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Abstract. In this article, the theory of multidimensional linear attacks

on block ciphers is developed and the basic attack algorithms and

their complexity estimates are presented. As an application the mul-
tidimensional linear distinguisher derived by Cho for the block cipher

PRESENT is discussed in detail.
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Introduction

A natural idea for enhancing linear cryptanalysis is using multiple approxima-
tions instead of one. Matsui was the first to suggest this enhancement. In 1994
he proposed to using two approximations simultaneously [20]. In the same year,
Kaliski and Robshaw used several approximations in an attempt to reduce the
data complexities of Matsui’s algorithms [17]. As a different approach, Johans-
son and Maximov presented an idea of a multidimensional distinguishing attack
against the stream cipher Scream [16].

Biryukov, et al., [2] used multiple approximations for finding several bits of
the secret key with reduced data complexity in 2004. However, the theoretical
foundations of the methods by Kaliski and Robshaw and Biryukov, et al., both
depend on assumptions about the statistical properties of the one-dimensional
linear approximations. In particular, they assumed that the one-dimensional lin-
ear approximations are statistically independent. Murphy pointed out that the
assumption may not hold in a general case [21].

Baignères, et al., presented in 2004 a linear distinguisher that does not suf-
fer from this limitation [1]. The distinguisher has also another advantage over
the previous approaches: it is based on a well established statistical theory of
log-likelihood ratio (LLR), but remained theoretical without an efficient way for
determining the probability distribution that is needed in their method. Englund
and Maximov presented computational methods for determining the distribution
directly [9], but they are in general not feasible for handling distributions of larger
than 32-bit values.

We showed in [13] how one-dimensional approximations can be used for effi-
cient construction of the multidimensional approximation and its probability dis-



tribution. This method does not rely on the assumption about statistical indepen-
dence of the one-dimensional approximations. We then considered a multidimen-
sional Matsui’s Alg. 1 in [10]. We showed that it is indeed advantageous to use
multiple approximations instead of just one. Moreover, our method gives a more
accurate estimate of the data complexity, which is always smaller than estimated
by Biryukov, et al., where only linearly independent approximations are used.

We considered in [11] using the LLR for determining the key in Alg. 1. We
proposed another Alg. 1. method, called the convolution method in [14]. We
also gave a proper statistical framework for Alg. 1 and showed how different
methods can be compared. We showed that under certain conditions, which hold
for practical ciphers, the convolution method and the other Alg. 1 methods we
considered in [10] and [11] have the same data complexities. The empirical tests
done on Serpent verified the theoretical results. Since the convolution method had
the smallest time complexity, we conclude that it is the most efficient of these
methods in practice. In this paper, we give a short “cookbook” description of the
LLR and convolution methods. For details of the statistical analysis, we refer to
our previous work, especially [14].

In [12] we considered extending Matsui’s Alg. 2 to multiple dimensions. We
considered two methods based on different test statistics: the LLR-method and χ2-
method. We describe the use of these methods in this paper. Selçuk presented the
concept of advantage for measuring the efficiency of one-dimensional Alg. 2 [24].
We extended the theory to multiple dimensions to compare the different methods
and showed that the LLR-method is more efficient than the χ2-method. We pro-
posed applying the convolution method for Alg. 2 in [15]. We made no practical
experiments, but based on the results with Alg. 1 and the theoretical calculations
we claim that the convolution method has smaller time complexity than the other
methods and the same data complexity.

Usually the Piling up lemma [19] is used for combining the correlations over
several rounds of a block cipher. In some cases, such as DES and SERPENT,
this approach gives good estimates, as there is only one linear trail with a non-
negligible correlation and fixed input and output masks through the cipher. In
multiple dimensions it means that the expected probability distribution of the
approximation is approximately the same for all keys. It is then possible to use
Alg. 1.

Daemen [7] and Nyberg [22] noted that, in the general case, several approx-
imation trails exist. This makes Alg. 1 impossible, since there is no key inde-
pendent expectation of the correlation. However, as noted by Nyberg [22], all
these linear trails contribute to the magnitude of the correlation and therefore
distinguishing distributions from uniform exploited in Alg. 2 is still possible. Cho
studied a practical application of both multidimensional method and linear hull
effect on block cipher PRESENT [4]. We study the theory behind his attack and
show how the linear hull effect makes the attack more efficient.

The structure of this paper is as follows: In Section 1 we introduce the nec-
essary mathematical background and notation. Some statistical concepts are in-
troduced in Section 2. We consider the problem of determining the correlation of
the one-dimensional approximations and the linear hull effect in Section 3. Sec-
tion 4 then shows how the multidimensional linear approximation is constructed.



The realisations of multidimensional Alg. 1 and Alg. 2 are studied in Sections 5
and 6, respectively. We do not go into statistical details, rather we just show how
the different methods are used. We also discuss the suitability of the methods
in different situations. In Section 7 we present and discuss Cho’s attack on the
block cipher PRESENT as an application of the multidimensional method and
the linear hull effect.

1. Probability Distributions and Boolean Functions

The linear space of n-dimensional binary vectors is denoted by Zn2 . The sum mod-
ulo 2 is denoted by ⊕. The inner product for a = (a1, . . . , an), b = (b1, . . . , bn) ∈
Zn2 is defined as a · b = a1b1 ⊕ · · · ⊕ anbn. Then the vector a is called the (linear)
mask of b. The binary vector a ∈ Zn2 can be identified with a unique integer
b ∈ {0, 1, . . . , 2n − 1} such that

b =
n∑
i=1

ai2i−1.

A Galois field GF(2n) is a linear space. Hence, depending on the context, a is
used interchangeably to notate a binary vector, the corresponding integer and an
element of the finite field.

A function f : Zn2 7→ Z2 is called a Boolean function. A linear Boolean
function is a mapping x 7→ u · x. The correlation between a Boolean function
f : Zn2 7→ Z2 and zero is

c(f) = 2−n (#{x ∈ Zn2 : f(x) = 0} −#{x ∈ Zn2 : f(x) 6= 0})

and it is also called the correlation of f.
We denote random variables by capital boldface letters X,Y, . . . , their do-

mains by X ,Y, . . . and their realisations by low case letters x ∈ X , y ∈ Y, . . . .
Let X be a random variable taking on values in X = {0, 1, . . . ,M}. We call the
vector p = (p0, . . . , pM ) that satisfies Pr(X = η) = pη, for all η ∈ X the discrete
probability distribution (p.d.) of X. We denote the uniform p.d. by θ.

A function f : Zn2 7→ Zm2 with f = (f1, . . . , fm), where fi are Boolean func-
tions, is called a vector Boolean function of dimension m. A linear Boolean func-
tion from Zn2 to Zm2 is represented by an m× n binary matrix U . The m rows of
U are denoted by u1, . . . , um, where each ui is a linear mask. Let f : Zn2 7→ Zm2
and X be uniformly distributed with X = {0, 1, . . . , 2n − 1}. If Y = f(X), then
the p.d. of Y is called the p.d. of f.

A proof of the following lemma can be found in [13]:

Lemma 1.1. Let f : Zn2 7→ Zm2 be a Boolean function with p.d. p. Then

pη = 2−m
∑
a∈Zm

2

(−1)a·ηc(a · f), for all η ∈ Zm2 .



This result is also known as the Cramér-Wold theorem [6] that states that the
p.d. is uniquely determined by its Fourier-Stieltjes transforms, i.e, the correlations
c(a · f), a ∈ Zm2 .

Let p = (p0, . . . , pM ) and q = (q0, . . . , qM ) be some discrete p.d.’s of random
variables with domain X = {0, 1, . . . ,M}. The Kullback-Leibler distance between
p and q is defined as follows:

Definition 1.2. The relative entropy or Kullback-Leibler distance between p and
q is

D (p ‖ q) =
M∑
η=0

pη log
pη
qη
, (1)

with the conventions 0 log 0/b = 0, if b 6= 0, and b log b/0 =∞.

We say that p is is close to q, if there exists ε, 0 < ε < 1/2, such that

|pη − qη| ≤ εqη, for all η ∈ X . (2)

If p is close to q, their Kullback-Leibler distance can be approximated using Taylor
series [1] such that

D (p ‖ q) = C(p, q)/2 +O(ε3),

where ε is the parameter in (2) and the capacity C(p, q) of p and q is defined as
follows:

Definition 1.3. The capacity between two p.d.’s p and q is

C(p, q) =
M∑
η=0

(pη − qη)2q−1
η .

If q is the uniform distribution, then C(p, q) is denoted by C(p) and called the
capacity of p.

From Lemma 1.1 we have the following result for any f : Zn2 7→ Zm2 and its
p.d. p [13]:

C(p) =
2m−1∑
a=1

c(a · f)2. (3)

2. Statistics

Consider a sequence of N independent and identically distributed (i.i.d.) ran-
dom variables with domain X = {0, 1, . . . ,M}. Let the realisation of the random
sample be x1, . . . , xN . We compute the empirical distribution q of the sample by



qη = N−1#{t = 1, . . . , N : xt = η}, η ∈ X . (4)

Given two p.d.’s p and p′, p′ 6= p, assume we wish to decide whether the given
data is drawn from p or p′. We can solve this problem by using a suitable test
statistic. The optimal test statistic minimises the error of choosing the wrong p.d.
with given amount of data N and it is given by the log-likelihood ratio (LLR)
defined as

LLR(x1, . . . , xN ; p, p′) = LLR(q; p, p′) =
∑
η∈X

Nqη log
pη
p′η
. (5)

We decide p (p′) if LLR(q; p, p′) > 0 (< 0).
In a goodness-of-fit problem we wish to decide whether the data x1, . . . , xN is

drawn from one given p.d. p or not. A basic tool for solving this type of problem
is given by the χ2 goodness-of-fit test. Using q, the χ2-test statistic is calculated
by

χ2(q; p) = N
∑
η∈X

(qη − pη)2

pη
. (6)

Large values of χ2(q; p) imply that the sample is not drawn from p. We decide
p (not p) if χ2(q) ≤ τ (χ2(q) ≥ τ), where τ is a threshold that depends on the
probability of rejecting p when it is the right p.d.

LLR is used if accurate estimates of both p and p′, p′ 6= p are available. If
only p can be estimated accurately and the only information available about p′

is that it is different from p, then χ2 must be used.
The multidimensional linear cryptanalysis method discussed in this article

is based on probability distributions related to linear approximations, and con-
structed in practice from correlations according to Lemma 1.1. Similarly as in
classical (one-dimensional) linear cryptanalysis, obtaining accurate information
about the expected correlation is essential and will be studied next.

3. Estimating Correlation of Linear Approximation of Block Cipher

For the purposes of linear cryptanalysis a block cipher is considered as a vector
Boolean function

f : Zn2 × Z`2 → Zn2 × Z`2 × Zn2 , f(x,K) = (x,K, EK(x)),

where EK(x) is the block cipher encryption of plaintext x ∈ Zn2 with key K ∈ Z`2.
A linear approximation of a block cipher with mask (u, v, w) ∈ Z2n+`

2 is a Boolean
function defined as

(x,K) 7→ u · x⊕ v ·K ⊕ w · EK(x). (7)

The most difficult task in linear cryptanalysis is finding linear approximations
with correlation of large absolute value, and in particular, determining an ade-



quate estimate of the correlation. Let us now assume that the block cipher is an
iterated block cipher with round function G(x,Ki) where x is the data input and
Ki is the key input to the round. With a fixed key K the iterated block cipher
is a composition of a number, say R, of round functions. Then the correlation
c(u · x⊕ w · EK(x)) can be calculated as

c(u · x⊕ w · EK(x)) =
∑

u2, . . . , uR
u1 = u, uR+1 = w

R∏
i=1

c(ui · x⊕ ui+1 ·G(x,Ki)).

The sequences u1 = u, u2, . . . , uR, uR+1 = w, over which the summation is taken,
are called linear (approximation) trails from u to w and the product of the round
correlations c(ui ·x⊕ui+1 ·G(x,Ki)), i = 1, . . . , R, is called the trail-correlation of
the trail. The goal of classical linear cryptanalysis, as first proposed by Matsui [19],
is to find masks u and w such that for almost all keys K this correlation is large
in absolute value. In general, the situation is difficult to handle, but something
more can be said in the case of key-alternating block ciphers, for which the round
function is of the form G(x,Ki) = g(x⊕Ki). Then

c(ui · x⊕ ui+1 ·G(x,Ki)) = (−1)ui·Kic(ui · x⊕ ui+1 · g(x)),

that is, only the sign of the correlation over the round function depends on the
key, and we have proved the following theorem, which we call the Correlation
theorem.

Theorem 3.1. ([8], [23]) Let g be the round function of an R-round key-alternating
iterated block cipher EK with round keys (K1,K2, . . . ,KR). Then for any u ∈ Zn2
and w ∈ Zn2 it holds that

c(u · x⊕w · EK(x)) =
∑

u2, . . . , uR
u1 = u, uR+1 = w

(−1)u1·K1⊕···⊕uR·KR

R∏
i=1

c(ui · x⊕ ui+1 · g(x)).

The goal of Alg. 1 is to determine the bit v ·K of information of the key K
based on the sign of the observed correlation c(u ·x⊕w ·EK(x)). This will succeed
under two conditions. First, the observed correlation c(u · x⊕ w · EK(x)) for the
fixed unknown key K must be large, and secondly a good theoretical estimate of
the sign of the correlation c(u · x ⊕ v ·K ⊕ w · EK(x)) must be available. Let us
now investigate the average behaviour of the latter correlation. Similarly, as in
Theorem 3.1 we first write this correlation as follows:

c(u · x⊕ v ·K ⊕ w · EK(x))

=
∑

u2, . . . , uR
u1 = u, uR+1 = w

(−1)u1·K1⊕···⊕uR·KR⊕v·K
R∏
i=1

c(ui · x⊕ ui+1 · g(x)). (8)

By averaging over the keys we get



EK [c(u · x⊕ v ·K⊕ w · EK(x))]

=
∑

u2, . . . , uR
u1 = u, uR+1 = w

2−`
∑
K

(−1)u1·K1⊕···⊕uR·KR⊕v·K
R∏
i=1

c(ui · x⊕ ui+1 · g(x))

=
∑

u2, . . . , uR
u1 = u, uR+1 = w

c(u1 ·K1 ⊕ · · · ⊕ uR ·KR ⊕ v ·K)
R∏
i=1

c(ui · x⊕ ui+1 · g(x)).

The first correlations are related to the key scheduling function. It is a vec-
tor Boolean function, which, given key K as input, outputs the round keys
K1, . . . ,KR. If the key scheduling is a linear function, these correlations take only
on values 1 or 0 depending on whether u1 ·K1⊕· · ·⊕uR ·KR⊕v ·K is equal to zero
for all keys, or not. Under the assumption that the round keys are independent,
that is, if K = (K1, . . . ,KR), only one linear trail v = (u1, . . . , uR) remains, and
we have

EK [c(u · x⊕ v ·K⊕ w · EK(x))] =
R∏
i=1

c(ui · x⊕ ui+1 · g(x)),

where as before, u1 = u and uR+1 = w. The right hand side of the equation is the
trail-correlation of v, which in this manner can be represented as the average cor-
relation of the linear approximation (7) taken over the keys. The trail-correlation
is commonly used as an estimate of the correlations c(u · x ⊕ v ·K ⊕ w · EK(x))
and was justified by the Piling up lemma by Matsui [19].

How good is this estimate in general? From (8) we see that it can be
very inaccurate if the linear approximation is composed of more than one lin-
ear approximation trails with large correlations (in absolute value). To illus-
trate this phenomenon let us borrow an example from [8]. In this example,
it is assumed that the correlation expressed in Theorem 3.1 takes the form
c(u·x⊕w·EK(x)) = (−1)γ·Kcγ+(−1)λ·Kcλ where cγ and cλ are the correlations of
the linear trails γ and λ, and cγ ≈ cλ. Let γ be the trail selected to be used in the
analysis. Then EK [c(u · x⊕ γ ·K⊕ w · EK(x))] = EK

[
cγ + (−1)(λ⊕γ)·Kcλ

]
= cγ .

But this gives a useful estimate only for a half of the keys. Those are the keys K
for which (λ⊕γ) ·K = 0. For such keys, c(u ·x⊕γ ·K⊕w · EK(x)) = cγ + cλ, and
the sign of the correlation will be predicted correctly . For the other half of the
keys we have c(u · x ⊕ γ ·K ⊕ w · EK(x)) = cγ − cλ ≈ 0, and hence no adequate
estimate of the sign of the correlation can be achieved.

Due to the ambiguity of the trail correlations described above, Alg. 1 is
applied only for ciphers that admit correlations with a single dominant trail
v = (u1, . . . , uR). Then the correlation of the linear trail v is a valid estimate of
its true correlation, whatever key has been used in encryption. More precisely,

EK [c(u · x⊕ v ·K⊕ w · EK(x))] =
R∏
i=1

c(ui · x⊕ ui+1 · g(x))

≈ c(u · x⊕ v ·K ⊕ w · EK(x)),



for all keys K.
When applying Alg. 2 for block ciphers only the quantity of the correlation

matters, not the sign. Therefore often, and in particular in the context of multi-
dimensional linear cryptanalysis of a block cipher, the strength of the linear ap-
proximation (7) is evaluated in terms of the squared correlation. It was observed
in [22] that the average value of the square of this correlation taken over the
keys is under some conditions independent of the linear trail v and, moreover, the
correlations of all linear trails contribute to the expected value. This result, often
called as the “linear hull effect” is given in the next theorem.

Theorem 3.2. ([8], [22], [23]) Let g be the round function of an R-round key-
alternating iterated block cipher EK with key K = (K1,K2, . . . ,KR). Then for
any u ∈ Zn2 , v ∈ ZRn2 and w ∈ Zn2 it holds that

EK

[
c(u · x⊕ v ·K⊕ w · EK(x))2

]
= EK

[
c(u · x⊕ w · EK(x))2

]
=

∑
u2, . . . , uR

u1 = u, uR+1 = w

R∏
i=1

c(ui · x⊕ ui+1 · g(x))2.

In practice, an estimate of the average squared correlation can be calculated
by first finding as many trails from u to w with non-zero correlation as possible
and then summing up their squared trail-correlations. This value gives a lower
bound of the squared correlation c(u · x ⊕ w · EK(x))2 that one is expected to
observe from the data on the average over the keys. As noted above, the more
about equally strong linear trails are present the more these correlations vary with
the key K used in EK(x). If the data requirement is based on the average squared
correlation, the distinguishing step of Alg. 2 is likely to fail for a key K which
results in a smaller (squared) correlation than the average. On the other hand, a
large proportion of the keys will have correlations greater than the average, and
the distinguishing phase of Alg. 2 will succeed. Since linear cryptanalysis uses
estimates based on average behaviour, the performance of any practical attack
designed on a specific cipher should be verified empirically, and estimates of the
trade-off between success probability and data complexity should be presented.

The set of keys, which have squared correlations less than the average, de-
pends typically on the input and output masks u and w. Multidimensional lin-
ear cryptanalysis uses several different input and output masks and hence each
key is more likely to result in a high correlation with respect to some input and
output masks. Then the multidimensional linear distinguisher typically works as
predicted for almost all keys. This phenomenon will be further elaborated in the
context of block cipher PRESENT later in this article.

4. Multidimensional Linear Approximation of a Block Cipher

Let us study a block cipher with block size n. Let x be the plaintext, y the output
of the cipher after R rounds and K the expanded key, that is, a vector consisting
of all the (fixed) round key bits used in the R rounds. Then an m-dimensional



linear approximation of the block cipher can be considered as a vector Boolean
function

Zn2 × Zn2 → Zm2 , (x, y) 7→ Ux⊕ V K ⊕Wy, (9)

where U and W are m×n binary matrices. The matrix V has also m rows and it
divides the expanded keys, and therefore also the keys, to at most 2m equivalence
classes z = V K, z ∈ Zm2 .

We use Shannon’s model of a secrecy system with the three random variables:
plaintext X, ciphertext Y and the key K, where X and K are independent.
Since linear cryptanalysis is targeted on ciphers without obvious weaknesses it
is assumed that Y and K are uniformly distributed. Also, in the basic linear
cryptanalysis, it is assumed that the plaintext X is also uniformly distributed.
This assumption is usually extended to input data of all rounds. In particular it
means that if the input data to a round is split into disjoint blocks, for example,
inputs to parallel S-boxes, then the inputs are assumed to be independent and
uniformly distributed.

Assume now that the key is fixed and consider one-dimensional linear approx-
imations of the form u ·X⊕w ·Y . In general, it is difficult to determine whether
two such linear approximations are statistically dependent or not [21]. Usually, we
can assume that the approximations are independent if the input masks involve
disjoint sets of the input data bits and they remain disjoint over at least one
round of the cipher, and the output masks are similarly disjoint. On the other
hand, statistically dependent linear approximations are common. A typical ex-
ample is the case when two linear approximations with nonzero correlations share
the same input mask. If such approximations would be independent, then by the
Piling up lemma, their sum, where the inputs cancel, should have a correlation,
which is the product of the correlations of the linear approximations. But since
the sum involves only output data bits, its correlation is zero by the assumption
about uniform distribution of the data bits.

The problem is now to determine the p.d. p of the approximation. We noted
in [10] that Lemma 1.1 can be used for determining p if the correlations c(a ·
(Ux ⊕ V K ⊕ Wy)), a ∈ Zm2 for all the one-dimensional linear approximations
a · (Ux ⊕ V K ⊕ Wy) are available. If the correlations hold for most keys and
can be determined accurately, we get an estimate for p that also holds for most
keys. On the other hand, if the correlations vary with the key or we are not able
to determine them with a satisfactory accuracy, then our knowledge of p is also
limited and we must modify our method accordingly.

We denote by pz the p.d. of Ux⊕Wy, a fixed permutation of p determined by
z. Then all the p.d.’s pz, z ∈ Zm2 , are each other’s permutations, and in particular,

pzη⊕ a = pz⊕ aη , for all z, η, a ∈ Zm2 . (10)

From this it follows, for example, that C(p) = C(pz), for all z ∈ Zm2 .



Output: empirical p.d. q
initialise 2m counters qη, η ∈ Zm2 ;
for t = 1, . . . , N do

draw (xt, yt) from cipher ;
for i = 1, . . . ,m do

calculate bit ηi = ui · xt ⊕ wi · yt;
end
increment counter qη = #{t : Uxt ⊕Wyt = η}, where η is the vector
(η1, . . . , ηm) interpreted as an integer;

end
output q/N ;

Figure 1. Algorithm 1: Computing empirical p.d q in the on-line phase

5. Key Recovery with Algorithm 1

In this section we assume that we are given a strong multidimensional approxima-
tion of the form (9) and a good estimate p of its p.d. In [14] we studied the differ-
ent ways of generalising Matsui’s one-dimensional Alg. 1 to multiple dimensions.
We will now briefly recall these methods.

First, we obtain the empirical distribution q = (q0, . . . , q2m−1) of the multidi-
mensional approximation Ux⊕Wy using N plaintext-ciphertext pairs (xt, yt), t =
1, . . . , N as follows:

qη = N−1#{t = 1, . . . , N : Uxt ⊕Wyt = η}, for all η ∈ Zm2 . (11)

We call this the on-line phase of Alg. 1, see also Fig. 1. Next we rank the key
classes using a suitable real-valued statistic. Each key class z is given a mark which
is the realisation of the statistic using the data q. We order the keys according to
their marks, and the right key class should be the first in this ordering.

The theoretically most efficient method is based on the log-likelihood ratio,
LLR. We compute for each z the mark

l(z) = LLR(q; pz, θ) =
∑
η∈Zm

2

qη log
pzη

2−m
. (12)

Then we order the marks according to their magnitude and the right key should
have the largest mark, i.e., the z that maximises l(z) is selected. The algorithm
for the LLR-method is described in Fig. 2. The data complexity N of the LLR-
method is proportional to

m/Cmin(p),

where Cmin(p) = minz 6=0 C(pz, p).
An alternative method for finding the key class is depicted in Fig. 3. In this

method, the mark is given by



Input: empirical p.d. q and theoretical p.d.’s pz

Output: key class z′

for key classes z = 0, . . . , 2m − 1 do
compute l(z) =

∑
η∈Zm

2
qη log pzη;

end
find z′ that maximises l(z);
output z′;

Figure 2. Algorithm 1: Finding the key class with LLR

Input: empirical p.d. q and theoretical p.d. p
Output: key class z′

compute p ∗ q using FFT;
find mode z′ of p ∗ q;
output z′;

Figure 3. Algorithm 1: Finding the key class with convolution method

g(z) = (q ∗ p)z, (13)

where q ∗ p is the convolution of p and q. We choose the z that maximises g. In
other words, since q ∗ p is also a p.d., we have z = mode(q ∗ p). As we noted
in [14], there is no practical difference between the data complexities of these
methods in Alg. 1. However, this so-called convolution method is more efficient
in practice, since it has time complexity m2m whereas for the LLR-method the
time complexity is 22m.

Note that Alg. 1 can only be used if we have a good estimate of p. If the cor-
relations c(a ·(Ux⊕V K⊕Wy)) are inaccurate, for example, if they have different
signs than predicted, the Alg. 1 methods tend to fail in identifying correctly the
key class. We consider next the multidimensional Alg. 2.

6. Key Recovery with Algorithm 2

Consider a block cipher withR+1 rounds, depicted in Fig. 4. Let x be the plaintext
and y′ be the ciphertext after R+1 rounds. Let the part of the last round key to be
recovered be k ∈ Z`2. Alg. 2 uses a strong linear approximation (9) over R rounds
such that the bits of y involved in (9) can be computed by partially decrypting y′

using the key part k. We denote this partial decryption as Dk(y′). Analogically to
the one-dimensional case, Alg. 2 is divided into four phases: distillation, analysis,
ranking (or marking as we will call it), and, finally, the search phase, where
the remaining key bits are searched and the correctness of the ranking result is
verified. We concentrate on the first three phases.

In the distillation phase, N plaintext-ciphertext pairs (xt, y′t), t = 1, . . . , N,
are obtained. In the analysis phase, we compute, for each round key candidate k,



Figure 4. The linear approximation of an R+1-round block cipher for Alg 2. Notation: plaintext

x, ciphertext y′, input to the last round y, key data in R-rounds K, ` bits to be recovered from

last round key k.

the empirical distribution qk,

qkη = N−1{t = 1, . . . , N : Uxt ⊕WDk(y′) = η}, η ∈ Zm2 . (14)

Before going to the marking phase, let us examine the complexity of the analysis
phase. For a generic partial last round decryption, the function Dk(y′) needs to be
evaluated N times for each of the 2` key candidates, that is, the time complexity
is N2`.

Matsui observed in [20] that if the partial decryption function admits the form
Dk(y′) = d(y′′⊕k), where y′′ is an `-bit sub-block of y′, then it suffices to compute
only the 2` decryptions d(a), a ∈ Z`2, which, moreover, can be done off-line. Then
the time complexity of the analysis phase in the classical one-dimensional case
can be reduced from N2` to N + 22`. Collard, et al., showed in [5] how to further
reduce it to N + `2`.

Matsui’s observation can be exploited also in the multidimensional case to
show that the complexity N2` can be reduced to N + 22`+m. When collecting the
data (xt, y′t), t = 1, . . . , N, we count the frequencies

T (i, j) = #{t : Uxt = i, y′′t = j}, i ∈ Zm2 , j ∈ Z`2

and store them in a 2m × 2`-table T = T (i, j), where i denotes the row and j the
column. This step takes time N . Similarly, as in Matsui’s case, assume that we
have the values Wd(a), a ∈ Z`2, computed and stored in an array Td(a). Given a
key candidate k the table Td is permuted in such a way that the (j ⊕ k)th entry
Td(j ⊕ k) = Wd(j ⊕ k) will be in the jth position. Then each column of table
T (i, j) is permuted so that the ith entry will be in the row η = i⊕Wd(j ⊕ k).

Now summing up the entries in each row η ∈ Zm2 gives the values

#{t : Uxt ⊕Wd(y′′t ⊕ k) = η}.

Sorting the 2m × 2`-table T takes time 2`+m. Hence, the total time to compute
the empirical distribution qk for all key candidates is N + 22`+m. It is not clear



if the trick proposed by Collard, et al., in [5] can be used in multiple dimensions.
Nevertheless, usually N � 22`+m and the time complexity is dominated by N .

Let us now assume that we have computed the empirical p.d.’s qk defined
by (14). The remaining task is to mark the keys in the marking phase. Similarly
as for Alg. 1, the marks are given by a statistic that is computed using the data
represented by the empirical p.d.’s qk. A classical assumption is the wrong-key
randomisation hypothesis that is needed in Alg. 2. We state it as follows:

Assumption 6.1 (Wrong-key Hypothesis). There are two p.d.’s D and D′, D 6= D′
such that for the right key k0, the data is drawn from D and for a wrong key
k 6= k0 the data is drawn from D′ 6= D.

Usually D′ is the uniform distribution. The wrong-key hypothesis states that
for each wrong round key candidate, deciphering with the wrong key produces uni-
formly distributed data that is statistically independent for different keys whereas
the data derived using k0 is not uniformly distributed.

We consider three different methods for marking the key candidates in Alg.
2: the LLR-method, the convolution method and the χ2-method. A convenient
way for comparing the efficiency of these methods is the “advantage”. Selçuk
proposed to using it for measuring the time complexity of the search phase in the
one-dimensional Alg. 2 attack [24]. We define it as follows:

Definition 6.2. We say that a key recovery attack for an `-bit key achieves an
advantage of a bits over exhaustive search, if the marking phase puts the correct
key among the top r = 2`−a out of all 2` key candidates.

We can now compare the different methods by finding an expression between
the advantage and the data complexity. We showed in [12] that for fixed data
complexity N , the advantage of the LLR-method is larger than the advantage of
the χ2-method. Hence, the LLR-method is more efficient. Next we describe briefly
the realisation of the three methods.

In the LLR- method, for each round key candidate, the mark is given by

Lk = max
z∈Zm

2

LLR(qk; pz, θ). (15)

The keys are then ranked in decreasing order according to their marks and the
right key candidate k0 should have the largest mark Lk0 . In this way, we get both
z and k. The LLR-method is depicted in Fig. 5. We obtain the following result:

Theorem 6.3. Suppose the cipher satisfies Assumption 6.1 where D′ = θ and
the p.d.’s pz, z ∈ Zm2 and θ are close to each other. Then the advantage of the
LLR-method for finding the last round key k0 is given by

aLLR = (
√
NC(p)− Φ−1(P12))2/2−m ≈ NC(p)−m. (16)

Here N is the amount of data used in the attack, P12 (> 0.5) is the probabil-
ity of success, Φ is the cumulative distribution function of the normed normal
distribution and C(p) and m are the capacity and the dimension of the linear
approximation (9), respectively.



Input: table of empirical p.d.’s qk, k = 0, . . . , 2l − 1, table of theoretical
p.d.’s pz, z = 0, . . . , 2m − 1

Output: store mark Lk and key class z for each k ∈ Zl2
for k = 0, . . . , 2l − 1 do

for z = 0, . . . , 2m − 1 do
L(k, z) = LLR(qk; pz, θ); /* takes time 2m */

end
store Lk = maxz L(k, z) and the maximising class z(k);

end

Figure 5. Marking phase of Alg. 2 using LLR-method: The permutations pz , z ∈ Zm
2 are

stored and used for determining the mark Lk. The outputs k and z can be determined

simultaneously.

Input: table of empirical p.d.’s qk, k = 0, . . . , 2l − 1, and the theoretical
p.d. p

Output: store mark Gk and key class z for each k ∈ Zl2
for k = 0, . . . , 2l − 1 do

compute qk ∗ p using FFT;
store mark Gk = maxz(qk ∗ p)z and z(k) = mode(qk ∗ p);

end

Figure 6. Marking phase of Alg. 2 using the convolution method: One p.d. p is stored

and used for determining the mark Gk. The outputs k and z can be determined simul-

taneously.

We now propose using the convolution method also for Alg. 2. It has, at least
in theory, the same advantage as the LLR-method but smaller time complexity
in the marking phase. The mark is

Gk = max
z∈Zm

2

(qk ∗ p)z. (17)

The marks are again ranked in decreasing order such that the mark Gk0 of the
right key candidate should be largest. We obtain both k and z simultaneously.
The marking phase with convolution method is depicted in Fig. 6.

The χ2-test is theoretically the weakest method. The marks are given by

Sk = 2mN
∑
η∈Zm

2

(qkη − 2−m)2. (18)

Again, the right key k0 should have the largest mark. The method is depicted in
Fig. 7. After determining the last round key candidate k it is possible to use Alg.
1 for determining z, provided that the p.d. qk is saved with the mark Sk. We
obtained the following result in [12].



Input: table of empirical p.d.’s qk, k = 0, . . . , 2l − 1
Output: store mark Sk and possibly the corresponding p.d. qk for each

k ∈ Zl2
for k = 0, . . . , 2l − 1 do

compute Sk =
∑2m−1
η=0 (qkη − 2−m)2;

if wish to recover z then
store (Sk, qk);

else
store Sk;

end

end

Figure 7. Marking phase of Alg. 2 using χ2-method: The mark Sk is determined and

stored for each k. Also qk is stored with the mark, if z needs to be recovered.

Theorem 6.4. Suppose the cipher satisfies Assumption 6.1 where D′ = θ and
the p.d.’s pz, z ∈ Zm2 and θ are close to each other. Then the advantage of the
χ2-method using statistic (18) is given by

aχ2 =
(NC(p)− 4ϕ)2

4M
, ϕ = Φ−2(2PS − 1), M = 2m − 1, (19)

where PS (> 0.5) is the probability of success, N is the amount of data used in
the attack and C(p) and m (≥ 5) are the capacity and the dimension of the linear
approximation (9), respectively.

Some practical experiments with χ2 and LLR on reduced round SERPENT
can be found in [10]. In these experiments the χ2-method seems indeed to be
weaker than the LLR-method: the data complexity for finding the last round key
with given probability and advantage is larger for χ2 than for LLR. On the other
hand, the LLR-method and the convolution method are practically equal with
respect to the data complexity. Hence, if p is known then we propose using the
convolution method. However, if we have a cipher where p cannot be determined
with reasonable accuracy, or it varies significantly depending on the key, the only
available method is the χ2-method. Cho observed that this seems to be the case
for example for block cipher PRESENT [4]. Cho’s multidimensional χ2-attack on
reduced round PRESENT is presented in the next section.

7. Using Multiple Linear Approximations in PRESENT

7.1. PRESENT

The goal of the attack is to use the multidimensional Alg. 2. for determining key
bits from the first and the last rounds. In this section, we use mostly the notation
of [4]. PRESENT is a key alternating SPN block cipher consisting of 31 rounds.
Each round consists of three layers: AddRoundKey, SboxLayer and pLayer. The



AddRoundKey layer is an XOR-operation with a round key. The non-linearity is
provided by the 16 S-boxes S0, . . . , S15 used in the SboxLayer. Each S-box Si is
the same non-linear bijective mapping S : Z4

2 7→ Z4
2. The pLayer is a bit-by-bit

permutation P of the set {0, 1, . . . , 63}. The complete description of PRESENT
is given in [3]. We denote by E(n)

K (x) the encryption of x over n rounds, where the
permutation is not used in the nth round.

The structure of PRESENT makes it possible to realise a multidimensional
attack: there are several strong one-dimensional approximations. The linear hull
of each such approximation consists of several equally strong approximation trails.
Therefore, instead of Piling up lemma, the correlation over several rounds must
be calculated using the Correlation theorem, Theorem 3.1. The properties of
PRESENT makes it possible to do these calculations sufficiently accurately. In
the following, we first show how to determine all the strongest one-dimensional
approximations over n+4 rounds. We then describe the multidimensional approx-
imation and the attack proposed by Cho, and discuss its theoretical foundations.

7.2. One-Dimensional Approximation

The calculation of an estimate for a correlation of a one-dimensional approxima-
tion over multiple rounds of PRESENT is based on the following observation:
only the so-called single-bit linear trails have non-negligible trail-correlations. A
single-bit linear trail is an approximation trail with intermediate masks of Ham-
ming weight one. Therefore, the sum over all the middle masks can be estimated
using the sum over masks with Hamming weight one. Next we show how to reduce
the number of possible trails even more.

Denote by S = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and B = {4i + 1, 4i +
2, 4i+3 : 0 ≤ i ≤ 15, Si ∈ S} a subset of the S-boxes and a subset of possible input
and output bits of the SboxLayer, respectively. Cho showed that the set B is closed
in the following sense: for any linear approximation starting and ending at S-box
in S, all single-bit approximation trails that have non-zero trail-correlations have
intermediate masks in B. We denote by ρ(α, β) the correlation of an approximation
over an S-box with input and output masks α and β, respectively.

Cho made the following observations about the single-bit input and output
masks α and β:

• For α, β ∈ {2, 4, 8}, ρ(α, β) = ±2−2, except ρ(8, 4) = 0
• For α ∈ {1, 2, 4, 8}, ρ(α, 1) = ρ(1, α) = 0.

Consider a linear approximation starting from the sth bit position and ending in
the tth bit position, where s, t ∈ B. Denote by θ(n)(s, t;K) the correlation of the
linear approximation over n rounds with user-supplied key K. By the Correlation
theorem, one can obtain an estimate of θ(n)(s, t;K) using the following recursive
formula:

θ(r)(s, t;K) =
3∑
i=1

(−1)Kr[ν]ρ(2i, 2P
−1(t) mod 4)θ(r−1)(s, ν;K), r = 1, . . . , n, (20)



...
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n rounds

S13 S9 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer
??? ??? ?????????????????????

S15 S14 S13 S11 S10 S9 S7 S6 S5

S7 S6 S5

Figure 8. Single-bit trails of the linear hull over n+ 4 rounds (adapted from [4])

where ν = 4bP−1(t)/4c+ i and Kr[ν] is the νth bit of the rth round key. Defining
θ(0)(s, t;K) = 1, this recursive formula allows as to compute θ(n) for all n ≥ 1
and for all keys K.

Consider now a linear approximation over n+ 4 rounds starting at one of the
S-boxes Si, i = 5, 9 or 13 and ending at one of the S-boxes Sj , j = 5, 6 or 7. All
single-bit trails with non-zero correlation are depicted in Fig. 8.

Fix i and j and consider a one-dimensional approximation with input and
output masks α and β. We denote by Ai ∈ B the set of the bit positions that can
be reached from the bits 4i+1, 4i+2 or 4i+3 (output bits of Si) using single-bit
trails over a pLayer, an SboxLayer and one more pLayer, for any i = 5, 9 or 13.
Hence, for given α, there are nine single-bit trails that lead from α to Ai, each of
which has correlation 2−2ρ(α, 2u) for a unique u ∈ {1, 2, 3} that is determined by
the end bit position s ∈ Ai.

Similarly, let Bj ∈ B be the set of the bit positions from where one can reach
4j+1, 4j+2 or 4j+3 using single-bit trails over a pLayer, an SboxLayer and one
more pLayer, where j = 5, 6 or 7. Each of the nine single-bit trails leading from
Bj to β have correlation 2−2ρ(2v, β), for a unique v ∈ {1, 2, 3} that is determined
by the start bit position t ∈ Bj .



Hence, by the Correlation theorem, the correlation over n+ 4 rounds with a
given key K can be estimated, by considering single-bit trails only, as

c(α · x⊕ β · E(n+4)
K (x)) = 2−4

∑
s∈Ai

∑
t∈Bj

(−1)Kpρ(α, 2u)θ(n)(s, t;K)ρ(2v, β), (21)

where Kp denotes the parity of the relevant round key bits.

7.3. Expected Capacity of the Multidimensional Approximation

Consider now a multidimensional approximation over n + 4 rounds starting at
one of the S-boxes Si, i = 5, 9 or 13 and ending at one of the S-boxes Sj , j = 5, 6
or 7. The input and output masks α and β in (21) both span a four-dimensional
subspace. Therefore, m = 8. An estimate of the average capacity of such an
approximation, denoted by C(i, j), is given by the following result:

Theorem 7.1. Assume that the round keys of PRESENT are statistically inde-
pendent. For a positive integer n, the expected capacity over the keys is for any
i = 5, 9, 13 and j = 5, 6, 7

C(i, j) = 2−8
∑
s∈Ai

∑
t∈Bj

EK

[
θ(n)(s, t; K)2

]
, (22)

where the average squared correlations EK

[
θ(n)(s, t; K)2

]
are given by the follow-

ing recursive formula:

EK

[
θ(r)(s, t; K)2

]
=

3∑
i=1

ρ(2i, 2P
−1(t) mod 4)2 EK

[
θ(r−1)(s, ν; K)2

]
, r = 1, . . . , n,

where ν = 4bP−1(t)/4c+ i and EK

[
θ(0)(s, t; K)2

]
= 1.

The proof is given in [4] as a part of the proof of Theorem 2 but we give it
here for completeness.

Proof. The round keys of PRESENT are not statistically independent as they
are all derived from the same relatively short initial key. Nevertheless, assuming
the round keys to be independent even when they are not is common in linear
cryptanalysis and Cho relies on it, too. His practical tests show that the attack
can be realised successfully using the assumption. By the assumption that the
round keys are independent, it follows from Theorem 3.2 and (20) that

EK

[
θ(r)(x, y; K)2

]
=

3∑
i=1

ρ(2i, 2P
−1(y) mod 4)2 EK

[
θ(r−1)(x, ν; K)2

]
,

where ν = 4bP−1(y)/4c+ i.
Since we define in (20) that θ(0)(s, t;K) = 1 for allK, then EK

[
θ(0)(s, t; K)2

]
=

1.



Since the round keys are statistically independent, we have EK

[
(−1)Kp(−1)K

′
p

]
=

1 if and only if Kp = K′p and otherwise the expected value is zero. Taking
expectation of the square of the correlation (21) gives

EK

[
c(α · x⊕ β · E(n+4)

K (x); K)2
]

= 2−8 EK

∑
s∈Ai

∑
t∈Bj

ρ(α, 2u)2θ(n)(s, t; K)2ρ(2v, β)2

 .
Consider now Formula (3) that gives the capacity as the sum of all the correlations
as α and β vary. Using Parseval’s theorem by summing over the masks α and β

gives the expected capacity for given S-boxes Si and Sj (for Sj we actually apply
Parseval’s theorem to the inverse of Sj):

C(i, j) =
∑

α,β∈Z4
2

EK

[
c(α · x⊕ β · E(n+4)

K (x); K)2
]

= 2−8 EK

∑
s∈Ai

∑
t∈Bj

θ(n)(s, t; K)2
∑
α∈Z4

2

ρ(α, 2u)2
∑
β∈Z4

2

ρ(2v, β)2


= 2−8

∑
s∈Ai

∑
t∈Bj

EK

[
θ(n)(s, t; K)2

]
.

7.4. Realisation of the Attack

The attack is performed over R rounds of PRESENT in an Alg. 2 type attack.
In [4], the nine multidimensional linear approximations, explained in the preceding
section, were used simultaneously over R − 2 rounds. The inputs to each of the
three S-boxes S5, S9 and S13 depend on the same 16-bit part of the first round
key. This 16-bit part of the key is denoted by ke. Similarly, the outputs of the
S-boxes S5, S6 and S7 on the last but second round are determined by a 16-bit
part of the last round key, denoted by kd. We encrypt with each key candidate
ke over one round and decrypt with each candidate kd over one round. Then we
proceed as in Section 6 with k = (ke, kd).

Let us first calculate an estimate for the total capacity C of a multidimen-
sional approximation from the input of three S-boxes S5, S9 and S13 to the out-
put of the three S-boxes S5, S6 and S7. Recall that single-bit trails outperform
all other approximation trails. Hence, it suffices to take into consideration only
those output and output masks that involve bits from one S-box only. We denote
by αi and βj the 12-bit masks that have non-zero components only at the input
positions of the S-box Si and output positions of the S-box Sj , respectively. We
can estimate



C = EK

 ∑
α,β∈Z12

2

c(α · x⊕ β · E(R−2)
K )2


≈ EK

 ∑
i=5,9,13

∑
j=5,6,7

∑
αi,βj∈Z12

2

c(αi · x⊕ βj · E(R−2)
K )2


≈

∑
i=5,9,13

∑
j=5,6,7

C(i, j)

= 28
∑
s,t∈B

EK

[
θ(R−6)(s, t; K)2

]
.

The last equality follows from Theorem 7.1 taking into account the property that
A5 ∪A9 ∪A13 = B and B5 ∪B6 ∪B7 = B and the three sets Ai, i = 5, 9, 13, and
similarly Bj , j = 5, 6, 7, are mutually disjoint.

As the aim is to distinguish the right key candidate from the wrong ones
either LLR (or convolution) or χ2 method can be used. The dimension of the
multidimensional linear approximation is m = 24. Given the desired advantage a
the estimated data complexity NLLR of the LLR-method is by Theorem 6.3

NLLR ≈
a+m

C
= 56C−1

for the full 32-bit key recovery and setting PS = 0.95. By Theorem 6.4 the corre-
sponding estimate for the χ2-method is

Nχ2 ≈
√
a · (224 − 1)

C
= 214.5C−1, (23)

which is significantly larger.
Unfortunately, the LLR-method cannot be used due to the lack of accurate

estimate of the p.d. of the multidimensional approximation. Cho observed in
practical experiments that the p.d. varies a lot with the keys, while the capacity
remains rather constant. Hence, the χ2-method remains the only possibility and
should work about equally well for all keys.

Instead of (23), Cho used the following formula1:

N ≈ 2
√
a · 9(28 − 1)/C, (24)

for the data complexities N , which also agreed with the experimental results. Here
the coefficient M ′ = 9(28 − 1) is the number of one-dimensional approximations
used in the attack and it is significantly smaller than the number of the degrees
of freedom 224 − 1 of a 24-dimensional p.d. used in (23).

Mathematically, if we assume that the approximations from Si to Sj are
statistically independent, we can obtain the χ2-statistic over the whole 24-
dimensional system as a sum of the χ2-statistics of the 8-dimensional approxima-

1There should be coefficient 4 and not 8 in the formula (2) of [4]



tions. That is, we consider the problem of the linear combination of independent
χ2-tests on the same hypothesis, which was studied for example by Koziol and
Perlman [18]. Since the number of degrees of freedom for each 8-dimensional ap-
proximation is 28 − 1, the sum of nine χ2-distributed and independent random
variables is χ2-distributed with M ′ = 9 · (28 − 1) degrees of freedom and we
obtain (24).

Let us take a closer look at the linear approximations used in Cho’s attack to
investigate the assumption about statistical independence. As noted in Section 3,
linear approximations sharing the same input mask and having non-zero corre-
lations cannot be statistically independent. For each S-box S5, S9 and S13 there
are several input masks α with nonzero correlation to different single-bit output
masks of the S-box. It follows that the 8-dimensional approximations cannot,
strictly speaking, be statistically independent, if they share the same input S-box
or the same output S-box. Hence, only a subset of three of the nine χ2-statistics
are potentially statistically independent. We conclude that the heuristic approach
used by Cho in combining the nine multidimensional approximations using a sum
of χ2-statistics seems to work very well in practice, but its theoretical justification
remains an open question.

7.5. Complexity of the Attack and an Extension Using Related Keys

The multidimensional approximation presented above can be used for launching
linear attacks on PRESENT with different strategies and estimated complexity
parameters. The attack presented by Cho in [4] on PRESENT reduced to R
rounds aims at discovering 16 bits of the first and the last round key. The esti-
mated capacity of the approximation over 24 rounds is 2−55 which results in data
complexity of 264 for the full advantage a = 32. Hence, using the full code book
of 26-round PRESENT, 32 bits of the key can be recovered using this attack.

In [25] Shamir suggested to collecting more data using related keys. As ob-
served by Cho in the experiment, the probability distributions of the multidimen-
sional linear approximations vary with different keys while their capacities remain
about the same. We denote this capacity by C. Hence it is not realistic to assume
that we can collect information of data in the same distribution for different keys
but for each key a separate distribution must be observed. However, it is realis-
tic to assume the these distributions are statistically independent. Hence given
data from a number, say B different keys, we get B independent χ2-statistics
each computed from a distribution with capacity C. By taking the sum of these
χ2-statistics the data requirement is

N ≈ 2

√
aB9(28 − 1)

BC
.

Due to the nonlinear key schedule of PRESENT any key relation is expected to
become obscure at the last round. However, simple and natural relations, which
allow recovering the same secret key bits on the first round can be defined in
different ways. For example, one can consider a set of keys that have the same key
bits in the positions to be recovered, or keys that differ from each other by known
constants. Hence to attack the full 31-round PRESENT using such a related key



attack, a 30-round linear approximation must be used. The capacity of a 30-round
approximation was estimated to be C = 2−71 in [4]. Using the above formula, we
obtain that the required number of plaintexts, from which data is observed and
these B separate distributions are computed, is

N ≈ 2

√
16B9(28 − 1)

BC
≈ 279.6/

√
B.

From this we see that the full code book of N = 264 of plaintexts is sufficient to
carry out this attack if B = 231.2. The total time complexity for handling these
distributions is BN = 295.2. We conclude that such a related key attack breaks
the full 31-round PRESENT with 128-bit key, but not, if the key length is 80 bits.

8. Conclusions

Multidimensional linear cryptanalysis uses several linear approximations for re-
covering information about the secret key used in a block cipher. For that, we
have presented multidimensional generalisations of Matsui’s Alg. 1 and Alg. 2 and
demonstrated in theory and in practice how to realise them.

For Alg. 1, all the methods are practically equal. The theory and practical
experiments suggest that the convolution method is most efficient. However, the
use of Alg. 1 is based on the assumption that a good estimate of the p.d. of
the approximation is available. If the p.d. varies significantly with the key or is
otherwise ambiguous, Alg. 1 can fail.

In this sense, Alg. 2 is not as vulnerable to the p.d. Provided that the p.d. has
a non-negligible capacity, it is still possible to realise the attack with χ2-method.
On the other hand, if the p.d. is available, we suggest using the convolution or
LLR method for Alg. 2, also.

We also considered the linear hull effect, the relevance of Piling up lemma
and Correlation theorem. We showed how the linear hull effect contributes to
the correlation so that distinguishing attacks – on the average over the keys –
enhanced by it. We used Cho’s multidimensional Alg. 2 attack on the block cipher
PRESENT [4] to demonstrate the theoretical and practical effects of the linear
hull effect in multiple dimensions. The attack clearly benefitted from both the use
of multiple approximations in the context of multidimensional linear cryptanalysis
and the linear hull effect.
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