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Abstrat. We propose a new approah to pratial two-party omputation seure against an ative

adversary. All prior pratial protools were based on Yao's garbled iruits. We use an OT-based

approah and get e�ieny via OT extension in the random orale model. To get a pratial protool

we introdue a number of novel tehniques for relating the outputs and inputs of OTs in a larger

onstrution.

We also report on an implementation of this approah, that shows that our protool is more e�ient

than any previous one: For big enough iruits, we an evaluate more than 20000 Boolean gates per

seond. As an example, evaluating one oblivious AES enryption (∼ 34000 gates) takes 64 seonds, but
when repeating the task 27 times it only takes less than 3 seonds per instane.
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1 Introdution

Seure two-party omputation (2PC), introdued by Yao [Yao82℄, allows two parties to jointly

ompute any funtion of their inputs in suh a way that 1) the output of the omputation is orret

and 2) the inputs are kept private. Yao's protool is seure only if the partiipants are semi-honest

(they follow the protool but try to learn more than they should by looking at their transript of the

protool). A more realisti seurity de�nition onsiders maliious adversaries, that an arbitrarily

deviate from the protool.

A large number of approahes to 2PC have been proposed, falling into three main types, those

based on Yao's garbled iruit tehniques, those based on some form of homomorphi enryption

and those based on oblivious transfer. Reently a number of e�orts to implement 2PC in pratie

have been reported on; In sharp ontrast to the theory, almost all of these are based on one type of

2PC, namely Yao's garbled iruit tehnique. One of the main advantages of Yao's garbled iruits

is that it is primarily based on symmetri primitives: It uses one OT per input bit, but then uses

only a few alls to, e.g., a hash funtion per gate in the iruit to be evaluated. The other approahes

are heavy on publi-key primitives whih are typially orders of magnitude slower than symmetri

primitives.

However, in 2003 Ishai et al. introdued the idea of extending OTs e�iently [IKNP03℄�their

protool allows to turn κ seed OTs based on publi-key rypto into any polynomial ℓ = poly(κ)
number of OTs using only O(ℓ) invoations of a ryptographi hash funtion. For big enough ℓ the
ost of the κ seed OTs is amortized away and OT extension essentially turns OT into a symmetri

primitive in terms of its omputational omplexity. Sine the basi approah of basing 2PC on OT

in [GMW87℄ is e�ient in terms of onsumption of OTs and ommuniation, this gives the hope

that OT-based 2PC too ould be pratial. This paper reports on the �rst implementation made to

investigate the pratiality of OT-based 2PC.

Our starting point is the e�ient passive-seure OT extension protool of [IKNP03℄ and passive-

seure 2PC of [GMW87℄. In order to get ative seurity and preserve the high pratial e�ieny

of these protools we hose to develop substantially di�erent tehniques, di�erentiating from other

works that were only interested in asymptoti e�ieny [HIKN08,Nie07,IPS08℄. We report a number

of ontributions to the theory and pratie of 2PC:

1. We introdue a new tehnial idea to the area of extending OTs e�iently, whih allows to

dramatially improve the pratial e�ieny of ative-seure OT extension. Our protool has

the same asymptoti omplexity as the previously best protool in [HIKN08℄, but it is only a

small fator slower than the passive-seure protool in [IKNP03℄.

2. We give the �rst implementation of the idea of extending OTs e�iently. The protool is ative-

seure and generates 500,000 OTs per seond, showing that implementations needing a large

number of OTs an be pratial.

3. We introdue new tehnial ideas whih allow to relate the outputs and inputs of OTs in a

larger onstrution, via the use of information theoreti tags. This an be seen as a new �avor

of ommitted OT that only requires symmetri ryptography. In ombination with our �rst

ontribution, our protool shows how to e�iently extend ommitted OT. Our protools assume

the existene of OT and are seure in the random orale model.

4. We give the �rst implementation of pratial 2PC not based on Yao's garbled iruit teh-

nique. Introduing a new pratial tehnique is a signi�ant ontribution to the �eld in itself. In

addition, our protool shows favorable timings ompared to the Yao-based implementations.
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1.1 Comparison with Related Work

The question on the asymptotial omputational overhead of ryptography was (essentially) settled

in [IKOS08℄. On the other hand, there is growing interest in understanding the pratial overhead of

seure omputation, and several works have perfeted and implemented protools based on Yao gar-

bled iruits [MNPS04,BDNP08,LPS08,KS08,PSSW09,HKS

+
10,MK10,LP11,SS11,HEK

+
11℄, pro-

tools based on homomorphi enryption [IPS09,DO10,JMN10,BDOZ11℄ and protools based on

OT [IPS08,LOP11,CHK

+
11℄.

Seurity Model Rounds Time

(a) DK [DK10℄ (3 parties) Passive SM O(d) 1.5s

(b) DK [DK10℄ (4 parties) Ative SM O(d) 4.5s

() sS [SS11℄ Ative SM O(1) 192s

(d) HEKM [HEK

+
11℄ Passive ROM O(1) 0.2s

(e) IPS-LOP [IPS08,LOP11℄ Ative SM O(d) 79s

(f) This (single) Ative ROM O(d) 64s

(g) This (27, amortized) Ative ROM O(d) 2.5s

Table 1. Brief omparison with other implementations.

A brief omparison of the time needed for

oblivious AES evaluation for the best known

implementations are shown in Table 1.

4

The

protools in rows (a-b) are for 3 and 4 parties

respetively, and are seure against at most

one orrupted party. One of the goals of the

work in row () is how to e�iently support

di�erent outputs for di�erent parties: in our

OT based protool this feature omes for free.

The time in row (e) is an estimate made by

[LOP11℄ on the running time of their opti-

mized version of the OT-based protool in [IPS08℄. The olumn Round indiates the round om-

plexity of the protools, d being the depth of the iruit while the olumn Model indiates whether

the protool was proven seure in the standard model (SM) or the random orale model (ROM).

The signi�ane of this work is shown in row (g). The reason for the dramati drop between

row (f) and (g) is that in (f), when we only enrypt one blok, our implementation preproesses for

many more gates than is needed, for ease of implementation. In (g) we enrypt 27 bloks, whih is

the minimum value whih eats to up all the preproessed values. We onsider these results positive:

our implementation is as fast or faster than any other 2PC protool, even when enrypting only one

blok. And more importantly, when running at full apaity, the prie to pay for ative seurity is

about a fator 10 against the passive-seure protool in (d). We stress that this is only a limited

omparison, as the di�erent experiments were run on di�erent hardware and network setups: when

several options were available, we seleted the best time reported by the other implementations.

See Set. 7 for more timings and details of our implementation.

1.2 Overview of Our Approah

We start from a lassi textbook protool for two-party omputation [Gol04, Se. 7.3℄. In this

protool, Alie holds seret shares xA, yA and Bob holds seret shares xB , yB of some bits x, y
s.t. xA ⊕ xB = x and yA ⊕ yB = y. Alie and Bob want to ompute seret shares of z = g(x, y)
where g is some Boolean gate, for instane the AND gate: Alie and Bob need to ompute a random

sharing zA, zB of z = xy = xAyA ⊕ xAyB ⊕ xByA ⊕ xByB. The parties an ompute the AND of

their loal shares (xAyA and xByB), while they an use oblivious transfer (OT) to ompute the

ross produts (xAyB and xByA). Now the parties an iterate for the next layer of the iruit, up

to the end where they will reonstrut the output values by revealing their shares.

4

Oblivious AES has beome one of the most ommon iruits to use for benhmarking generi MPC protools, due

to its reasonable size (about 30000 gates) and its relevane as a building blok for onstruting spei� purpose

protools, like private set intersetion [FIPR05℄.
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This protool is seure against a semi-honest adversary: assuming the OT protool to be seure,

Alie and Bob learn nothing about the intermediate values of the omputation. It is easy to see

that if a large iruit is evaluated, then the protool is not seure against a maliious adversary: any

of the two parties ould replae values on any of the internal wires, leading to a possibly inorret

output and/or leakage of information.

F
2PC

F
Deal

aOT aAND

aBit

EQOT

Set. 3

Set. 5 and 6

Set. 4

Fig. 1. Paper outline. This order of

presentation is hosen to allow the

best progression in introdution of

our new tehniques.

To ope with this, we put MACs on all bits. The starting point

of our protool is oblivious authentiation of bits. One party, the

key holder, holds a uniformly random global key ∆ ∈ {0, 1}κ. The
other party, the MAC holder, holds some seret bits (x, y, say).
For eah suh bit the key holder holds a orresponding uniformly

random loal key (Kx,Ky ∈ {0, 1}
κ
) and the MAC holder holds the

orresponding MAC (Mx = Kx ⊕ x∆, My = Ky ⊕ y∆). The key

holder does not know the bits and the MAC holder does not know

the keys. Note that Mx ⊕My = (Kx ⊕ Ky) ⊕ (x ⊕ y)∆. So, the

MAC holder an loally ompute a MAC on x ⊕ y under the key

Kx ⊕Ky whih is non-interatively omputable by the key holder.

This homomorphi property omes from �xing ∆ and we exploit it

throughout our onstrutions. From a bottom-up look, our protool

is onstruted as follows (see Fig. 1 for the main struture):

Bit Authentiation: We �rst implement oblivious authentiation of bits (aBit). As detailed

in Set. 4, to onstrut authentiated bits we start by extending a few (say κ = 640) seed

(2
1

)

-OTs into many (say ℓ = 220) OTs, using OT extension. Then, if A wants to get a bit x
authentiated, she an input it as the hoie bit in an OT, while B an input (Kx,Kx ⊕ ∆),
playing the sender in the OT. Now A reeives Mx = Kx ⊕ x∆. It should, of ourse, be ensured

that even a orrupted B uses the same value ∆ in all OTs. I.e., it should hold for all produed

OTs that the XORs of the o�ered message pairs are onstant�this onstant value is then taken

to be ∆. It turns out, however, that when using the highly e�ient passive-seure OT extender

in [IKNP03℄ and starting from seed OTs where the XORs of message pairs are onstant, one also

produes OTs where the XORs of message pairs are onstant, and we note that for this use the

protool in [IKNP03℄ happens to be ative-seure! Using ut-and-hoose we ensure that most of

the XORs of message pairs o�ered in the seed OTs are onstant, and with a new and inexpen-

sive trik we o�er privay and orretness even if few of these XORs have di�erent values. This

ut-and-hoose tehnique uses one all to a box EQ for heking equality.

Authentiated loal AND: From aBits we then onstrut authentiated loal ANDs (aAND),
where the MAC holder loally holds random authentiated bits a, b, c with c = ab. To reate

authentiated loal ANDs, we let one party ompute c = ab for random a and b and get

authentiations on a, b, c (when reating aANDs, we assume the aBits are already available).

The hallenge is to ensure that c = ab. We onstrut an e�ient proof for this fat, again using

the box EQ one. This proof might, however, leak the bit a with small but notieable probability.

We orret this using a ombiner.

Authentiated OT: From aBits we also onstrut authentiated OT s (aOT), whih are normal

(2
1

)

-OTs of bits, but where all input bits and output bits are obliviously authentiated. This is

done by letting the two parties generate aBits representing the sender messages x0, x1 and the

reeiver hoie bit c. To produe the reeiver's output, �rst a random aBit is sampled. Then this

bit is �orreted� in order to be onsistent with the run of an OT protool with input messages
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x0, x1 and hoie bit c. This orretion might, however, leak the bit c with small but notieable

probability. We orret this using an OT ombiner. One all to the box EQ is used.

2PC: Given two aANDs and two aOTs one an evaluate in a very e�ient way any Boolean gate:

only 4 bits per gate are ommuniated, as the MACs an be heked in an amortized manner.

That e�ient 2PC is possible given enough aBits, aANDs and aOTs is no surprise. In some

sense, it is the standard way to base passive-seure 2PC on passive-seure OT enhaned with a

partiular �avor of ommitted OT (as in [CvdGT95,Gar04℄). What is new is that we managed to

�nd a partiular ommitted OT-like primitive whih allows both a very e�ient generation and a

very e�ient use: while previous result based on ommitted OT require hundreds of exponentiations

per gate, our ost per gate is in the order of hundreds of hash funtions. To the best of our knowledge,

we present the �rst pratial approah to extending a few seed OTs into a large number of ommitted

OT-like primitives. Of more spei� tehnial ontributions, the main is that we manage to do all

the proofs e�iently, thanks also to the preproessing nature of our protool: Creating aBits, we get
ative seurity paying only a onstant overhead over the passive-seure protool in [IKNP03℄. In the

generation of aANDs and aOTs, we replae ut-and-hoose with e�ient, slightly leaky proofs and

then use a ombiner to get rid of the leakage: When we preproess for ℓ gates and ombine B leaky

objets to get eah potentially unleaky objet, the probability of leaking is (2ℓ)−B = 2− log2(ℓ)(B−1)
.

As an example, if we preproess for 220 gates with an overhead of B = 6, then we get leakage

probability 2−100
.

As a orollary to being able to generate any ℓ = poly(κ) ative-seure aBits from O(κ) seed OTs

and O(ℓ) alls to a hash-funtion, we get that we an generate any ℓ = poly(κ) ative-seure
(2
1

)

-OTs
of κ-bit strings from O(κ) seed OTs and O(ℓ) alls to a hash-funtion, mathing the asymptoti

omplexity of [HIKN08℄ while dramatially reduing their hidden onstants.

2 Preliminaries and Notation

We use κ (and sometimes ψ) to denote the seurity parameter. We require that a poly-time adversary

break the protool with probability at most poly(κ)2−κ. For a bit-string S ∈ {0, 1}∗ we de�ne

0S
def

= 0|S| and 1S
def

= S. For a �nite set S we use s ∈
R

S to denote that s is hosen uniformly at

random in S. For a �nite distribution D we use x← D to denote that x is sampled aording to D.

The UC Framework We prove our results stati, ative-seure in the UC framework [Can01℄,

and we assume the reader to be familiar with it. We will idiosynratially use the word box instead

of the usual term ideal funtionality. To simplify the statements of our results we use the following

terminology:

De�nition 1. We say that a box A is reduible to a box B if there exist an atively seure imple-

mentation π of A whih uses only one all to B. We say that A is loally reduible to B if the parties

of π do not ommuniate (exept through the one all to B). We say that A is linear reduible to B

if the omputing time of all parties of π is linear in their inputs and outputs. We use equivalent to

denote reduibility in both diretions.

It is easy to see that if A is (linear, loally) reduible to B and B is (linear, loally) reduible

to C, then A is (linear, loally) reduible to C.
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Hash Funtions We use a hash funtion H : {0, 1}∗ → {0, 1}κ, whih we model as a random

orale (RO). We sometimes use H to mask a message, as in H(x) ⊕M . If |M | 6= κ, this denotes
prg(H(x)) ⊕M , where prg is a pseudo-random generator prg : {0, 1}κ → {0, 1}|M |

. We also use a

ollision-resistant hash funtion G : {0, 1}2κ → {0, 1}κ.

As other 2PC protools whose fous is e�ieny [KS08,HEK

+
11℄, we are ontent with a proof

in the random orale model. What is the exat assumption on the hash funtion that we need for

our protool to be seure, as well as whether this an be implemented under standard ryptographi

assumption is an interesting theoretial question, see [AHI10,CKKZ11℄.

Oblivious Transfer We use a box OT(τ, ℓ) whih an be used to perform τ
(2
1

)

-oblivious transfers

of strings of bit-length ℓ. In eah of the τ OTs the sender S has two inputs x0, x1 ∈ {0, 1}ℓ, alled
the messages, and the reeiver R has an input c ∈ {0, 1}, alled the hoie bit. The output to R is

xc = c(x0 ⊕ x1)⊕ x0. No party learns any other information.

Equality Chek We use a box EQ(ℓ) whih allows two parties to hek that two strings of length

ℓ are equal. If they are di�erent the box leaks both strings to the adversary, whih makes seure

implementation easier. We de�ne and use this box to simplify the exposition of our protool. In

pratie we implement the box by letting the parties ompare exhanged hash's of their values: this

is a seure implementation of the box in the random orale model.

For ompleteness we give a protool whih seurely implements EQ in the RO model. Let

H : {0, 1}∗ → {0, 1}κ be a hash funtion, modeled as a RO. Let κ be the seurity parameter.

1. A hooses a random string r ∈R {0, 1}
κ
, omputes c = H(x||r) and sends it to B.

2. B sends y to A.

3. A sends x, r to B. A outputs x
?

= y.

4. B outputs (H(x||r)
?

= c) ∧ (x
?

= y).

This is a seure implementation of the EQ(ℓ) funtionality in the RO model. If A is orrupted,

the simulator extrats x, r from the simulated all to the RO, if the hash funtion was queried with

an input whih yielded the c sent by A. Then, it inputs x to EQ and reeives (x, y) from the ideal

funtionality (if x 6= y). If the hash funtion was not queried with an input whih yielded the c sent
by A, then the simulator inputs a uniformly random x to EQ and reeives (x, y). It then sends y
to the orrupted A. On input x′, r′ from A, if (x′, r′) 6= (x, r) the simulator inputs �abort� to the

EQ funtionality on behalf of A, or �deliver� otherwise. If (x′, r′) = (x, r), simulation is perfet. If

they are di�erent, the only way that the environment an distinguish is by �nding (x′, r′) 6= (x, r)
s.t. H(x||r) = H(x′||r′) or by �nding (x′, r′) suh that c = H(x′||r′) for a c whih did not result from

a previous query. In the random orale both events happen with probability less than poly(κ)2−κ,
as the environment is only allowed a polynomial number of alls to the RO.

If B is orrupted, then the simulator sends a random value c ∈R {0, 1}
ℓ
to B. Then, on input y

from B it inputs this value to the EQ box and reeives (x, y). Now, it hooses a random r ∈R {0, 1}
κ

and programs the RO to output c on input x||r, and sends x and r to B. Simulation is perfet,

and the environment an only distinguish if it had already queried the RO on input x||r, and this

happens with probability poly(κ)2−κ, as r ∈ {0, 1}κ is uniformly random, and the environment is

only allowed a polynomial number of alls to the RO.
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Leakage Funtions We use a notion of a lass L of leakage funtions on τ bits. The ontext is that

there is some uniformly random seret value ∆ ∈
R

{0, 1}τ and some adversary A wants to guess ∆.

To aid A, she an do an attak whih might leak some of the bits of ∆. The attak, however, might

be deteted. Eah L ∈ L is a poly-time sampleable distribution on (S, c) ∈ 2{1,...,τ} × {0, 1}. Here
c spei�es if the attak was deteted, where c = 0 signals detetion, and S spei�es the bits to be

leaked if the attak was not deteted. We need a measure of how many bits a lass L leaks. We do

this via a game for an unbounded adversary A.

1. The game piks a uniformly random ∆ ∈
R

{0, 1}τ .
2. A inputs L ∈ L.
3. The game samples (S, c)← L. If c = 0, A loses. If c = 1, the game gives {(i,∆i)}i∈S to A.

4. Let S = {1, . . . , τ}\S. A inputs the guesses {(i, gi)}i∈S . If gi = ∆i for all i ∈ S, A wins, otherwise

she loses.

We say that an adversary A is optimal if she has the highest possible probability of winning the

game above. If there were no leakage, i.e., S = ∅, then it is lear that the optimal A wins the game

with probability exatly 2−τ . If A is always given exatly s bits and is never deteted, then it is

lear that the optimal A an win the game with probability exatly 2s−τ . This motivates de�ning

the number of bits leaked by L to be leakL
def

= log2(successL) + τ , where successL is the probability

that the optimal A wins the game. It is easy (details below) to see that if we take expetation over

random (S, c) sampled from L, then leakL = maxL∈L log2
(

E
[

c2|S|
])

.

We say that L is κ-seure if τ − leakL ≥ κ, and it is lear that if L is κ-seure, then no A an

win the game with probability better than 2−κ.
We now rewrite the de�nition of leakL to make it more workable.

It is lear that the optimal A an guess all∆i for i ∈ S with probability exatly 2|S|−τ . This means

that the optimal A wins with probability

∑τ
s=0 Pr [(S, c)← L : |S| = s ∧ c = 1] 2s−τ . To simplify this

expression we de�ne index variables Is, Js ∈ {0, 1} where Is is 1 i� c = 1 and |S| = s and Js is 1 i�

|S| = s. Note that Is = cJs and that

∑

s Js2
s = 2|S|. So, if we take expetation over (S, c) sampled

from L, then we get that

τ
∑

s=0

Pr [(S, c)← L : |S| = s ∧ c = 1] 2s =

τ
∑

s=0

E [Is] 2
s

= E

[

τ
∑

s=0

Is2
s

]

= E

[

τ
∑

s=0

cJs2
s

]

= E

[

c
τ

∑

s=0

Js2
s

]

= E
[

c2|S|
]

.

Hene successL = 2−τ E
[

c2|S|
]

is the probability of winning when using L and playing optimal.

Hene successL = maxL∈L(2
−τ E

[

c2|S|
]

) and log2(successL) = −τ + log2 maxL∈L
(

E
[

c2|S|
])

, whih

shows that

leakL = max
L∈L

log2

(

E
[

c2|S|
])

,

as laimed above.

3 The Two-Party Computation Protool
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F
2PC

F
Deal

aOT aANDaBit

Fig. 2. Set. 3 outline.

We want to implement the box F
2PC

for Boolean two-party seure om-

putation as desribed in Fig. 4. We will implement this box in the F
Deal

-

hybrid model of Fig. 5. This box provides the parties with aBits, aANDs
and aOTs, and models the preproessing phase of our protool. We intro-

due notation in Fig. 3 for working with authentiated bits. The protool

implementing F
2PC

in the dealer model is desribed in Fig. 6. The dealer

o�ers random authentiated bits (to A or B), random authentiated loal AND triples and random

authentiated OTs. Those are all the ingredients that we need to build the 2PC protool. Note

that the dealer o�ers randomized versions of all ommands: this is not a problem as the �standard�

version of the ommands (the one where the parties an speify their input bits instead of getting

them at random from the box) are linearly reduible to the randomized version, as an be easily

dedued from the protool desription. The following result is proven in App. B:

Theorem 1. The protool in Fig. 6 seurely implements the box F
2PC

in the F
Deal

-hybrid model

with seurity parameter κ.

Global Key: We all ∆A,∆B ∈ {0, 1}
κ
the two global keys, held by B and A respetively.

Authentiated Bit: We write [x]A to represent an authentiated seret bit held by A. Here B knows a key

Kx ∈ {0, 1}
κ
and A knows a bit x and a MAC Mx = Kx ⊕ x∆A ∈ {0, 1}

κ
. Let [x]A

def

= (x,Mx,Kx).
a

If [x]A = (x,Mx,Kx) and [y]A = (y,My ,Ky) we write [z]A = [x]A ⊕ [y]A to indiate [z]A = (z,Mz,Kz)
def

=
(x⊕ y,Mx ⊕My, Kx ⊕Ky). Note that no ommuniation is required to ompute [z]A from [x]A and [y]A.
It is possible to authentiate a onstant bit (a value known both to A and B) b ∈ {0, 1} as follows: A sets

Mb = 0κ, B sets Kb = b∆A, now [b]A
def

= (b,Mb,Kb). For a onstant b we let [x]A ⊕ b
def

= [x]A ⊕ [b]A, and we

let b[x]A be equal to [0]A if b = 0 and [x]A if b = 1.
We say that A reveals [x]A by sending (x,Mx) to B who aborts if Mx 6= Kx ⊕ x∆A. Alternatively we say

that A announes x by sending x to B without a MAC.

Authentiated bits belonging to B are written as [y]B and are de�ned symmetrially, hanging side of all the

values and using the global value ∆B instead of ∆A.

Authentiated Share: We write [x] to represent the situation where A and B hold [xA]A, [xB]B and x = xA⊕xB,
and we write [x] = ([xA]A, [xB ]B) or [x] = [xA|xB].
If [x] = [xA|xB ] and [y] = [yA|yB] we write [z] = [x] ⊕ [y] to indiate [z] = ([zA]A, [zB ]B) = ([xA]A ⊕
[yA]A, [xB ]B ⊕ [yB ]B). Note that no ommuniation is required to ompute [z] from [x] and [y].
It is possible to reate an authentiated share of a onstant b ∈ {0, 1} as follows: A and B reate [b] = [b|0].
For a onstant value b ∈ {0, 1}, we de�ne b[x] to be equal to [0] if b = 0 and [x] if b = 1.
When an authentiated share is revealed, the parties reveal to eah other their authentiated bits and abort

if the MACs are not orret.

a

Sine ∆A is a global value we will not always write it expliitly. Note that in x∆A, x represents a value, 0 or 1,
and that in [x]A, Kx andMx it represents a variable name. I.e., there is only one key (MAC) per authentiated

bit, and for the bit named x, the key (MAC) is named Kx (Mx). If x = 0, then Mx = Kx. If x = 1, then
Mx = Kx ⊕∆A.

Fig. 3. Notation for authentiated and shared bits.

Why the global key queries? The F
Deal

box (Fig. 5) allows the adversary to guess the value

of the global key, and it informs it if its guess is orret. This is needed for tehnial reasons:

When F
Deal

is proven UC seure, the environment has aess to either F
Deal

or the protool

implementing F
Deal

. In both ases the environment learns the global keys∆A and∆B. In partiular,
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Rand: On input (rand, vid) from A and B, with vid a fresh identi�er, the box piks r ∈
R

{0, 1} and stores

(vid , r).
Input: On input (input,P, vid , x) from P ∈ {A,B} and (input,P, vid , ?) from the other party, with vid a fresh

identi�er, the box stores (vid , x).
XOR: On ommand (xor, vid1, vid2, vid3) from both parties (if vid1, vid2 are de�ned and vid3 is fresh), the box

retrieves (vid1, x), (vid2, y) and stores (vid3, x⊕ y).
AND: As XOR, but store (vid3, x · y).
Output: On input (output,P, vid) from both parties, with P ∈ {A,B} (and vid de�ned), the box retrieves

(vid , x) and outputs it to P.

At eah ommand the box leaks to the environment whih ommand is being exeuted (keeping the value x in

Input seret), and delivers messages only when the environment says so.

Fig. 4. The box F
2PC

for Boolean Two-party Computation.

Initialize: On input (init) from A and (init) from B, the box samples ∆A,∆B ∈ {0, 1}
κ
, stores them and

outputs ∆B to A and ∆A to B. If A (resp. B) is orrupted, she gets to hoose ∆B (resp. ∆A).

Authentiated Bit (A): On input (aBIT,A) from A and B, the box samples a random [x]A = (x,Mx,Kx)
with Mx = Kx⊕ x∆A and outputs it (x,Mx to A and Kx to B). If B is orrupted he gets to hoose Kx. If

A is orrupted she gets to hoose (x,Mx), and the box sets Kx = Mx ⊕ x∆A.

Authentiated Bit (B): On input (aBIT,B) from A and B, the box samples a random [x]B = (x,Mx,Kx)
with Mx = Kx⊕x∆B and outputs it (x,Mx to B and Kx to A). As in Authentiated Bit (A), orrupted

parties an hoose their own randomness.

Authentiated loal AND (A): On input (aAND,A) from A and B, the box samples random [x]A,[y]A and

[z]A with z = xy and outputs them. As in Authentiated Bit (A), orrupted parties an hoose their own

randomness.

Authentiated loal AND (B) De�ned symmetrially.

Authentiated OT (A-B): On input (aOT,A,B) from A and B, the box samples random [x0]A,[x1]A,[c]B and

[z]B with z = xc = c(x0 ⊕ x1) ⊕ x0 and outputs them. As in Authentiated Bit, orrupted parties an

hoose their own randomness.

Authentiated OT (B-A): De�ned symmetrially.

a

Global Key Queries: The adversary an at any point input (A, ∆) and be told whether ∆ = ∆B . And it an

at any point input (B,∆) and be told whether ∆ = ∆A.

a

The dealer o�ers aOTs in both diretions. Notie that the dealer ould o�er aOT only in one diretion and

the parties ould then �turn� them: as regular OT, aOT is symmetri as well.

Fig. 5. The box F
Deal

for dealing preproessed values.

the environment learns ∆A even if B is honest. This requires us to prove the sub-protool for F
Deal

seure to an adversary knowing ∆A even if B is honest: to be be able to do this, the simulator

needs to reognize ∆A if it sees it�hene the global key queries. Note, however, that in the ontext

where we use F
Deal

(Fig. 6), the environment does not learn the global key ∆A when B is honest:

A orrupted A only sees MACs on one bit using the same loal key, so all MACs are uniformly

random in the view of a orrupted A, and B never makes the loal keys publi.

Amortized MAC heks. In the protool of Fig. 6, there is no need to send MACs and hek

them every time we do a �reveal�. In fat, it is straightforward to verify that before an Output

ommand is exeuted, the protool is perfetly seure even if the MACs are not heked. Notie

then that a keyholder heks a MAC Mx on a bit x by omputing M ′
x = Kx ⊕ x∆ and omparing

M ′
x to the Mx whih was sent along with x. These equality heks an be deferred and amortized.

Initially the MAC holder, e.g. A, sets N = 0κ and the key holder, e.g. B, sets N ′ = 0κ. As long
as no Output ommand is exeuted, when A reveals x she updates N ← G(N,H(Mx)) for the

MAC Mx she should have sent along with x, and B updates N ′ ← G(N ′,H(M ′
x)). Before exeuting
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Initialize: When ativated the �rst time, A and B ativate F
Deal

and reeive ∆B and ∆A respetively.

Rand: A and B ask F
Deal

for random authentiated bits [rA]A, [rB]B and stores [r] = [rA|rB] under vid .
Input: If P = A, then A asks F

Deal

for an authentiated bit [xA]A and announes (i.e., no MAC is sent together

with the bit) xB = x⊕ xA, and the parties build [xB ]B and de�ne [x] = [xA|xB]. The protool is symmetri

for B.

XOR: A and B retrieve [x], [y] stored under vid1, vid2 and store [z] = [x]⊕ [y] under vid3. For brevity we drop

expliit mentioning of variable identi�ers below.

AND: A and B retrieve [x], [y] and ompute [z] = [xy] as follows:
1. The parties ask F

Deal

for a random AND triplet [u]A, [v]A, [w]A with w = uv.
A reveals [f ]A = [u]A ⊕ [xA]A and [g]A = [v]A ⊕ [yA]A.
The parties ompute [xAyA]A = f [yA]A ⊕ g[xA]A ⊕ [w]A ⊕ fg.

2. Symmetrially the parties ompute [xByB ]B.
3. The parties ask F

Deal

for a random authentiated OT [u0]A, [u1]A, [c]B, [w]B with w = uc.
They also ask for an authentiated bit [rA]A.
Now B reveals [d]B = [c]B ⊕ [yB]B.
A reveals [f ]A = [u0]A ⊕ [u1]A ⊕ [xA]A and [g]A = [rA]A ⊕ [u0]A ⊕ d[xA]A.
Compute [sB ]B = [w]B ⊕ f [c]B ⊕ g. Note that at this point [sB]B = [rA ⊕ xAyB ]B.

4. Symmetrially the parties ompute [sA]A = [rB ⊕ xByA]A.
A and B ompute [zA]A = [rA]A ⊕ [sA]A ⊕ [xAyA]A and [zB]B = [rB ]B ⊕ [sB ]B⊕ [xByB ]B and let [z] = [zA|zB ].

Output: The parties retrieve [x] = [xA|xB]. If A is to learn x, B reveals xB. If B is to learn x, A reveals xA.

Fig. 6. Protool for F
2PC

in the F
Deal

-hybrid model

an Output, A sends N to B who aborts if N 6= N ′
. Seurity of this hek is easily proved in the

random orale model. The optimization brings the ommuniation omplexity of the protool down

from O(κ|C|) to O(|C|+ oκ), where o is the number of rounds in whih outputs are opened. For a

iruit of depth O(|C|/κ), the ommuniation is O(|C|).

Implementing F
Deal

. In the following setions we show how to implement F
Deal

. In Set. 4 we

implement just the part with the ommands Authentiated Bits. In Set. 5 we show how to extend

with the Authentiated OT ommands, by showing how to implement many aOTs from many

aBits. In Set. 6 we then show how to extend with the Authentiated loal AND ommands, by

showing how to implement many aANDs from many aBits. We desribe the extensions separately,

but sine they both maintain the value of the global keys, they will produe aANDs and aOTs with
the same keys as the aBits used, giving an implementation of F

Deal

.

4 Bit Authentiation

aBit

WaBit

LaBit

OTEQ

Fig. 7. Set. 4 outline.

In this setion we show how to e�iently implement (oblivious) bit au-

thentiation, i.e., we want to be in a situation where A knows some bits

x1, . . . , xℓ together with MACs M1, . . . ,Mℓ, while B holds a global key

∆A and loal keys K1, . . . ,Kℓ s.t.Mi = Ki⊕xi∆A, as desribed in F
Deal

(Fig. 5). Given the omplete symmetry of F
Deal

, we only desribe the

ase where A is MAC holder.

If the parties were honest, we ould do the following: A and B run an

OT where B inputs the two messages (Ki,Ki ⊕∆A) and A hooses xi, to reeive Mi = Ki ⊕ xi∆A.

However, if B is dishonest he might not use the same ∆A in all OTs. The main ideas that make the

protool seure against heating parties are the following:

1. For reasons that will be apparent later, we will atually start in the opposite diretion and let

B reeive some authentiated bits yi using an OT, where A is supposed to always use the same
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global key ΓB. Thus an honest A inputs (Li, Li⊕ΓB) in the OTs and B reeives Ni = Li⊕yiΓB .
To hek that A is playing honest in most OTs, the authentiated bits are randomly paired and

a hek is performed, whih restrits A to heat in at most a few OTs.

2. We then notie that what A gains by using di�erent ΓB 's in a few OTs is no more than learning

a few of B's bits yi. We all this a leaky aBit, or LaBit.

3. We show how to turn this situation into an equivalent one where A (not B) reeives authentiated

random bits xi's (none of whih leaks to B) under a �slightly inseure� global key ΓA. The
inseurity omes from the fat that the leakage of the yi's turns into the leakage of a few bits of

the global key ΓA towards A. We all this an aBit with weak global key, or WaBit.

4. Using privay ampli�ation, we amplify the previous setting to a new one where A reeives

authentiated bits under a (shorter) fully seure global key ∆A, where no bits of ∆A are known

to A, �nally implementing the aBit ommand of the dealer box.

We will proeed in reverse order and start with step 4 in the previous desription: we will start with

showing how we an turn authentiated bits under an �inseure� global key ΓA into authentiated

bits under a �seure� (but shorter) global key ∆A.

4.1 Bit Authentiation with Weak Global Key (WaBit)

We will �rst de�ne the box providing bit authentiation, but where some of the bits of the global

key might leak. We all this box WaBit (bit authentiation with weak global key) and we formally

desribe it in Fig. 8. The box WaBitL(ℓ, τ) outputs ℓ bits with keys of length τ . The box is also

parametrized by a lass L of leakage funtions on τ bits. The box aBit(ℓ, ψ) is the box WaBitL(ℓ, ψ)
where L is the lass of leakage funtions that never leak.

Honest Parties:

1. The box samples ΓA ∈R {0, 1}
τ
and outputs it to B.

2. The box samples and outputs [x1]A, . . . , [xℓ]A. Eah [xi]A = (xi,M
′
i ,K

′
i) ∈ {0, 1}

1+2τ
s.t.M ′

i = K′
i⊕xiΓA.

Corrupted Parties:

1. If A is orrupted, then A may hoose a leakage funtion L ∈ L. Then the box samples (S, c) ← L. If
c = 0 the box outputs fail to B and terminates. If c = 1, the box outputs {(i, (ΓA)i)}i∈S to A.

2. If A is orrupted, then A hooses the xi and the M ′
i and then K′

i =M ′
i ⊕ xiΓA.

3. If B is orrupted, then B hooses ΓA and the K′
i.

Global Key Queries: The adversary an input Γ and will be told if Γ = ΓA.

Fig. 8. The box WaBitL(ℓ, τ ) for Bit Authentiation with Weak Global Key

1. The parties invoke WaBitL(ℓ, τ ) with τ = 22
3
ψ. The output to A is ((M ′

1, x1), . . . , (M
′
ℓ, xℓ)). The output to

B is (ΓA,K
′
1, . . . ,K

′
ℓ).

2. B samples A ∈
R

{0, 1}ψ×τ
, a random binary matrix with ψ rows and τ olumns, and sends A to A.

3. A omputes Mi = AM ′
i ∈ {0, 1}

ψ
and outputs ((M1, x1), . . . , (Mℓ, xℓ)).

4. B omputes ∆A = AΓA and Ki = AK′
i and outputs (∆A,K1, . . . ,Kℓ).

Fig. 9. Subprotool for reduing aBit(ℓ, ψ) to WaBitL(ℓ, τ ).

In Fig. 9 we desribe a protool whih takes a box WaBit, where one quarter of the bits of the
global key might leak, and ampli�es it to a box aBit where the global key is perfetly seret. The

protool is desribed for general L and it is parametrized by a desired seurity level ψ. The proof

of the following theorem an be found in App. C.
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Theorem 2. Let τ = 22
3 ψ and L be a

(

3
4τ

)

-seure leakage funtion on τ bits. The protool in Fig. 9

seurely implements aBit(ℓ, ψ) in the WaBitL(ℓ, τ)-hybrid model with seurity parameter ψ. The
ommuniation is O(ψ2) and the work is O(ψ2ℓ).

4.2 Bit Authentiation with Leaking Bits (LaBit)

We now show another inseure box for aBit. The new box is inseure in the sense that a few of

the bits to be authentiated might leak to the other party. We all this box an aBit with leaking

bits, or LaBit and formally desribe it in Fig. 10. The box LaBitL(τ, ℓ) outputs τ authentiated bits

with keys of length ℓ, and is parametrized by a lass of leakage funtions L on τ -bits. We show that

WaBitL an be redued to LaBitL. In the redution, a LaBit that outputs authentiated bits [yi]B
to B an be turned into a WaBit that outputs authentiated bits [xj ]A to A, therefore we present the

LaBit box that outputs bits to B. The redution is strongly inspired by the OT extension tehniques

in [IKNP03℄.

Honest Parties:

1. The box samples ΓB ∈R {0, 1}
ℓ
and outputs it to A.

2. The box samples and outputs [y1]B, . . . , [yτ ]B. Eah [yi]B = (yi, Ni, Li) ∈ {0, 1}
1+2ℓ

s.t. Ni = Li ⊕ yiΓB .
Corrupted Parties:

1. If A is orrupted, then A may input a leakage funtion L ∈ L. Then the box samples (S, c)← L. If c = 0
the box outputs fail to B and terminates. If c = 1, the box outputs {(i, yi)}i∈S to A.

2. Corrupted parties get to speify their outputs as in Fig. 8.

Choie Bit Queries: The adversary an input ∆ and will be told if ∆ = (y1, . . . , yτ ).

Fig. 10. The box LaBitL(τ, ℓ) for Bit Authentiation with Leaking Bits

1. A and B invoke LaBitL(τ, ℓ). B learns ((N1, y1), . . . , (Nτ , yτ )) and A learns (ΓB , L1, . . . , Lτ ).
2. A lets xj be the j-th bit of ΓB and Mj the string onsisting of the j-th bits from all the strings Li,

i.e. Mj = L1,j ||L2,j || . . . ||Lℓ,j .
3. B lets ΓA be the string onsisting of all the bits yi, i.e. ΓA = y1||y2|| . . . ||yℓ, and lets Kj be the string

onsisting of the j-th bits from all the strings Ni, i.e. Kj = N1,j ||N2,j || . . . ||Nℓ,j .
4. A and B now hold [xj ]A = (xj ,Mj ,Kj) for j = 1, . . . , ℓ.

Fig. 11. Subprotool for reduing WaBitL(ℓ, τ ) to LaBitL(τ, ℓ)

Theorem 3. For all ℓ, τ and L the boxes WaBitL(ℓ, τ) and LaBitL(τ, ℓ) are linear loally equivalent,
i.e., an be implemented given the other in linear time without interation.

Proof. The �rst diretion (reduing WaBit to LaBit) is shown in Fig. 11. The other diretion

(LaBit is linear loally reduible to WaBit) will follow by the fat that the loal transformations

are reversible in linear time. One an hek that for all j = 1, . . . , τ , [xj ]A is a orret authentiated

bit. Namely, from the box LaBit we get that for all i = 1, . . . , ℓ, Ni = Li ⊕ yiΓB . In partiular

the j-th bit satis�es Ni,j = Li,j ⊕ yi(ΓB)j , whih an be rewritten (using the same renaming as

in the protool) as Kj,i = Mj,i ⊕ (ΓA)ixj , and therefore Mj = Kj ⊕ xjΓA, as we want. It is easy

so see (as the protool only onsists of renamings) that leakage on the hoie bits is equivalent to

leakage on the global key under this transformation, and guesses on ΓA are equivalent to guesses

on (y1, . . . , yτ ), so giving a simulation argument is straight-forward when L is the same for both

boxes. ✷
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Note that sine we turn LaBitL(ℓ, τ) into WaBitL(τ, ℓ), if we hoose ℓ = poly(ψ) we an turn

a relatively small number (τ = 22
3 ψ) of authentiated bits towards one player into a very larger

number (ℓ) of authentiated bits towards the other player.

4.3 A Protool For Bit Authentiation With Leaking Bits

In this setion we show how to onstrut authentiated bits starting from OTs. The protool ensures

that most of the authentiated bits will be kept seret, as spei�ed by the LaBit box in Fig. 10.

The main idea of the protool, desribed in Fig. 12, is the following: many authentiated bits

[yi]B for B are reated using OTs, where A is supposed to input messages (Li, Li ⊕ ΓB). To hek

that A is using the same ΓB in every OT, the authentiated bits are randomly paired. Given a pair

of authentiated bits [yi]B, [yj ]B, A and B ompute [zi]B = [yi]B ⊕ [yj]B ⊕ di where di = yi ⊕ yj is
announed by B. If A behaved honestly, she knows the MAC that B holds on zi, otherwise she has 1
bit of entropy on this MAC, as shown below. The parties an hek if A knows the MAC using the

EQ box desribed in App. 2. As B reveals yi⊕yj, they waste [yj ]B and only use [yi]B as output from

the protool�as yj is uniformly random yi ⊕ yj leaks no information on yi. Note that we annot

simply let A reveal the MAC on zi, as a maliious B ould announe 1⊕ zi: this would allow B to

learn a MAC on zi and 1 ⊕ zi at the same time, thus leaking ΓB. Using EQ fores a thus heating

B to guess the MAC on a bit whih he did not see, whih he an do only with negligible probability

2−ℓ.

1. A samples ΓB ∈R {0, 1}
ℓ
and for i = 1, . . . , T samples Li ∈R {0, 1}

ℓ
, where T = 2τ .

2. B samples (y1, . . . , yT ) ∈
R

{0, 1}T .
3. They run T OTs, where for i = 1, . . . , T party A o�ers (Yi,0, Yi,1) = (Li, Li ⊕ ΓB) and B selets yi and

reeives Ni = Yi,yi = Li ⊕ yiΓB . Let [y1]B, . . . , [yT ]B be the andidate authentiated bits produed so far.

4. B piks a uniformly random pairing π (a permutation π : {1, . . . , T } → {1, . . . , T } where ∀i, π(π(i)) = i),
and sends π to A. Given a pairing π, let S(π) = {i|i ≤ π(i)}, i.e., for eah pair, add the smallest index to

S(π).
5. For all τ indies i ∈ S(π):

(a) B announes di = yi ⊕ yπ(i).
(b) A and B ompute [zi]B = [yi]B ⊕ [yπ(i)]B ⊕ di.
() Let Zi and Wi be the MAC and the loal key for zi held by A respetively B. They ompare these using

EQ and abort if they are di�erent.

The τ omparisons are done using one all on the τℓ-bit strings (Zi)i∈S(π) and (Wi)i∈S(π).

6. For all i ∈ S(π) A and B output [yi]B.

Fig. 12. The protool for reduing LaBit(τ, ℓ) to OT(2τ, ℓ) and EQ(τℓ).

Note that if A uses di�erent ΓB in two paired instanes, Γi and Γj say, then the MAC held by B

on yi⊕ yj (and therefore also zi) is (Li⊕ yiΓi)⊕ (Lj ⊕ yjΓj) = (Li⊕Lj)⊕ (yi⊕ yj)Γj ⊕ yi(Γi⊕Γj).
Sine (Γi ⊕ Γj) 6= 0ℓ and yi ⊕ yj is �xed by announing di, guessing this MAC is equivalent to

guessing yi. As A only knows Li, Lj , Γi, Γj and yi ⊕ yj , she annot guess yi with probability better

than 1/2. Therefore, if A heats in many OTs, she will get aught with high probability. If she only

heats on a few instanes she might pass the test. Doing so on�rms her guess on yi in the pairs

where she heated. Now assume that she heated in instane i and o�ered (Li, Li ⊕ Γ
′
B) instead of

(Li, Li ⊕ ΓB). After getting her guess on yi on�rmed she an explain the run as an honest run: If

yi = 0, the run is equivalent to having o�ered (Li, Li⊕ΓB), as B gets no information on the seond

message when yi = 0. If yi = 1, then the run is equivalent to having o�ered (L′
i, L

′
i ⊕ ΓB) with
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L′
i = Li ⊕ (ΓB ⊕ Γ

′
B), as L

′
i ⊕ ΓB = Li ⊕ ΓB and B gets no information on the �rst message when

yi = 1. So, any heating strategy of A an be simulated by letting her honestly use the same ΓB in

all pairs and then let her try to guess some bits yi. If she guesses wrong, the deviation is reported

to B. If she guesses right, she is told so and the deviation is not reported to B. This, in turn, an

be aptured using some appropriate lass of leakage funtions L. Nailing down the exat L needed

to simulate a given behavior of A, inluding de�ning what is the �right� ΓB, and showing that the

needed L is always κ-seure is a relatively straight-forward but very tedious business. The proof of

the following theorem an be found in App. D.

Theorem 4. Let κ = 3
4τ , and let L be a κ seure leakage funtion on τ bits. The protool in Fig. 12

seurely implements LaBitL(τ, ℓ) in the (OT(2τ, ℓ),EQ(τℓ))-hybrid model. The ommuniation is

O(τ2). The work is O(τℓ).

Corollary 1. Let ψ denote the seurity parameter and let ℓ = poly(ψ). The box aBit(ℓ, ψ) an be

redued to (OT(443 ψ,ψ),EQ(ψ)). The ommuniation is O(ψℓ+ ψ2) and the work is O(ψ2ℓ).

Proof. Combining the above theorems we have that aBit(ℓ, ψ) an be redued to

(OT(443 ψ, ℓ),EQ(223 ψℓ)) with ommuniation O(ψ2) and work O(ψ2ℓ). For any polynomial ℓ, we an
implement OT(443 ψ, ℓ) given OT(443 ψ,ψ) and a pseudo-random generator prg : {0, 1}ψ → {0, 1}ℓ.
Namely, seeds are sent using the OTs and the prg is used to one-time pad enrypt the messages. The

ommuniation is 2ℓ. If we use the RO to implement the pseudo-random generator and ount the

hashing of κ bits as O(κ) work, then the work is O(ℓψ). We an implement EQ(223 ψℓ) by omparing

short hashes produed using the RO. The work is O(ψℓ). ✷

Sine the orales (OT(443 ψ,ψ),EQ(ψ)) are independent of ℓ, the ost of essentially any reasonable
implementation of them an be amortized away by piking ℓ large enough. See App. A for a more

detailed omplexity analysis.

E�ient OT Extension: We notie that the WaBit box resembles an intermediate step of the

OT extension protool of [IKNP03℄. Completing their protool (i.e., �hashing away� the fat that

all messages pairs have the same XOR), gives an e�ient protool for OT extension, with the same

asymptoti omplexity as [HIKN08℄, but with dramatially smaller onstants. See App. E for details.

5 Authentiated Oblivious Transfer

In this setion we show how to implement aOTs. We implemented aBits in Set. 4, so what re-

mains is to show how to implement aOTs from aBits i.e., to implement the F
Deal

box when it

outputs [x0]A, [x1]A, [c]B, [z]B with z = c(x0⊕x1)⊕x0 = xc. Beause of symmetry we only show the

onstrution of aOTs from aBits with A as sender and B as reeiver.

aOT

LaOT

aBit EQ

Fig. 13. Set. 5 outline.

We go via a leaky version of authentiated OT, or LaOT, desribed
in Fig. 14. The LaOT box is leaky in the sense that hoie bits may leak

when A is orrupted: a orrupted A is allowed to make guesses on hoie

bits, but if the guess is wrong the box aborts revealing that A is heating.

This means that if the box does not abort, with very high probability A

only tried to guess a few hoie bits.

The protool to onstrut a leaky aOT (desribed in Fig. 15) proeeds

as follows: First A and B get [x0]A, [x1]A (A's messages), [c]B (B's hoie bit) and [r]B. Then A
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Honest Parties: For i = 1, . . . , ℓ, the box outputs random [xi0]A, [x
i
1]A, [c

i]B, [z
i]B with zi = ci(xi0 ⊕ x

i
1)⊕ x

i
0.

Corrupted Parties:

1. If B is orrupted he gets to hoose all his random values.

2. If A is orrupted she gets to hoose all her random values. Also, she may, at any point before B reeived

his outputs, input (i, gi) to the box in order to try to guess ci. If ci 6= gi the box will output fail

and terminate. Otherwise the box proeeds as if nothing has happened and A will know the guess was

orret. She may input as many guesses as she desires.

Global Key Queries: The adversary an at any point input (A,∆) and will be returned whether ∆ = ∆B .

And it an at any point input (B,∆) and will be returned whether ∆ = ∆A.

Fig. 14. The Leaky Authentiated OT box LaOT(ℓ)

transfers the message z = xc to B in the following way: B knows the MAC for his hoie bit

Mc, while A knows the two keys Kc and ∆B. This allows A to ompute the two possible MACs

(Kc,Kc ⊕ ∆B) respetively for the ase of c = 0 and c = 1. Hashing these values leaves A with

two unorrelated strings H(Kc) and H(Kc ⊕∆B), one of whih B an ompute as H(Mc). These
values an be used as a one-time pad for A's bits x0, x1 (and some other values as desribed later),

and B an retrieve xc and announe the di�erene d = xc ⊕ r and therefore ompute the output

[z]B = [r]B ⊕ d.

The protool runs ℓ times in parallel, here desribed for a single leaky authentiated OT.

1. A and B get [x0]A, [x1]A, [c]B, [r]B from the dealer.

2. Let [x0]A = (x0,Mx0 ,Kx0), [x1]A = (x1,Mx1 ,Kx1), [c]B = (c,Mc,Kc), [r]B = (r,Mr,Kr).
3. A hooses random strings T0, T1 ∈ {0, 1}

κ
.

4. A sends (X0, X1) to B where X0 = H(Kc)⊕ (x0||Mx0 ||Tx0) and X1 = H(Kc ⊕∆B)⊕ (x1||Mx1 ||Tx1).
5. B omputes (xc||Mxc ||Txc) = Xc ⊕H(Mc). B aborts if Mxc 6= Kxc ⊕ xc∆A. Otherwise, let z = xc.
6. B announes d = z ⊕ r to A and the parties ompute [z]B = [r]B ⊕ d. Let [z]B = (z,Mz,Kz).
7. A sends (I0, I1) to B where I0 = H(Kz)⊕ T1 and I1 = H(Kz ⊕∆B)⊕ T0.

8. B omputes T1⊕z = Iz ⊕H(Mz). Notie that now B has both (T0, T1).
9. A and B both input (T0, T1) to EQ. The omparisons are done using one all to EQ(ℓ2κ).
10. If the values are the same, they output [x0]A, [x1]A, [c]B, [z]B.

Fig. 15. The protool for authentiated OT with leaky hoie bit

In order to hek if A is transmitting the orret bits x0, x1, she will transfer the respetive

MACs together with the bits: as B is supposed to learn xc, revealing the MAC on this bit does not

introdue any inseurity. However, A an now mount a seletive failure attak: A an hek if B's

hoie bit c is equal to, e.g., 0 by sending x0 with the right MAC and x1 together with a random

string. Now if c = 0 B only sees the valid MAC and ontinues the protool, while if c = 1 B aborts

beause of the wrong MAC. A similar attak an be mounted to hek if c = 1. We will �x this later

by randomly partitioning and ombining a few LaOTs together.

On the other hand, if B is orrupted, he ould be announing the wrong value d. In partiular,

A needs to hek that the authentiated bit [z]B is equal to xc without learning c. In order to do

this, we have A hoosing two random strings T0, T1, and append them, respetively, to x0, x1 and

the MACs on those bits, so that B learns Tc together with xc. After B announes d, we an again

use the MAC and the keys for z to perform a new transfer: A uses H(Kz) as a one-time pad for T1
and H(Kz ⊕ ∆B) as a one-time pad for T0. Using Mz, the MAC on z, B an retrieve T1⊕z . This
means that an honest B, that sets z = xc, will know both T0 and T1, while a dishonest B will not

be able to know both values exept with negligible probability. Using the EQ box A an hek that
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B knows both values T0, T1. Note that we annot simply have B openly announe these values, as

this would open the possibility for new attaks on A's side. The proof of the following theorem an

be found in App. F.

Theorem 5. The protool in Fig. 15 seurely implements LaOT(ℓ) in the (aBit(4ℓ, κ),EQ(2ℓκ))-
hybrid model.

To deal with the leakage of the LaOT box, we let B randomly partition the LaOTs in small

bukets: all the LaOTs in a buket will be ombined using an OT ombiner (as shown in Fig. 16), in

suh a way that if at least one hoie bit in every buket is unknown to A, then the resulting aOT
will not be leaky. The overall protool is seure beause of the OT ombiner and the probability

that any buket is �lled only with OTs where the hoie bit leaked is negligible, as shown in App. G.

1. A and B generate ℓ′ = Bℓ authentiated OTs using LaOT(ℓ′). If the box does not abort, name the outputs

{[xi0]A, [x
i
1]A, [c

i]B, [z
i]B}

ℓ′

i=1.

2. B sends a B-wise independent permutation π on {1, . . . , ℓ′} to A. For j = 0, . . . , ℓ − 1, the B quadruples

{[x
π(i)
0 ]A, [x

π(i)
1 ]A, [c

π(i)]B, [z
π(i)]B}

jB+B
i=jB+1 are de�ned to be in the j'th buket.

3. We desribe how to ombine two OTs from a buket, all them [x1
0]A, [x

1
1]A, [c

1]B, [z
1]B and

[x2
0]A, [x

2
1]A, [c

2]B, [z
2]B. Call the result [x0]A, [x1]A, [c]B, [z]B. To ombine more than two, just iterate by taking

the result and ombine it with the next leaky OT.

(a) A reveals d = x1
0 ⊕ x

1
1 ⊕ x

2
0 ⊕ x

2
1.

(b) Compute: [c]B = [c1]B ⊕ [c2]B, [z]B = [z1]B ⊕ [z2]B ⊕ d[c
1]B, [x0]A = [x1

0]A ⊕ [x2
0]A, [x1]A = [x1

0]A ⊕ [x2
1]A.

Fig. 16. From Leaky Authentiated OTs to Authentiated OTs

Theorem 6. Let aOT(ℓ) denote the box whih outputs ℓ aOTs as in F
Deal

. If (log2(ℓ)+1)(B−1) ≥
ψ, then the protool in Fig. 16 seurely implements aOT(ℓ) in the LaOT(Bℓ)-hybrid model with

seurity parameter ψ.

6 Authentiated loal AND

aAND

LaAND

aBit EQ

Fig. 17. Set. 6 outline.

In this setion we show how to generate aAND, i.e., how to implement

the dealer box when it outputs [x]A, [y]A, [z]A with z = xy. As usual, as
aAND for B is symmetri, we only present how to onstrut aAND for A.

We �rst onstrut a leaky version of aAND, or LaAND, desribed in

Fig. 18. Similar to the LaOT box the LaAND box may leak the value x to

B, at the prie for B of being deteted. The intuition behind the protool

for LaAND, desribed in Fig. 19, is to let A ompute the AND loally and then authentiate the

result. A and B then perform some omputation on the keys and MACs, in a way so that A will

be able to guess B's result only if she behaved honestly during the protool: A behaved honestly

(sent d = z ⊕ r) i� she knows W0 = (Kx||Kz) or W1 = (Kx ⊕ ∆A||Ky ⊕ Kz). In fat, she knows

Wx. As an example, if x = 0 and A is honest, then z = 0, so she knows Mx = Kx and Mz = Kz.

Had she heated, she would know Mz = Kz ⊕ ∆A instead of Kz. B heks that A knows W0 or

W1 by sending her H(W0)⊕H(W1) and ask her to return H(W0). This, however, allows B to send

H(W0) ⊕ H(W1) ⊕ E for an error term E 6= 0κ. The returned value would be H(W0) ⊕ xE. To
prevent this attak, they use the EQ box to ompare the values instead. If B uses E 6= 0κ, he must
now guess x to pass the protool. However, B still may use this tehnique to guess a few x bits. We
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�x this leakage later in a way similar to the way we �xed leakage of the LaOT box in Set. 5. The

proof of the following theorem an be found in App. H.

Theorem 7. The protool in Fig. 19 seurely implements LaAND(ℓ) in the (aBit(3ℓ, κ),EQ(ℓκ))-
hybrid model.

Honest Parties: For i = 1, . . . , ℓ, the box outputs random [xi]A, [yi]A, [zi]A with zi = xiyi.
Corrupted Parties:

1. If A is orrupted she gets to hoose all her random values.

2. If B is orrupted he gets to hoose all his random values, inluding the global key ∆A. Also, he may,

at any point prior to output being delivered to A, input (i, gi) to the box in order to try to guess xi.
If gi 6= xi the box will output fail to A and terminate. Otherwise the box proeeds as if nothing has

happened and B will know the guess was orret. He may make as many guesses as he desires.

Global Key Queries: The adversary an input ∆ and will be told if ∆ = ∆A.

Fig. 18. The box LaAND(ℓ) for ℓ Leaky Authentiated loal AND.

The protool runs ℓ times in parallel. Here desribed for a single leaky authentiated loal AND:

1. A and B ask the dealer for [x]A, [y]A, [r]A. (The global key is ∆A).

2. A omputes z = xy and announes d = z ⊕ r.
3. The parties ompute [z]A = [r]A ⊕ d.
4. B sends U = H(Kx||Kz)⊕H(Kx ⊕∆A||Ky ⊕Kz) to A.

5. If x = 0, then A lets V = H(Mx||Mz). If x = 1, then A lets V = U ⊕H(Mx||My ⊕Mz).
6. A and B all the EQ box, with inputs V and H(Kx||Kz) respetively. All the ℓ alls to EQ are handled using

a single all to EQ(ℓκ).
7. If the strings were not di�erent, the parties output [x]A, [y]A, [z]A.

Fig. 19. Protool for authentiated loal AND with leaking bit

We now handle a few guessed x bits by random buketing and a straight-forward ombiner. In

doing this e�iently, it is entral that the protool was onstruted suh that only x ould leak.

Had B been able to get information on both x and y we would have had to do the ampli�ation

twie.

The protool is parametrized by positive integers B and ℓ.

1. A and B all LaAND(ℓ′) with ℓ′ = Bℓ. If the all to LaAND aborts, this protool aborts. Otherwise, let

{[xi]A, [yi]A, [zi]A}
ℓ′

i=1 be the outputs.

2. A piks a B-wise independent permutation π on {1, . . . , ℓ′} and sends it to B. For j = 0, . . . , ℓ − 1, the B
triples {[xπ(i)]A, [yπ(i)]A, [zπ(i)]A}

jB+B
i=jB+1 are de�ned to be in the j'th buket.

3. The parties ombine the B LaANDs in the same buket. We desribe how to ombine two LaANDs, all
them [x1]A, [y

1]A, [z
1]A and [x2]A, [y

2]A, [z
2]A into one, all the result [x]A, [y]A, [z]A:

(a) A reveals d = y1 ⊕ y2.
(b) Compute [x]A = [x1]A ⊕ [x2]A, [y]A = [y1]A and [z]A = [z1]A ⊕ [z2]A ⊕ d[x

2]A.
To ombine all B LaANDs in a buket, just iterate by taking the result and ombine it with the next element

in the buket.

Fig. 20. From Leaky Authentiated loal ANDs to Authentiated loal ANDs
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Similar to the the way we removed leakage in Set. 5 we start by produing Bℓ LaANDs. Then
we randomly distribute the Bℓ LaANDs into ℓ bukets of size B. Finally we ombine the LaANDs
in eah buket into one aAND whih is seure if at least one LaAND in the buket was not leaky.

The protool is desribed in Fig. 20. The proof of Thm. 8 an be found in App. I.

Theorem 8. Let aAND(ℓ) denote the box whih outputs ℓ aANDs as in F
Deal

. If (log2(ℓ)+1)(B−
1) ≥ ψ, then the protool in Fig. 20 seurely implements aAND(ℓ) in the LaAND(Bℓ)-hybrid model

with seurity parameter ψ.

This ompletes the desription of our protool. For the interested reader, a diagrammati reap

of the onstrution is given in App. J.

7 Experimental Results

We did a proof-of-onept implementation in Java. The hash funtion in our protool was im-

plemented using Java's standard implementation of SHA256. The implementation onsists of a

iruit-independent protool for preproessing all the random values output by F
Deal

, a framework

for onstruting iruits for a given omputation, and a run-time system whih takes preproessed

values, iruits and inputs and arry out the seure omputation.

We will not dwell on the details of the implementation, exept for one detail regarding the

generation of the iruits. In our implementation, we do not ompile the funtion to be evaluated

into a iruit in a separate step. The reason is that this would involve storing a huge, often highly

redundant, iruit on the disk, and reading it bak. This heavy disk aess turned out to onstitute

a signi�ant part of the running time in an earlier of our prototype implementations whih we

disarded. Instead, in the urrent prototype, iruits are generated on the �y, in hunks whih are

large enough that their evaluation generate large enough network pakages that we an amortize

away ommuniation lateny, but small enough that the iruit hunks an be kept in memory

during their evaluation. A iruit ompiled is hene replaed by a suint program whih generates

the iruit in a streaming manner. This iruit stream is then sent through the runtime mahine,

whih reeives a separate stream of preproessed F
Deal

-values from the disk and then evaluates the

iruit hunk by hunk in onert with the runtime mahine at the other party in the protool. The

stream of preproessed F
Deal

-values from the disk is still expensive, but we urrently see no way to

avoid this disk aess, as the random nature of the preproessed values seems to rule out a suint

representation.

For timing we did oblivious ECB-AES enryption. (Both parties input a seret 128-bit keyKA re-

spetivelyKB , de�ning an AES keyK = KA⊕KB. A inputs a seret ℓ-blok message (m1, . . . ,mℓ) ∈
{0, 1}128ℓ. B learns (EK(m1), . . . , EK(mℓ)).) We used the AES iruit from [PSSW09℄ and we thank

Benny Pinkas, Thomas Shneider, Nigel P. Smart and Stephen C. Williams for providing us with

this iruit.

The reason for using AES is that it provides a reasonable sized iruit whih is also reason-

ably omplex in terms of the struture of the iruit and the depth, as opposed to just running

a lot of AND gates in parallel. Also, AES has been used for benhmark in previous implementa-

tions, like [PSSW09℄, whih allows us to do a rude omparison to previous implementations. The

omparison an only beome rude, as the experiments were run in di�erent experimental setups.

In the timings we ran A and B on two di�erent mahines on Anonymous University's intranet

(using two Intel Xeon E3430 2.40GHz ores on eah mahine). We reorded the number of Boolean
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ℓ G σ Tpre Tonl Ttot/ℓ G/Ttot

1 34,520 55 38 4 44 822
27 922,056 55 38 5 1.6 21,545
54 1,842,728 58 79 6 1.6 21,623
81 2,765,400 60 126 10 1.7 20,405

108 3,721,208 61 170 12 1.7 20,541
135 4,642,880 62 210 15 1.7 20,637

ℓ G σ Tpre Tonl Ttot/ℓ G/Ttot

256 8,739,200 65 406 16 1.7 20,709
512 17,478,016 68 907 26 1.8 18,733

1,024 34,955,648 71 2,303 52 2.3 14,843
2,048 69,910,912 74 5,324 143 2.7 12,788
4,096 139,821,440 77 11,238 194 2.8 12,231
8,192 279,642,496 80 22,720 258 2.8 12,170

16,384 559,284,608 83 46,584 517 2.9 11,874

Fig. 21. Timings. Left table is average over 5 runs. Right table is from single runs. Units are as follows: ℓ is number

of 128-bit bloks enrypted, G is Boolean gates, σ is bits of seurity, Tpre, Tonl, Ttot are seonds.

gates evaluated (G), the time spent in preproessing (Tpre) and the time spent by the run-time

system (Tonl). In the table in Fig. 21 we also give the amortized time per AES enryption (Ttot/ℓ

with Ttot
def

= Tpre+Tonl) and the number of gates handled per seond (G/Ttot). The time Tpre overs
the time spent on omputing and ommuniating during the generation of the values preproessed

by F
Deal

, and the time spent storing these value to a loal disk. The time Tonl overs the time

spent on generating the iruit and the omputation and ommuniation involved in evaluating the

iruit given the values preproessed by F
Deal

.

We work with two seurity parameters. The omputational seurity parameter κ spei�es that

a poly-time adversary should have probability at most poly(κ)2−κ in breaking the protool. The

statistial seurity parameter σ spei�es that we allow the protool to break with probability 2−σ

independent of the omputational power of the adversary. As an example of the use of κ, our keys
and therefore MACs have length κ. This is needed as the adversary learns H(Ki) and H(Ki⊕∆) in
our protools and an break the protool given ∆. As an example of the use of σ, when we generate

ℓ gates with buket size B, then σ ≤ (log2(ℓ) + 1)(B − 1) due to the probability (2ℓ)1−B that

a buket might end up ontaining only leaky omponents. This probability is independent of the

omputational power of the adversary, as the omponents are being buketed by the honest party

after it is determined whih of them are leaky.

In the timings, the omputational seurity parameter has been set to 120. Sine our implemen-

tation has a �xed buket size of 4, the statistial seurity level depends on ℓ. In the table, we speify

the statistial seurity level attained (σ means inseurity 2−σ). At omputational seurity level 120,
the implementation needs to do 640 seed OTs. The timings do not inlude the time needed to do

these, as that would depend on the implementation of the seed OTs, whih is not the fous here.

We note, however, that using, e.g., the implementation in [PSSW09℄, the seed OTs ould be done

in around 20 seonds, so they would not signi�antly a�et the amortized times reported.

The dramati drop in amortized time from ℓ = 1 to ℓ = 27 is due to the fat that the preproes-

sor, due to implementation hoies, has a smallest unit of gates it an preproess for. The largest

number of AES iruits needing only one, two, three, four and �ve units is 27, 54, 81, 108 and 135,
respetively. Hene we preproess equally many gates when ℓ = 1 and ℓ = 27.

As for total time, we found the best amortized behavior at ℓ = 54, where oblivious AES enryp-

tion of one blok takes amortized 1.6 seonds, and we handle 21,623 gates per seond. As for online

time, we found the best amortized behavior at ℓ = 2048, where handling one AES blok online takes

amortized 32 milliseonds, and online we handle 1,083,885 gates per seond. We �nd these timings

enouraging and we plan an implementation in a more mahine-near language, exploiting some of

the �ndings from implementing the prototype.
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A Complexity Analysis

We report here on the omplexity analysis of our protool. As showed in Corollary 1, the protool

requires an initial all to an ideal funtionality for (OT(443 ψ,ψ),EQ(ψ)). After this, the ost per

gate is only a number of invoations to a ryptographi hash funtion H. In this setion we give

the exat number of hash funtions that we use in the onstrution of the di�erent primitives. As

the �nal protool is ompletely symmetri, we ount the total number of alls to H made by both

parties.

Equality EQ: The EQ box an be seurely implemented with 2 alls to a hash funtion H.

Authentiated OT aOT: Every aOT osts 4B alls to aBit, 2B alls to EQ, and 6B alls to H,

where B is the �buket size�.

Authentiated AND aAND: Every aAND osts 3B alls to aBit, B alls to EQ, and 3B alls to

H, where B is the �buket size�.

2PC Protool, Input Gate: Input gates ost 1 aBit.
2PC Protool, AND Gate: AND gates ost 2 aOT, 2 aAND, 2 aBit.
2PC Protool, XOR Gate: XOR gates require no alls to H.

The ost per aBit, in the protool desribed in the paper, requires 59 alls to H. However, using

some further optimizations (that are not desribed in the paper, as they undermine the modularity

of our onstrutions) we an take this number down to 8.
By plugging in these values we get that the ost per input gate is 59 alls to H (8 with opti-

mizations), and the ost per AND gate is 856B + 118 alls to H (142B + 16 with optimizations).

The implementation desribed in Set. 7 uses the optimized version of the protool and bukets of

�xed size 4, and therefore the total ost per AND gate is 584 alls to H.

As desribed in Set. 3 we an greatly redue ommuniation omplexity of our protool by

deferring the MAC heks. However, this trik omes at ost of two alls to H (one for eah player)

every time we do a �reveal�. This adds 2B hashes for eah aOT and aAND and in total adds 8B+20
hashes to the ost eah AND gate. This added ost is not a�eted by the optimization mentioned

above.

B Proof of Thm. 1

The simulator an be built in a standard way, inorporating the F
Deal

box and learning all the

shares, keys and MACs that the adversary was supposed to use in the protool.

In a little more detail, knowing all outputs from F
Deal

to the orrupted parties allows the

simulator to extrat inputs used by orrupted parties and input these to the box F
2PC

on behalf

of the orrupted parties. As an example, if A is orrupted, then learn the xA sent to A by F
Deal

in Input and observe the value xB sent by A to B. Then input x = xA ⊕ xB to F
2PC

. This is the

same value as shared by [x] = [xA|xB ] in the protool.

Honest parties are run on uniformly random inputs, and when a honest party (A say) is supposed

to help open [x], then the simulator learns from F
2PC

the value x′ that [x] should be opened to.

Then the simulator omputes the share xB that B holds, whih is possible from the outputs of

F
Deal

to B. Then the simulator learns the key KxA that B uses to authentiate xA, whih an also

be omputed from the outputs of F
Deal

to B. Then the simulator lets xA = x′ ⊕ xB and and lets

MxA = KxA ⊕ xAKxA and sends (xA,MxA) to B.
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The simulator aborts if the adversary ever suessfully sends some inonsistent bit, i.e., a bit

di�erent from the bit it should send aording to the protool and its outputs from F
Deal

.

It is easy to see that the protool is passively seure and that if the adversary never sends an

inonsistent bit, then it is perfetly following the protool up to input substitution. So, to prove

seurity it is enough to prove that the adversary manages to send an inonsistent bit with negligible

probability. However, sending an inonsistent bit turns out to be equivalent to guessing the global

key ∆.

We now formalize the last laim. Consider the following game aI,I played by an attaker A:

Global key: A global key ∆ ← {0, 1}κ is sampled with some distribution and A might get side

information on ∆.

MAC query I: If A outputs a query (ma, b, l), where b ∈ {0, 1} and l is a label whih A did not

use before, sample a fresh loal key K ∈
R

{0, 1}κ, give M = K ⊕ b∆ to A and store (l,K, b).

Break query I: If A outputs a query (break, a1, l1, . . . , ap, lp,M
′), where p is some positive integer

and values (l1,K1, b1), . . . , (lp,Kp, bp) are stored, then let K = ⊕pi=1aiKi and b = ⊕pi=1aibi. If
M ′ = K ⊕ (1⊕ b)∆, then A wins the game. This query an be used only one.

We want to prove that if any A an win the game with probability q, then there exist an adversary
B whih does not use more resoures than A and whih guesses ∆ with probability q without doing
any MAC queries. Informally this argues that breaking the sheme is linear equivalent to guessing

∆ without seeing any MAC values.

For this purpose, onsider the following modi�ed game aII,II played by an attaker A:

Global key: No hange.

MAC query II: If A outputs a query (ma, b, l,M), where b ∈ {0, 1} and l is a label whih A did

not use before and M ∈ {0, 1}κ, let K =M ⊕ b∆ and store (l,K, b).

Break query II: If A outputs a query (break,∆′) where ∆′ = ∆, then A wins the game. This

query an be used only one.

We let aII,I be the hybrid game with MAC query II and Break query I.

We say that an adversary A is no stronger than adversary B if A does not perform more queries

than B does and the running time of A is asymptotially linear in the running time of B.

Lemma 1. For any adversary AI,I for aI,I there exists an adversary AII,I for aII,I whih is no

stronger than AI,I and whih wins the game with the same probability as AI,I .

Proof. Given an adversary AI,I for aI,I , onsider the following adversary AII,I for aII,I . The

adversary AII,I passes all side information on ∆ to AI,I . If AI,I outputs (ma, b, l), then AII,I

samples M ∈
R

{0, 1}κ, outputs (ma, b, l,M) to aII,I and returns M to AI,I . If AI,I outputs

(break, a1, l1, . . . , ap, lp,M
′), then AII,I outputs (break, a1, l1, . . . , ap, lp,M

′) to aII,I . It is easy to

see that AII,I makes the same number of queries as AI,I and has a running time whih is linear in

that of AI,I, and that AII,I wins with the same probability as AI,I . Namely, in aI,I the value K is

uniform and M = K ⊕ b∆. In aII,I the value M is uniform and K =M ⊕ b∆. This gives the exat

same distribution on (K,M). ✷

Lemma 2. For any adversary AII,I for aII,I there exists an adversary AII,II for aII,II whih is no

stronger than AII,I and whih wins the game with the same probability as AII,I.
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Proof. Given an adversary AII,I for aII,I , onsider the following adversary AII,II for aII,II . The

adversary AII,II passes any side information on ∆ to AII,I . If AII,I outputs (ma, b, l,M), then AII,II

outputs (ma, b, l,M) to aII,II and stores (l,M, b). If AII,I outputs (break, a1, l1, . . . , ap, lp,M
′),

where values (l1,M1, b1), . . . , (lp,Mp, bp) are stored, then let M = ⊕pi=1aiMi and b = ⊕
p
i=1aibi and

output (break,M ⊕M ′). For eah (li,Mi, bi) let Ki be the orresponding key stored by aII,II . We

have that Mi = Ki ⊕ bi ⊕ ∆, so if we let K = ⊕pi=1aiKi, then M = K ⊕ b∆. Assume that AII,I

would win aII,I , i.e., M
′ = K⊕ (1⊕ b)∆. This implies that M ⊕M ′ = K⊕ b∆⊕K⊕ (1⊕ b)∆ = ∆,

whih means that AII,II wins aII,II . ✷

Consider then the following game aII played by an attaker A:

Global key: No hange.

MAC query: No MAC queries are allowed.

Break query II: No hange.

Lemma 3. For any adversary AII,II for aII,II there exists an adversary AII for aII whih is no

stronger than AII,II and whih wins the game with the same probability as AII,II .

Proof. Let AII = AII,II. The game aII simply ignores the MAC queries, and it an easily be seen

that they have no e�et on the winning probability, so the winning probability stays the same. ✷

Corollary 2. For any adversary AI,I for aI,I there exists an adversary AII for aII whih is no

stronger than AI,I and whih wins the game with the same probability as AI,I .

This formalizes the laim that the only way to break the sheme is to guess ∆.

C Proof of Thm. 2

The simulator answers a global key query Γ to WaBit by doing the global key query AΓ on the

ideal funtionality aBit and returning the reply. This gives a perfet simulation of these queries,

and we ignore them below.

Corretness of the protool is straightforward: We have that M ′
i = K ′

i ⊕ xiΓA, so Mi = AM ′
i =

AK ′
i ⊕ xiAΓA = Ki ⊕ xi∆A. Clearly the protool leaks no information on the xi's as there is only

ommuniation from B to A. It is therefore su�ient to look at the ase where A is orrupted. We

are not going to give a simulation argument but just show that ∆A is uniformly random in the view

of A exept with probability 22−ψ. Turning this argument into a simulation argument is straight

forward.

We start by proving three tehnial lemmas.

Assume that L is a lass of leakage funtions on τ bits whih is κ-seure. Consider the following
game.

1. Sample ΓA ∈R

{0, 1}τ .

2. Get L ∈ L from A and sample (S, c)← L.

3. Give {(j, (ΓA)j)}j∈S to A.

4. Sample A ∈
R

{0, 1}ψ×τ and give A to A.

5. Let ∆A = AΓA.
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We want to show that ∆A is uniform to A exept with probability 22−ψ. When we say that ∆A

is uniform to A we mean that ∆A is uniformly random in {0, 1}ψ and independent of the view of

A. When we say exept with probability 22−ψ we mean that there exists a failure event F for whih

it holds that

1. F ours with probability at most 22−ψ and

2. when F does not our, then ∆A is uniform to A.

For a subset S ⊂ {1, . . . , τ} of the olumn indies, let A

S
be the matrix where olumn j is equal

to A

j
if j ∈ S and olumn j is the 0 vetor if j 6∈ S. We say that we blind out olumn j with 0's

if j 6∈ S. Similarly, for a olumn vetor v we use the notation vS to mean that we set all indies vi
where i 6∈ S to be 0. Note that AvS = A

S
v. Let S = {1, . . . , τ} \ S.

Lemma 4. Let S be the indies of the bits learned by A and let A be the matrix in the game above.

If A

S
spans {0, 1}ψ , then ∆A is uniform to A.

Proof. We start by making two simple observations. First of all, if A learns (ΓA)j for j ∈ S, then it

learns (ΓA)S
5

, so it knows A(ΓA)S = A

SΓA. The seond observation is that AΓA = A

SΓA+A
SΓA,

asA = A

S+AS
. The lemma follows diretly from these observations and the premise: We have that

A

SΓA is uniformly random in {0, 1}ψ when the olumns of A

S
span {0, 1}ψ . Sine ASΓA = A(ΓA)S

and (ΓA)S is uniformly random and independent of the view of A it follows that A

SΓA is uniformly

random and independent of the view of A. Sine A
SΓA is known by A it follows that A

SΓA+ASΓA
is uniform to A. The proof onludes by using that ∆A = A

SΓA +A

SΓA. ✷

Lemma 5. Let W be the event that |S| ≥ τ − n and c = 1. Then Pr [W ] ≤ 2−ψ.

Proof. We use that

� κ = 3
4τ ,

� τ = αn for α = 44
27 ,

� n = 9
2ψ,

� L is κ-seure on τ bits.

Without loss of generality we an assume that A plays an optimal L ∈ L, i.e., log2(E
[

c2|S|
]

) = leakL.
Sine L is κ seure on τ bits, it follows that leakL ≤ τ − κ = 1

4τ . This gives that

E
[

c2|S|
]

≤ 2
1
4
τ , (1)

whih we use later.

Now let W be the event that W does not happen. By the properties of onditional expeted

value we have that

E
[

c2|S|
]

= Pr [W ] E
[

c2|S||W
]

+ Pr
[

W
]

E
[

c2|S||W
]

.

When W happens, then |S| ≥ τ −n = (α− 1)n and c = 1, so c2|S| = 2|S| ≥ 2(α−1)n
. This gives that

E
[

c2|S||W
]

≥ 2(α−1)n .

5

Here we are looking at the string ΓA as a olumn vetor of bits.
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Hene

E
[

c2|S|
]

≥ Pr [W ] 2(α−1)n .

Combining with (1) we get that

Pr [W ] ≤ 2
1
4
τ−(α−1)n .

It is, therefore, su�ient to show that

1
4τ − (α− 1)n = −ψ, whih an be heked to be the ase by

de�nition of τ, α, n and ψ. ✷

Lemma 6. Let x1, . . . , xn ∈R

{0, 1}ψ. Then x1, . . . , xn span {0, 1}ψ exept with probability 21−ψ.

Proof. We only use that

� n = 9
2ψ.

De�ne random variables Y1, . . . , Yn where Yi = 0 if x1, . . . , xi−1 spans {0, 1}ψ or the span of

x1, . . . , xi−1 does not inlude xi. Let Yi = 1 in all other ases. Note that if x1, . . . , xi−1 spans

{0, 1}ψ , then Pr [Yi = 1] = 0 ≤ 1
2 and that if x1, . . . , xi−1 does not span {0, 1}ψ , then they span at

most half of the vetors in {0, 1}ψ and hene again Pr [Yi = 1] ≤ 1
2 . This means that it holds for

all Yi that Pr [Yi = 1] ≤ 1
2 independently of the values of Yj for j 6= i. This implies that if we let

Y =
∑n

i=1 Yi, then

Pr [Y ≥
1

2
(a+ n)] ≤ 2e−a

2/2n ,

using the random walk bound. Namely, let Xi = 2Yi − 1. Then Xi ∈ {−1, 1} and it holds for

all i that Pr [Xi = 1] ≤ 1
2 independently of the other Xj . If the Xi had been independent and

Pr [Xi = 1] = Pr [Xi = −1] =
1
2 , and X =

∑n
i=1Xi, then the random walk bound gives that

Pr [X ≥ a] ≤ 2e−a
2/2n .

Sine we have that Pr [Xi = 1] ≤ 1
2 independently of the other Xj , the upper bound applies also to

our setting. Then use that X = 2Y − n.

If we let a = 5
2ψ, then

1
2(a + n) = 7

2ψ = n − ψ and 2e−a
2/2n = 2e−(

5
2
ψ)

2
/2 9

2
ψ = 2e−

25
36
ψ
, and

e−
25
36 < 1

2 . It follows that Pr [Y ≥ n− ψ] ≤ 21−ψ . When Y ≤ n−ψ, then Yi = 0 for at least ψ values

of i. This is easily seen to imply that x1, . . . , xn ontains at least ψ linear independent vetors. ✷

Reall that W is the event that |S| ≥ τ − n and c = 1. By Lemma 5 we have that Pr [W ] ≤
2−n ≤ 2−ψ. For the rest of the analysis we assume that W does not happen, i.e., |S| ≤ τ − n and

hene |S| ≥ τ = 9
2ψ. Sine A is piked uniformly at random and independent of S it follows that

9
2ψ of the olumns in A

S
are uniformly random and independent. Hene, by Lemma 6, they span

{0, 1}ψ exept with probability 21−ψ. We let D be the event that they do not span. If we assume

that D does not happen, then by Lemma 4 ∆A is uniform to A. I.e., if the event F = W ∪D does

not happen, then ∆A is uniform to A. And, Pr [F ] ≤ Pr [W ] + Pr [D] ≤ 2−ψ + 21−ψ ≤ 22−ψ.

D Proof of Thm. 4

Notie that sine we have to prove that we implement LaBit, whih has the global key queries, it

would be stronger to show that we implement a version of LaBit′ whih does not have these global

key queries. This is what we do below, as we let LaBit denote this stronger box.
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Given a pairing π, let S(π) = {i|i < π(i)}, i.e., for eah pair we add the smallest indexed to

S(π).
The ases where no party is orrupted and where B is orrupted is straight forward, so we will

fous on the ase that A is orrupted.

The proof goes via a number of intermediary boxes, and for eah we show linear reduibility.

Approximating LaBit, Version 1 This box aptures the fat that the only thing a maliious A

an manage is to use di�erent Γ 's in a few bit authentiations.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is orrupted: As in LaBit.
2. (a) If A is orrupted, then A inputs a funtions col : {1, . . . , T } → {1, . . . , T }. We think of col as assigning

olors from {1, . . . , T } to T balls named 1, . . . , T . In addition A inputs Λ1, . . . , ΛT ∈ {0, 1}
ℓ
and

L1, . . . , LT ∈ {0, 1}
ℓ
.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.

We think of π as pairing the T balls. Let S = S(π) and letM = {i ∈ S| col(i) 6= col(π(i))}. We all

i ∈M a mismathed ball.

() Now A inputs the guesses {(i, gi)}i∈M.

(d) The box samples (y1, . . . , yT ) ∈
R

{0, 1}T . Then the box lets c = 1 if gi = yi for i ∈ M, otherwise

it lets c = 0. If c = 0 the box outputs fail to B and terminates. Otherwise, for i ∈ S it omputes

Ni = Li ⊕ yiΛcol(i) and outputs {((Ni, yi)}i∈S to B.

Fig. 22. The First Intermediate Box IB1

Lemma 7. IB1 is linear reduible to (OT(2τ, ℓ),EQ(τℓ)).

Proof. By observing A's inputs to the OTs, the simulator learns all (Yi,0, Yi,1). Let Li = Yi,0 and

Γi = Yi,0 ⊕ Yi,1.
Let f = |{Γi}

T
i=1| and pik distint Λ1, . . . , Λf and col : {1, . . . ,T } → {1, . . . ,T } suh that

Γi = Λcol(i). By onstrution

Yi,1 = Yi,0 ⊕ (Yi,0 ⊕ Yi,1)

= Li ⊕ Γi

= Li ⊕ Λcol(i) .

Input col and Λ1, . . . , Λf and L1, . . . , LT to IB1 on behalf of A and reeive π. Send π to A as if

oming from B along with uniformly random {di}i∈S .
Then observe the inputs Zi from A to the EQ box.

The simulator must now pik the guesses gi for i ∈ M. Note that i ∈ M implies that Λcol(i) 6=
Λcol(π(i)), whih implies that Γi 6= Γπ(i). We use this to pik gi, as follows: after seeing di, A knows

that either (yi, yπ(i)) = (0, di) or (yi, yπ(i)) = (1, 1 ⊕ di). Hene an honest B would input to the

omparison the following value depending on yi

Wi(yi) = (Li ⊕ Lπ(i) ⊕ diΛcol(π(i)))⊕ yi(Λcol(i) ⊕ Λcol(π(i))) .

As i ∈ M, the mismathed set, Λcol(i) 6= Λcol(π(i)) and therefore Wi(0) 6=Wi(1). Therefore if A's
input to the EQ box Zi is equal to Wi(0) (resp. Wi(1)), the simulator inputs a guess gi = 0 (resp.

gi = 1). In any other ase, the simulator outputs fail and aborts.
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Notie that in the real-life protool, if gi = yi, then Ni = Wi(yi) = Zi and A passes the test. If

gi 6= yi, then Ni =Wi(1⊕ ci) 6= Zi and A fails the test. So, the protool and the simulation fails on

the same event. Note then that when the box does not fail, then it outputs

Ni = Li ⊕ yiΛcol(i)

= Yi,0 ⊕ yiΓi

= Yi,0 ⊕ yi(Yi,0 ⊕ Yi,1)

= Yi,yi ,

exatly as the protool. Hene the simulation is perfet. ✷

Approximating LaBit, Version 2 We now formalize the idea that a wrong Γ -value is no worse

that a leaked bit.

We �rst need a preliminary de�nition of the most ommon olor alled col0. If several olors are
most ommon, then arbitrarily pik the numerially largest one. To be more preise, for eah olor

c, let C(c) = {j ∈ {1, . . . ,T }| col(j) = c}, let a0 = maxc |C(c)| and let col0 = max{c|C(c) = a0|}.
Consider the following box IB2 in Fig. 23 for formalizing the seond idea.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is orrupted: As in LaBit.
2. (a) If A is orrupted, then A inputs a funtion col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.

Let S = S(π) andM = {i ∈ S| col(i) 6= col(π(i))}.
() Now A inputs the guesses {(i, gi)}i∈M.

(d) The box lets c = 1 if gi = yi for i ∈ M, otherwise it lets c = 0. If c = 0 the box outputs fail to A

and terminates. Otherwise, the box determines col0.
Then for i ∈ S , if col(i) 6= col0, the box outputs (i, yi) to A. Then A inputs L1, . . . , LT ∈ {0, 1}

ℓ
and

ΓB ∈ {0, 1}
ℓ
and for i ∈ S the box omputes Ni = Li ⊕ yiΓB . Then it outputs {(Ni, yi)}i∈S to B.

Fig. 23. The Seond Intermediate Box IB2

Lemma 8. IB2 is linear loally reduible to IB1.

Proof. The implementation of IB2 onsist simply of alling IB1.

The ase where B or no party is orrupted is trivial, so assume that A is orrupted. Note that

the simulator must simulate IB2 to the environment and is the one simulating IB1 to the orrupted

A.

First the simulator observes the inputs col, Λ1, . . . , ΛT ∈ {0, 1}
ℓ
and L1, . . . , LT ∈ {0, 1}

ℓ
of A∗

to IB1 and inputs col to IB2.

Then IB2 outputs π and the simulator inputs π to A∗
as if oming from IB1, and omputesM

as IB1 and IB2 would have done.

Then the simulator observes the guesses {(i, gi)}i∈M from A∗
to IB1 and inputs {(i, gi)}i∈M to

IB2. If IB2 outputs fail to B the simulation is over, and it is perfet as IB1 and IB2 fail based

on the same event. If IB2 does not fail it determines col0 and for i ∈ M, if col(i) 6= col0, the box
outputs (i, yi) to the simulator. The simulator an also determine col0.
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Now let ΓB = Λcol0 and for i ∈ M, if col(i) = col0, let L
′
i = Li. Then for i ∈ M, if col(i) 6= col0,

let L′
i = (Li ⊕ yiΛcol(i))⊕ yiΓB. Then input L′

i, . . . , L
′
T and ΓB to IB2.

As a result IB2 will for i ∈ S where col(i) = col0, output L
′
i ⊕ yiΓB = Li ⊕ yiΛcol0 , and for for

i ∈ S where col(i) 6= col0 it will output L′
i ⊕ yiΓB = Li ⊕ yiΛcol(i). Hene IB2 gives exatly the

outputs that IB1 would have given after interating with A∗
, giving a perfet simulation. ✷

Approximate LaBit, Version 3 We now massage IB2 a bit to make it look like LaBit. As a step
towards this, onsider the box IB3 in Fig. 24.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. Corrupted B: As in LaBit.
2. (a) If A is orrupted, then A inputs a funtion col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to

A. LetM = {i ∈ S| col(i) 6= col(π(i))}. The box �ips a oin c ∈ {0, 1} with c = 1 with probability

2−|M|
. If c = 0 the box outputs fail to B and terminates. Otherwise, the box outputs suess and

the game proeeds.

() Now A inputs the guesses {(i, gi)}i∈M.

(d) The box updates yi ← gi for i ∈ M. Then the box determines col0. Then for i = S \ M, if

col(i) 6= col0, the box outputs i to A who inputs gi ∈ {0, 1} and the box updates yi ← gi.
(e) Then A inputs L1, . . . , LT ∈ {0, 1}

ℓ
and ΓB ∈ {0, 1}

ℓ
and for i ∈ S the box omputesNi = Li⊕yiΓB .

Then it outputs {(Ni, yi)}i∈S to B.

Fig. 24. The third Intermediate Box, IB3

Lemma 9. IB3 is linear loally reduible to IB2.

Proof. It is easy to see that IB3 is linear loally reduible to IB2�again the implementation onsist

simply of alling IB2. To see this, onsider �rst the hange in how the box fails and how the yi for
i ∈ M are set. In IB2 the box fails exatly with probability 2−|M|

as the probability that gi = yi
for i ∈ M is exatly 2−|M|

. Furthermore, if IB2 does not fail, then yi = gi for i ∈ M. So, this is

exatly the same behavior as IB3, hene this hange is really just another way to implement the

same box. As for the seond hange, the simulator will input a uniformly random gi ∈R

{0, 1} to
IB3 when IB3 outputs i and will then show (i, yi) to the orrupted A∗

expeting to interat with

IB2. ✷

We then argue that we an de�ne a lass L suh that LaBitL is linear loally reduible to IB3.

Let L be the following lass.

� A leakage funtion is spei�ed by L = col, where col : {1, . . . ,T } → {1, . . . ,T }.
� To sample a leakage funtion L = col, sample a uniformly random pairing π : {1, . . . ,T } →
{1, . . . ,T }, let S = S(π), let Π : S(π) → {1, . . . , τ} be the order preserving permutation, let

M = {j ∈ S| col(j) 6= col(π(j))}, let c = 1 with probability 2−|M|
and c = 0 otherwise, let col0

be the most ommon olor as de�ned before, let S′ = M∪ {j ∈ S| col(j) 6= col0}, S = π(S′)
and output (c, S).

Playing with IB3 and LaBitL will give the same failure probability and will allow to speify the

same bits. The only di�erene is that when playing with LaBitL, the orrupted A∗
does not get
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to see π, as LaBitL does not leak the randomness used to sample the leakage funtion L. Below
we argue that given c and S one an e�iently sample a uniformly random pairing π whih would

lead to S given c. Turning this into a simulation argument is easy: the simulator will know c and S
and will sample π from these and show this π to A∗

, hene perfetly simulating IB3. This gives the

following lemma.

Lemma 10. LaBitL(τ, ℓ) is linear loally reduible to IB3.

The simulator knows col and S and it an determine col0. From col0 the simulator an also

ompute

T = S \ {j ∈ {1, . . . ,T }| col(j) 6= col0}

=M∩ {j ∈ {1, . . . ,T }| col(j) = col0}

= {j ∈ {1, . . . ,T }| col(j) = col0 ∧ col(j) 6= col(π(j))}

= {j ∈ {1, . . . ,T }| col(j) = col0 ∧ col(π(j)) 6= col0} .

This restrition is meet i� π has the property that col(π(j)) 6= col0 for j ∈ T and col(π(j)) = col0
for j ∈ C0 \ T , where C0 = {j| col(j) = col0}. Furthermore, any π meeting this restritions would

lead to the observed value of π. It is hene su�ient to show that we an sample a uniformly random

π meeting these restritions.

Let C0 = {1, . . . ,T } \C0. Pik π0 : T → C0 to be a uniformly random injetion on the spei�ed

domains. Pik π1 : C0 \ T → C0 similarly. Let π2 : T ∪C0 → {1, . . . , τ} be de�ned by π2(j) = π0(j)
for j ∈ T and π2(j) = π1(j) for j ∈ C0 ∪ T . Sine π0 and π1 map into disjoint sets, this is again an

injetion. Now let π3 : {1, . . . , τ}\ (C0 ∪T )→ {1, . . . , τ}\ img(π2) be a random permutation on the

spei�ed domains. De�ne π from π2 and π3 as we de�ned π2 from π0 and π1. Then it is easy to see

that π is a uniformly random permutation meeting the restritions. The de�nition of π shows how

to sample it e�iently.

Conluding the Proof Using the above theorem and lemmata and the fat that linear reduibility

is transitive, we now have the following theorem.

Corollary 3. LaBitL(τ, ℓ) is linear reduible to (OT(2τ, ℓ),EQ(τℓ)).

We now show that if we set κ = 3
4τ , then L is κ-seure. For this purpose we assign a prie to

eah ball j ∈ S(π).

1. If col(j) 6= col(π(j)), then let pricecol,π(j) = 1.
2. If col(j) = col(π(j)) = col0, then let pricecol,π(j) = 1.
3. If col(j) = col(π(j)) 6= col0, then let pricecol,π(j) = 0.

Let pricecol,π =
∑

j∈S pricecol,π(j).

Lemma 11. Consider an adversary A playing the game against L and assume that it submits

L = col. Assume that the game uses π. Then the suess probability of A is at most 2− pricecol,π
.

Proof. De�ne price1col,π(j) as pricecol,π(j) exept that if col(j) = col(π(j)) = col0, then

price1col,π(j) = 0. De�ne price2col,π(j) as pricecol,π(j) exept that if col(j) 6= col(π(j)), then

pricecol,π(j) = 0. Then pricecol,π(j) = price1col,π(j) + price2col,π(j). De�ne price1col,π and price2col,π
by summing over j ∈ S. Then pricecol,π = price1col,π +price2col,π. Note that |M| = pricecol,π(j)

and note that |S′| = τ − price2col,π(j),
6

as the only balls j ∈ S whih do not enter S′
are

6

Reall that S′
is de�ned during the de�nition of L above.
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those for whih col(j) = col(π(j)) = col0. We have that A wins if c = 1 and he guesses

yΠ(j) for j ∈ S \ S′
. The probability that c = 1 is 2−|M| = 2− pricecol,π(j)

. We have that

|S\S′| = |S|−|S′| = τ−(τ−price2col,π(j)) = price2col,π(j). So, the probability that A guesses orretly

is 2− price2col,π(j)
. So, the overall suess probability is 2− price1col,π(j)2− price2col,π(j) = 2− pricecol,π(j)

. ✷

Now let π be hosen uniformly at random and let pricecol(j) be the random variable desribing

pricecol,π(j). Let pricecol =
∑

j∈S pricecol(j). It is then easy to see that the probability of winning

the game on L = col is at most

successcol =

τ
∑

p=0

Pr [pricecol = p] 2−p .

For eah prie p, let Pp be an index variable whih is 1 if pricecol = p and whih is 0 otherwise.

Note that E [Pp] = Pr [pricecol = p], and note that

∑τ
p=0 Pp2

−p = 2− pricecol
as Pp = 0 for p 6= pricecol

and Pp = 1 for p = pricecol. Then

successcol =

τ
∑

p=0

Pr [pricecol = p] 2−p

=
τ

∑

p=0

E [Pp] 2
−p

= E





τ
∑

p=0

Pp2
−p





= E
[

2− pricec
]

= E
[

2−
∑
j∈S pricec(j)

]

.

Now let φ(x) = 2−x, and we have that

successcol = E



φ(
∑

j∈S

pricecol(j))



 .

Sine φ(x) is onave it follows from Jensen's inequality that

E



φ(
∑

j∈S

pricecol(j))



 ≤ φ



E





∑

j∈S

pricecol(j)







 .

Hene

successcol ≤ 2−E[
∑τ
j=1 pricecol(Π

−1(j))] = 2−
∑τ
j=1 E[pricecol(Π−1(j))] = 2−

∑
j∈S E[pricecol(j)] .

It follows that if we an ompute m0 = mincol
∑

j∈S E [pricecol(j)], then 2−m0
is an upper bound on

the best suess rate.

We say that L = col is optimal if

∑

j∈S E [priceL(j)] = m0, and now �nd an optimal L.
We �rst show that there is no reason to use balls of olor col0 in the optimal strategy.
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Lemma 12. Let L = col be an optimal leakage funtion and let col0 = col0(col). Then there exist

j suh that col(j) 6= col0.

Proof. Assume for the sake of ontradition that col(j) = col0 for j = 1, . . . ,T . Then learly

∑

j∈S E [pricecol(j)] = τ , and it is easy to see that there are strategies whih do better than 2−τ , so
L annot be optimal. ✷

Let col1, . . . , colT be an enumeration of the olors di�erent from col0, i.e., {col0, col1, . . . , colT } =
{1, . . . ,T }. Let Ci be the balls with olor coli, i.e., Ci = {j ∈ {1, . . . ,T }| col(j) = coli}. Note that
{1, . . . ,T } is a disjoint union of C1, . . . , CT . Let ai be the number of balls of olor coli, i.e., ai = |Ci|.
Note that T =

∑T
i=1 ai.

With these de�nitions we have that

T
∑

j=1

E [pricecol(j)] =
T
∑

i=1

∑

j∈Ci

E [pricecol(j)] .

For a ball j ∈ C0 of olor col0 we always have pricecol(j) =
1
2 , by de�nition of the prie, so

∑

j∈C0

E [pricecol(j)] =
∑

j∈C0

1

2
=

1

2
a0 .

For a ball j ∈ Ci for i > 0 we have pricecol(j) = 0 if col(π(j)) = coli and pricecol(j) = 1
2 if

col(π(j)) 6= coli. We have that π(j) is uniform on {1, . . . ,T } \ {j}. Sine col(j) = coli there are

ai − 1 balls k ∈ {1, . . . ,T } \ {j} for whih col(k) = coli. So,

E [pricecol(j)] =
1

2

(T − 1)− (ai − 1)

T − 1

=
1

2

T − ai
T − 1

,

whih implies that

∑

j∈Ci

E [pricecol(j)] = ai
1

2

T − ai
T − 1

=
1

2

1

T − 1
(T ai − a

2
i ) .

It follows that

T −1
∑

i=1

∑

j∈Ci

E [pricecol(j)] =
1

2

1

T − 1

T −1
∑

i=1

(T ai − a
2
i )

=
1

2

1

T − 1
(T

T −1
∑

i=1

ai −
T −1
∑

i=1

a2i )

=
1

2

1

T − 1
(T (T − a0)−

T −1
∑

i=1

a2i ) .
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All in all we now have that

T −1
∑

i=0

∑

j∈Ci

E [pricecol(j)] =
1

2
a0 +

1

2

1

T − 1
(T (T − a0)−

T −1
∑

i=1

a2i )

=
1

2
a0 −

1

2

T

T − 1
a0 +

1

2

1

T − 1
(T T −

T −1
∑

i=1

a2i )

=
1

2
(
−a0
T − 1

) +
1

2

1

T − 1
(T 2 −

T −1
∑

i=1

a2i )

=
1

2

T 2

T − 1
−

1

2

1

T − 1
(a0 +

T −1
∑

i=1

a2i ) .

To minimize this expression we have to maximize a0 +
∑T −1

i=1 a2i . Reall that col0 is de�ned to be

the most ommon olor, so we must adhere to a0 ≥ ai for i > 0. Under this restrition it is easy to

see that a0 +
∑T −1

i=1 a2i is maximal when a0 = a1 = T /2 and a2 = · · · aT = 0, in whih ase it has

the value T /2 + (T /2)2. So,

E [pricecol] =
1

2

T 2

T − 1
−

1

2

1

T − 1
(T /2 + (T /2)2)

=
1

2

T 2 − T /2 + (T /2)2

T − 1

=
1

2

4τ2 − τ − τ2

2τ − 1
=

1

2

3τ2 − τ

2τ − 1
=

1

2
τ
3τ − 1

2τ − 1
>

1

2
τ
3τ

2τ
=

3

4
τ = κ .

E E�ient OT Extension

In this setion we show how we an produe a virtually unbounded number of OTs from a small

number of seed OTs. The amortized work per produed OT is linear in κ, the seurity parameter.

A similar result was proved in [HIKN08℄. In [HIKN08℄ the amortized work is linear in κ too, but

our onstants are muh better than those of [HIKN08℄. In fat, our onstants are small enough to

make the protool very pratial.

7

Sine [HIKN08℄ does not attempt to analyze the exat omplexity

of the result, it is hard to give a onrete omparison, but sine the result in [HIKN08℄ goes over

generi seure multiparty omputation of non-trivial funtionalities, the onstants are expeted to

be huge ompared to ours.

Let κ be the seurity parameter. We show that OT(ℓ, κ) is linear reduible to (OT(83κ, κ),
EQ(43κ

2)) for any ℓ = poly(κ), i.e., given 8
3κ ative-seure OTs of κ-bit strings we an produe an

essentially unbounded number of ative-seure OTs of κ-bit strings. The amortized work involved

in eah of these ℓ OTs is linear in κ, whih is optimal.

The approah is as follows.

1. Use OT(83κ, κ) and a pseudo-random generator to implement OT(83κ, ℓ).

7

As an example, our test run (see Set. 7) with ℓ = 54 involved generating 44,826,624 aBits, eah of whih an

be turned into one OT using two appliations of a hash funtion. The generation took 85 seonds. Using these

numbers, gives an estimate of 527,372 atively seure OTs per seond. Note, however, that the generation involved

many other things than generating the aBits, like ombining them to aOTs and aANDs.
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2. Use OT(83κ, ℓ) and EQ(43κℓ) to implement WaBitL for ℓ authentiations with 4
3κ-bit keys and

MACs and with L being κ-seure.
3. Use a random orale H : {0, 1}

4
3
κ → {0, 1}κ and WaBitL for ℓ authentiations with 4

3κ-bit keys
to implement OT(ℓ, κ), as desribed below.

Here, as in [HIKN08℄, we onsider a hashing of O(κ) bits to be linear work. The pseudo-random
generator an be implemented with linear work using H.

From WaBit to OT. As a �rst step, we notie that the aBit box desribed in Set. 4.2 resembles

an intermediate step of the passive-seure OT extension protool of [IKNP03℄: an aBit an be seen

as a random OT, where all the sender's messages are orrelated, in the sense that the XOR of the

messages in any OT is a onstant (the global key of the aBit). This orrelation an be easily broken

using the random orale. In fat, even if few bits of the global di�erene ∆ leak to the adversary,

the same redution is still going to work (for an appropriate hoie of the parameters). Therefore,

we are able to start diretly from the box for authentiated bits with weak key, or WaBit desribed
in Set. 4.1.

1. For the sender S the box samples Xi,0, Xi,1 ∈R {0, 1}
κ
for i = 1, . . . , ℓ. If S is orrupted, then it gets to

speify these inputs.

2. For the reeiver R the box samples b = (b1, . . . , bℓ) ∈R {0, 1}
ℓ
. If R is orrupted, then it gets to speify these

inputs.

3. The box outputs ((X1,b1 , b1), . . . , (Xℓ,bl , bℓ)) to R and ((X1,0, X1,1), . . . , (Xℓ,0, Xℓ,1)) to S.

Fig. 25. The Random OT box ROT(ℓ, κ)

1. Call WaBitL(ℓ, 4
3
κ). The output to R is ((M1, b1), . . . , (Mℓ, bℓ)). The output to S is (∆,K1, . . . ,Kℓ).

2. R omputes Yi = H(Mi) and outputs ((Y1, b1), . . . , (Yℓ, bℓ)).
3. S omputes Xi,0 = H(Ki) and Xi,1 = H(Ki ⊕∆) and outputs ((X1,0, X1,1), . . . , (Xℓ,0, Xℓ,1)).

Fig. 26. The protool for reduing ROT(ℓ, κ) to WaBitL(ℓ, 4
3
κ)

Here κ is the seurity level, i.e., we want to implement OT with inseurity poly(κ)2−κ. We are

to use an instane of WaBitL with slightly larger keys. Spei�ally, let τ = 4
3κ, as we know how to

implement a box WaBitL with τ -bit keys and where L is κ-seure for κ = 3
4τ . We implemented suh

a box in Set. 4.1. The protool is given in Fig. 26. It implements the box for random OT given in

Fig. 25.

We have that Mi = Ki⊕ bi∆, so Yi = H(Mi) = H(Ki⊕ bi∆) = Xi,bi . Clearly the protool leaks

no information on the bi as there is no ommuniation from R to S. It is therefore su�ient to look

at the ase where R is orrupted. We are not going to give a simulation argument but just show

that Xi,1⊕bi is uniformly random to R exept with probability poly(κ)2−κ.
Sine Xi,1⊕bi = H(Ki⊕ (1⊕ bi)∆) and H is a random orale, it is lear that Xi,1⊕bi is uniformly

random to R until R queries H on Q = Ki ⊕ (1 ⊕ bi)∆. Sine Mi = Ki ⊕ bi∆ we have that

Q = Ki ⊕ (1 ⊕ bi)∆ would imply that Mi ⊕Q = ∆. So, if we let R query H, say, on Q⊕Mi eah

time it queries H on some Q, whih would not hange its asymptoti running time, then we have

that all Xi,1⊕bi are uniformly random to R until it queries H on ∆. It is not hard to show that the

probability with whih an adversary running in time t = poly(κ) an ensure that WaBitL does not

fail and then query H on ∆ is poly(κ)2−κ. This follows from the κ-seurity of L.
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F Proof of Thm. 5

The simulator answers global key queries to the dealer by doing the idential global key queries

on the ideal funtionality LaOT(ℓ) and returning the reply from LaOT(ℓ). This gives a perfet

simulation of these queries, and we ignore them below.

For honest sender and reeiver orretness of the protool follows immediately from orretness

of the aBit box and the EQ box.

Lemma 13. The protool in Fig. 15 seurely implements LaOT(ℓ) against orrupted A.

Proof. We onsider the ase of a orrupt sender A∗
running the above protool against a simulator

Sim. We show how to simulate one instane.

1. First Sim reeives A∗
's input (Mx0 , x0), (Mx1 , x1), Kc,Kr and ∆B to the dealer. Then Sim

samples a bit y ∈
R

{0, 1}, sets Kz = Kr ⊕ y∆B and inputs (Mx0 , x0), (Mx1 , x1), Kc,Kz and

∆B to a LaOT box. The box outputs ∆A, (Mc, c), (Mz , z), Kx0 and Kx1 to the honest B as

desribed in the protool.

2. A∗
outputs the message (X0,X1). The simulator knows ∆B and Kc and an therefore ompute

X0 ⊕H(Kc) = (x0||Mx0 ||T
′
x0)

and

X1 ⊕H(Kc ⊕∆B) = (x1||Mx1 ||T
′
x1) .

For all j ∈ {0, 1} Sim tests if (Mxj , xj) = (Mxj , xj). If, for some j, this is not the ase Sim

inputs a guess to the LaOT box guessing that c = (1− j) to the LaOT box. If the box outputs

fail Sim does the same and aborts the protool. Otherwise Sim proeeds by sending y to A∗
.

Notie that if Sim does not abort but does guess the hoie bit c it an perfetly simulate the

remaining protool. In the following we therefore assume this is not the ase.

3. Similarly Sim gets (I0, I1) from A∗
and omputes

I0 ⊕H(Kz) = T ′′
1

and

I1 ⊕H(Kz ⊕∆B) = T ′′
0 .

4. When Sim reeives A∗
's input (T0, T1) for the EQ box it �rst tests if (T ′

j , T
′′
1⊕xj

) = (Txj , T1⊕xj )

for all j ∈ {0, 1}. If, for some j, this is not the ase Sim inputs a guess to the LaOT box guessing

that c = (1 − j). If the box outputs fail, Sim outputs fail and aborts. If not, the simulation

is over.

For analysis of the simulation we denote by F the event that for some j ∈ {0, 1} A∗
omputes values

M∗
xj ∈ {0, 1}

κ
and x∗j ∈ {0, 1} so that (M∗

xj , x
∗
j ) 6= (Mxj , xj) and M∗

xj = Kxj ⊕ x
∗
j∆A. In other

words, F is the event that A∗
omputes a MAC on a message bit it was not supposed to know. We

will now show that, assuming F does not our, the simulation is perfetly indistinguishable from

the real protool. We then show that F only ours with negligible probability and therefore that

simulation and the real protool are indistinguishable.

From the de�nition of the LaOT box we have that (Mxj , xj) = (Mxj , xj) implies Mxj = Kxj ⊕

xj∆A. Given the assumption that F does not our learly we have that (Mxj , xj) 6= (Mxj , xj) also
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impliesMxj 6= Kxj ⊕xj∆A. This means that Sim aborts in step 2 with exatly the same probability

as the honest reeiver would in the real protool. Also, in the real protool we have y = z ⊕ r for

r ∈
R

{0, 1} thus both in the real protool and the simulation y is distributed uniformly at random

in the view of A∗
.

Next in step 4 of the simulation notie that in the real protool, if c = j ∈ {0, 1}, an honest B

would input T ′
j and T

′′
1⊕xj

to EQ (sorted in the orret order). The protool would then ontinue if

and only if (T ′
j , T

′′
1⊕xj

) = (Txj , T1⊕xj) and abort otherwise. I.e., the real protool would ontinue if

and only if (T ′
j , T

′′
1⊕xj

) = (Txj , T1⊕xj) and c = j, whih is exatly what happens in the simulation.

Thus we have that given F does not our, all input to A∗
during the simulation is distributed

exatly as in real protool. In other words the two are perfetly indistinguishable.

Now assume F does our, that is for some j ∈ {0, 1} A∗
omputes valuesM∗

xj and x
∗
j as desribed

above. In that ase A∗
ould ompute the global key of the honest reeiver as M∗

j ⊕Mxj = ∆A.

However, sine all inputs to A∗
are independent from ∆A (during the protool), A∗

an only guess

∆A with negligible probability (during the protool) and thus F an only our with negligible

probability (during the protool). After the protool A∗
, or rather the environment, will reeive

outputs and learn ∆A, but this does not hange the fat that guessing ∆A during the protool an

be done only with negligible probability. ✷

Lemma 14. The protool in Fig. 15 seurely implements LaOT(ℓ) against orrupted B.

Proof. We onsider the ase of a orrupt reeiver B∗
running the above protool against a simulator

Sim. The simulation runs as follows.

1. The simulation starts by Sim getting B∗
's input to dealer ∆A, (Mc, c), (Mr, r), Kx0 and Kx1 .

Then Sim simply inputs ∆A, (Mc, c),Mz =Mr,Kx0 and Kx1 to the LaOT box. The box outputs

z to Sim and ∆B , (Mx0 , x0), (Mx1 , x1), Kc and Kz to the sender as desribed above.

2. Like the honest sender Sim samples random keys T0, T1 ∈R

{0, 1}κ. Sine Sim knows

Mc,Kx0 ,Kx1 ,∆A, c and z = xc it an ompute Xc = H(Mc) ⊕ (z||Mz ||Tz) exatly as the

honest sender would. It then samples X1⊕c ∈R

{0, 1}2κ+1
and inputs (X0,X1) to B∗

.

3. The orrupt reeiver B∗
replies by sending some y ∈ {0, 1}.

4. Sim sets z = r ⊕ y, omputes Iz = H(Mz) ⊕ T1⊕z and samples I1⊕z ∈R

{0, 1}κ. It then inputs

(I0, I1) to B∗
.

5. B∗
outputs some (T 0, T 1) for the EQ box and Sim ontinues or aborts as the honest A would in

the real protool, depending on whether or not (T0, T1) = (T 0, T 1).

For the analysis we denote by F the event that B∗
queries the RO onKc⊕(1⊕c)∆B orKz⊕(1⊕z)∆B .

We �rst show that assuming F does not our, the simulation is perfet. We then show that F only

ours with negligible probability (during the protool) and thus the simulation is indistinguishable

from the real protool (during the protool). We then disuss how to simulate the RO after outputs

have been delivered.

First in the view of B∗
step 1 of the simulation is learly idential to the real protool. Thus the

�rst deviation from the real protool appears in step 2 of the simulation where the X1⊕c is hosen

uniformly at random. However, assuming F does not our, B∗
has no information on H(Kc ⊕

(1 ⊕ c)∆B) thus in the view of B∗
, X1⊕c in the real protool is a one-time pad enryption of

(x1⊕c||Mx1⊕c ||Tx1⊕c). In other words, assuming F does not our, to B∗
, X1⊕c is uniformly random

in both the simulation and the real protool, and thus all input to B∗
up to step 2 is distributed

identially in the two ases.
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For steps 3 to 5 notie that in the real protool an honest sender would set Kz = Kr⊕ y∆B and

we would have

(Kr ⊕ y∆B)⊕ z∆B = Kr ⊕ r∆B =Mr .

Thus we have that the simulation generates Iz exatly as in the real protool. An argument similar

to the one above for step 2 then gives us that the simulation is perfet given the assumption that

F does not our.

We now show that B∗
an be modi�ed so that if F does our, then B∗

an �nd ∆B. However,

sine all input to B∗
are independent of ∆B (during the protool), B∗

only has negligible probability

of guessing ∆B and thus we an onlude that F only ours with negligible probability.

The modi�ed B∗
keeps a list Q = (Q1, . . . , Qq) of all B∗

's queries to H. Sine B∗
is e�ient

we have that q is a polynomial in κ. To �nd ∆B the modi�ed B∗
then goes over all Qk ∈R

Q and

omputes Qk ⊕Mz = ∆′
and Qk ⊕Mc = ∆′′

. Assuming that F does our there will be some

Qk′ ∈ Q s.t. ∆′ = ∆B or ∆′′ = ∆B . The simulator an therefore use global key queries to �nd ∆B

if F ours.

We then have the issue that after outputs are delivered to the environment, the environment

learns ∆B , and we have to keep simulating H to the environment after outputs are delivered. This

is handled exatly as in the proof of Thm. 7 in App. I using the programability of the RO. ✷

G Proof of Thm. 6

We want to show that the protool in Fig. 16 produes seure aOTs, having aess to a box that

produes leaky aOTs. Remember that a leaky aOT or LaOT, is inseure in the sense that a orrupted
sender an make guesses at any of the hoie bits: if the guess is orret, the box does nothing and

therefore the adversary knows that the guess was orret. If the guess is wrong, the box alerts the

honest reeiver about the heating attempt and aborts.

In the protool the reeiver randomly partitions ℓB leaky OTs in ℓ bukets of size B. First we
want to argue that the probability that every buket ontains at least one OT where the hoie

bit is unknown to the adversary is overwhelming. Repeating the same alulations as in the proof

of Thm. 8 it turns out that this happens with probability bigger than 1− (2ℓ)(1−B)
.

One we know that (with overwhelming probability) at least one OT in every buket is seure

for the reeiver (i.e., at least one hoie bit is uniformly random in the view of the adversary),

the seurity of the protool follows from the fat that we use a standard OT ombiner [HKN

+
05℄.

Turning this into a simulation proof an be easily done in a way similar to the proof of Thm. 8

in App. H.

H Proof of Thm. 7

Proof. The simulator answers global key queries to the dealer by doing the idential global key

queries on the ideal funtionality LaAND(ℓ) and returning the reply from LaAND(ℓ). This gives a
perfet simulation of these queries, and we ignore them below.

Notie that for honest sender and reeiver orretness of the protool follows immediately from

orretness of the aBit box.

Lemma 15. The protool in Fig. 19 seurely implements the LaAND box against orrupted A.
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Proof. We �rst fous on the simulation of the protool before outputs are given to the environment.

Notie that before outputs are given to the environment, the global key ∆A is uniformly random to

the environment, as long as B is honest.

We onsider the ase of a orrupt sender A∗
running the above protool against a simulator Sim

for honest B.

1. First Sim reeives A∗
's input (Mx, x), (My , y), (Mr , r) for the dealer.

Then Sim reeives the bit d ∈
R

{0, 1}.
2. Sim samples a random U ∈R {0, 1}

2κ
and sends it to A∗

. Then Sim reads V , A∗
's input to the

EQ box. If V 6= (1−x)H(Mx,Mz)⊕x(U ⊕H(Mx,My⊕Mz)) or d⊕ y 6= xy, Sim outputs abort,

otherwise, it inputs (x, y, z,Mx,My,Mz =Mr) to the LaAND box.

The �rst di�erene between the real protool and the simulation is that U = H(Kx,Kz) ⊕
H(Kx ⊕ ∆A,Ky ⊕ Kz) in the real protool and U is uniformly random in the simulation. Sine

H is a random orale, this is perfetly indistinguishable to the adversary until it queries on both

(Kx,Kz) and (Kx ⊕ ∆A,Ky ⊕ Kz). Sine ∆A is uniformly random to the environment and the

adversary during the protool, this will happen with negligible probability during the protool. We

later return to how we simulate after outputs are given to the environment.

The other di�erene between the protool and the simulation is that the simulation always

aborts if z 6= xy. Assume now that A∗
manages, in the real protool, to make the protool ontinue

with z = xy ⊕ 1. If x = 0, this means that A∗
queried the orale on (Kx,Kz) = (Mx,Mz ⊕ ∆A),

and sine Sim knows the outputs of orrupted A, whih inlude Mz, and see the input Mz ⊕∆A to

the RO H, if A∗
queries the orale on (Kx,Kz) = (Mx,Mz ⊕∆A), Sim an ompute ∆A. If x = 1

then A∗
must have queried the orale on (Kx ⊕∆A,Ky ⊕Kz) = (Mx,My ⊕Mz ⊕∆A), whih again

would allow Sim to ompute ∆A. Therefore, in both ases we an use suh an A∗
to ompute the

global key ∆A and, given that all of A∗
's inputs are independent of ∆A during the protool, this

happens only with negligible probability.

Consider now the ase after the environment is given outputs. These outputs inlude ∆A. It

might seem that there is nothing more to simulate after outputs are given, but reall that H is a

random orale simulated by Sim and that the environment might keep querying H. Our onern is

that U is uniformly random in the simulation and U = H(Kx,Kz)⊕H(Kx⊕∆A,Ky⊕Kz) in the real
protool. We handle this as follows. Eah time the environment queries H on an input of the form

(Q1, Q2) ∈ {0, 1}
2κ
, go over all previous queries (Q3, Q4) of this form and let ∆ = Q1⊕Q3. Then do

a global key query to aBit(3ℓ, κ) to determine if ∆ = ∆A. If Sim learns ∆A this way, she proeeds

as desribed now. Note that sine A is orrupted, Sim knows all outputs to A, i.e., Sim knows all

MACs M and all bits b. If b = 0, then Sim also knows the key, as K =M when b = 0. If b = 1, Sim
omputes the key as K = M ⊕∆A. So, when Sim learns ∆A, she at the same time learns all keys.

Then for eah U she simply programs the RO suh that U = H(Kx,Kz)⊕H(Kx ⊕∆A,Ky ⊕Kz).
This is possible as Sim learns ∆A no later than when the environment queries on two pairs of inputs

of the form (Q1, Q2) = (Kx,Kz) and (Q3, Q4) = (Kx ⊕ ∆A,Ky ⊕ Kz). So, when Sim learns ∆A,

either H(Kx,Kz) or H(Kx ⊕ ∆A,Ky ⊕ Kz) is still unde�ned. If it is H(Kx,Kz), say, whih is

unde�ned, Sim simply set H(Kx,Kz)← U ⊕H(Kx ⊕∆A,Ky ⊕Kz). ✷

Lemma 16. The protool desribed in Fig. 19 seurely implements the LaAND box against or-

rupted B.

Proof. We onsider the ase of a orrupt B∗
running the above protool against a simulator Sim.

The simulation runs as follows.
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1. The simulation starts by Sim getting B∗
's input to the dealer Kx,Ky,Kr and ∆A.

2. The simulator samples a random d ∈R {0, 1}, sends it to B∗
and omputes Kz = Kr ⊕ d∆A.

3. Sim reeives U from B∗
, and reads V , B∗

's input to the equality box.

4. If U = H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz), input (Kx,Ky,Kz) to the

box for LaAND and omplete the protool (this is the ase where B∗
is behaving as an honest

player). Otherwise, if U 6= H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz) or V =
U ⊕H(Kx ⊕∆A,Kz ⊕Kz), input g = 0 or g = 1 resp. into the LaAND box as a guess for the

bit x. If the box output fail, output fail and abort, and otherwise omplete the protool.

The simulation is perfet: the view of B∗
onsists only of the bit d, that is uniformly distributed

both in the real game and in the simulation, and in the aborting ondition, that is the same in the

real and in the simulated game. ✷

I Proof of Thm. 8

Proof. The simulator answers global key queries to LaAND(Bℓ) by doing the idential global key

queries on the ideal funtionality aAND(ℓ) and returning the reply. This gives a perfet simulation

of these queries, and we ignore them below.

It is easy to hek that the protool is orret and seure if both parties are honest or if A is

orrupted.

What remains is to show that, even if B is orrupted and tries to guess some x's from the LaAND
box, the overall protool is seure.

We argue this in two steps. We �rst argue that the probability that B learns the x-bit for all
triples in the same buket is negligible. We then argue that when all bukets ontain at least one

triple for whih x is unknown to B, then the protool an be simulated given LaAND(Bℓ).

Call eah of the triples a ball and all a ball leaky if B learned the x bit of the ball in the all

to LaAND(ℓ′). Let γ denote the number of leaky balls.

For B of the leaky balls to end up in the same buket, there must be a subset S of balls with

|S| = B onsisting of only leaky balls and a buket i suh that all the balls in S end up in i.

We �rst �x S and i and ompute the probability that all balls in S end up in i. The probability
that the �rst ball ends up in i is B

Bℓ . The probability that the seond balls ends up in i given that

the �rst ball is in i is B−1
Bℓ−1 , and so on. We get a probability of

B

Bℓ
·
B − 1

Bℓ− 1
· · ·

1

Bℓ−B + 1
=

(

Bℓ

B

)−1

that S ends up in i.

There are

(

γ
B

)

subsets S of size B onsisting of only leaky balls and there are ℓ bukets, so by a

union bound the probability that any buket is �lled by leaky balls is upper bounded by

(

γ

B

)

ℓ

(

Bℓ

B

)−1

.

This is assuming that there are exatly γ leaky balls. Note then that the probability of the protool

not aborting when there are γ leaky balls is 2−γ . Namely, for eah bit x that B tries to guess, he
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is aught with probability

1
2 . So, the probability that B undeteted an introdue γ leaky balls and

have them end up in the same buket is upper bounded by

α(γ, ℓ,B) = 2−γ
(

γ

B

)

ℓ

(

Bℓ

B

)−1

.

It is easy to see that

α(γ + 1, ℓ, B)

α(γ, ℓ,B)
=

γ + 1

2(γ + 1−B)
.

So, α(γ+1, ℓ, B)/α(γ, ℓ,B) > 1 i� γ < 2B−1, hene α(γ, ℓ,B) is maximized in γ at γ = 2B−1.
If we let α′(B, ℓ) = α(2B−1, ℓ, B) it follows that the suess probability of the adversary is at most

α′(B, ℓ) = 2−2B+1ℓ
(2B − 1)!(Bℓ−B)!

(B − 1)!(Bℓ)!
.

Writing out the produt

(2B−1)!(Bℓ−B)!
(B−1)!(Bℓ)! it is fairly easy to see that for 2 ≤ B < ℓ we have that

(2B − 1)!(Bℓ−B)!

(B − 1)!(Bℓ)!
<

(2B)B

(Bℓ)B
,

so

α′(B, ℓ) ≤ 2−2B+1ℓ
(2B)B

(Bℓ)B
= (2ℓ)1−B .

We now prove that assuming eah buket has one non-leaky triple the protool is seure even

for a orrupted B∗
.

We look only at the ase of two triples, [x1]A, [y
1]A, [z

1]A and [x2]A, [y
2]A, [z

2]A, being ombined

into [x]A, [y]A, [z]A. It is easy to see why this is su�ient: Consider the iterative way we ombine

the B triples of a buket. At eah step we ombine two triples where one may be the result of

previous ombinations. Thus if a ombination of two triples, involving a non-leaky triple, results in

a non-leaky triple, the subsequent ombinations involving that result will all result in a non-leaky

triple.

In the real world a orrupted B∗
will input keys Kx1 ,Ky1 ,Kz1 and Kx2 ,Ky2 ,Kz2 and ∆A,

and possibly some guesses at the x-bits to the LaAND box. Then B∗
will see d = y1 ⊕ y2 and

Md = (Ky1 ⊕ Ky2) ⊕ d∆A and A will output x = x1 ⊕ x2, y = y1 , z = z1 ⊕ z2 ⊕ dx2 and

Mx = (Kx1 ⊕Kx2)⊕x∆A, My = Ky1 ⊕ y∆A, Mz = (Kz1 ⊕Kz2 ⊕dKx2)⊕ z∆A to the environment.

Consider then a simulator Sim running against B∗
and using an aAND box. In the �rst step

Sim gets all B∗
's keys like in the real world. If B∗

submits a guess (i, gi) Sim simply outputs

fail and terminates with probability

1
2 . To simulate revealing d, Sim samples d ∈

R

{0, 1}, sets
Md = Ky1 ⊕ Ky2 ⊕ d∆A and sends d and Md to B∗

. Sim then forms the keys Kx = Kx1 ⊕ Kx2 ,

Ky = Ky1 and Kz = Kz1 ⊕Kz2 ⊕ dKx2 and inputs them to the aAND box on behalf of B∗
. Finally

the aAND box will output random x, y and z = xy and Mx = Kx ⊕ x∆A, My = Ky ⊕ y∆A,

Mz = Kz ⊕ z∆A.

We have already argued that the probability of B∗
guessing one of the x-bits is exatly 1

2 , so Sim

terminates the protool with the exat same probability as the LaAND box in the real world. Notie

then that, given the assumption that B∗
at most guesses one of the x-bits, all bits d, x and y are
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uniformly random to the environment both in the real world and in the simulation. Thus beause

Sim an form the keys Kx, Ky and Kz to the aAND box exatly as they would be in the real world

the simulation will be perfet.

✷

J Full Overview Diagram

F
2PC

F
Deal

aOT

LaOT

aAND

LaAND

aBit

WaBit

LaBit

EQOT

Set. 3

Set. 5 and 6

Set. 4

Fig. 27. Full paper outline.
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