
ing di, guessing this MAC is equivalent to

guessing yi. As A only knows Li, Lj , Γi, Γj and yi ⊕ yj , she 
annot guess yi with probability better

than 1/2. Therefore, if A 
heats in many OTs, she will get 
aught with high probability. If she only


heats on a few instan
es she might pass the test. Doing so 
on�rms her guess on yi in the pairs

where she 
heated. Now assume that she 
heated in instan
e i and o�ered (Li, Li ⊕ Γ
′
B) instead of

(Li, Li ⊕ ΓB). After getting her guess on yi 
on�rmed she 
an explain the run as an honest run: If

yi = 0, the run is equivalent to having o�ered (Li, Li⊕ΓB), as B gets no information on the se
ond

message when yi = 0. If yi = 1, then the run is equivalent to having o�ered (L′
i, L

′
i ⊕ ΓB) with
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L′
i = Li ⊕ (ΓB ⊕ Γ

′
B), as L

′
i ⊕ ΓB = Li ⊕ ΓB and B gets no information on the �rst message when

yi = 1. So, any 
heating strategy of A 
an be simulated by letting her honestly use the same ΓB in

all pairs and then let her try to guess some bits yi. If she guesses wrong, the deviation is reported

to B. If she guesses right, she is told so and the deviation is not reported to B. This, in turn, 
an

be 
aptured using some appropriate 
lass of leakage fun
tions L. Nailing down the exa
t L needed

to simulate a given behavior of A, in
luding de�ning what is the �right� ΓB, and showing that the

needed L is always κ-se
ure is a relatively straight-forward but very tedious business. The proof of

the following theorem 
an be found in App. D.

Theorem 4. Let κ = 3
4τ , and let L be a κ se
ure leakage fun
tion on τ bits. The proto
ol in Fig. 12

se
urely implements LaBitL(τ, ℓ) in the (OT(2τ, ℓ),EQ(τℓ))-hybrid model. The 
ommuni
ation is

O(τ2). The work is O(τℓ).

Corollary 1. Let ψ denote the se
urity parameter and let ℓ = poly(ψ). The box aBit(ℓ, ψ) 
an be

redu
ed to (OT(443 ψ,ψ),EQ(ψ)). The 
ommuni
ation is O(ψℓ+ ψ2) and the work is O(ψ2ℓ).

Proof. Combining the above theorems we have that aBit(ℓ, ψ) 
an be redu
ed to

(OT(443 ψ, ℓ),EQ(223 ψℓ)) with 
ommuni
ation O(ψ2) and work O(ψ2ℓ). For any polynomial ℓ, we 
an
implement OT(443 ψ, ℓ) given OT(443 ψ,ψ) and a pseudo-random generator prg : {0, 1}ψ → {0, 1}ℓ.
Namely, seeds are sent using the OTs and the prg is used to one-time pad en
rypt the messages. The


ommuni
ation is 2ℓ. If we use the RO to implement the pseudo-random generator and 
ount the

hashing of κ bits as O(κ) work, then the work is O(ℓψ). We 
an implement EQ(223 ψℓ) by 
omparing

short hashes produ
ed using the RO. The work is O(ψℓ). ✷

Sin
e the ora
les (OT(443 ψ,ψ),EQ(ψ)) are independent of ℓ, the 
ost of essentially any reasonable
implementation of them 
an be amortized away by pi
king ℓ large enough. See App. A for a more

detailed 
omplexity analysis.

E�
ient OT Extension: We noti
e that the WaBit box resembles an intermediate step of the

OT extension proto
ol of [IKNP03℄. Completing their proto
ol (i.e., �hashing away� the fa
t that

all messages pairs have the same XOR), gives an e�
ient proto
ol for OT extension, with the same

asymptoti
 
omplexity as [HIKN08℄, but with dramati
ally smaller 
onstants. See App. E for details.

5 Authenti
ated Oblivious Transfer

In this se
tion we show how to implement aOTs. We implemented aBits in Se
t. 4, so what re-

mains is to show how to implement aOTs from aBits i.e., to implement the F
Deal

box when it

outputs [x0]A, [x1]A, [c]B, [z]B with z = c(x0⊕x1)⊕x0 = xc. Be
ause of symmetry we only show the


onstru
tion of aOTs from aBits with A as sender and B as re
eiver.

aOT

LaOT

aBit EQ

Fig. 13. Se
t. 5 outline.

We go via a leaky version of authenti
ated OT, or LaOT, des
ribed
in Fig. 14. The LaOT box is leaky in the sense that 
hoi
e bits may leak

when A is 
orrupted: a 
orrupted A is allowed to make guesses on 
hoi
e

bits, but if the guess is wrong the box aborts revealing that A is 
heating.

This means that if the box does not abort, with very high probability A

only tried to guess a few 
hoi
e bits.

The proto
ol to 
onstru
t a leaky aOT (des
ribed in Fig. 15) pro
eeds

as follows: First A and B get [x0]A, [x1]A (A's messages), [c]B (B's 
hoi
e bit) and [r]B. Then A
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Honest Parties: For i = 1, . . . , ℓ, the box outputs random [xi0]A, [x
i
1]A, [c

i]B, [z
i]B with zi = ci(xi0 ⊕ x

i
1)⊕ x

i
0.

Corrupted Parties:

1. If B is 
orrupted he gets to 
hoose all his random values.

2. If A is 
orrupted she gets to 
hoose all her random values. Also, she may, at any point before B re
eived

his outputs, input (i, gi) to the box in order to try to guess ci. If ci 6= gi the box will output fail

and terminate. Otherwise the box pro
eeds as if nothing has happened and A will know the guess was


orre
t. She may input as many guesses as she desires.

Global Key Queries: The adversary 
an at any point input (A,∆) and will be returned whether ∆ = ∆B .

And it 
an at any point input (B,∆) and will be returned whether ∆ = ∆A.

Fig. 14. The Leaky Authenti
ated OT box LaOT(ℓ)

transfers the message z = xc to B in the following way: B knows the MAC for his 
hoi
e bit

Mc, while A knows the two keys Kc and ∆B. This allows A to 
ompute the two possible MACs

(Kc,Kc ⊕ ∆B) respe
tively for the 
ase of c = 0 and c = 1. Hashing these values leaves A with

two un
orrelated strings H(Kc) and H(Kc ⊕∆B), one of whi
h B 
an 
ompute as H(Mc). These
values 
an be used as a one-time pad for A's bits x0, x1 (and some other values as des
ribed later),

and B 
an retrieve xc and announ
e the di�eren
e d = xc ⊕ r and therefore 
ompute the output

[z]B = [r]B ⊕ d.

The proto
ol runs ℓ times in parallel, here des
ribed for a single leaky authenti
ated OT.

1. A and B get [x0]A, [x1]A, [c]B, [r]B from the dealer.

2. Let [x0]A = (x0,Mx0 ,Kx0), [x1]A = (x1,Mx1 ,Kx1), [c]B = (c,Mc,Kc), [r]B = (r,Mr,Kr).
3. A 
hooses random strings T0, T1 ∈ {0, 1}

κ
.

4. A sends (X0, X1) to B where X0 = H(Kc)⊕ (x0||Mx0 ||Tx0) and X1 = H(Kc ⊕∆B)⊕ (x1||Mx1 ||Tx1).
5. B 
omputes (xc||Mxc ||Txc) = Xc ⊕H(Mc). B aborts if Mxc 6= Kxc ⊕ xc∆A. Otherwise, let z = xc.
6. B announ
es d = z ⊕ r to A and the parties 
ompute [z]B = [r]B ⊕ d. Let [z]B = (z,Mz,Kz).
7. A sends (I0, I1) to B where I0 = H(Kz)⊕ T1 and I1 = H(Kz ⊕∆B)⊕ T0.

8. B 
omputes T1⊕z = Iz ⊕H(Mz). Noti
e that now B has both (T0, T1).
9. A and B both input (T0, T1) to EQ. The 
omparisons are done using one 
all to EQ(ℓ2κ).
10. If the values are the same, they output [x0]A, [x1]A, [c]B, [z]B.

Fig. 15. The proto
ol for authenti
ated OT with leaky 
hoi
e bit

In order to 
he
k if A is transmitting the 
orre
t bits x0, x1, she will transfer the respe
tive

MACs together with the bits: as B is supposed to learn xc, revealing the MAC on this bit does not

introdu
e any inse
urity. However, A 
an now mount a sele
tive failure atta
k: A 
an 
he
k if B's


hoi
e bit c is equal to, e.g., 0 by sending x0 with the right MAC and x1 together with a random

string. Now if c = 0 B only sees the valid MAC and 
ontinues the proto
ol, while if c = 1 B aborts

be
ause of the wrong MAC. A similar atta
k 
an be mounted to 
he
k if c = 1. We will �x this later

by randomly partitioning and 
ombining a few LaOTs together.

On the other hand, if B is 
orrupted, he 
ould be announ
ing the wrong value d. In parti
ular,

A needs to 
he
k that the authenti
ated bit [z]B is equal to xc without learning c. In order to do

this, we have A 
hoosing two random strings T0, T1, and append them, respe
tively, to x0, x1 and

the MACs on those bits, so that B learns Tc together with xc. After B announ
es d, we 
an again

use the MAC and the keys for z to perform a new transfer: A uses H(Kz) as a one-time pad for T1
and H(Kz ⊕ ∆B) as a one-time pad for T0. Using Mz, the MAC on z, B 
an retrieve T1⊕z . This
means that an honest B, that sets z = xc, will know both T0 and T1, while a dishonest B will not

be able to know both values ex
ept with negligible probability. Using the EQ box A 
an 
he
k that
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B knows both values T0, T1. Note that we 
annot simply have B openly announ
e these values, as

this would open the possibility for new atta
ks on A's side. The proof of the following theorem 
an

be found in App. F.

Theorem 5. The proto
ol in Fig. 15 se
urely implements LaOT(ℓ) in the (aBit(4ℓ, κ),EQ(2ℓκ))-
hybrid model.

To deal with the leakage of the LaOT box, we let B randomly partition the LaOTs in small

bu
kets: all the LaOTs in a bu
ket will be 
ombined using an OT 
ombiner (as shown in Fig. 16), in

su
h a way that if at least one 
hoi
e bit in every bu
ket is unknown to A, then the resulting aOT
will not be leaky. The overall proto
ol is se
ure be
ause of the OT 
ombiner and the probability

that any bu
ket is �lled only with OTs where the 
hoi
e bit leaked is negligible, as shown in App. G.

1. A and B generate ℓ′ = Bℓ authenti
ated OTs using LaOT(ℓ′). If the box does not abort, name the outputs

{[xi0]A, [x
i
1]A, [c

i]B, [z
i]B}

ℓ′

i=1.

2. B sends a B-wise independent permutation π on {1, . . . , ℓ′} to A. For j = 0, . . . , ℓ − 1, the B quadruples

{[x
π(i)
0 ]A, [x

π(i)
1 ]A, [c

π(i)]B, [z
π(i)]B}

jB+B
i=jB+1 are de�ned to be in the j'th bu
ket.

3. We des
ribe how to 
ombine two OTs from a bu
ket, 
all them [x1
0]A, [x

1
1]A, [c

1]B, [z
1]B and

[x2
0]A, [x

2
1]A, [c

2]B, [z
2]B. Call the result [x0]A, [x1]A, [c]B, [z]B. To 
ombine more than two, just iterate by taking

the result and 
ombine it with the next leaky OT.

(a) A reveals d = x1
0 ⊕ x

1
1 ⊕ x

2
0 ⊕ x

2
1.

(b) Compute: [c]B = [c1]B ⊕ [c2]B, [z]B = [z1]B ⊕ [z2]B ⊕ d[c
1]B, [x0]A = [x1

0]A ⊕ [x2
0]A, [x1]A = [x1

0]A ⊕ [x2
1]A.

Fig. 16. From Leaky Authenti
ated OTs to Authenti
ated OTs

Theorem 6. Let aOT(ℓ) denote the box whi
h outputs ℓ aOTs as in F
Deal

. If (log2(ℓ)+1)(B−1) ≥
ψ, then the proto
ol in Fig. 16 se
urely implements aOT(ℓ) in the LaOT(Bℓ)-hybrid model with

se
urity parameter ψ.

6 Authenti
ated lo
al AND

aAND

LaAND

aBit EQ

Fig. 17. Se
t. 6 outline.

In this se
tion we show how to generate aAND, i.e., how to implement

the dealer box when it outputs [x]A, [y]A, [z]A with z = xy. As usual, as
aAND for B is symmetri
, we only present how to 
onstru
t aAND for A.

We �rst 
onstru
t a leaky version of aAND, or LaAND, des
ribed in

Fig. 18. Similar to the LaOT box the LaAND box may leak the value x to

B, at the pri
e for B of being dete
ted. The intuition behind the proto
ol

for LaAND, des
ribed in Fig. 19, is to let A 
ompute the AND lo
ally and then authenti
ate the

result. A and B then perform some 
omputation on the keys and MACs, in a way so that A will

be able to guess B's result only if she behaved honestly during the proto
ol: A behaved honestly

(sent d = z ⊕ r) i� she knows W0 = (Kx||Kz) or W1 = (Kx ⊕ ∆A||Ky ⊕ Kz). In fa
t, she knows

Wx. As an example, if x = 0 and A is honest, then z = 0, so she knows Mx = Kx and Mz = Kz.

Had she 
heated, she would know Mz = Kz ⊕ ∆A instead of Kz. B 
he
ks that A knows W0 or

W1 by sending her H(W0)⊕H(W1) and ask her to return H(W0). This, however, allows B to send

H(W0) ⊕ H(W1) ⊕ E for an error term E 6= 0κ. The returned value would be H(W0) ⊕ xE. To
prevent this atta
k, they use the EQ box to 
ompare the values instead. If B uses E 6= 0κ, he must
now guess x to pass the proto
ol. However, B still may use this te
hnique to guess a few x bits. We
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�x this leakage later in a way similar to the way we �xed leakage of the LaOT box in Se
t. 5. The

proof of the following theorem 
an be found in App. H.

Theorem 7. The proto
ol in Fig. 19 se
urely implements LaAND(ℓ) in the (aBit(3ℓ, κ),EQ(ℓκ))-
hybrid model.

Honest Parties: For i = 1, . . . , ℓ, the box outputs random [xi]A, [yi]A, [zi]A with zi = xiyi.
Corrupted Parties:

1. If A is 
orrupted she gets to 
hoose all her random values.

2. If B is 
orrupted he gets to 
hoose all his random values, in
luding the global key ∆A. Also, he may,

at any point prior to output being delivered to A, input (i, gi) to the box in order to try to guess xi.
If gi 6= xi the box will output fail to A and terminate. Otherwise the box pro
eeds as if nothing has

happened and B will know the guess was 
orre
t. He may make as many guesses as he desires.

Global Key Queries: The adversary 
an input ∆ and will be told if ∆ = ∆A.

Fig. 18. The box LaAND(ℓ) for ℓ Leaky Authenti
ated lo
al AND.

The proto
ol runs ℓ times in parallel. Here des
ribed for a single leaky authenti
ated lo
al AND:

1. A and B ask the dealer for [x]A, [y]A, [r]A. (The global key is ∆A).

2. A 
omputes z = xy and announ
es d = z ⊕ r.
3. The parties 
ompute [z]A = [r]A ⊕ d.
4. B sends U = H(Kx||Kz)⊕H(Kx ⊕∆A||Ky ⊕Kz) to A.

5. If x = 0, then A lets V = H(Mx||Mz). If x = 1, then A lets V = U ⊕H(Mx||My ⊕Mz).
6. A and B 
all the EQ box, with inputs V and H(Kx||Kz) respe
tively. All the ℓ 
alls to EQ are handled using

a single 
all to EQ(ℓκ).
7. If the strings were not di�erent, the parties output [x]A, [y]A, [z]A.

Fig. 19. Proto
ol for authenti
ated lo
al AND with leaking bit

We now handle a few guessed x bits by random bu
keting and a straight-forward 
ombiner. In

doing this e�
iently, it is 
entral that the proto
ol was 
onstru
ted su
h that only x 
ould leak.

Had B been able to get information on both x and y we would have had to do the ampli�
ation

twi
e.

The proto
ol is parametrized by positive integers B and ℓ.

1. A and B 
all LaAND(ℓ′) with ℓ′ = Bℓ. If the 
all to LaAND aborts, this proto
ol aborts. Otherwise, let

{[xi]A, [yi]A, [zi]A}
ℓ′

i=1 be the outputs.

2. A pi
ks a B-wise independent permutation π on {1, . . . , ℓ′} and sends it to B. For j = 0, . . . , ℓ − 1, the B
triples {[xπ(i)]A, [yπ(i)]A, [zπ(i)]A}

jB+B
i=jB+1 are de�ned to be in the j'th bu
ket.

3. The parties 
ombine the B LaANDs in the same bu
ket. We des
ribe how to 
ombine two LaANDs, 
all
them [x1]A, [y

1]A, [z
1]A and [x2]A, [y

2]A, [z
2]A into one, 
all the result [x]A, [y]A, [z]A:

(a) A reveals d = y1 ⊕ y2.
(b) Compute [x]A = [x1]A ⊕ [x2]A, [y]A = [y1]A and [z]A = [z1]A ⊕ [z2]A ⊕ d[x

2]A.
To 
ombine all B LaANDs in a bu
ket, just iterate by taking the result and 
ombine it with the next element

in the bu
ket.

Fig. 20. From Leaky Authenti
ated lo
al ANDs to Authenti
ated lo
al ANDs
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Similar to the the way we removed leakage in Se
t. 5 we start by produ
ing Bℓ LaANDs. Then
we randomly distribute the Bℓ LaANDs into ℓ bu
kets of size B. Finally we 
ombine the LaANDs
in ea
h bu
ket into one aAND whi
h is se
ure if at least one LaAND in the bu
ket was not leaky.

The proto
ol is des
ribed in Fig. 20. The proof of Thm. 8 
an be found in App. I.

Theorem 8. Let aAND(ℓ) denote the box whi
h outputs ℓ aANDs as in F
Deal

. If (log2(ℓ)+1)(B−
1) ≥ ψ, then the proto
ol in Fig. 20 se
urely implements aAND(ℓ) in the LaAND(Bℓ)-hybrid model

with se
urity parameter ψ.

This 
ompletes the des
ription of our proto
ol. For the interested reader, a diagrammati
 re
ap

of the 
onstru
tion is given in App. J.

7 Experimental Results

We did a proof-of-
on
ept implementation in Java. The hash fun
tion in our proto
ol was im-

plemented using Java's standard implementation of SHA256. The implementation 
onsists of a


ir
uit-independent proto
ol for prepro
essing all the random values output by F
Deal

, a framework

for 
onstru
ting 
ir
uits for a given 
omputation, and a run-time system whi
h takes prepro
essed

values, 
ir
uits and inputs and 
arry out the se
ure 
omputation.

We will not dwell on the details of the implementation, ex
ept for one detail regarding the

generation of the 
ir
uits. In our implementation, we do not 
ompile the fun
tion to be evaluated

into a 
ir
uit in a separate step. The reason is that this would involve storing a huge, often highly

redundant, 
ir
uit on the disk, and reading it ba
k. This heavy disk a

ess turned out to 
onstitute

a signi�
ant part of the running time in an earlier of our prototype implementations whi
h we

dis
arded. Instead, in the 
urrent prototype, 
ir
uits are generated on the �y, in 
hunks whi
h are

large enough that their evaluation generate large enough network pa
kages that we 
an amortize

away 
ommuni
ation laten
y, but small enough that the 
ir
uit 
hunks 
an be kept in memory

during their evaluation. A 
ir
uit 
ompiled is hen
e repla
ed by a su

in
t program whi
h generates

the 
ir
uit in a streaming manner. This 
ir
uit stream is then sent through the runtime ma
hine,

whi
h re
eives a separate stream of prepro
essed F
Deal

-values from the disk and then evaluates the


ir
uit 
hunk by 
hunk in 
on
ert with the runtime ma
hine at the other party in the proto
ol. The

stream of prepro
essed F
Deal

-values from the disk is still expensive, but we 
urrently see no way to

avoid this disk a

ess, as the random nature of the prepro
essed values seems to rule out a su

in
t

representation.

For timing we did oblivious ECB-AES en
ryption. (Both parties input a se
ret 128-bit keyKA re-

spe
tivelyKB , de�ning an AES keyK = KA⊕KB. A inputs a se
ret ℓ-blo
k message (m1, . . . ,mℓ) ∈
{0, 1}128ℓ. B learns (EK(m1), . . . , EK(mℓ)).) We used the AES 
ir
uit from [PSSW09℄ and we thank

Benny Pinkas, Thomas S
hneider, Nigel P. Smart and Stephen C. Williams for providing us with

this 
ir
uit.

The reason for using AES is that it provides a reasonable sized 
ir
uit whi
h is also reason-

ably 
omplex in terms of the stru
ture of the 
ir
uit and the depth, as opposed to just running

a lot of AND gates in parallel. Also, AES has been used for ben
hmark in previous implementa-

tions, like [PSSW09℄, whi
h allows us to do a 
rude 
omparison to previous implementations. The


omparison 
an only be
ome 
rude, as the experiments were run in di�erent experimental setups.

In the timings we ran A and B on two di�erent ma
hines on Anonymous University's intranet

(using two Intel Xeon E3430 2.40GHz 
ores on ea
h ma
hine). We re
orded the number of Boolean
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ℓ G σ Tpre Tonl Ttot/ℓ G/Ttot

1 34,520 55 38 4 44 822
27 922,056 55 38 5 1.6 21,545
54 1,842,728 58 79 6 1.6 21,623
81 2,765,400 60 126 10 1.7 20,405

108 3,721,208 61 170 12 1.7 20,541
135 4,642,880 62 210 15 1.7 20,637

ℓ G σ Tpre Tonl Ttot/ℓ G/Ttot

256 8,739,200 65 406 16 1.7 20,709
512 17,478,016 68 907 26 1.8 18,733

1,024 34,955,648 71 2,303 52 2.3 14,843
2,048 69,910,912 74 5,324 143 2.7 12,788
4,096 139,821,440 77 11,238 194 2.8 12,231
8,192 279,642,496 80 22,720 258 2.8 12,170

16,384 559,284,608 83 46,584 517 2.9 11,874

Fig. 21. Timings. Left table is average over 5 runs. Right table is from single runs. Units are as follows: ℓ is number

of 128-bit blo
ks en
rypted, G is Boolean gates, σ is bits of se
urity, Tpre, Tonl, Ttot are se
onds.

gates evaluated (G), the time spent in prepro
essing (Tpre) and the time spent by the run-time

system (Tonl). In the table in Fig. 21 we also give the amortized time per AES en
ryption (Ttot/ℓ

with Ttot
def

= Tpre+Tonl) and the number of gates handled per se
ond (G/Ttot). The time Tpre 
overs
the time spent on 
omputing and 
ommuni
ating during the generation of the values prepro
essed

by F
Deal

, and the time spent storing these value to a lo
al disk. The time Tonl 
overs the time

spent on generating the 
ir
uit and the 
omputation and 
ommuni
ation involved in evaluating the


ir
uit given the values prepro
essed by F
Deal

.

We work with two se
urity parameters. The 
omputational se
urity parameter κ spe
i�es that

a poly-time adversary should have probability at most poly(κ)2−κ in breaking the proto
ol. The

statisti
al se
urity parameter σ spe
i�es that we allow the proto
ol to break with probability 2−σ

independent of the 
omputational power of the adversary. As an example of the use of κ, our keys
and therefore MACs have length κ. This is needed as the adversary learns H(Ki) and H(Ki⊕∆) in
our proto
ols and 
an break the proto
ol given ∆. As an example of the use of σ, when we generate

ℓ gates with bu
ket size B, then σ ≤ (log2(ℓ) + 1)(B − 1) due to the probability (2ℓ)1−B that

a bu
ket might end up 
ontaining only leaky 
omponents. This probability is independent of the


omputational power of the adversary, as the 
omponents are being bu
keted by the honest party

after it is determined whi
h of them are leaky.

In the timings, the 
omputational se
urity parameter has been set to 120. Sin
e our implemen-

tation has a �xed bu
ket size of 4, the statisti
al se
urity level depends on ℓ. In the table, we spe
ify

the statisti
al se
urity level attained (σ means inse
urity 2−σ). At 
omputational se
urity level 120,
the implementation needs to do 640 seed OTs. The timings do not in
lude the time needed to do

these, as that would depend on the implementation of the seed OTs, whi
h is not the fo
us here.

We note, however, that using, e.g., the implementation in [PSSW09℄, the seed OTs 
ould be done

in around 20 se
onds, so they would not signi�
antly a�e
t the amortized times reported.

The dramati
 drop in amortized time from ℓ = 1 to ℓ = 27 is due to the fa
t that the prepro
es-

sor, due to implementation 
hoi
es, has a smallest unit of gates it 
an prepro
ess for. The largest

number of AES 
ir
uits needing only one, two, three, four and �ve units is 27, 54, 81, 108 and 135,
respe
tively. Hen
e we prepro
ess equally many gates when ℓ = 1 and ℓ = 27.

As for total time, we found the best amortized behavior at ℓ = 54, where oblivious AES en
ryp-

tion of one blo
k takes amortized 1.6 se
onds, and we handle 21,623 gates per se
ond. As for online

time, we found the best amortized behavior at ℓ = 2048, where handling one AES blo
k online takes

amortized 32 millise
onds, and online we handle 1,083,885 gates per se
ond. We �nd these timings

en
ouraging and we plan an implementation in a more ma
hine-near language, exploiting some of

the �ndings from implementing the prototype.
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A Complexity Analysis

We report here on the 
omplexity analysis of our proto
ol. As showed in Corollary 1, the proto
ol

requires an initial 
all to an ideal fun
tionality for (OT(443 ψ,ψ),EQ(ψ)). After this, the 
ost per

gate is only a number of invo
ations to a 
ryptographi
 hash fun
tion H. In this se
tion we give

the exa
t number of hash fun
tions that we use in the 
onstru
tion of the di�erent primitives. As

the �nal proto
ol is 
ompletely symmetri
, we 
ount the total number of 
alls to H made by both

parties.

Equality EQ: The EQ box 
an be se
urely implemented with 2 
alls to a hash fun
tion H.

Authenti
ated OT aOT: Every aOT 
osts 4B 
alls to aBit, 2B 
alls to EQ, and 6B 
alls to H,

where B is the �bu
ket size�.

Authenti
ated AND aAND: Every aAND 
osts 3B 
alls to aBit, B 
alls to EQ, and 3B 
alls to

H, where B is the �bu
ket size�.

2PC Proto
ol, Input Gate: Input gates 
ost 1 aBit.
2PC Proto
ol, AND Gate: AND gates 
ost 2 aOT, 2 aAND, 2 aBit.
2PC Proto
ol, XOR Gate: XOR gates require no 
alls to H.

The 
ost per aBit, in the proto
ol des
ribed in the paper, requires 59 
alls to H. However, using

some further optimizations (that are not des
ribed in the paper, as they undermine the modularity

of our 
onstru
tions) we 
an take this number down to 8.
By plugging in these values we get that the 
ost per input gate is 59 
alls to H (8 with opti-

mizations), and the 
ost per AND gate is 856B + 118 
alls to H (142B + 16 with optimizations).

The implementation des
ribed in Se
t. 7 uses the optimized version of the proto
ol and bu
kets of

�xed size 4, and therefore the total 
ost per AND gate is 584 
alls to H.

As des
ribed in Se
t. 3 we 
an greatly redu
e 
ommuni
ation 
omplexity of our proto
ol by

deferring the MAC 
he
ks. However, this tri
k 
omes at 
ost of two 
alls to H (one for ea
h player)

every time we do a �reveal�. This adds 2B hashes for ea
h aOT and aAND and in total adds 8B+20
hashes to the 
ost ea
h AND gate. This added 
ost is not a�e
ted by the optimization mentioned

above.

B Proof of Thm. 1

The simulator 
an be built in a standard way, in
orporating the F
Deal

box and learning all the

shares, keys and MACs that the adversary was supposed to use in the proto
ol.

In a little more detail, knowing all outputs from F
Deal

to the 
orrupted parties allows the

simulator to extra
t inputs used by 
orrupted parties and input these to the box F
2PC

on behalf

of the 
orrupted parties. As an example, if A is 
orrupted, then learn the xA sent to A by F
Deal

in Input and observe the value xB sent by A to B. Then input x = xA ⊕ xB to F
2PC

. This is the

same value as shared by [x] = [xA|xB ] in the proto
ol.

Honest parties are run on uniformly random inputs, and when a honest party (A say) is supposed

to help open [x], then the simulator learns from F
2PC

the value x′ that [x] should be opened to.

Then the simulator 
omputes the share xB that B holds, whi
h is possible from the outputs of

F
Deal

to B. Then the simulator learns the key KxA that B uses to authenti
ate xA, whi
h 
an also

be 
omputed from the outputs of F
Deal

to B. Then the simulator lets xA = x′ ⊕ xB and and lets

MxA = KxA ⊕ xAKxA and sends (xA,MxA) to B.
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The simulator aborts if the adversary ever su

essfully sends some in
onsistent bit, i.e., a bit

di�erent from the bit it should send a

ording to the proto
ol and its outputs from F
Deal

.

It is easy to see that the proto
ol is passively se
ure and that if the adversary never sends an

in
onsistent bit, then it is perfe
tly following the proto
ol up to input substitution. So, to prove

se
urity it is enough to prove that the adversary manages to send an in
onsistent bit with negligible

probability. However, sending an in
onsistent bit turns out to be equivalent to guessing the global

key ∆.

We now formalize the last 
laim. Consider the following game aI,I played by an atta
ker A:

Global key: A global key ∆ ← {0, 1}κ is sampled with some distribution and A might get side

information on ∆.

MAC query I: If A outputs a query (ma
, b, l), where b ∈ {0, 1} and l is a label whi
h A did not

use before, sample a fresh lo
al key K ∈
R

{0, 1}κ, give M = K ⊕ b∆ to A and store (l,K, b).

Break query I: If A outputs a query (break, a1, l1, . . . , ap, lp,M
′), where p is some positive integer

and values (l1,K1, b1), . . . , (lp,Kp, bp) are stored, then let K = ⊕pi=1aiKi and b = ⊕pi=1aibi. If
M ′ = K ⊕ (1⊕ b)∆, then A wins the game. This query 
an be used only on
e.

We want to prove that if any A 
an win the game with probability q, then there exist an adversary
B whi
h does not use more resour
es than A and whi
h guesses ∆ with probability q without doing
any MAC queries. Informally this argues that breaking the s
heme is linear equivalent to guessing

∆ without seeing any MAC values.

For this purpose, 
onsider the following modi�ed game aII,II played by an atta
ker A:

Global key: No 
hange.

MAC query II: If A outputs a query (ma
, b, l,M), where b ∈ {0, 1} and l is a label whi
h A did

not use before and M ∈ {0, 1}κ, let K =M ⊕ b∆ and store (l,K, b).

Break query II: If A outputs a query (break,∆′) where ∆′ = ∆, then A wins the game. This

query 
an be used only on
e.

We let aII,I be the hybrid game with MAC query II and Break query I.

We say that an adversary A is no stronger than adversary B if A does not perform more queries

than B does and the running time of A is asymptoti
ally linear in the running time of B.

Lemma 1. For any adversary AI,I for aI,I there exists an adversary AII,I for aII,I whi
h is no

stronger than AI,I and whi
h wins the game with the same probability as AI,I .

Proof. Given an adversary AI,I for aI,I , 
onsider the following adversary AII,I for aII,I . The

adversary AII,I passes all side information on ∆ to AI,I . If AI,I outputs (ma
, b, l), then AII,I

samples M ∈
R

{0, 1}κ, outputs (ma
, b, l,M) to aII,I and returns M to AI,I . If AI,I outputs

(break, a1, l1, . . . , ap, lp,M
′), then AII,I outputs (break, a1, l1, . . . , ap, lp,M

′) to aII,I . It is easy to

see that AII,I makes the same number of queries as AI,I and has a running time whi
h is linear in

that of AI,I, and that AII,I wins with the same probability as AI,I . Namely, in aI,I the value K is

uniform and M = K ⊕ b∆. In aII,I the value M is uniform and K =M ⊕ b∆. This gives the exa
t

same distribution on (K,M). ✷

Lemma 2. For any adversary AII,I for aII,I there exists an adversary AII,II for aII,II whi
h is no

stronger than AII,I and whi
h wins the game with the same probability as AII,I.
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Proof. Given an adversary AII,I for aII,I , 
onsider the following adversary AII,II for aII,II . The

adversary AII,II passes any side information on ∆ to AII,I . If AII,I outputs (ma
, b, l,M), then AII,II

outputs (ma
, b, l,M) to aII,II and stores (l,M, b). If AII,I outputs (break, a1, l1, . . . , ap, lp,M
′),

where values (l1,M1, b1), . . . , (lp,Mp, bp) are stored, then let M = ⊕pi=1aiMi and b = ⊕
p
i=1aibi and

output (break,M ⊕M ′). For ea
h (li,Mi, bi) let Ki be the 
orresponding key stored by aII,II . We

have that Mi = Ki ⊕ bi ⊕ ∆, so if we let K = ⊕pi=1aiKi, then M = K ⊕ b∆. Assume that AII,I

would win aII,I , i.e., M
′ = K⊕ (1⊕ b)∆. This implies that M ⊕M ′ = K⊕ b∆⊕K⊕ (1⊕ b)∆ = ∆,

whi
h means that AII,II wins aII,II . ✷

Consider then the following game aII played by an atta
ker A:

Global key: No 
hange.

MAC query: No MAC queries are allowed.

Break query II: No 
hange.

Lemma 3. For any adversary AII,II for aII,II there exists an adversary AII for aII whi
h is no

stronger than AII,II and whi
h wins the game with the same probability as AII,II .

Proof. Let AII = AII,II. The game aII simply ignores the MAC queries, and it 
an easily be seen

that they have no e�e
t on the winning probability, so the winning probability stays the same. ✷

Corollary 2. For any adversary AI,I for aI,I there exists an adversary AII for aII whi
h is no

stronger than AI,I and whi
h wins the game with the same probability as AI,I .

This formalizes the 
laim that the only way to break the s
heme is to guess ∆.

C Proof of Thm. 2

The simulator answers a global key query Γ to WaBit by doing the global key query AΓ on the

ideal fun
tionality aBit and returning the reply. This gives a perfe
t simulation of these queries,

and we ignore them below.

Corre
tness of the proto
ol is straightforward: We have that M ′
i = K ′

i ⊕ xiΓA, so Mi = AM ′
i =

AK ′
i ⊕ xiAΓA = Ki ⊕ xi∆A. Clearly the proto
ol leaks no information on the xi's as there is only


ommuni
ation from B to A. It is therefore su�
ient to look at the 
ase where A is 
orrupted. We

are not going to give a simulation argument but just show that ∆A is uniformly random in the view

of A ex
ept with probability 22−ψ. Turning this argument into a simulation argument is straight

forward.

We start by proving three te
hni
al lemmas.

Assume that L is a 
lass of leakage fun
tions on τ bits whi
h is κ-se
ure. Consider the following
game.

1. Sample ΓA ∈R

{0, 1}τ .

2. Get L ∈ L from A and sample (S, c)← L.

3. Give {(j, (ΓA)j)}j∈S to A.

4. Sample A ∈
R

{0, 1}ψ×τ and give A to A.

5. Let ∆A = AΓA.
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We want to show that ∆A is uniform to A ex
ept with probability 22−ψ. When we say that ∆A

is uniform to A we mean that ∆A is uniformly random in {0, 1}ψ and independent of the view of

A. When we say ex
ept with probability 22−ψ we mean that there exists a failure event F for whi
h

it holds that

1. F o

urs with probability at most 22−ψ and

2. when F does not o

ur, then ∆A is uniform to A.

For a subset S ⊂ {1, . . . , τ} of the 
olumn indi
es, let A

S
be the matrix where 
olumn j is equal

to A

j
if j ∈ S and 
olumn j is the 0 ve
tor if j 6∈ S. We say that we blind out 
olumn j with 0's

if j 6∈ S. Similarly, for a 
olumn ve
tor v we use the notation vS to mean that we set all indi
es vi
where i 6∈ S to be 0. Note that AvS = A

S
v. Let S = {1, . . . , τ} \ S.

Lemma 4. Let S be the indi
es of the bits learned by A and let A be the matrix in the game above.

If A

S
spans {0, 1}ψ , then ∆A is uniform to A.

Proof. We start by making two simple observations. First of all, if A learns (ΓA)j for j ∈ S, then it

learns (ΓA)S
5

, so it knows A(ΓA)S = A

SΓA. The se
ond observation is that AΓA = A

SΓA+A
SΓA,

asA = A

S+AS
. The lemma follows dire
tly from these observations and the premise: We have that

A

SΓA is uniformly random in {0, 1}ψ when the 
olumns of A

S
span {0, 1}ψ . Sin
e ASΓA = A(ΓA)S

and (ΓA)S is uniformly random and independent of the view of A it follows that A

SΓA is uniformly

random and independent of the view of A. Sin
e A
SΓA is known by A it follows that A

SΓA+ASΓA
is uniform to A. The proof 
on
ludes by using that ∆A = A

SΓA +A

SΓA. ✷

Lemma 5. Let W be the event that |S| ≥ τ − n and c = 1. Then Pr [W ] ≤ 2−ψ.

Proof. We use that

� κ = 3
4τ ,

� τ = αn for α = 44
27 ,

� n = 9
2ψ,

� L is κ-se
ure on τ bits.

Without loss of generality we 
an assume that A plays an optimal L ∈ L, i.e., log2(E
[

c2|S|
]

) = leakL.
Sin
e L is κ se
ure on τ bits, it follows that leakL ≤ τ − κ = 1

4τ . This gives that

E
[

c2|S|
]

≤ 2
1
4
τ , (1)

whi
h we use later.

Now let W be the event that W does not happen. By the properties of 
onditional expe
ted

value we have that

E
[

c2|S|
]

= Pr [W ] E
[

c2|S||W
]

+ Pr
[

W
]

E
[

c2|S||W
]

.

When W happens, then |S| ≥ τ −n = (α− 1)n and c = 1, so c2|S| = 2|S| ≥ 2(α−1)n
. This gives that

E
[

c2|S||W
]

≥ 2(α−1)n .

5

Here we are looking at the string ΓA as a 
olumn ve
tor of bits.
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Hen
e

E
[

c2|S|
]

≥ Pr [W ] 2(α−1)n .

Combining with (1) we get that

Pr [W ] ≤ 2
1
4
τ−(α−1)n .

It is, therefore, su�
ient to show that

1
4τ − (α− 1)n = −ψ, whi
h 
an be 
he
ked to be the 
ase by

de�nition of τ, α, n and ψ. ✷

Lemma 6. Let x1, . . . , xn ∈R

{0, 1}ψ. Then x1, . . . , xn span {0, 1}ψ ex
ept with probability 21−ψ.

Proof. We only use that

� n = 9
2ψ.

De�ne random variables Y1, . . . , Yn where Yi = 0 if x1, . . . , xi−1 spans {0, 1}ψ or the span of

x1, . . . , xi−1 does not in
lude xi. Let Yi = 1 in all other 
ases. Note that if x1, . . . , xi−1 spans

{0, 1}ψ , then Pr [Yi = 1] = 0 ≤ 1
2 and that if x1, . . . , xi−1 does not span {0, 1}ψ , then they span at

most half of the ve
tors in {0, 1}ψ and hen
e again Pr [Yi = 1] ≤ 1
2 . This means that it holds for

all Yi that Pr [Yi = 1] ≤ 1
2 independently of the values of Yj for j 6= i. This implies that if we let

Y =
∑n

i=1 Yi, then

Pr [Y ≥
1

2
(a+ n)] ≤ 2e−a

2/2n ,

using the random walk bound. Namely, let Xi = 2Yi − 1. Then Xi ∈ {−1, 1} and it holds for

all i that Pr [Xi = 1] ≤ 1
2 independently of the other Xj . If the Xi had been independent and

Pr [Xi = 1] = Pr [Xi = −1] =
1
2 , and X =

∑n
i=1Xi, then the random walk bound gives that

Pr [X ≥ a] ≤ 2e−a
2/2n .

Sin
e we have that Pr [Xi = 1] ≤ 1
2 independently of the other Xj , the upper bound applies also to

our setting. Then use that X = 2Y − n.

If we let a = 5
2ψ, then

1
2(a + n) = 7

2ψ = n − ψ and 2e−a
2/2n = 2e−(

5
2
ψ)

2
/2 9

2
ψ = 2e−

25
36
ψ
, and

e−
25
36 < 1

2 . It follows that Pr [Y ≥ n− ψ] ≤ 21−ψ . When Y ≤ n−ψ, then Yi = 0 for at least ψ values

of i. This is easily seen to imply that x1, . . . , xn 
ontains at least ψ linear independent ve
tors. ✷

Re
all that W is the event that |S| ≥ τ − n and c = 1. By Lemma 5 we have that Pr [W ] ≤
2−n ≤ 2−ψ. For the rest of the analysis we assume that W does not happen, i.e., |S| ≤ τ − n and

hen
e |S| ≥ τ = 9
2ψ. Sin
e A is pi
ked uniformly at random and independent of S it follows that

9
2ψ of the 
olumns in A

S
are uniformly random and independent. Hen
e, by Lemma 6, they span

{0, 1}ψ ex
ept with probability 21−ψ. We let D be the event that they do not span. If we assume

that D does not happen, then by Lemma 4 ∆A is uniform to A. I.e., if the event F = W ∪D does

not happen, then ∆A is uniform to A. And, Pr [F ] ≤ Pr [W ] + Pr [D] ≤ 2−ψ + 21−ψ ≤ 22−ψ.

D Proof of Thm. 4

Noti
e that sin
e we have to prove that we implement LaBit, whi
h has the global key queries, it

would be stronger to show that we implement a version of LaBit′ whi
h does not have these global

key queries. This is what we do below, as we let LaBit denote this stronger box.
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Given a pairing π, let S(π) = {i|i < π(i)}, i.e., for ea
h pair we add the smallest indexed to

S(π).
The 
ases where no party is 
orrupted and where B is 
orrupted is straight forward, so we will

fo
us on the 
ase that A is 
orrupted.

The proof goes via a number of intermediary boxes, and for ea
h we show linear redu
ibility.

Approximating LaBit, Version 1 This box 
aptures the fa
t that the only thing a mali
ious A


an manage is to use di�erent Γ 's in a few bit authenti
ations.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is 
orrupted: As in LaBit.
2. (a) If A is 
orrupted, then A inputs a fun
tions col : {1, . . . , T } → {1, . . . , T }. We think of col as assigning


olors from {1, . . . , T } to T balls named 1, . . . , T . In addition A inputs Λ1, . . . , ΛT ∈ {0, 1}
ℓ
and

L1, . . . , LT ∈ {0, 1}
ℓ
.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.

We think of π as pairing the T balls. Let S = S(π) and letM = {i ∈ S| col(i) 6= col(π(i))}. We 
all

i ∈M a mismat
hed ball.

(
) Now A inputs the guesses {(i, gi)}i∈M.

(d) The box samples (y1, . . . , yT ) ∈
R

{0, 1}T . Then the box lets c = 1 if gi = yi for i ∈ M, otherwise

it lets c = 0. If c = 0 the box outputs fail to B and terminates. Otherwise, for i ∈ S it 
omputes

Ni = Li ⊕ yiΛcol(i) and outputs {((Ni, yi)}i∈S to B.

Fig. 22. The First Intermediate Box IB1

Lemma 7. IB1 is linear redu
ible to (OT(2τ, ℓ),EQ(τℓ)).

Proof. By observing A's inputs to the OTs, the simulator learns all (Yi,0, Yi,1). Let Li = Yi,0 and

Γi = Yi,0 ⊕ Yi,1.
Let f = |{Γi}

T
i=1| and pi
k distin
t Λ1, . . . , Λf and col : {1, . . . ,T } → {1, . . . ,T } su
h that

Γi = Λcol(i). By 
onstru
tion

Yi,1 = Yi,0 ⊕ (Yi,0 ⊕ Yi,1)

= Li ⊕ Γi

= Li ⊕ Λcol(i) .

Input col and Λ1, . . . , Λf and L1, . . . , LT to IB1 on behalf of A and re
eive π. Send π to A as if


oming from B along with uniformly random {di}i∈S .
Then observe the inputs Zi from A to the EQ box.

The simulator must now pi
k the guesses gi for i ∈ M. Note that i ∈ M implies that Λcol(i) 6=
Λcol(π(i)), whi
h implies that Γi 6= Γπ(i). We use this to pi
k gi, as follows: after seeing di, A knows

that either (yi, yπ(i)) = (0, di) or (yi, yπ(i)) = (1, 1 ⊕ di). Hen
e an honest B would input to the


omparison the following value depending on yi

Wi(yi) = (Li ⊕ Lπ(i) ⊕ diΛcol(π(i)))⊕ yi(Λcol(i) ⊕ Λcol(π(i))) .

As i ∈ M, the mismat
hed set, Λcol(i) 6= Λcol(π(i)) and therefore Wi(0) 6=Wi(1). Therefore if A's
input to the EQ box Zi is equal to Wi(0) (resp. Wi(1)), the simulator inputs a guess gi = 0 (resp.

gi = 1). In any other 
ase, the simulator outputs fail and aborts.
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Noti
e that in the real-life proto
ol, if gi = yi, then Ni = Wi(yi) = Zi and A passes the test. If

gi 6= yi, then Ni =Wi(1⊕ ci) 6= Zi and A fails the test. So, the proto
ol and the simulation fails on

the same event. Note then that when the box does not fail, then it outputs

Ni = Li ⊕ yiΛcol(i)

= Yi,0 ⊕ yiΓi

= Yi,0 ⊕ yi(Yi,0 ⊕ Yi,1)

= Yi,yi ,

exa
tly as the proto
ol. Hen
e the simulation is perfe
t. ✷

Approximating LaBit, Version 2 We now formalize the idea that a wrong Γ -value is no worse

that a leaked bit.

We �rst need a preliminary de�nition of the most 
ommon 
olor 
alled col0. If several 
olors are
most 
ommon, then arbitrarily pi
k the numeri
ally largest one. To be more pre
ise, for ea
h 
olor

c, let C(c) = {j ∈ {1, . . . ,T }| col(j) = c}, let a0 = maxc |C(c)| and let col0 = max{c|C(c) = a0|}.
Consider the following box IB2 in Fig. 23 for formalizing the se
ond idea.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is 
orrupted: As in LaBit.
2. (a) If A is 
orrupted, then A inputs a fun
tion col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.

Let S = S(π) andM = {i ∈ S| col(i) 6= col(π(i))}.
(
) Now A inputs the guesses {(i, gi)}i∈M.

(d) The box lets c = 1 if gi = yi for i ∈ M, otherwise it lets c = 0. If c = 0 the box outputs fail to A

and terminates. Otherwise, the box determines col0.
Then for i ∈ S , if col(i) 6= col0, the box outputs (i, yi) to A. Then A inputs L1, . . . , LT ∈ {0, 1}

ℓ
and

ΓB ∈ {0, 1}
ℓ
and for i ∈ S the box 
omputes Ni = Li ⊕ yiΓB . Then it outputs {(Ni, yi)}i∈S to B.

Fig. 23. The Se
ond Intermediate Box IB2

Lemma 8. IB2 is linear lo
ally redu
ible to IB1.

Proof. The implementation of IB2 
onsist simply of 
alling IB1.

The 
ase where B or no party is 
orrupted is trivial, so assume that A is 
orrupted. Note that

the simulator must simulate IB2 to the environment and is the one simulating IB1 to the 
orrupted

A.

First the simulator observes the inputs col, Λ1, . . . , ΛT ∈ {0, 1}
ℓ
and L1, . . . , LT ∈ {0, 1}

ℓ
of A∗

to IB1 and inputs col to IB2.

Then IB2 outputs π and the simulator inputs π to A∗
as if 
oming from IB1, and 
omputesM

as IB1 and IB2 would have done.

Then the simulator observes the guesses {(i, gi)}i∈M from A∗
to IB1 and inputs {(i, gi)}i∈M to

IB2. If IB2 outputs fail to B the simulation is over, and it is perfe
t as IB1 and IB2 fail based

on the same event. If IB2 does not fail it determines col0 and for i ∈ M, if col(i) 6= col0, the box
outputs (i, yi) to the simulator. The simulator 
an also determine col0.
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Now let ΓB = Λcol0 and for i ∈ M, if col(i) = col0, let L
′
i = Li. Then for i ∈ M, if col(i) 6= col0,

let L′
i = (Li ⊕ yiΛcol(i))⊕ yiΓB. Then input L′

i, . . . , L
′
T and ΓB to IB2.

As a result IB2 will for i ∈ S where col(i) = col0, output L
′
i ⊕ yiΓB = Li ⊕ yiΛcol0 , and for for

i ∈ S where col(i) 6= col0 it will output L′
i ⊕ yiΓB = Li ⊕ yiΛcol(i). Hen
e IB2 gives exa
tly the

outputs that IB1 would have given after intera
ting with A∗
, giving a perfe
t simulation. ✷

Approximate LaBit, Version 3 We now massage IB2 a bit to make it look like LaBit. As a step
towards this, 
onsider the box IB3 in Fig. 24.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. Corrupted B: As in LaBit.
2. (a) If A is 
orrupted, then A inputs a fun
tion col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to

A. LetM = {i ∈ S| col(i) 6= col(π(i))}. The box �ips a 
oin c ∈ {0, 1} with c = 1 with probability

2−|M|
. If c = 0 the box outputs fail to B and terminates. Otherwise, the box outputs su

ess and

the game pro
eeds.

(
) Now A inputs the guesses {(i, gi)}i∈M.

(d) The box updates yi ← gi for i ∈ M. Then the box determines col0. Then for i = S \ M, if

col(i) 6= col0, the box outputs i to A who inputs gi ∈ {0, 1} and the box updates yi ← gi.
(e) Then A inputs L1, . . . , LT ∈ {0, 1}

ℓ
and ΓB ∈ {0, 1}

ℓ
and for i ∈ S the box 
omputesNi = Li⊕yiΓB .

Then it outputs {(Ni, yi)}i∈S to B.

Fig. 24. The third Intermediate Box, IB3

Lemma 9. IB3 is linear lo
ally redu
ible to IB2.

Proof. It is easy to see that IB3 is linear lo
ally redu
ible to IB2�again the implementation 
onsist

simply of 
alling IB2. To see this, 
onsider �rst the 
hange in how the box fails and how the yi for
i ∈ M are set. In IB2 the box fails exa
tly with probability 2−|M|

as the probability that gi = yi
for i ∈ M is exa
tly 2−|M|

. Furthermore, if IB2 does not fail, then yi = gi for i ∈ M. So, this is

exa
tly the same behavior as IB3, hen
e this 
hange is really just another way to implement the

same box. As for the se
ond 
hange, the simulator will input a uniformly random gi ∈R

{0, 1} to
IB3 when IB3 outputs i and will then show (i, yi) to the 
orrupted A∗

expe
ting to intera
t with

IB2. ✷

We then argue that we 
an de�ne a 
lass L su
h that LaBitL is linear lo
ally redu
ible to IB3.

Let L be the following 
lass.

� A leakage fun
tion is spe
i�ed by L = col, where col : {1, . . . ,T } → {1, . . . ,T }.
� To sample a leakage fun
tion L = col, sample a uniformly random pairing π : {1, . . . ,T } →
{1, . . . ,T }, let S = S(π), let Π : S(π) → {1, . . . , τ} be the order preserving permutation, let

M = {j ∈ S| col(j) 6= col(π(j))}, let c = 1 with probability 2−|M|
and c = 0 otherwise, let col0

be the most 
ommon 
olor as de�ned before, let S′ = M∪ {j ∈ S| col(j) 6= col0}, S = π(S′)
and output (c, S).

Playing with IB3 and LaBitL will give the same failure probability and will allow to spe
ify the

same bits. The only di�eren
e is that when playing with LaBitL, the 
orrupted A∗
does not get
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to see π, as LaBitL does not leak the randomness used to sample the leakage fun
tion L. Below
we argue that given c and S one 
an e�
iently sample a uniformly random pairing π whi
h would

lead to S given c. Turning this into a simulation argument is easy: the simulator will know c and S
and will sample π from these and show this π to A∗

, hen
e perfe
tly simulating IB3. This gives the

following lemma.

Lemma 10. LaBitL(τ, ℓ) is linear lo
ally redu
ible to IB3.

The simulator knows col and S and it 
an determine col0. From col0 the simulator 
an also


ompute

T = S \ {j ∈ {1, . . . ,T }| col(j) 6= col0}

=M∩ {j ∈ {1, . . . ,T }| col(j) = col0}

= {j ∈ {1, . . . ,T }| col(j) = col0 ∧ col(j) 6= col(π(j))}

= {j ∈ {1, . . . ,T }| col(j) = col0 ∧ col(π(j)) 6= col0} .

This restri
tion is meet i� π has the property that col(π(j)) 6= col0 for j ∈ T and col(π(j)) = col0
for j ∈ C0 \ T , where C0 = {j| col(j) = col0}. Furthermore, any π meeting this restri
tions would

lead to the observed value of π. It is hen
e su�
ient to show that we 
an sample a uniformly random

π meeting these restri
tions.

Let C0 = {1, . . . ,T } \C0. Pi
k π0 : T → C0 to be a uniformly random inje
tion on the spe
i�ed

domains. Pi
k π1 : C0 \ T → C0 similarly. Let π2 : T ∪C0 → {1, . . . , τ} be de�ned by π2(j) = π0(j)
for j ∈ T and π2(j) = π1(j) for j ∈ C0 ∪ T . Sin
e π0 and π1 map into disjoint sets, this is again an

inje
tion. Now let π3 : {1, . . . , τ}\ (C0 ∪T )→ {1, . . . , τ}\ img(π2) be a random permutation on the

spe
i�ed domains. De�ne π from π2 and π3 as we de�ned π2 from π0 and π1. Then it is easy to see

that π is a uniformly random permutation meeting the restri
tions. The de�nition of π shows how

to sample it e�
iently.

Con
luding the Proof Using the above theorem and lemmata and the fa
t that linear redu
ibility

is transitive, we now have the following theorem.

Corollary 3. LaBitL(τ, ℓ) is linear redu
ible to (OT(2τ, ℓ),EQ(τℓ)).

We now show that if we set κ = 3
4τ , then L is κ-se
ure. For this purpose we assign a pri
e to

ea
h ball j ∈ S(π).

1. If col(j) 6= col(π(j)), then let pricecol,π(j) = 1.
2. If col(j) = col(π(j)) = col0, then let pricecol,π(j) = 1.
3. If col(j) = col(π(j)) 6= col0, then let pricecol,π(j) = 0.

Let pricecol,π =
∑

j∈S pricecol,π(j).

Lemma 11. Consider an adversary A playing the game against L and assume that it submits

L = col. Assume that the game uses π. Then the su

ess probability of A is at most 2− pricecol,π
.

Proof. De�ne price1col,π(j) as pricecol,π(j) ex
ept that if col(j) = col(π(j)) = col0, then

price1col,π(j) = 0. De�ne price2col,π(j) as pricecol,π(j) ex
ept that if col(j) 6= col(π(j)), then

pricecol,π(j) = 0. Then pricecol,π(j) = price1col,π(j) + price2col,π(j). De�ne price1col,π and price2col,π
by summing over j ∈ S. Then pricecol,π = price1col,π +price2col,π. Note that |M| = pricecol,π(j)

and note that |S′| = τ − price2col,π(j),
6

as the only balls j ∈ S whi
h do not enter S′
are

6

Re
all that S′
is de�ned during the de�nition of L above.
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those for whi
h col(j) = col(π(j)) = col0. We have that A wins if c = 1 and he guesses

yΠ(j) for j ∈ S \ S′
. The probability that c = 1 is 2−|M| = 2− pricecol,π(j)

. We have that

|S\S′| = |S|−|S′| = τ−(τ−price2col,π(j)) = price2col,π(j). So, the probability that A guesses 
orre
tly

is 2− price2col,π(j)
. So, the overall su

ess probability is 2− price1col,π(j)2− price2col,π(j) = 2− pricecol,π(j)

. ✷

Now let π be 
hosen uniformly at random and let pricecol(j) be the random variable des
ribing

pricecol,π(j). Let pricecol =
∑

j∈S pricecol(j). It is then easy to see that the probability of winning

the game on L = col is at most

successcol =

τ
∑

p=0

Pr [pricecol = p] 2−p .

For ea
h pri
e p, let Pp be an index variable whi
h is 1 if pricecol = p and whi
h is 0 otherwise.

Note that E [Pp] = Pr [pricecol = p], and note that

∑τ
p=0 Pp2

−p = 2− pricecol
as Pp = 0 for p 6= pricecol

and Pp = 1 for p = pricecol. Then

successcol =

τ
∑

p=0

Pr [pricecol = p] 2−p

=
τ

∑

p=0

E [Pp] 2
−p

= E





τ
∑

p=0

Pp2
−p





= E
[

2− pricec
]

= E
[

2−
∑
j∈S pricec(j)

]

.

Now let φ(x) = 2−x, and we have that

successcol = E



φ(
∑

j∈S

pricecol(j))



 .

Sin
e φ(x) is 
on
ave it follows from Jensen's inequality that

E



φ(
∑

j∈S

pricecol(j))



 ≤ φ



E





∑

j∈S

pricecol(j)







 .

Hen
e

successcol ≤ 2−E[
∑τ
j=1 pricecol(Π

−1(j))] = 2−
∑τ
j=1 E[pricecol(Π−1(j))] = 2−

∑
j∈S E[pricecol(j)] .

It follows that if we 
an 
ompute m0 = mincol
∑

j∈S E [pricecol(j)], then 2−m0
is an upper bound on

the best su

ess rate.

We say that L = col is optimal if

∑

j∈S E [priceL(j)] = m0, and now �nd an optimal L.
We �rst show that there is no reason to use balls of 
olor col0 in the optimal strategy.
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Lemma 12. Let L = col be an optimal leakage fun
tion and let col0 = col0(col). Then there exist

j su
h that col(j) 6= col0.

Proof. Assume for the sake of 
ontradi
tion that col(j) = col0 for j = 1, . . . ,T . Then 
learly

∑

j∈S E [pricecol(j)] = τ , and it is easy to see that there are strategies whi
h do better than 2−τ , so
L 
annot be optimal. ✷

Let col1, . . . , colT be an enumeration of the 
olors di�erent from col0, i.e., {col0, col1, . . . , colT } =
{1, . . . ,T }. Let Ci be the balls with 
olor coli, i.e., Ci = {j ∈ {1, . . . ,T }| col(j) = coli}. Note that
{1, . . . ,T } is a disjoint union of C1, . . . , CT . Let ai be the number of balls of 
olor coli, i.e., ai = |Ci|.
Note that T =

∑T
i=1 ai.

With these de�nitions we have that

T
∑

j=1

E [pricecol(j)] =
T
∑

i=1

∑

j∈Ci

E [pricecol(j)] .

For a ball j ∈ C0 of 
olor col0 we always have pricecol(j) =
1
2 , by de�nition of the pri
e, so

∑

j∈C0

E [pricecol(j)] =
∑

j∈C0

1

2
=

1

2
a0 .

For a ball j ∈ Ci for i > 0 we have pricecol(j) = 0 if col(π(j)) = coli and pricecol(j) = 1
2 if

col(π(j)) 6= coli. We have that π(j) is uniform on {1, . . . ,T } \ {j}. Sin
e col(j) = coli there are

ai − 1 balls k ∈ {1, . . . ,T } \ {j} for whi
h col(k) = coli. So,

E [pricecol(j)] =
1

2

(T − 1)− (ai − 1)

T − 1

=
1

2

T − ai
T − 1

,

whi
h implies that

∑

j∈Ci

E [pricecol(j)] = ai
1

2

T − ai
T − 1

=
1

2

1

T − 1
(T ai − a

2
i ) .

It follows that

T −1
∑

i=1

∑

j∈Ci

E [pricecol(j)] =
1

2

1

T − 1

T −1
∑

i=1

(T ai − a
2
i )

=
1

2

1

T − 1
(T

T −1
∑

i=1

ai −
T −1
∑

i=1

a2i )

=
1

2

1

T − 1
(T (T − a0)−

T −1
∑

i=1

a2i ) .
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All in all we now have that

T −1
∑

i=0

∑

j∈Ci

E [pricecol(j)] =
1

2
a0 +

1

2

1

T − 1
(T (T − a0)−

T −1
∑

i=1

a2i )

=
1

2
a0 −

1

2

T

T − 1
a0 +

1

2

1

T − 1
(T T −

T −1
∑

i=1

a2i )

=
1

2
(
−a0
T − 1

) +
1

2

1

T − 1
(T 2 −

T −1
∑

i=1

a2i )

=
1

2

T 2

T − 1
−

1

2

1

T − 1
(a0 +

T −1
∑

i=1

a2i ) .

To minimize this expression we have to maximize a0 +
∑T −1

i=1 a2i . Re
all that col0 is de�ned to be

the most 
ommon 
olor, so we must adhere to a0 ≥ ai for i > 0. Under this restri
tion it is easy to

see that a0 +
∑T −1

i=1 a2i is maximal when a0 = a1 = T /2 and a2 = · · · aT = 0, in whi
h 
ase it has

the value T /2 + (T /2)2. So,

E [pricecol] =
1

2

T 2

T − 1
−

1

2

1

T − 1
(T /2 + (T /2)2)

=
1

2

T 2 − T /2 + (T /2)2

T − 1

=
1

2

4τ2 − τ − τ2

2τ − 1
=

1

2

3τ2 − τ

2τ − 1
=

1

2
τ
3τ − 1

2τ − 1
>

1

2
τ
3τ

2τ
=

3

4
τ = κ .

E E�
ient OT Extension

In this se
tion we show how we 
an produ
e a virtually unbounded number of OTs from a small

number of seed OTs. The amortized work per produ
ed OT is linear in κ, the se
urity parameter.

A similar result was proved in [HIKN08℄. In [HIKN08℄ the amortized work is linear in κ too, but

our 
onstants are mu
h better than those of [HIKN08℄. In fa
t, our 
onstants are small enough to

make the proto
ol very pra
ti
al.

7

Sin
e [HIKN08℄ does not attempt to analyze the exa
t 
omplexity

of the result, it is hard to give a 
on
rete 
omparison, but sin
e the result in [HIKN08℄ goes over

generi
 se
ure multiparty 
omputation of non-trivial fun
tionalities, the 
onstants are expe
ted to

be huge 
ompared to ours.

Let κ be the se
urity parameter. We show that OT(ℓ, κ) is linear redu
ible to (OT(83κ, κ),
EQ(43κ

2)) for any ℓ = poly(κ), i.e., given 8
3κ a
tive-se
ure OTs of κ-bit strings we 
an produ
e an

essentially unbounded number of a
tive-se
ure OTs of κ-bit strings. The amortized work involved

in ea
h of these ℓ OTs is linear in κ, whi
h is optimal.

The approa
h is as follows.

1. Use OT(83κ, κ) and a pseudo-random generator to implement OT(83κ, ℓ).

7

As an example, our test run (see Se
t. 7) with ℓ = 54 involved generating 44,826,624 aBits, ea
h of whi
h 
an

be turned into one OT using two appli
ations of a hash fun
tion. The generation took 85 se
onds. Using these

numbers, gives an estimate of 527,372 a
tively se
ure OTs per se
ond. Note, however, that the generation involved

many other things than generating the aBits, like 
ombining them to aOTs and aANDs.
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2. Use OT(83κ, ℓ) and EQ(43κℓ) to implement WaBitL for ℓ authenti
ations with 4
3κ-bit keys and

MACs and with L being κ-se
ure.
3. Use a random ora
le H : {0, 1}

4
3
κ → {0, 1}κ and WaBitL for ℓ authenti
ations with 4

3κ-bit keys
to implement OT(ℓ, κ), as des
ribed below.

Here, as in [HIKN08℄, we 
onsider a hashing of O(κ) bits to be linear work. The pseudo-random
generator 
an be implemented with linear work using H.

From WaBit to OT. As a �rst step, we noti
e that the aBit box des
ribed in Se
t. 4.2 resembles

an intermediate step of the passive-se
ure OT extension proto
ol of [IKNP03℄: an aBit 
an be seen

as a random OT, where all the sender's messages are 
orrelated, in the sense that the XOR of the

messages in any OT is a 
onstant (the global key of the aBit). This 
orrelation 
an be easily broken

using the random ora
le. In fa
t, even if few bits of the global di�eren
e ∆ leak to the adversary,

the same redu
tion is still going to work (for an appropriate 
hoi
e of the parameters). Therefore,

we are able to start dire
tly from the box for authenti
ated bits with weak key, or WaBit des
ribed
in Se
t. 4.1.

1. For the sender S the box samples Xi,0, Xi,1 ∈R {0, 1}
κ
for i = 1, . . . , ℓ. If S is 
orrupted, then it gets to

spe
ify these inputs.

2. For the re
eiver R the box samples b = (b1, . . . , bℓ) ∈R {0, 1}
ℓ
. If R is 
orrupted, then it gets to spe
ify these

inputs.

3. The box outputs ((X1,b1 , b1), . . . , (Xℓ,bl , bℓ)) to R and ((X1,0, X1,1), . . . , (Xℓ,0, Xℓ,1)) to S.

Fig. 25. The Random OT box ROT(ℓ, κ)

1. Call WaBitL(ℓ, 4
3
κ). The output to R is ((M1, b1), . . . , (Mℓ, bℓ)). The output to S is (∆,K1, . . . ,Kℓ).

2. R 
omputes Yi = H(Mi) and outputs ((Y1, b1), . . . , (Yℓ, bℓ)).
3. S 
omputes Xi,0 = H(Ki) and Xi,1 = H(Ki ⊕∆) and outputs ((X1,0, X1,1), . . . , (Xℓ,0, Xℓ,1)).

Fig. 26. The proto
ol for redu
ing ROT(ℓ, κ) to WaBitL(ℓ, 4
3
κ)

Here κ is the se
urity level, i.e., we want to implement OT with inse
urity poly(κ)2−κ. We are

to use an instan
e of WaBitL with slightly larger keys. Spe
i�
ally, let τ = 4
3κ, as we know how to

implement a box WaBitL with τ -bit keys and where L is κ-se
ure for κ = 3
4τ . We implemented su
h

a box in Se
t. 4.1. The proto
ol is given in Fig. 26. It implements the box for random OT given in

Fig. 25.

We have that Mi = Ki⊕ bi∆, so Yi = H(Mi) = H(Ki⊕ bi∆) = Xi,bi . Clearly the proto
ol leaks

no information on the bi as there is no 
ommuni
ation from R to S. It is therefore su�
ient to look

at the 
ase where R is 
orrupted. We are not going to give a simulation argument but just show

that Xi,1⊕bi is uniformly random to R ex
ept with probability poly(κ)2−κ.
Sin
e Xi,1⊕bi = H(Ki⊕ (1⊕ bi)∆) and H is a random ora
le, it is 
lear that Xi,1⊕bi is uniformly

random to R until R queries H on Q = Ki ⊕ (1 ⊕ bi)∆. Sin
e Mi = Ki ⊕ bi∆ we have that

Q = Ki ⊕ (1 ⊕ bi)∆ would imply that Mi ⊕Q = ∆. So, if we let R query H, say, on Q⊕Mi ea
h

time it queries H on some Q, whi
h would not 
hange its asymptoti
 running time, then we have

that all Xi,1⊕bi are uniformly random to R until it queries H on ∆. It is not hard to show that the

probability with whi
h an adversary running in time t = poly(κ) 
an ensure that WaBitL does not

fail and then query H on ∆ is poly(κ)2−κ. This follows from the κ-se
urity of L.
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F Proof of Thm. 5

The simulator answers global key queries to the dealer by doing the identi
al global key queries

on the ideal fun
tionality LaOT(ℓ) and returning the reply from LaOT(ℓ). This gives a perfe
t

simulation of these queries, and we ignore them below.

For honest sender and re
eiver 
orre
tness of the proto
ol follows immediately from 
orre
tness

of the aBit box and the EQ box.

Lemma 13. The proto
ol in Fig. 15 se
urely implements LaOT(ℓ) against 
orrupted A.

Proof. We 
onsider the 
ase of a 
orrupt sender A∗
running the above proto
ol against a simulator

Sim. We show how to simulate one instan
e.

1. First Sim re
eives A∗
's input (Mx0 , x0), (Mx1 , x1), Kc,Kr and ∆B to the dealer. Then Sim

samples a bit y ∈
R

{0, 1}, sets Kz = Kr ⊕ y∆B and inputs (Mx0 , x0), (Mx1 , x1), Kc,Kz and

∆B to a LaOT box. The box outputs ∆A, (Mc, c), (Mz , z), Kx0 and Kx1 to the honest B as

des
ribed in the proto
ol.

2. A∗
outputs the message (X0,X1). The simulator knows ∆B and Kc and 
an therefore 
ompute

X0 ⊕H(Kc) = (x0||Mx0 ||T
′
x0)

and

X1 ⊕H(Kc ⊕∆B) = (x1||Mx1 ||T
′
x1) .

For all j ∈ {0, 1} Sim tests if (Mxj , xj) = (Mxj , xj). If, for some j, this is not the 
ase Sim

inputs a guess to the LaOT box guessing that c = (1− j) to the LaOT box. If the box outputs

fail Sim does the same and aborts the proto
ol. Otherwise Sim pro
eeds by sending y to A∗
.

Noti
e that if Sim does not abort but does guess the 
hoi
e bit c it 
an perfe
tly simulate the

remaining proto
ol. In the following we therefore assume this is not the 
ase.

3. Similarly Sim gets (I0, I1) from A∗
and 
omputes

I0 ⊕H(Kz) = T ′′
1

and

I1 ⊕H(Kz ⊕∆B) = T ′′
0 .

4. When Sim re
eives A∗
's input (T0, T1) for the EQ box it �rst tests if (T ′

j , T
′′
1⊕xj

) = (Txj , T1⊕xj )

for all j ∈ {0, 1}. If, for some j, this is not the 
ase Sim inputs a guess to the LaOT box guessing

that c = (1 − j). If the box outputs fail, Sim outputs fail and aborts. If not, the simulation

is over.

For analysis of the simulation we denote by F the event that for some j ∈ {0, 1} A∗

omputes values

M∗
xj ∈ {0, 1}

κ
and x∗j ∈ {0, 1} so that (M∗

xj , x
∗
j ) 6= (Mxj , xj) and M∗

xj = Kxj ⊕ x
∗
j∆A. In other

words, F is the event that A∗

omputes a MAC on a message bit it was not supposed to know. We

will now show that, assuming F does not o

ur, the simulation is perfe
tly indistinguishable from

the real proto
ol. We then show that F only o

urs with negligible probability and therefore that

simulation and the real proto
ol are indistinguishable.

From the de�nition of the LaOT box we have that (Mxj , xj) = (Mxj , xj) implies Mxj = Kxj ⊕

xj∆A. Given the assumption that F does not o

ur 
learly we have that (Mxj , xj) 6= (Mxj , xj) also
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impliesMxj 6= Kxj ⊕xj∆A. This means that Sim aborts in step 2 with exa
tly the same probability

as the honest re
eiver would in the real proto
ol. Also, in the real proto
ol we have y = z ⊕ r for

r ∈
R

{0, 1} thus both in the real proto
ol and the simulation y is distributed uniformly at random

in the view of A∗
.

Next in step 4 of the simulation noti
e that in the real proto
ol, if c = j ∈ {0, 1}, an honest B

would input T ′
j and T

′′
1⊕xj

to EQ (sorted in the 
orre
t order). The proto
ol would then 
ontinue if

and only if (T ′
j , T

′′
1⊕xj

) = (Txj , T1⊕xj) and abort otherwise. I.e., the real proto
ol would 
ontinue if

and only if (T ′
j , T

′′
1⊕xj

) = (Txj , T1⊕xj) and c = j, whi
h is exa
tly what happens in the simulation.

Thus we have that given F does not o

ur, all input to A∗
during the simulation is distributed

exa
tly as in real proto
ol. In other words the two are perfe
tly indistinguishable.

Now assume F does o

ur, that is for some j ∈ {0, 1} A∗

omputes valuesM∗

xj and x
∗
j as des
ribed

above. In that 
ase A∗

ould 
ompute the global key of the honest re
eiver as M∗

j ⊕Mxj = ∆A.

However, sin
e all inputs to A∗
are independent from ∆A (during the proto
ol), A∗


an only guess

∆A with negligible probability (during the proto
ol) and thus F 
an only o

ur with negligible

probability (during the proto
ol). After the proto
ol A∗
, or rather the environment, will re
eive

outputs and learn ∆A, but this does not 
hange the fa
t that guessing ∆A during the proto
ol 
an

be done only with negligible probability. ✷

Lemma 14. The proto
ol in Fig. 15 se
urely implements LaOT(ℓ) against 
orrupted B.

Proof. We 
onsider the 
ase of a 
orrupt re
eiver B∗
running the above proto
ol against a simulator

Sim. The simulation runs as follows.

1. The simulation starts by Sim getting B∗
's input to dealer ∆A, (Mc, c), (Mr, r), Kx0 and Kx1 .

Then Sim simply inputs ∆A, (Mc, c),Mz =Mr,Kx0 and Kx1 to the LaOT box. The box outputs

z to Sim and ∆B , (Mx0 , x0), (Mx1 , x1), Kc and Kz to the sender as des
ribed above.

2. Like the honest sender Sim samples random keys T0, T1 ∈R

{0, 1}κ. Sin
e Sim knows

Mc,Kx0 ,Kx1 ,∆A, c and z = xc it 
an 
ompute Xc = H(Mc) ⊕ (z||Mz ||Tz) exa
tly as the

honest sender would. It then samples X1⊕c ∈R

{0, 1}2κ+1
and inputs (X0,X1) to B∗

.

3. The 
orrupt re
eiver B∗
replies by sending some y ∈ {0, 1}.

4. Sim sets z = r ⊕ y, 
omputes Iz = H(Mz) ⊕ T1⊕z and samples I1⊕z ∈R

{0, 1}κ. It then inputs

(I0, I1) to B∗
.

5. B∗
outputs some (T 0, T 1) for the EQ box and Sim 
ontinues or aborts as the honest A would in

the real proto
ol, depending on whether or not (T0, T1) = (T 0, T 1).

For the analysis we denote by F the event that B∗
queries the RO onKc⊕(1⊕c)∆B orKz⊕(1⊕z)∆B .

We �rst show that assuming F does not o

ur, the simulation is perfe
t. We then show that F only

o

urs with negligible probability (during the proto
ol) and thus the simulation is indistinguishable

from the real proto
ol (during the proto
ol). We then dis
uss how to simulate the RO after outputs

have been delivered.

First in the view of B∗
step 1 of the simulation is 
learly identi
al to the real proto
ol. Thus the

�rst deviation from the real proto
ol appears in step 2 of the simulation where the X1⊕c is 
hosen

uniformly at random. However, assuming F does not o

ur, B∗
has no information on H(Kc ⊕

(1 ⊕ c)∆B) thus in the view of B∗
, X1⊕c in the real proto
ol is a one-time pad en
ryption of

(x1⊕c||Mx1⊕c ||Tx1⊕c). In other words, assuming F does not o

ur, to B∗
, X1⊕c is uniformly random

in both the simulation and the real proto
ol, and thus all input to B∗
up to step 2 is distributed

identi
ally in the two 
ases.
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For steps 3 to 5 noti
e that in the real proto
ol an honest sender would set Kz = Kr⊕ y∆B and

we would have

(Kr ⊕ y∆B)⊕ z∆B = Kr ⊕ r∆B =Mr .

Thus we have that the simulation generates Iz exa
tly as in the real proto
ol. An argument similar

to the one above for step 2 then gives us that the simulation is perfe
t given the assumption that

F does not o

ur.

We now show that B∗

an be modi�ed so that if F does o

ur, then B∗


an �nd ∆B. However,

sin
e all input to B∗
are independent of ∆B (during the proto
ol), B∗

only has negligible probability

of guessing ∆B and thus we 
an 
on
lude that F only o

urs with negligible probability.

The modi�ed B∗
keeps a list Q = (Q1, . . . , Qq) of all B∗

's queries to H. Sin
e B∗
is e�
ient

we have that q is a polynomial in κ. To �nd ∆B the modi�ed B∗
then goes over all Qk ∈R

Q and


omputes Qk ⊕Mz = ∆′
and Qk ⊕Mc = ∆′′

. Assuming that F does o

ur there will be some

Qk′ ∈ Q s.t. ∆′ = ∆B or ∆′′ = ∆B . The simulator 
an therefore use global key queries to �nd ∆B

if F o

urs.

We then have the issue that after outputs are delivered to the environment, the environment

learns ∆B , and we have to keep simulating H to the environment after outputs are delivered. This

is handled exa
tly as in the proof of Thm. 7 in App. I using the programability of the RO. ✷

G Proof of Thm. 6

We want to show that the proto
ol in Fig. 16 produ
es se
ure aOTs, having a

ess to a box that

produ
es leaky aOTs. Remember that a leaky aOT or LaOT, is inse
ure in the sense that a 
orrupted
sender 
an make guesses at any of the 
hoi
e bits: if the guess is 
orre
t, the box does nothing and

therefore the adversary knows that the guess was 
orre
t. If the guess is wrong, the box alerts the

honest re
eiver about the 
heating attempt and aborts.

In the proto
ol the re
eiver randomly partitions ℓB leaky OTs in ℓ bu
kets of size B. First we
want to argue that the probability that every bu
ket 
ontains at least one OT where the 
hoi
e

bit is unknown to the adversary is overwhelming. Repeating the same 
al
ulations as in the proof

of Thm. 8 it turns out that this happens with probability bigger than 1− (2ℓ)(1−B)
.

On
e we know that (with overwhelming probability) at least one OT in every bu
ket is se
ure

for the re
eiver (i.e., at least one 
hoi
e bit is uniformly random in the view of the adversary),

the se
urity of the proto
ol follows from the fa
t that we use a standard OT 
ombiner [HKN

+
05℄.

Turning this into a simulation proof 
an be easily done in a way similar to the proof of Thm. 8

in App. H.

H Proof of Thm. 7

Proof. The simulator answers global key queries to the dealer by doing the identi
al global key

queries on the ideal fun
tionality LaAND(ℓ) and returning the reply from LaAND(ℓ). This gives a
perfe
t simulation of these queries, and we ignore them below.

Noti
e that for honest sender and re
eiver 
orre
tness of the proto
ol follows immediately from


orre
tness of the aBit box.

Lemma 15. The proto
ol in Fig. 19 se
urely implements the LaAND box against 
orrupted A.
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Proof. We �rst fo
us on the simulation of the proto
ol before outputs are given to the environment.

Noti
e that before outputs are given to the environment, the global key ∆A is uniformly random to

the environment, as long as B is honest.

We 
onsider the 
ase of a 
orrupt sender A∗
running the above proto
ol against a simulator Sim

for honest B.

1. First Sim re
eives A∗
's input (Mx, x), (My , y), (Mr , r) for the dealer.

Then Sim re
eives the bit d ∈
R

{0, 1}.
2. Sim samples a random U ∈R {0, 1}

2κ
and sends it to A∗

. Then Sim reads V , A∗
's input to the

EQ box. If V 6= (1−x)H(Mx,Mz)⊕x(U ⊕H(Mx,My⊕Mz)) or d⊕ y 6= xy, Sim outputs abort,

otherwise, it inputs (x, y, z,Mx,My,Mz =Mr) to the LaAND box.

The �rst di�eren
e between the real proto
ol and the simulation is that U = H(Kx,Kz) ⊕
H(Kx ⊕ ∆A,Ky ⊕ Kz) in the real proto
ol and U is uniformly random in the simulation. Sin
e

H is a random ora
le, this is perfe
tly indistinguishable to the adversary until it queries on both

(Kx,Kz) and (Kx ⊕ ∆A,Ky ⊕ Kz). Sin
e ∆A is uniformly random to the environment and the

adversary during the proto
ol, this will happen with negligible probability during the proto
ol. We

later return to how we simulate after outputs are given to the environment.

The other di�eren
e between the proto
ol and the simulation is that the simulation always

aborts if z 6= xy. Assume now that A∗
manages, in the real proto
ol, to make the proto
ol 
ontinue

with z = xy ⊕ 1. If x = 0, this means that A∗
queried the ora
le on (Kx,Kz) = (Mx,Mz ⊕ ∆A),

and sin
e Sim knows the outputs of 
orrupted A, whi
h in
lude Mz, and see the input Mz ⊕∆A to

the RO H, if A∗
queries the ora
le on (Kx,Kz) = (Mx,Mz ⊕∆A), Sim 
an 
ompute ∆A. If x = 1

then A∗
must have queried the ora
le on (Kx ⊕∆A,Ky ⊕Kz) = (Mx,My ⊕Mz ⊕∆A), whi
h again

would allow Sim to 
ompute ∆A. Therefore, in both 
ases we 
an use su
h an A∗
to 
ompute the

global key ∆A and, given that all of A∗
's inputs are independent of ∆A during the proto
ol, this

happens only with negligible probability.

Consider now the 
ase after the environment is given outputs. These outputs in
lude ∆A. It

might seem that there is nothing more to simulate after outputs are given, but re
all that H is a

random ora
le simulated by Sim and that the environment might keep querying H. Our 
on
ern is

that U is uniformly random in the simulation and U = H(Kx,Kz)⊕H(Kx⊕∆A,Ky⊕Kz) in the real
proto
ol. We handle this as follows. Ea
h time the environment queries H on an input of the form

(Q1, Q2) ∈ {0, 1}
2κ
, go over all previous queries (Q3, Q4) of this form and let ∆ = Q1⊕Q3. Then do

a global key query to aBit(3ℓ, κ) to determine if ∆ = ∆A. If Sim learns ∆A this way, she pro
eeds

as des
ribed now. Note that sin
e A is 
orrupted, Sim knows all outputs to A, i.e., Sim knows all

MACs M and all bits b. If b = 0, then Sim also knows the key, as K =M when b = 0. If b = 1, Sim

omputes the key as K = M ⊕∆A. So, when Sim learns ∆A, she at the same time learns all keys.

Then for ea
h U she simply programs the RO su
h that U = H(Kx,Kz)⊕H(Kx ⊕∆A,Ky ⊕Kz).
This is possible as Sim learns ∆A no later than when the environment queries on two pairs of inputs

of the form (Q1, Q2) = (Kx,Kz) and (Q3, Q4) = (Kx ⊕ ∆A,Ky ⊕ Kz). So, when Sim learns ∆A,

either H(Kx,Kz) or H(Kx ⊕ ∆A,Ky ⊕ Kz) is still unde�ned. If it is H(Kx,Kz), say, whi
h is

unde�ned, Sim simply set H(Kx,Kz)← U ⊕H(Kx ⊕∆A,Ky ⊕Kz). ✷

Lemma 16. The proto
ol des
ribed in Fig. 19 se
urely implements the LaAND box against 
or-

rupted B.

Proof. We 
onsider the 
ase of a 
orrupt B∗
running the above proto
ol against a simulator Sim.

The simulation runs as follows.
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1. The simulation starts by Sim getting B∗
's input to the dealer Kx,Ky,Kr and ∆A.

2. The simulator samples a random d ∈R {0, 1}, sends it to B∗
and 
omputes Kz = Kr ⊕ d∆A.

3. Sim re
eives U from B∗
, and reads V , B∗

's input to the equality box.

4. If U = H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz), input (Kx,Ky,Kz) to the

box for LaAND and 
omplete the proto
ol (this is the 
ase where B∗
is behaving as an honest

player). Otherwise, if U 6= H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz) or V =
U ⊕H(Kx ⊕∆A,Kz ⊕Kz), input g = 0 or g = 1 resp. into the LaAND box as a guess for the

bit x. If the box output fail, output fail and abort, and otherwise 
omplete the proto
ol.

The simulation is perfe
t: the view of B∗

onsists only of the bit d, that is uniformly distributed

both in the real game and in the simulation, and in the aborting 
ondition, that is the same in the

real and in the simulated game. ✷

I Proof of Thm. 8

Proof. The simulator answers global key queries to LaAND(Bℓ) by doing the identi
al global key

queries on the ideal fun
tionality aAND(ℓ) and returning the reply. This gives a perfe
t simulation

of these queries, and we ignore them below.

It is easy to 
he
k that the proto
ol is 
orre
t and se
ure if both parties are honest or if A is


orrupted.

What remains is to show that, even if B is 
orrupted and tries to guess some x's from the LaAND
box, the overall proto
ol is se
ure.

We argue this in two steps. We �rst argue that the probability that B learns the x-bit for all
triples in the same bu
ket is negligible. We then argue that when all bu
kets 
ontain at least one

triple for whi
h x is unknown to B, then the proto
ol 
an be simulated given LaAND(Bℓ).

Call ea
h of the triples a ball and 
all a ball leaky if B learned the x bit of the ball in the 
all

to LaAND(ℓ′). Let γ denote the number of leaky balls.

For B of the leaky balls to end up in the same bu
ket, there must be a subset S of balls with

|S| = B 
onsisting of only leaky balls and a bu
ket i su
h that all the balls in S end up in i.

We �rst �x S and i and 
ompute the probability that all balls in S end up in i. The probability
that the �rst ball ends up in i is B

Bℓ . The probability that the se
ond balls ends up in i given that

the �rst ball is in i is B−1
Bℓ−1 , and so on. We get a probability of

B

Bℓ
·
B − 1

Bℓ− 1
· · ·

1

Bℓ−B + 1
=

(

Bℓ

B

)−1

that S ends up in i.

There are

(

γ
B

)

subsets S of size B 
onsisting of only leaky balls and there are ℓ bu
kets, so by a

union bound the probability that any bu
ket is �lled by leaky balls is upper bounded by

(

γ

B

)

ℓ

(

Bℓ

B

)−1

.

This is assuming that there are exa
tly γ leaky balls. Note then that the probability of the proto
ol

not aborting when there are γ leaky balls is 2−γ . Namely, for ea
h bit x that B tries to guess, he
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is 
aught with probability

1
2 . So, the probability that B undete
ted 
an introdu
e γ leaky balls and

have them end up in the same bu
ket is upper bounded by

α(γ, ℓ,B) = 2−γ
(

γ

B

)

ℓ

(

Bℓ

B

)−1

.

It is easy to see that

α(γ + 1, ℓ, B)

α(γ, ℓ,B)
=

γ + 1

2(γ + 1−B)
.

So, α(γ+1, ℓ, B)/α(γ, ℓ,B) > 1 i� γ < 2B−1, hen
e α(γ, ℓ,B) is maximized in γ at γ = 2B−1.
If we let α′(B, ℓ) = α(2B−1, ℓ, B) it follows that the su

ess probability of the adversary is at most

α′(B, ℓ) = 2−2B+1ℓ
(2B − 1)!(Bℓ−B)!

(B − 1)!(Bℓ)!
.

Writing out the produ
t

(2B−1)!(Bℓ−B)!
(B−1)!(Bℓ)! it is fairly easy to see that for 2 ≤ B < ℓ we have that

(2B − 1)!(Bℓ−B)!

(B − 1)!(Bℓ)!
<

(2B)B

(Bℓ)B
,

so

α′(B, ℓ) ≤ 2−2B+1ℓ
(2B)B

(Bℓ)B
= (2ℓ)1−B .

We now prove that assuming ea
h bu
ket has one non-leaky triple the proto
ol is se
ure even

for a 
orrupted B∗
.

We look only at the 
ase of two triples, [x1]A, [y
1]A, [z

1]A and [x2]A, [y
2]A, [z

2]A, being 
ombined

into [x]A, [y]A, [z]A. It is easy to see why this is su�
ient: Consider the iterative way we 
ombine

the B triples of a bu
ket. At ea
h step we 
ombine two triples where one may be the result of

previous 
ombinations. Thus if a 
ombination of two triples, involving a non-leaky triple, results in

a non-leaky triple, the subsequent 
ombinations involving that result will all result in a non-leaky

triple.

In the real world a 
orrupted B∗
will input keys Kx1 ,Ky1 ,Kz1 and Kx2 ,Ky2 ,Kz2 and ∆A,

and possibly some guesses at the x-bits to the LaAND box. Then B∗
will see d = y1 ⊕ y2 and

Md = (Ky1 ⊕ Ky2) ⊕ d∆A and A will output x = x1 ⊕ x2, y = y1 , z = z1 ⊕ z2 ⊕ dx2 and

Mx = (Kx1 ⊕Kx2)⊕x∆A, My = Ky1 ⊕ y∆A, Mz = (Kz1 ⊕Kz2 ⊕dKx2)⊕ z∆A to the environment.

Consider then a simulator Sim running against B∗
and using an aAND box. In the �rst step

Sim gets all B∗
's keys like in the real world. If B∗

submits a guess (i, gi) Sim simply outputs

fail and terminates with probability

1
2 . To simulate revealing d, Sim samples d ∈

R

{0, 1}, sets
Md = Ky1 ⊕ Ky2 ⊕ d∆A and sends d and Md to B∗

. Sim then forms the keys Kx = Kx1 ⊕ Kx2 ,

Ky = Ky1 and Kz = Kz1 ⊕Kz2 ⊕ dKx2 and inputs them to the aAND box on behalf of B∗
. Finally

the aAND box will output random x, y and z = xy and Mx = Kx ⊕ x∆A, My = Ky ⊕ y∆A,

Mz = Kz ⊕ z∆A.

We have already argued that the probability of B∗
guessing one of the x-bits is exa
tly 1

2 , so Sim

terminates the proto
ol with the exa
t same probability as the LaAND box in the real world. Noti
e

then that, given the assumption that B∗
at most guesses one of the x-bits, all bits d, x and y are

41



uniformly random to the environment both in the real world and in the simulation. Thus be
ause

Sim 
an form the keys Kx, Ky and Kz to the aAND box exa
tly as they would be in the real world

the simulation will be perfe
t.

✷

J Full Overview Diagram

F
2PC

F
Deal

aOT

LaOT

aAND

LaAND

aBit

WaBit

LaBit

EQOT

Se
t. 3

Se
t. 5 and 6

Se
t. 4

Fig. 27. Full paper outline.
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