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Abstract. The ALRED family of Message Authentication Codes (MACs) is based on
three principles: Using a keyless block cipher in CBC mode to process the message, choos-
ing AES-128 as this cipher, and reducing the effective number of rounds to 4 in order to
speed up the processing. In this paper we show that each one of these principles creates
significant weaknesses. More specifically, we show that any ALRED-type MAC which uses
a keyless block cipher is vulnerable to new time/memory tradeoff attacks which are faster
than generic tradeoff attacks on one-way functions. We then use the special properties of
keyless AES to attack any number of rounds (4, 10, or a million) by forging the MAC of
essentially any desired message in negligible time and space after a one-time preprocessing
stage requiring 296 time and negligible space. For the recommended 4-round version we
show how to do the same using an improved preprocessing stage with a semi-practical
time complexity of 265, which is the best one can hope for in such MAC constructions.
Finally, we show that even if we replace the 4-round keyless AES by a 5-round or a 6-
round version with additional secret round keys we can still compute such MACs much
faster than via exhaustive search.

1 Introduction

Message Authentication Codes (MACs) are designed to compute for each input string a hard-to-
forge authenticator. They combine the properties of hash functions (by dealing with arbitrarily
long inputs), symmetric encryption algorithms (by using a secret shared key) and signature
schemes (by dealing with forgery rather than with secrecy). The main security requirement
is that even after choosing (in a possibly adaptive way) polynomially many messages mi and
obtaining their corresponding tags ti for some unknown key k of length n, the adversary should
not be able to compute the tag t for a new message m under the same key in time which is
substantially smaller than the 2n complexity of exhaustive search. The weakest and strongest
flavors of this problem are called existential forgery where m is some message which can depend
on all the previous queries, and universal forgery where m can be any message chosen before
the adversary queries the MAC oracle.

There are many known constructions for MACs which use other cryptographic primitives
as starting points. In particular, it is possible to turn any block cipher into a MAC by using
it in CBC mode and defining the tag as the final ciphertext block it produces. However, block
ciphers are designed with a different goal in mind (namely, to hide any information about the
plaintext given the ciphertext), which can be an overkill in a MAC application in which the
plaintext is actually given to the adversary. Conceivably, one can get higher speed by using
weaker versions of known block ciphers in order to process each plaintext block. Such a design



will not be sufficiently secure as a stand-alone cryptosystem, but it can still be an excellent
MAC which makes it very difficult to compute new tags from given tags.

The ALRED family of MACs [8] was designed in 2005 by the very experienced team of
Joan Daemen and Vincent Rijmen, who developed AES in the late 1990’s. They used a keyless
round-reduced version of AES-128 to process the message blocks in CBC mode, and used the
secret key only in order to encrypt the initial value and the final ciphertext block (in both cases
using a full keyed AES). In their paper, Daemen and Rijmen proposed two instantiations of the
ALRED family: Alpha-MAC which cuts the input into short blocks of 32 bits each and applies
only one round of keyless AES to each block, and Pelican which uses standard sized blocks
of 128 bits and applies four rounds of keyless AES to each block. Compared to the standard
10-round AES-128, both variants use only 40% of the number of rounds to process each chunk
of 128 input bits, and eliminate one of the four steps (the AddRoundKey operation) in each
round.

In any CBC construction in which the final MAC output is produced by a strong keyed
cryptosystem, the only feasible way to predict the tag for a new message is to collide it with
some previous message whose tag is already known. Such internal collisions are not likely to
exist whenever we query fewer than 2n/2 messages, which led the designers of ALRED to limit
the number of allowed messages in their scheme to this bound. On the other hand, once we
exceed this bound, we expect to find the first colliding pair of messages, and then we can create
arbitrarily many additional collisions by concatenating the same additional blocks after the two
colliding messages. By querying the tag of one of these extended messages, we can safely predict
that the tag of the other extended message in the pair will be the same. This provides an optimal
existential forgery attack on any such scheme whose time and data complexities are 2n/2.

In this paper we develop an almost universal forgery attack on the ALRED construction,
which is a much stronger form of attack. In some of our attacks, we can find in linear time
and space the tag of essentially any desired message m chosen in advance, after performing a
one-time precomputation in which we query the MAC on 2n/2 messages which are completely
unrelated to m. The only sense in which this is not a universal forgery attack is that we need
the ability to modify one message block in m in an easy to compute way. Our basic technique
is to use the precomputation in order to recover one of the chaining values used in one of the
queried messages. Since the message processing consists of a sequence of keyless permutations,
we can run such a known value forwards or backwards to find all the other chaining values, and
in particular the encrypted value of the IV under the secret key. Once we know this value, we
can follow the evolution of the chaining value when we MAC any new message. In the case of
Pelican, we can now modify just one of the 128-bit message blocks (it does not matter which)
to be the XOR of two known chaining values, and force the input to the final AES encryption
to be any value which was used in some previous query. Consequently, we can predict in linear
time the tag of any selected message under the unknown key provided that we can modify any
one of its blocks.

The best previous attack of this type on the ALRED family [17] was published at CRYPTO
2009 by Xiaoyun Wang et al. In the case of Alpha-MAC, their attack was optimal, requiring a
preprocessing stage of 265 time and data in order to recover one of the secret internal states.
However, in the case of Pelican, the best such attack required 285.5 time and data during the
preprocessing stage, leaving a considerable gap of about one million between the upper and
lower bound.3

3 The results presented in this paper were communicated by us during the ASIACRYPT 2010 rump
session. A recent result concerning an automatic tool for identification of cryptanalytic attacks [4],
which is going to be presented at CRYPTO 2011, re-discovered some of our results, thus verifying
their correctness.



Attack Type Number of Keyed or Complexity
AES Rounds Keyless Data Time Memory

Yuan et al. Imp. Diff. [17] 4 Keyless 285.5 CM 285.5 264

Diff. MitM (Sect. 6)⋆ 4 Keyless 265 CM 265 264

Imp. Diff. (App. A) 5 Keyed 280 CM 280 278

Imp. Diff. (App. A) 6 Keyed 2110 CM 2110 264

Generic (Sect. 5) any Keyless 296 CM 296 232

Generic (Sect. 5) any Keyless 296 ACM 296 1

Generic (Sect. 3) any Keyless 285.3 CM 285.3 285.3

Marvin (Sect. 5.3) any Keyless 296 ACM 296 1

CM — Chosen message, ACM — Adaptively chosen message.
Time complexity is measured in MAC evaluation units.
⋆ — This result was re-discovered in [4], see footnote 1.

Table 1. Summary of Attacks on Enhanced Variants of Pelican

In this paper we describe several new attacks on the ALRED family. Even though they do
not invalidate the designers’ formal security claims (which only refer to cases where the limited
number of available messages makes the existence of internal collisions highly unlikely), they
strongly suggest that the optimizations proposed by Daemen and Rijmen were too aggressive,
and that even milder simplifications are still risky. In particular, we show that any ALRED-type
MAC which uses a keyless encryption algorithm to process the messages can be attacked by
an improved time/memory tradeoff attack which requires only O(22n/3) online and offline time
to handle all the possible keys and messages, whereas standard tradeoff attacks on one-way
functions require O(22n/3) online time and O(2n) offline time. We then exploit a little-known
property of keyless AES to show that regardless of the number of keyless rounds we use, both
Alpha-MAC and Pelican can be broken in negligible online time after a one-time preprocessing
stage which requires 296 time and negligible space for any given key. We then describe how to
leverage almost any type of possible or impossible differential attack on reduced-round AES into
an attack on the Pelican MAC construction. For the official choice of 4 rounds, we develop a new
attack whose 265 time complexity is optimal for such 128-bit MACs. Combined with Wang’s
analysis of Alpha-MAC, this completes the analysis of all the recommended variants of the
ALRED family by providing tight bounds on their security. Finally, we show that even versions
with a larger number of rounds are vulnerable, by breaking a 5-round version of Pelican in 280

time, and by breaking a 6-round version of Pelican in 2110 time. Interestingly, all these attacks
could be applied with the same complexities even if the designers had added an independent
secret 128-bit key to each one of the rounds.

2 The ALRED Construction and its Instantiations Alpha-MAC and

Pelican

As described in the introduction, ALRED is a MAC construction based on an iterated block
cipher. Given a secret key k whose length is equal to the key length of the block cipher, and a
message m, the generation of the tag is composed of four steps:

1. Message padding and splitting: The message is padded with a single 1 and the minimum
number of 0’s so that the resulting length is a multiple of lw bits, where lw is a characteristic
of the MAC. The padded message is then divided into blocks m1,m2, . . . ,ml of length lw
each.
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Fig. 1. The ALRED construction
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Fig. 2. The structure of Alpha-MAC

2. State initialization: The state is initialized with the all-zero block, and then the block
cipher is applied to it, to obtain y0 = Ek(0).

3. Chaining: The following iteration is applied to the blocks m1,m2, . . . ,ml sequentially:
– The message block mi is mapped to an injection input Inji whose length is equal to the

length of r round keys of the block cipher.
– A reduced r-round variant of the block cipher is applied to the state yi−1, with Inji

replacing the round keys. The resulting state is denoted by yi.
4. Finalization: The block cipher is applied to the state yl to obtain z′ = Ek(yl). Then z′ is

truncated to the required length to obtain the tag z = Truncate(z′).

The construction is illustrated in Figure 1, where f denotes a reduced r-round variant of the
block cipher.

In this paper we focus on two concrete instantiations of the ALRED construction, proposed
by the ALRED designers [10]. Both of them use AES [7] as the underlying block cipher, and
they differ in the block length lw, in the number r of rounds in the reduced variant of AES, and
in the injection inputs used in the chaining step.

2.1 Alpha-MAC

In Alpha-MAC, the number of rounds is r = 1, the block length is lw = 32 bits, and the injection
input consists of inserting the 32 bits of the message block into four specific bytes of the round
key, and inserting zero into the remaining 12 bytes. The structure of Alpha-MAC is shown in
Figure 2, where R denotes a single AES round, and x1, x2, x3, and x4 denote the positions in
which the message block is injected.

2.2 Pelican

In Pelican, the number of rounds is r = 4, the block length is lw = 128 bits, and the injection
input consists of using the message as the first round subkey, and zeros as the other three
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Fig. 3. The structure of Pelican

subkeys. An equivalent description, which is more convenient for our analysis, is that in the
i’th iteration of the chaining step, the 128-bit message block mi is XORed to the state yi−1,
and then four-round keyless AES (i.e., AES without the AddRoundKey operations) is applied
to obtain the next state yi. The equivalent description is shown in Figure 3, where f denotes
four-round keyless AES.

3 Generic Attack on the ALRED Construction

In this section we present a generic attack on the ALRED construction, which is similar in
spirit to Daemen’s chosen plaintext attack [6] on the Even-Mansour encryption scheme [11]
and to the attack of Coppersmith et al. [5] on MacDES. The attack is completely independent
of the underlying block cipher, and of the number of rounds in its reduced variant. The only
features exploited in the attack are the fact that the function applied in the chaining step is
keyless, and the structure of the injection input. For the sake of simplicity, we consider first
Pelican-type constructions. We present a basic attack which requires data, memory and online
time complexities of slightly more than 2lw/2, and a preprocessing of 2lw operations. Then we
show a tradeoff that allows to reduce the preprocessing time, at the expense of increasing the
data and time complexities. Finally, we show that a variant of the attack is applicable also
to instantiations of ALRED with other classes of injection inputs, such as Alpha-MAC-type
constructions.

3.1 The Basic Attack on Pelican-type Constructions

In a Pelican-type construction, we assume that the structure of the MAC is as shown in Figure 3,
where E is some block cipher (possibly provably secure), and f is some keyless permutation
(which is possibly perfectly random). Note that for such constructions, both E and f operate
on lw-bit blocks.

The algorithm of the basic attack is as follows.

1. Preprocessing phase. Choose an arbitrary non-zero lw-bit value ∆, and perform the
following operations for each lw-bit value C:
(a) Compute the values P = f−1(C), P ∗ = f−1(C ⊕∆).
(b) Check whether the first lw/2 bits of P ⊕ P ∗ are zeros. If this is the case, store the pair

(P, P ∗) in a hash table indexed by the last lw/2 bits of the difference P ⊕ P ∗.
2. On-line phase.

(a) Ask for the MAC evaluation of two structures S1 and S2 of 2lw/2 two-block messages
each, such that:
– In S1, in all messages, the first lw/2 bits of the block m1 are zeros, the remaining

lw/2 bits of m1 assume all the 2lw/2 possible values, and the block m2 is fixed to
zero.

– In S2, the first lw/2 bits of the block m1 are zeros, the remaining lw/2 bits of m1

assume all the 2lw/2 possible values, and the block m2 is fixed to ∆.



(b) Insert the tags into a hash table, and search for an internal collision (i.e., collision before
the final application of Ek(·)).
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(c) If the messages (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2 form an internal collision, look at the
table prepared in the preprocessing phase, in the cell corresponding to m1 ⊕ m∗

1. For
each pair (P, P ∗) in the cell, assume that Ek(0) = P ⊕m1, and verify the guess using
the MAC evaluation of one of the messages in the data set.

Analysis of the algorithm The table constructed in the preprocessing phase contains all the
pairs of input/output values of f in which the output difference is ∆, and the first lw/2 bits
of the input difference are zeros. It is expected that the number of pairs (P, P ∗) in the table is
close to 2lw/2, and that for each possible value of P ⊕ P ∗, the table contains at most several
pairs corresponding to that difference.

The idea behind the algorithm is that if (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2 form an internal
collision, then the inputs to the function f in the first step of the chaining processes of (m1,m2)
and of (m∗

1,m
∗

2) must form a pair in the pre-constructed table.
To prove this claim, denote the intermediate values in the chaining processes of (m1,m2)

and of (m∗

1,m
∗

2) by (y0, y1, y2), and (y∗0 , y
∗

1 , y
∗

2), respectively. Denote the inputs to the function
f in the first step of the chaining processes by x and x∗. In order to show that the pair (x, x∗)
appears in the table, we have to show that the difference between the corresponding outputs of
f , which are y1 and y∗1 , is ∆, and that the first lw/2 bits of x⊕ x∗ are zeros.

This indeed follows from the structure of S1 and S2. On the one hand, since (m1,m2) and
(m∗

1,m
∗

2) form an internal collision, we have y2 = y∗2 . Since the function f(·) is invertible, this
implies that y1 ⊕ y∗1 = m2 ⊕ m∗

2 = ∆, as required. On the other hand, by definition of the
ALRED construction, y0 = y∗0 = Ek(0), and thus, x ⊕ x∗ = m1 ⊕ m∗

1. By the choice of the
structures, the first lw/2 bits of both m1 and m∗

1 are zeros, and thus the first lw/2 bits of x⊕x∗

are zeros as well.
Hence, the pair (x, x∗) indeed appears in the pre-computed table, and as mentioned before,

there are likely to be only a few pairs in the table with the difference m1 ⊕ m∗

1. Since x =
Ek(0)⊕m1, each such pair yields a single suggestion for the initial state y0 = Ek(0).

The data complexity of the attack is 2lw/2+1 chosen messages, and the time complexity is
dominated by evaluating the MAC value of the messages. The memory required for the attack
is lw · 2lw/2+1 bits. The attack succeeds for sure once an internal collision is encountered, and
hence, the success probability of the attack is 1 − 1/e (which is the probability that the given
data set during the on-line phase of the attack contains an internal collision).

3.2 Preprocessing/Data Tradeoff

If the preprocessing time available to the adversary is smaller than 2lw , she can still mount a
variant of the attack, but with a higher data complexity.

Assume that the available preprocessing time is 2lw−k. In such situation, during the prepro-
cessing phase, the adversary is able to check only a 2−k fraction of the pairs (C,C ⊕∆), and
thus, the table contains only a small portion of the pairs (P, P ∗) with the prescribed input and
output differences. As a result, the adversary cannot assure that the pair (x, x∗) obtained from
the internal collision appears in the pre-computed table. However, if the adversary will examine

4 If the length of the tag is lw bits then a collision in the tag value results from an internal collision
with high probability. If the tag is shorter, there can be many false alarms, but the adversary can
verify that a collision is internal by appending to the two messages the same block m3 and checking
whether the new tags also collide. For the sake of simplicity, we assume in the sequel that the tag
length is lw bits.



2k random internal collisions, then with probability of 1− 1/e, one of them would appear in the
table and allow to retrieve the initial state Ek(0).

Formally, the attack algorithm is similar to the original attack, with the following changes:

1. In the preprocessing phase, the adversary checks 2lw−k pairs of the form (C,C ⊕ ∆), and
stores the corresponding plaintext pair (P, P ∗) in the table if the first (lw − k)/2 bits of
P ⊕ P ∗ are zeros. The table is indexed by the (lw + k)/2 last bits of P ⊕ P ∗.

2. In the on-line phase, in both structures, only the (lw−k)/2 first bits of m1 are fixed to zeros,
while the remaining (lw + k)/2 bits assume all the 2(lw+k)/2 possible values. Thus, the size
of the structures is increased to 2(lw+k)/2, and the adversary expects to obtain 2k internal
collisions. For each collision, the adversary checks the pre-computed table like in the basic
attack, and it is expected that in one of the internal collisions, the pair (x, x∗) exists in the
table and allows to retrieve Ek(0).

The preprocessing phase of the attack requires 2lw−k operations, and the data and time
complexities are 2(lw+k)/2+1. The memory requirement is lw · 2(lw+k)/2+1 bits.
Since such attack is possible for any value of k, this yields the tradeoff curve:

PD2 = 22lw ,

where P is the preprocessing time, andD is the data complexity. In particular, the adversary can
mount an attack with overall complexity of 22lw/3, without using any additional preprocessing
time.

3.3 Variants of the Attack Applicable to Other ALRED Constructions

In this section we present a variant of the generic attack applicable to constructions of the
type of Alpha-MAC. Following the same ideas, one can construct attacks on other ALRED
constructions as well, where the exact structure of the attack depends on the injection input
used in the attacked construction.

In the attack we assume that the MAC has the structure described in Figure 2, where R
is any keyless function (which may be provably secure). The difference between this structure
and Pelican-type structures considered in Section 3.1 is that in Alpha-MAC, the adversary can
control only 32 of the 128 “subkey” bits inserted before the keyless function, while the remaining
96 bits are forced to be zeros. As a result, the adversary is forced to use structures of size at
most 232, and hence, 264 pairs of structures are required in order to obtain an internal collision.

Apart from this difference, the attack is essentially similar to the attack on Pelican-type
structures. Let the injection positions be the four byte positions in which the message is injected
into the state (i.e., the positions denoted by x1, x2, x3, x4 in Figure 2). In the preprocessing phase,
the adversary chooses a non-zero difference ∆ such that only the injection positions in ∆ may be
non-zero. Then, she constructs the table like in the original attack, but stores only pairs (P, P ∗)
in which P ⊕ P ∗ is non-zero only in the injection positions. In the online phase of the attack,
the adversary considers 264 pairs of structures of 232 four-block messages each, such that in each
pair of structures, the first two blocks are fixed to the same value (m1,m2) in both structures,
the fourth blocks are fixed to two values whose difference is ∆, and the third blocks assume all
the 232 possible values. (The first two blocks are required in order to supply 264 different pairs
of structures.) The adversary looks for an internal collision, and by a table lookup she finds a
few suggestions to the value of the intermediate state after the insertion of m3. Then she rolls
back the process to obtain suggestions for Ek(0), and checks them using the already obtained
data.



The data, time, and memory complexities of the attack are slightly above 296. Like in the
attack on Pelican-type constructions, the preprocessing complexity can be reduced at the ex-
pense of increasing the data complexity. However, this time the tradeoff curve is worse, since
the adversary cannot increase the size of the structures, and thus a decrease of factor 2k in the
preprocessing time leads to an increase of 2k in the data complexity.5 Hence, the resulting curve
is:

PD = 2224.

In general, if the size of the state is lb (and thus R operates on lb-bit blocks), and the adversary
can control s out of the lb bits inserted into the state, then the possible values on the tradeoff
curve are:

{

PD2 = 22lb , 2lb/2 ≤ D ≤ 2s,
PD = 22lb−s, max(2s, 2lb−s) ≤ D ≤ 2lb .

We note that in the specific case of Alpha-MAC, where the function f is 1-round keyless AES,
the attack procedure has to be altered a bit, since as shown in [8], due to the structure of AES,
a difference which is non-zero only in the injection positions cannot lead through a single AES
round to a difference which is also non-zero only in the injection positions. Actually, at least
4 AES rounds are needed in order to make such transition possible. In order to overcome this
problem, the adversary considers 7-block messages, where the fourth, fifth, and sixth blocks are
fixed to zero in all messages. After making this change, the attack described above applies to the
original Alpha-MAC. Moreover, the attack can be improved (in the specific case of Alpha-MAC)
using the fact that the mixing in one-round AES is weak. The resulting attack has data and
time complexities of slightly more than 264, with a preprocessing of 2128. However, this attack
is inferior to the attack on Alpha-MAC presented in [17], and thus we omit the details here.

4 Leveraging Differential-type Attacks on the Underlying Reduced

Block Cipher to an Attack on the Full ALRED

In Section 3, we presented a generic attack on the ALRED construction which exploits the fact
that the function f used in the chaining step is keyless. We showed that the attack is applicable
even if f has no cryptographic weaknesses and behaves as a random function. In this section we
present an attack which can be applied whenever the function f is weak with respect to some
differential-type attack, which is often the case for reduced-round block ciphers (like 4-round
AES suggested by the ALRED designers). While the generic attacks described in the previous
section apply only if f is keyless, this attack can be applied even if f is keyed.

Due to space constraints, we consider in this section only Pelican-type constructions. The
applicability of the attack to other ALRED constructions is discussed in Appendix A.

4.1 The Generic Leveraging Procedure for Pelican-type Constructions

The main observation used in the attack is that two-block internal collisions in a Pelican-type
scheme can be viewed as input/output pairs for the block cipher f , where the unknown initial
state Ek(0) is viewed as an initial whitening key of f . In order to understand the observation,
we consider an equivalent representation of the first two steps of a Pelican-type construction,
presented in Figure 4. In terms of the equivalent representation, given a pair of two-block
messages (m1,m2) and (m∗

1,m
∗

2), we treat (m1,m
∗

1) as an input pair for the block cipher f . If

5 Note that in order to obtain more than 264 pairs of structures, the adversary has to append another
block in the beginning of the messages.



Ek0
⊕

m1

fEk m1
⊕

Ek(0)

f

Fig. 4. The original structure of Pelican (on the left) and the equivalent structure

(m1,m2) and (m∗

1,m
∗

2) form an internal collision, then we know that the difference between the
corresponding outputs of f must be m2 ⊕m∗

2, since f is a permutation and thus the only way
to create a zero difference after the second f is to have a zero difference before it.

Hence, even if the function f is keyed, any local collision provides the adversary with a
pair of input/output values for f , in which the actual inputs (i.e., m1 and m∗

1) and the output
difference (i.e., m2 ⊕m∗

2) are known to the adversary. This makes it possible to leverage several
classes of differential-type attacks on f to attacks on the MAC construction.

Specifically, the usual structure of differential-type attacks (both ordinary differential attacks
and impossible differential attacks) is as follows:

1. The analyzed cipher E is considered as a cascade E = E1 ◦ E
′ ◦ E0, where E′ is the “core”

of the cipher, and E0 and E1 are either empty or consist of a few rounds.
2. The adversary finds a differential-type distinguisher for E′, showing that if a pair of inputs

of E′ has some prescribed difference α, then the corresponding outputs of E′ have difference
β with an unexpected probability (either high in differential cryptanalysis, or zero in an
impossible differential attack).

3. The adversary guesses (all or part of) the subkeys used in E0 and E1, performs partial
encryption/decryption, and checks whether the prediction of the distinguisher on E′ holds.
This makes it possible to retrieve the value of the guessed subkeys, provided there is a
sufficiently large number of input/output pairs for E.

In our situation, assuming that f is keyed, the adversary cannot perform partial decryption
on the outputs of the block cipher f , since she knows only the output difference, but not the
actual values. However, if in the differential-type attack, the subcipher E1 in the subdivision of
f into E1 ◦ E

′ ◦ E0 is empty, then the attack can be applied directly to the input/output pairs
obtained from internal collisions, allowing to retrieve the internal state Ek(0) (which serves as
the subkey used in E0).

Therefore, any differential-type attack with no rounds after the distinguisher can be leveraged
directly into an attack on the MAC construction. The data and time complexities of the attack
given the internal collisions are the same as the complexities of the original attack on f .

We note that the total complexity of the attack on the MAC is expected to be much higher
than the complexity of the attack on the block cipher due to the need to obtain internal collisions
by the birthday paradox at the starting point of the attack. Generally, a differential-type attack
using 2l chosen plaintext pairs is transformed to an attack on the MAC requiring at least
2(l+lb)/2 messages, where lb is the block size of f , since only this amount of messages is sufficient
for obtaining 2l internal collisions by the birthday paradox. Moreover, in actual attacks it may
be desirable to tweak the differential-type attack before leveraging it to an attack on the MAC,
in order to allow using larger data structures in the attack, and thus reduce the amount of
data required for obtaining the internal collisions. Such tweak is demonstrated in the attacks on
enhanced Pelican presented in the appendix.

The general technique outlined above makes it possible to use known impossible differential
attacks on reduced-round AES in order to break even stronger variants of Pelican, in which
4-round keyless AES is replaced by 5-round or 6-round AES with AddRoundKey operations



(possibly with independent subkeys). The data and time complexities of the resulting 5-round
attack are less than 280. We note that the best previously known attack on Pelican, by Yuan et
al. [17], which is also an impossible differential attack, has data and time complexities of 285.5,
and thus, our new attack breaks a stronger variant of Pelican with a lower complexity. Due to
space constraints, the detailed description of the attacks is given in Appendix A.

5 Generic Attacks on ALRED Based on Keyless AES

In this section we concentrate on the suggestion of the ALRED designers to use keyless AES
as the internal block cipher in the construction. We show that while the choice of AES seems
natural, the keyless variant of AES is vulnerable to new types of generic attacks, which are
independent of the number of rounds. In particular, we present generic attacks on generalized
Pelican and Alpha-MAC in which the internal encryption is a full 10-round AES, or even stronger
versions of AES with any number of rounds, with a fixed data complexity of 297 messages and
an extremely small memory complexity. While the data complexity of the attacks is higher than
that of the generic attacks presented in Section 3, the extremely low memory requirement and
its applicability to ALRED variants in which the adversary can control only part of the state
makes these attacks more attractive. Furthermore, we show that these attacks apply also to the
MAC Marvin proposed in [15, 16], which seems to be immune to the attacks presented in the
previous sections, as well as to the attacks presented by Yuan et al. [17].

5.1 The Basic Generic Attack on Pelican-type Constructions

The attack is based on a simple observation on the structure of keyless AES, first presented
in [13]. We note that this observation was also applied in [3] to attack the AES-based hash
function Lesamnta.

Observation 1 (Le et al.) Consider a single round of keyless AES, i.e., a sequence of the
operations SubBytes, ShiftRows, MixColumns. Denote the states before and after the round
by (x, y, z, w) and (x′, y′, z′, w′) = F (x, y, z, w), respectively, where each of the variables denotes
a column 32-bit vector. Then we have the following:

If F (x, y, z, w) = (x′, y′, z′, w′), then F (y, z, w, x) = (y′, z′, w′, x′).

In particular, for the input (x, y, x, y) with two repeated columns, F (x, y, x, y) also has repeated
columns of the form (x′, y′, x′, y′).

It is clear that while in ordinary AES, the special form (x, y, x, y) is destroyed by the Ad-
dRoundKey operation, in keyless AES this special form is preserved through an arbitrarily large
number of rounds.

Using the observation, we can mount the following simple attack on generalized Pelican with
any number of rounds of keyless AES as the internal block cipher.

1. For each of the 264 possible 128-bit blocks of the form m1 = (x, y, 0, 0), do the following:
(a) Ask for the MAC evaluation of a pair of structures S1 and S2 of 232 two-block messages

each, such that:
i. In S1, the first block is fixed to m1, and in S2, the first block is fixed to m1 ⊕

(1, 1, 1, 1).6

6 Note that the first blocks in the two structures must differ, since otherwise there will be no collision
between the structures as keyless AES is a permutation.



ii. In each of the structures, the second block assumes 232 random values of the form
(x′, y′, x′, y′).

(b) Insert the tags into a hash table and search for a collision between the two structures. If
a collision is found, deduce that the initial state is one of the 264 possible values of the
form (z, w, z, w)⊕m1, for some z, w. If not, discard the guess of m1.

2. For the single expected value of m1, that remains, find the values of z, w by exhaustive
search.

The idea behind the algorithm is the following: If Ek(0) is of the form m1 ⊕ (z, w, z, w),
then Ek(0)⊕m1 and Ek(0)⊕m1 ⊕ (1, 1, 1, 1) are both of the special form (z, w, z, w) (i.e., have
two repeated columns). Since all the values of the second block m2 are also of the special form,
the corresponding y2 values also have two repeated columns (independently of the number of
rounds of keyless AES). The space of such special values is of size 264. On the other hand, the
number of messages in each structure is 232, and thus the number of pairs (m1,m2), (m

∗

1,m
∗

2),
where (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2, is 264. For all these 264 pairs, the corresponding y2
values reside in the space of special values which is of size 264, and hence it is expected that
there exists an internal collision (m1,m2), (m

∗

1,m
∗

2), where (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2.
On the other hand, if Ek(0) is not of the form m1 ⊕ (z, w, z, w), then Ek(0) ⊕ m1 and

Ek(0) ⊕ m1 ⊕ (1, 1, 1, 1) are not of the special form, and thus, there is no restriction on the
y2 values. Therefore, for the 264 pairs of the form (m1,m2), (m

∗

1,m
∗

2), where (m1,m2) ∈ S1

and (m∗

1,m
∗

2) ∈ S2, the corresponding y2 values reside in a space of size 2128, and hence the
probability that these pairs contain an internal collision is extremely low.

The attack so far recovers 64 bits of Ek(0), and the rest of the bits can be found by exhaustive
key search. The data complexity of the attack is 297 two-block messages, the time complexity
is 297 MAC evaluations, and the memory requirement is only 232 128-bit blocks.

5.2 A Memoryless Variant of the Attack

If the adversary is allowed to ask for the MAC evaluation of adaptively chosen messages, the
memory requirement of the attack can be further reduced to a few cells of memory, using Floyd’s
cycle finding algorithm [12].

The attack algorithm is as follows:

1. For each of the 264 possible 128-bit blocks of the form m1 = (x′, y′, 0, 0), do the following:
(a) Ask for the MAC evaluation of a sequence of adaptively chosen two-block messages,

defined as follows:
– m0 = (m1, 0).
– For k > 0, if MAC(mk−1) = (x, y, z, w), then mk = (m1 ⊕ (x, y, x, y), (z, w, z, w)).

(b) Use Floyd’s cycle finding algorithm to find a cycle in the sequence of tag values. If the
algorithm does not terminate within 232 steps, discard the guess of m1. If the algorithm
terminates, deduce that Ek(0) is of the form (z′, w′, z′, w′)⊕m1 for some z′, w′.

2. Only one value of m1 is expected to survive. For this value, find z′, w′ by exhaustive search
on their 264 possible values.

The idea behind this algorithm is the same as the idea behind the basic algorithm. If Ek(0) is
of the form (z′, w′, z′, w′)⊕m1, then all the tag values in the generated sequence lie in a smaller
space of size 264, and thus Floyd’s algorithm is expected to terminate in about 232 steps. If
Ek(0) is not of the desired form, then the tag values of the sequence lie in the entire space of
size 2128, and thus no short cycle is expected.

The data and time complexities of the algorithm are 296, and the memory requirement is
only a few memory cells.



5.3 Application to the Marvin MAC

Another ALRED construction that can be attacked using the generic algorithm described above
is the Marvin MAC designed by Simpĺıcio et al. [15, 16]. The main difference between Marvin
and Pelican is the chaining step, where in Marvin, each block mi of the message is encrypted
independently to

Fi(mi) = AES4(mi ⊕ y0 · ci),

where y0 is the value after the initialization, ci are a series of known constants, · denotes
multiplication over GF (2n), and AES4 denotes a 4-round keyless variant of AES. Then the
values Fi(mi) are XORed together to obtain

yℓ = F1(m1)⊕ . . .⊕ Fℓ(mℓ),

and the finalization is essentially the same as in Pelican. See [15] for the exact description of
Marvin algorithm.

It seems that in Marvin, the simplest form of an internal collision an adversary can obtain
is achieved by altering the values of two message words mi,mj and hoping that the differences
generated in Fi(mi) and Fj(mj) will cancel each other. Such an internal collision provides the
adversary with two input/output pairs for 4-round AES, in which the input differences are
known, and it is known that the output differences are equal (but it is not known what is
this output difference). This information is insufficient neither for the attacks presented in the
previous sections nor for the attacks presented by Yuan et al. [17] and thus, it is unclear whether
these attacks can be applied to Marvin.

On the other hand, it can be easily seen that the generic attack presented above applies to
Marvin (up to a small modification). Indeed, note that if the XOR difference between the two
halves of the value y0 (denoted in [15] by R) is known, then the differences between the halves
of y0 · ci are known as well. Hence, for each possible guess of the difference between the halves of
y0, the adversary can construct a pool of 232 two-block messages (m1,m2) with the appropriate
differences between the halves of the two blocks, such that if the guess is correct, the two halves
of m1 ⊕ y0 · c1 and of m2 ⊕ y0 · c2 are equal. Then, the attack can be completed as in the basic
generic attack on Pelican-type structures above. The memoryless variant of the attack can be
modified similarly.

Thus, our generic attack on Marvin allows to recover the initial value y0 (denoted by R in [15])
and thus to perform almost universal forgery of the MAC with data and time complexity of 296

and only a few memory cells. The attacks extend immediately without any change, even if the
number of keyless AES rounds is increased.

We note that these attacks do not violate the security claims of Marvin, as these ensure
security only as long as the number of queries is below the birthday bound.

5.4 Attacks on Other ALRED Constructions

Unlike the attacks presented in the previous sections, this generic attack performs similarly even
if the adversary can control only part of the state bytes. As an example, we show the changes
required in order to adapt the basic attack to Alpha-MAC with an arbitrary number of keyless
AES rounds as the internal block cipher.

– At the beginning of the attack, instead of considering all the possible values m1 of the form
(x, y, 0, 0), the adversary considers arbitrary two-block values (m1,m2). (Note that the size
of each block in Alpha-MAC is 32 bits).



– For each value of (m1,m2), the adversary considers a single structure of four-block messages,
such that the first two blocks in all messages are fixed to (m1,m2), and each of the blocks
m3,m4 assumes all the 216 possible 32-bit values (x1, x2, x3, x4) in which x1 = x3 and
x2 = x4.

– If a collision is found, the adversary deduces that the intermediate state after the insertion
of m2 is of the form (z, w, z, w), guesses the values of z and w, rolls the MAC evaluation
back to obtain Ek(0), and checks the obtained guess against the MAC evaluations existing
in the data set.

The memoryless attack can be modified in a similar way.

6 A Dedicated Attack on Pelican

In this section we consider the original Pelican proposal, which is the specific instantiation of
ALRED described in [10]. We show that using a simple differential-type attack, the adversary
can recover the initial state Ek(0) with data and time complexities of 265 – essentially the
complexity required for detecting a single internal collision by the birthday paradox, which is
likely to be the smallest possible complexity of any generic attack on a MAC construction.

The attack is based on a simple differential property of S-boxes:

Observation 2 Consider an S-box S, and pairs (α 6= 0, β) of input/output differences for the
S-box. For each such pair, let Sα,β denote the set of pairs (x, y) such that x ⊕ y = α and
S(x) ⊕ S(y) = β. Then the expected cardinality of the set Sα,β is 1, and the elements of all
sets Sα,β can be enumerated efficiently using the pre-computed difference distribution table of
the S-box. For an n-by-n bit S-box, the time required to construct the table is 22n evaluations of
the S-box, and the memory required to store the table is about 22n+1 n-bit words.

In the attack, the adversary searches for a two-block internal collision (m1,m2), (m
∗

1,m
∗

2),
in which the input and output differences to the keyless 4-round AES (which are m1 ⊕m∗

1 and
m2 ⊕ m∗

2, respectively) have a “nice form”. Specifically, the adversary requires that m1 ⊕ m∗

1

is zero in bytes 1, 2, 6, 7, 8, 11, 12, 13, and that m2 ⊕m∗

2 has a fixed non-zero difference in byte
0 and zero difference in the remaining bytes.7 (Such differences can be easily obtained by an
appropriate choice of structures, as we show in the attack algorithm below.)

Figure 5 presents the propagation of differences through the 4-round AES encryption, given
the chosen input and output differences (denoted by ∆X1 and ∆X5, respectively). As shown in
the figure, the input difference to round 2 (denoted by ∆X2) is non-zero only in the first two
columns, and thus there are at most 264 possible differences at the state before the SubBytes
operation of round 3 (denoted by ∆X3). On the other hand, the input difference to round 4
(denoted by ∆X4) is non-zero only in four bytes, and thus there are at most 232 possible
differences in the state after the SubBytes operation of round 3 (denoted by ∆X3(SB)). For each
of the 264 · 232 = 296 combinations of differences, the adversary can apply Observation 2 to
the SubBytes operation of round 3 (which consists of 16 8-bit S-boxes applied in parallel), and
obtain a single suggestion on average for the actual state at the input of round 3. Then she can
run the MAC evaluation backwards to obtain a single suggestion for the initial state Ek(0).

In a naive implementation, the time complexity of the attack is about 296 MAC evaluations.
However, the time complexity can be reduced to 265 MAC evaluations by using a few pre-
computed tables, as described in the next paragraph.

Consider a fragment of the 4-round AES, consisting of round 3 and the SubBytes operation
of round 4, i.e., a sequence of SubBytes, ShiftRows, MixColumns, SubBytes operations. In this

7 The numbering of the bytes in an AES state which we use here is defined in the appendix.
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Fig. 5. A difference pattern in 4-round AES. White cells denote zero difference, and black cells denote
arbitrary difference.

fragment, the encryption can be viewed as four 32-bit to 32-bit encryptions acting in parallel.
(The first of these encryptions transforms bytes 0, 5, 10, 15 at the input to round 3 to bytes
0, 1, 2, 3 after the SubBytes of round 4, and the other encryptions are constructed similarly.)
The adversary can treat each such encryption as a super S-box mapping 32 bits to 32 bits, and
apply to it Observation 2. Specifically, she can construct in advance the differential distribution
tables of these super S-boxes, and then in the on-line phase of the attack, deduce the actual
values in the input to round 3 from the input and output differences of the super S-boxes. Note
that in our attack, the difference after the SubBytes operation of round 4 is fixed and known in
advance to the adversary. (This difference is MixColumns−1(m2 ⊕m∗

2).) Thus, the adversary
has to keep in the pre-computed tables only the entries which correspond to that fixed output
difference. Therefore, the pre-computed tables require less than 240 bits (or 128 gigabytes) of
memory. The time required to construct the tables is 266 operations, but it can be easily reduced
to 242 operations using the specific form of the fixed output difference.

We are ready now to present the attack algorithm.

1. Detecting an internal collision of a specific form:
(a) Ask for the MAC evaluation of two structures S1 and S2 of 264 two-block messages each,

such that:
– The first blocks in all messages in both structures have a fixed value in bytes

1, 2, 6, 7, 8, 11, 12, 13 (the same value for all messages in both structures), and as-
sume all 264 possible values in the remaining 8 bytes.

– The second blocks in all messages in S1 are fixed to a constant value m2 and the
second blocks of all messages in S2 are fixed to a constant value m∗

2, where the
difference m2 ⊕m∗

2 is non-zero only in byte 0.
(b) Insert the output tags into a hash table and search for an internal collision (m1,m2), (m

∗

1,m
∗

2),
such that (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2.
2. Retrieving the internal state:

(a) Given an internal collision, for each of the 264 possible input differences to round 3,
access the pre-computed tables and find the corresponding input values to round 3.
Decrypt these values through rounds 2 and 1, and check whether the difference in the
input to round 1 is m1 ⊕m∗

1. If no, discard the guess of the input difference to round 3.
Since this is a 64-bit filtering, it is expected that only a few guesses of the difference
remain.

(b) For the remaining guesses of the input difference of round 3, use the input to round 1
in the first of the two colliding blocks (which equals Ek(0) ⊕ m1) to obtain a unique
suggestion for Ek(0).

The data complexity of the attack is 265 chosen two-block messages, and its time complexity
is dominated by the evaluation of the MAC on the two structures of 264 messages each. The
memory requirement of the attack is 264 128-bit blocks.



We note that using a similar strategy, one can attack generalized variants of Pelican with
up to seven keyless AES rounds as the internal block cipher. However, since the complexity of
these attacks is higher than that of the generic attack presented in Section 3, we do not present
them here.
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A Using Impossible Differential Attacks on Reduced-round AES to

Attack 5-round and 6-round Pelican

As an example of the general technique outlined in Section 4, we show how to use known im-
possible differential attacks on reduced-round AES in order to break even stronger variants of
Pelican, in which 4-round keyless AES is replaced by 5-round or 6-round AES with AddRound-
Key operations (possibly with independent subkeys). The data and time complexities of the
5-round attack are less than 280. We note that the best previously known attack on Pelican, by
Yuan et al. [17], which is also an impossible differential attack, has data and time complexities
of 285.5, and thus, our new attack breaks a stronger variant of Pelican with a lower complexity.
A variant of our 5-round attack can be used to break the original 4-round Pelican, with the same
data and time complexities of 280. We omit its detailed description, as it is inferior to another
dedicated attack on the original Pelican presented in Section 6, which is based on a different
idea.

In the description of the attacks on AES (both in this appendix and in Section 6), we use
the following standard notations. Each state during the AES encryption is represented by a
4-by-4 byte matrix, and the entries of the matrix are numbered by 0, 1, . . . , 15, such that the
j-th entry in the i-th row (for 0 ≤ i, j ≤ 3) is numbered by i + 4j. The four operations applied
in each round – SubBytes, ShiftRows, MixColumns, and AddRoundKey – are denoted by SB,
SR, MC, and ARK, respectively. The rounds are numbered 1, 2, . . . , 10. The subkey used in the
r-th round is denoted by kr, and the initial whitening key is denoted by k0.

A.1 Impossible Differential Attacks on 5-round and 6-round AES

Impossible differential attacks on reduced-round AES with 128-bit keys were extensively studied
in the last decade, and several attacks on 5,6, and 7 rounds were presented (see [14] for a summary
of the attacks).

The simplest attack, by Biham and Keller [2] on 5-round AES, does not use any rounds after
the distinguisher, and thus can be applied directly to a 5-round Pelican using the generic tech-
nique described in Section 4.1. The most advanced attacks on 7-round AES (e.g., by Bahrak and
Aref [1]) cannot be leveraged directly since they analyze rounds on both sides of the distinguisher,
but a reduced 6-round variant of the attacks, which drops the round after the distinguisher, can
be leveraged directly.

However, in order to enable the adversary to use larger structures and thus reduce the
data complexity of the attacks on the MAC, we present slightly different impossible differential
attacks on 5-round and 6-round AES, which we will then apply to 5-round and 6-round Pelican.

Our attacks are based on a 3-round impossible differential of AES which is similar to (but not
identical with) the impossible differentials used in all previous attacks. The differential, depicted
in Figure 6, asserts that if the difference in the input to round i of (either keyed or un-keyed)
AES is zero in bytes 0, 5, 10, 15 (regardless of the difference in the rest of the bytes), then the
difference in the input to round i+ 3 cannot be non-zero only in byte 0.

Indeed, consider a pair (P, P ∗) of inputs to the i-th round of AES, such that the difference
P ⊕ P ∗ is zero in bytes 0, 5, 10, 15. By the structure of AES, the corresponding intermediate
difference in the input to round i+ 1 is zero everywhere in the first column.

On the other hand, if the difference in the input to round i+3 is non-zero in byte 0 and zero
in all other bytes, then the input difference to round i + 2 is non-zero in bytes 0, 5, 10, 15 and
zero in the other bytes. Consequently, the difference in the input to round i + 1 is non-zero in
all bytes, contradicting the forward direction.
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Fig. 6. An Impossible Differential of 3-round AES. White cells denote zero difference, gray cells denote
non-zero difference, and “?” denotes arbitrary difference.

Similar impossible differentials hold if the zero input difference is placed at any of the four sets
of bytes: {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13}, and {3, 4, 9, 14}, and if the output is replaced
by any single-byte difference.

A standard way to use this impossible differential to break 5-round AES, is to perform the
following three-step attack procedure (see, e.g., [2] for a similar attack):

1. Ask for the encryption of a structure of plaintexts in which the values of several bytes are
constant, and the other bytes assume different values (these bytes are called “active”).

2. Consider only those ciphertext pairs within the structure in which the difference in the input
to round 5 is in a single byte (using a hash table, these pairs can be found instantly).

3. Guess the part of the first subkey which are used in the active bytes, and for each guess and
for each pair, check whether the difference in the input to round 2 is zero in one of the four
sets of bytes: {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13}, and {3, 4, 9, 14}. If so, discard the key
guess.

In order to extend the attack to 6-round AES, the adversary can add one round in the
beginning, guess relevant subkey material in the first two subkeys, and check whether the input
to round 3 is zero in one of the four sets: {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13}, and {3, 4, 9, 14}.
We omit the details of the attacks here, since they are essentially the same as the attacks on
Pelican we present below.

A.2 Leveraging the attacks to 5-round and 6-round Pelican

We start with an attack on generalized Pelican, in which the underlying reduced block cipher is
enhanced from 4-round keyless AES to 5-round AES including the AddRoundKey operations,
with independent subkeys to each one of the 5 rounds.



Attack on 5-round Pelican The algorithm of the attack on the generalized 5-round Pelican
is as follows:

1. Detecting internal collisions:

(a) Ask for the MAC evaluation of two structures S1 and S2 of 278 two-block messages each,
such that:

– The first blocks in all messages in both structures have a fixed value in bytes
1, 6, 11, 12, 13, 14 (i.e., the same value for all messages in both structures), and as-
sume 279 different values in the remaining 10 bytes in the two structures.

– The second blocks in all messages in S1 are fixed to a constant value m2 and the
second blocks of all messages in S2 are fixed to a constant value m∗

2, such that
MixColumns−1(m2 ⊕m∗

2) is non-zero only in byte 0.

(b) Insert the tags into a hash table and search for internal collisions (m1,m2), (m
∗

1,m
∗

2),
such that (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2.

2. Attacking the internal reduced block cipher: For each internal collision and for each
guess of bytes 0, 2, 3, 4, 5, 7, 8, 9, 10, 15 of the internal state Ek(0),

8 partially encrypt the pair
(m1 ⊕ Ek(0),m

∗

1 ⊕ Ek(0)) through the first round of AES, and check whether the input
difference to round 2 is zero in one of the four sets of bytes {0, 5, 10, 15}, {1, 6, 11, 12},
{2, 7, 8, 13}, and {3, 4, 9, 14}. If this is the case, discard the guess of Ek(0).

Analysis of the attack The time complexity of the first phase of the attack (i.e., detecting
internal collisions) is 279 MAC evaluations, and its memory complexity is 278 128-bit blocks. The
data is expected to contain 278·278·2−128 = 228 internal collisions of the form (m1,m2), (m

∗

1,m
∗

2),
where (m1,m2) ∈ S1 and (m∗

1,m
∗

2) ∈ S2.

In the second phase of the attack, for each internal collision, the adversary guesses 80 bits
of Ek(0) and checks whether the difference between the intermediate states in the input to
round 2 of AES is zero in one of the four sets of bytes {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13},
and {3, 4, 9, 14}. Since the difference in the entire Column 3 in the input to round 2 is zero
(independently of the guessed subkey values), the probability that a subkey guess is discarded is

4 · 2−24 = 2−22. Hence, the expected number of remaining subkey guesses is 280 · (1− 2−22)2
28

≈
280 · e−64 ≈ 2−12, i.e., only the correct guess is expected to remain.

The time complexity of a naive application of this step is 280 · 228 = 2108 partial encryp-
tions. However, this complexity can be reduced significantly by noting that for each internal
collision, the adversary can perform the partial encryption in each of the three active columns
independently. Specifically, the adversary can perform a two-step procedure:

1. For each of the 228 internal collisions, the adversary computes all the values of bytes 3, 4, 9
of Ek(0) that lead to zero difference in byte 5 in the input to round 2, and stores them in a
table.

2. For each guess of bytes 0, 2, 5, 7, 8, 10, 15 of Ek(0):

(a) The adversary goes over all the internal collisions and checks whether the difference in
bytes 0 and 10 in the input to round 2 is zero. Only 228 · 2−16 = 212 internal collisions
are expected to pass this filtering.

8 Note that if f contains an AddRoundKey operation at the beginning, with a whitening key k0, then
the adversary should guess an equivalent key Ek(0) ⊕ k0 instead of Ek(0). In this case, the attack
makes it possible to retrieve only the value Ek(0) ⊕ k0, rather than Ek(0). However, this value is
sufficient for mounting the forgery attacks on the MAC described in the introduction. For the sake
of simplicity, we assume in the sequel that f does not contain a whitening key.



(b) The adversary considers a list of all possible values of bytes 3, 4, 9 of Ek(0), and for each
remaining internal collision, she discards the values of Ek(0) that lead to zero difference
in byte 5 in the input to round 2 (using the table computed in the first step). If all the
possible values of bytes 3, 4, 9 of Ek(0) are discarded, the adversary discards the guess
of bytes 0, 2, 5, 7, 8, 10, 15 of Ek(0) made in the beginning of the step.

This procedure makes it possible to discard all guesses of Ek(0) which lead to zero difference
in bytes {0, 5, 10, 15} in the input to round 2, and by repeating it four times, the adversary can
discard also key guesses which lead to zero difference in one of the sets {1, 6, 11, 12}, {2, 7, 8, 13},
and {3, 4, 9, 14}. The time complexity of this procedure is 228 · 258 = 286 simple operations,
which are dominated by the MAC evaluations performed in the first phase of the attack (since
evaluating the full MAC is much slower than a single memory access). The overall memory
complexity of this step is 228 · 216 = 244 128-bit blocks, but random accesses are made only to
much smaller lists of size at most 228 128-bit blocks.

After the 80 bits of Ek(0) are found, the adversary repeats the procedure with another set of
active bytes in the first round (and another set of chosen messages) to obtain the rest of Ek(0).
The subkeys used in the AddRoundKey operations of AES can be found in a similar way by
attacking a 4-round (or even smaller) variant of AES using known cryptanalytic techniques.

The overall data complexity of the attack on 5-round Pelican is 280 chosen two-block mes-
sages, the time complexity is 280 MAC evaluations, and the memory complexity is 278 128-bit
blocks. Note that this is better than the best previously known attack due to Yuan et al. [17],
which attacks 4-round Pelican in 285.5 data and time.

Attack on 6-round Pelican A similar attack can be applied to a generalized variant of
Pelican where the internal block cipher is 6-round AES, even when AddRoundKey operations
with independent subkeys are used in each of these rounds.

In the first phase of the attack, the adversary considers pairs of structures S1, S2 of 264 two-
block messages each, such that in the first block, 8 bytes which form two shifted columns (e.g.,
bytes 0, 3, 4, 5, 9, 10, 14, 15) are fixed to the same value in both structures and the remaining 8
bytes assume all 264 possible values. The second blocks are the same as in the 5-round attack,
and for each pair of structures, we expect to find a single collision which is detected in the same
way as in the 5-round attack.

In the second phase of the attack, the adversary guesses the eight bytes of Ek(0) that corre-
spond to the active bytes in the data (in our example above, these are bytes 1, 2, 6, 7, 8, 11, 12, 13),
and for each internal collision, she partially encrypts the pair (m1⊕Ek(0),m

∗

1⊕Ek(0)) through
the first round of AES. The analysis of the internal collision is continued only if the intermediate
difference before the MixColumns operation in round 2 of AES is non-zero only in the first three
columns. In such cases, the difference is non-zero only in two bytes in each of these columns (in
our example these are bytes 2, 3, 5, 6, 8, 9). The adversary guesses the value of these six bytes in
the subkey used in the AddRoundKey operation in round 1 of AES, partially encrypts the pair
of messages through round 2, and checks whether the difference in the input to round 3 is zero in
one of the four sets of bytes {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13}, and {3, 4, 9, 14}. If yes, the
14-byte subkey guess is discarded. For a single examined internal collision and a fixed subkey
guess, the probability that the guess is discarded is 4 · 2−16 · 2−24 = 2−38. Therefore, in order
to discard most of the subkey suggestions, the adversary can examine 244 internal collisions, so
that the expected number of remaining subkey suggestions is 2112 · e−64 ≈ 219.7. The attack is
completed by examining another data set (with other active bytes) and comparing the subkey
suggestions in the overlapping subkey bytes.

Since each pair of structures is expected to contain a single internal collision, the data
complexity of the attack is 2 ·244 ·265 = 2110 chosen messages. The time complexity is dominated



by the MAC evaluations of these chosen messages (since the second part of the attack can be
performed column-wise, like in the 5-round attack), and the memory requirement is 264 128-bit
blocks. (There is no need to store a list of the 2112 possible subkey guesses, since the guesses of
the 8 active bytes in Ek(0) can be checked sequentially, and for each of them, the adversary can
keep a list of the values of the 6 active bytes in the second subkey that have to be discarded.)

It seems that it will be hard to extend this type of attack to 7-round Pelican, as such attack
would be roughly equivalent to an impossible differential attack on 8-round AES-128, which
seems out of reach with current techniques.

A.3 Applicability of the Leveraging Technique to Other ALRED Constructions

As in the case of the generic attack presented in Section 3, the ability to leverage a differential-
type attack on the reduced block cipher into an attack on the MAC depends on the structure
of the injection input. In the leveraging attack the adversary has two additional difficulties:

– First, the attack can be applied only if the active bytes in the input and output differences
required in the attack on the block cipher are included among the bytes which can be
controlled by the adversary.

– Second, while in the generic attack, the adversary can obtain multiple structures by append-
ing blocks at the beginning of the message, in the leveraging attack this is impossible. Indeed,
in the equivalent structure of the MAC used in the leveraging attack, the intermediate state
before the insertion of the message m1 is considered as a subkey of the block cipher, which
the adversary wants to retrieve. If another block m0 is appended before m1 and in different
pairs of structures the values of m0 are different (as is the case of the generic attack on
Alpha-MAC-type constructions), then for different internal collisions, the “subkey” that the
adversary tries to retrieve will be different! Of course, this results in failure of the attack,
since the adversary needs several input/output pairs of the block cipher encrypted under
the same key in order to retrieve the key.

As a result, it seems that the leveraging attack is possible only if the number of bits the
adversary can control is at least (lb + l)/2, where lb is the block size of f and 2l is the number
of pairs required by the differential-type attack on f . In particular, this attack is not applicable
to generalized Alpha-MAC, in which the original 1-round AES is replaced by a stronger (and
keyed) reduced block cipher.9

9 We note that on the actual version of Alpha-MAC, a variant of the attack can be applied, since
the adversary can append a block m0 at the beginning of the message, and overcome the difference
between the internal states before the insertion of m1 by using the weak diffusion of 1-round AES.
However, since the resulting attack is slower than the attack on Alpha-MAC presented in [17], we
omit it.


