
Fastplay: A Parallelization Model and Implementation of SMC on CUDA Based

GPU Cluster Architecture

Shi Pu, Pu Duan, Jyh-Charn Liu

Department of Computer Science and Engineering,

University of Texas A&M University,

College Station, TX, United States

shipu, dp1979, liu@cse.tamu.edu

Abstract— We propose a four-tiered parallelization model for

acceleration of the secure multiparty computation (SMC) on

the CUDA based Graphic Processing Unit (GPU) cluster

architecture. Specification layer is the top layer, which adopts

the SFDL of Fairplay for specification of secure computations.

The SHDL file generated by the SFDL compiler of Fairplay is

used as inputs to the function layer, for which we developed

both multi-core and GPU based control functions for garbling

of various types of Boolean gates, and ECC-based 1-out-of-2

Oblivious Transfer (OT). These high level control functions

invoke computation of 3-DGG (3-DES gate garbling), EGG

(ECC based gate garbling), and ECC based OT that run at the

secure protocol layer. An ECC Arithmetic GPU Library

(EAGL), which co-run on the GPU cluster and its host,

manages utilization of GPUs in parallel computing of ECC

arithmetic. Experimental results show highly linear

acceleration of ECC related computations when the system is

not overloaded; When running on a GPU cluster consisted of 6

Tesla C870 devices, with GPU devices fully loaded with over

3000 execution threads, Fastplay achieved 35~40 times of

acceleration over a serial implementation running on a

2.53GHz duo core CPU and 4GB memory. When the execution

thread count exceeds this number, the speed up factor remains

fairly constant, yet slightly increased.

 Keywords- secure multiparty computation (SMC), Oblivious

Transfer (OT), ECC, Graphic Processing Unit (GPU)

I. INTRODUCTION

Since publication of the seminal work of the
Millionaire’s problem [8] two decades ago, the secure
multiparty computation (SMC) paradigm has been widely
recognized as a general framework for design of privacy-
preserving protocols. In the Millionaires problem, two
principals Alice and Bob want to know who has more wealth
without telling each other their own amounts. A
generalization of this problem, called secure function
evaluation (SFE), was further proposed in [6]. In SFE, two
or more parties perform a joint computing function, e.g.,
ordering of inputs, matching of inputs, addition, etc., so that
specific inputs and outputs are unveiled or protected under
controlled conditions. The integration of the oblivious
transfer (OT) protocol [18] and garbled circuit is a time
proven architecture to implement different SMC based
computing functions.

SMC provides strong privacy protection but it incurs
significant computations and bandwidth costs. To meet the
performance needs of real world applications, there is a
strong need to accelerate SMC computations for large scale

privacy preserving applications, e.g., DNA based biometrics
[27][28], information queries [29], auctions [30], network
security alert correlation [31], etc. Some systems directly
customized the secure functions to fit certain specialized
functionality, for example, auction or edit distance
computation [28, 30, 32]. On the other hand, Fairplay [33]
and its variations proposed in [27, 34, 35, 37] emerge as a
general framework for specification of secure functions,
based on the secure function definition language (SFDL). An
compiler parses an application specified in SFDL to generate
a net-list of gates and their interconnection topology based
on the secure hardware definition language (SHDL).
Fairplay uses Java crypto packages for run-time execution.

In SMC based computations, OT has the highest cost,
both for computations and communications, while other
crypto related functions also incur non-trivial computing
costs. Noting that because all data bits can be processed
independently, based on identical computing steps, we
observe that they are ideal applications for acceleration based
on the SIMD parallel architectures.

Based on the above observation, the main objective of
this paper is aimed at exploring system design issues related
to parallelization of large scale SMC applications. Our
system, called Fastplay, has its foundation on the Fairplay
for specification of applications and compilation of an SFDL
program into SHDL. For ECC arithmetic operations on
GPU, we reengineered a portion of MIRACL [5] to fit them
into the restricted resource environments on GPU.
Furthermore, we developed a full suite of GPU resource
management functions, CPU-GPU co-run controls, and
various Boolean gates used in SMC.

For performance benchmarking, we dissected the
complete execution process of an SMC circuit into several
computing parts and compare the execution time of each part
with a serial version. We also benchmarked the bandwidth
for EGG, 3-DGG, and ECC-based 1-out-of-2 OT protocols
respectively. When running on a GPU cluster consisted of 6
Tesla C870 devices, with GPU devices fully loaded with
over 3000 execution threads, Fastplay achieved 35~40 times
of acceleration over a serial implementation running on a
2.53GHz duo core CPU and 4GB memory. When the
execution thread count exceeds this number, the speed up
factor remains fairly constant, yet slightly increased.

Main designs to achieve the performance goal are
summarized as follows:

[1]. A parallel implementation for ECC-based 1-out-of-2
OT protocol on the GPU architecture. Both ECC-
based and 3-DES based gate garbling protocols are

Sender side

SFDL compiler

SHDL parser

offline

online

OT
(sender side)

Socket connection

SFDL

program

input y

Input x

kc
0, kc

1

ε

Java VM

java bigint, security...packages

various DLP-based

OT derivations

OT protocol

communication

 gate garbling

mechanism

sender circuit

garbler

circuit engine

GGF

gates

net-list

gate info

OT type

Chooser side

SHDL

circuit file

 chooser circuit

garbler

circuit engine

GDF

gate info

gates

net-list

OT
(chooser side)

kc
y

Java VM

java bigint, security...packages

various DLP-based

OT derivations

 gate garbling

mechanism

Specification

 Layer

Function

Layer

Secure

Protocol

 Layer

Arithmetic

Layer

Figure 1. The programming model of Fairplay

supported. A caching technique was developed The
ECC based protocol is well suited for GPU cluster
architecture because most of its point multiplications
can share the unique and constant public point P. For
case studies, we tested “equality checking” and
“minimum of two” circuits.

[2]. The ECC Arithmetic GPU Library (EAGL) is
designed to minimize the context switching
overhead of GPU execution and full utilization of
GPU devices. We streamlined synchronization and
execution control threads between GPUs and the
host CPU.

The rest of this paper is organized as follow: section 2
presents the foundation work of Fastplay. Section 3 discusses
secure protocol layer. Section 4 extends the prototype of gate
garbling protocol to various types of gate garbling functions
and circuit connection issues. The ECC Arithmetic GPU
Library is presented in section 5. Experimental results and
evaluation are illustrated in section 6. Section 7 discusses
related work. Conclusions are drawn in section 8.

II. FUNOUNDATIONAL WORK

The objective of Fastplay is to replicate the single-bit
Boolean secure function evaluation [9] onto the massive
number of execution threads available on a GPU cluster to
achieve the goal of acceleration for large scale applications.
Fastplay is an ECC-based implementation for the Boolean
secure function evaluation. For ECC-based arithmetic
computations, we made extensive modifications to some
portion of the MIRACL code base for optimal execution on
the GPU architecture. Moreover, we adopt the Fairplay [33]
as the programming model to achieve compatibility with
existing serial solutions.

In the Boolean secure function evaluation problem A
secure function f(x, y) has 1-bit input x from a sender, 1-bit
input y from a chooser, and one 4-entry truth table. The
sender and the chooser are not allowed to learn about each
other’s input during the protocol execution. To achieve this
goal, sender generates two random N-bit integers ks

0
 and ks

1

mapping to x’s potential values 0 and 1, kc
0
 and kc

1
 mapping

to y’s potential values, ko
0
 and ko

1
 mapping to potential

output values 0 and 1. Sender holds the plain truth table,
which saves plain output values 0 or 1, indexed by its
corresponding input values (00, 01, 10, 11). For each plain
truth table entry Tij that saves output value z, sender encrypts
it as E(Tij) = E_ks

i
(E_kc

j
(ko

z
)), where E_ks

i
 means encryption

using key ks
i
 that represent sender’s input value i. After

encrypting all four truth table entries (ij = 00, 01, 10 and 11),
sender transfers message ε = {{E(Tij)}, ks

x
 that maps x’s real

value, pre-defined unique characteristic of ko
0

and ko
1
} to

Bob, and delivers kc
y
 to chooser via OT. Finally, chooser can

successfully decrypt one of four E(Tij) = ko
z
 that maps the

output value z = f(x, y).
Fairplay system is the first general software suite that

supports implementation of the general SMC scheme based
on SFDL and its compiler tools. The programming model of
Fairplay system is illustrated in Fig. 1. The programming
model can be modeled into four layers: specification layer,
function layer, secure protocol layer, and arithmetic layer.

We adopted the SFDL compiler in specification layer for
Fastplay, but we developed our own implementations for
remaining layers.

At the specification layer, SFDL supports specification of
a general secure function f(x,y) as a circuit that includes
customized multi-bit I/O from two parties, and the function
body describing the functionality of the circuit. An offline
SFDL compiler is employed to convert a circuit program
into a gates-level hierarchy file written in SHDL. Function
layer includes an online SHDL parser that generates a net-list
of gates based on the SHDL file, a circuit engine that collects
each gate’s information and invokes a pair-wise gate
garbling/de-garbling function (GGF/GDF) on each side
respectively, and a pair-wise sender/chooser 1-out-of-2 OT
instances that are invoked by GGF/GDF. The gate garbling
schemes and various DLP-based OT implementation
derivations can be summarized as the secure protocol layer.
The arithmetic layer is composed of interfaces in java large
integer, security and associated packages. At runtime, the
sender/chooser side independently runs on a Java virtual
machine, and connects with the other side via socket.

MIRACL [5] contains comprehensive elliptic curve point
arithmetic routines, e.g., point multiplication, point addition,
subtraction, doubling, normalization and so on. Our initial
attempts to port MIRACL directly to the CUDA
environment proved to be virtually impossible due to
numerous challenges in buffer management, memory access
model, and execution control, etc.

Fig. 2 depicts the high-level programming model of
Fastplay. In function layer, the circuit engine of Fastplay
employs a gate garbling task dispatcher to organize the gate-
level and circuit-level connections, and identify the type of
GGFs/GDFs needed to invoke. Similar to solutions discussed
in [27, 37], a large application can be decomposed into
multiple circuits. This dispatcher also supports the multi-
level circuit hierarchy by re-using predecessor circuits’ keys
saved by the sender in successor circuit’s gate garbling. It

Sender side Chooser side

kc
0, kc

1

εg or εm

ECC-based 1-out-of-2 OT

instance

(chooser side)

input y

kc
y

ECC-based 1-out-of-2 OT

instance

(sender side) ECC-based OT protocol

communication

SHDL

circuit file

SHDL

circuit file

sender

circuit engine SHDL parser

gates net-list

gate garbling task

dispatcher

GPU-based GGFs

CS

type

II

type

gate info &

func type

3-

arity

type

Multicore-based GGFs

CS

type

II

type

3-

arity

type

input x

chooser circuit

engineSHDL parser

gates net-list

gate de-garbling

task dispatcher

gate info &

func type

3-DGG

Protocol

EGG

Protocol
EGG

Protocol

3-DGG

Protocol

mode

selection

mode

selection

ECC-based 1-out-of-2 OT

protocol
ECC-based 1-out-of-2 OT

protocol

Function

Layer

Secure

Protocol

Layer

GPU-based GDFs Multicore-based GDFs

Specification

Layer

Arithmetic

Layer
GPU execution control interfaces

EAGL Arithmetic Cells (EAC)

ECC Arithmetic GPU Library (EAGL)

host

device

GPU execution control interface

EAC

ECC Arithmetic GPU Library (EAGL)

host

device

...
CS

type
II

type

3-

arity

type
... ...

CS

type
II

type

3-

arity

type
... ...

Figure 2. The high-level programming model of Fastplay

Sender Chooser

OT-S1:
generate s in Zq,

pt mul: [s] P, sends it to

chooser

Public Knowledge:
P - a point on the public curve

q is large prime integer

Zq = big integers in (0, q)

OT-C1:
generate k in Zq.

if chooser input y is 0,

 PKy = [k] P

if y is 1,

 PKy = [s] P – [k] P

Send PKy to sender

OT-S2:
generate r0 & r1 in Zq,

pts mul: [r0] P, [r1] P,

pt sub: PK1-σ =[s] P - PKy

pt mul: [r0] PKy

pt mul: [r1] PK1-y

pt add: [Ic0] P + ([r0] PKy)

pt add: [Ic1] P + ([r1] PK1-y)

send C0={[r0] P, ([Ic0] P + [r0]

PKy)} and

C1={[r1] P, ([Ic1] P + ([r1]

PK1-y)} to chooser

generate 2 random large

integer Ic0 & Ic1 in Zq,

pts mul: kc
0 = [Ic0] P, kc

1 =

[Ic1] P, è chooser input y =

0/1

OT-C2:
If y = 0, (implies PKy = [k] P)

 pt mul: [k] ([r0] P);

 pt sub: ([Ic0] P + [r0] PKσ) –

[k] ([r0] P) = [v0] P

If y =1, (implies PKy = [s] P – [k]

P)

 pt mul: [k] ([r1] P);

 pt sub: ([Ic1] P + [r1] PK1-y) –

[k] ([r1] P) = [v1] P

In the end, chooser knows

either kc
0=[Ic0] P or kc

1=[Ic1] P,

denoted as kc
y

EGG

Protocol

ECC-based

1-out-of-2

OT protocol

3-DGG

Protocol

Secure

Protocol

Layer

EGG

Protocol

ECC-based

1-out-of-2

OT protocol

3-DGG

Protocol

C0 & C1

PKy

[s] P

Figure 3. ECC-based 1-out-of-2 Oblivious Transfer Protocol

allows the chooser to decrypt successor circuit based on the
predecessor circuit’s SMC result.

Fastplay supports both multicore-based and GPU-based
GGFs/GDFs. Triple-DES is used for gate garbling protocol
(3-DGG protocol) in the multicore implementation, and the
encryption messages εm = ε. On the other hand, an ECC-
based gate garbling protocol (EGG protocol) was
implemented for the GPU-based GGFs/GDFs. The 3

rd

component of their encryption messages εg uses {kO
0
, kO

1
}

directly, without leaking any sensitive data. We further note
that the gate’s arity and types of gate inputs can determine
details of a garbling function, such as whether or not OT
needs to be involved. As a result, we implemented one type
of GGF/GDF for each type of gate so that the
synchronization mechanism can be greatly simplified.

For the secure protocol layer, Fastplay consists of three
secure protocols: ECC-based gate garbling protocol (EGG
protocol), triple-DES based gate garbling protocol (3-DGG
protocol), and ECC-based 1-out-of-2 OT protocol. Both
EGG and 3-DGG protocols need to use the ECC-based 1-
out-of-2 OT protocol for the secure transferring of kc

0
 (or kc

1
)

that will be needed for decryption of the truth table.
The arithmetic layer of Fastplay, the ECC Arithmetic

GPU Library (EAGL), consists of two major modules for
control and interfaces between the host and GPU devices.
The GPU execution control interface runs on host and
manages synchronization of GPU-host threads, their data
movements. It is also responsible for configuration,
initialization and destroying of GPU context, and exception
handling. A massive number of instances can be dispatched
to GPU threads for parallel executions. Major reengineering

efforts include (1) elimination of unused branches,
concurrent write conflicts, one-time use variables, and (2)
optimization of data structures for more efficient memory
usage.

Sender Chooser

chooser now obtains:

E(T00), E(T01), E(T10), E(T11), ks
x, and

two points representing output value

kO1, kO2

C1: chooser invokes a 1-out-of-2

OT instance (chooser side), given

chooser’s input y,

if y=0, chooser knows kc
0

if y=1, chooser knows kc
1

denoting it by kc
y.

S1. generate 4 large int:

Is0, Is1, IO0, IO1 in Zq

Pts mul: ks
0= [Is0] P, ks

1= [Is1] P;

{ks
0 &ks

1} è x=0 or 1;

kO
0= [IO0] P, kO

1= [Ic1] P;

{kO
0 &kO

1} è output value z = 0

or 1.

generate two random large

integers: Ic0, Ic1 in Zq

calculate points kc
0= [Ic0] P, kc

1=

[Ic1]P, representing the

chooser’s input value y = 0 or 1

S2. encrypt four truth table

entry T00, T01, T10, T11:

E(T00) = kO
z + ks

0 + kc
0

E(T01) = kO
z + ks

0 + kc
1

E(T10) = kO
z + ks

1 + kc
0

E(T11) = kO
z + ks

1 + kc
1

randomly re-order E(T00),

E(T01), E(T10), E(T11) è {E(Tij)}

Disorder {kO
0

, kO
1}

S3. invoke a 1-out-of-2 OT

instance (sender side), in order

to transfer kc
0/kc

1 to chooser.

C2: decrypt every true table entry:

 for each i and j = 0, 1:

 D(E(Tij)) = E(Tij) - Psx – Pcy

compare each D(E(Tij)) with kO
1 and

kO
2
, only one entry’s decryption

result D(E(Txy)) can match kO
1 or kO

2.

Public Knowledge:
P a point on the curve

q is large prime integer

Zq = large integers in (0, q)

εg

kc
y

EGG

Protocol

ECC-based

1-out-of-2

OT protocol

3-DGG

Protocol

Secure

Protocol

Layer

EGG

Protocol

ECC-based

1-out-of-2

OT protocol

3-DGG

Protocol

Figure 4. Prototype of EGG protocol

III. SECURE PROTOCOL LAYER

A. ECC-based 1-out-of-2 OT protocol

In the literature, oblivious transfer (OT) [18] can be
conceptually understood as sender controls the garbling
parameters I0 and I1 for the plaintext message of M0 and M1
at each transaction, and chooser can choose between one of
the two input values 0 or 1. M0 and M1 can be published after
they are encrypted by a well known encryption scheme using
[I0]P and [I1]P as their keys, respectively. Generation of the
M0 and M1 is domain dependent, and therefore not
considered as a part of the OT. In the context of the EGG and
3-DGG protocol, the output value 0 and 1 of a gate’s plain
truth table entries are M0 and M1, whose decryption keys Ic

0

and Ic
1
 plays the role of garbling parameters I0 and I1 in the

general OT paradigm. For consistency, we use Ic
0
 and Ic

1
 in

the following descriptions of our ECC-based 1-out-of-2 OT
protocol.

The ECC-based 1-out-of-2 OT protocol is illustrated in
Fig. 3. At first, with no knowledge of the chooser’s privacy
y, the sender generates two keys kc

0
 = [Ic

0
]P and kc

1
 = [Ic

1
]P,

where Ic
0
 and Ic

1
 are two large integers and P is a base ECC

point of a chosen elliptic curve. Here [Ic
0
]P and [Ic

1
]P are

standard point multiplication method in ECC. Then, the
sender starts transferring a randomized point [s]P to the
chooser. After receiving [s]P, chooser generates another
random point PKy=[k]P if the chooser’s input value y=0,
otherwise PKy=([s]P - [k]P). In this step, the chooser
associates its privacy y with PKy and transfers PKy back to
sender. Then the sender generates two random points [r0]P
and [r1]P, and seals the garbling parameters Ic

0
 and Ic

1

through point multiplication and point addition as the
homomorphic operation. The encrypted messages are
denoted by C0 and C1. Finally, the chooser can only correctly
decrypt either C0 or C1 according to his original privacy y.
As a result, chooser will hold either [Ic

0
]P (if y=0) or

kc
1
=[Ic

1
]P (if y=1). In the whole process, generating

kc
0
=[Ic

0
]P, [Ic

1
]P, [s]P, [k]P, [r0]P and [r1]P are usually

viewed as sender’s initialization phase [42], so is the [k]P
for the chooser side.

In terms of computing cost, the sender needs five point
multiplications in his initialization phase. In his online
execution phase, he needs two point multiplications and
three point additions/subtractions in step OT-S2. For the
chooser, there is one point multiplication in his initialization
phase, two point multiplications, and two or three point
subtractions in his online execution phase.

As seen later, the size of an elliptic curve point is 320
bits. In terms of bandwidth, the communications cost from
sender to chooser is 320 bits in pre-computing phase (OT-
S1), and 4*sizeof(point) = 4*320 bits = 1280 bits in the
computation phase (OT-S2), and that from chooser to sender
is 320bits.

The security of the ECC-based 1-out-of-2 OT protocol is
based on the well-known ECDLP. For outside adversaries,
an eavesdropper Eve cannot use P, [s]P and PKy to find s
and k to discover Ic

0
 and Ic

1
 if he cannot calculate discrete

logs on an elliptic curve. Similarly, Eve cannot use [r0]P,
[r1]P, [r0]PKy and [r1]PK1-y to find k to discover Ic

0
 and Ic

1
 if

she cannot calculate discrete logs. In other words, Eve
cannot obtain the key kc

0
=[Ic

0
]P or kc

1
=[Ic

1
]P that must be

uniquely acquired by the chooser to decrypt a certain entry of
a truth table later in the EGG protocol and the 3-DGG
protocol. For inside adversaries, we use [r0]PKy +
[Ic

0
]P/[r1]PK1-y + [Ic

1
]P to protect Ic

0
/Ic

1
. Since r0 and r1 are

two randomly chosen large integers, a malicious chooser
cannot use [r0]P/[r1]P and [r0]PKy /[r1]PK1-y to derive
PKy/PK1-y in {[r0]P, [Ic

0
]P+[r0]PKy} and {[r1]P,

[Ic
1
]P+[r1]PK1-y} so that Ic

0
 and Ic

1
 are protected unless he

can solve ECDLP. In other words, the chooser cannot have
both kc

0
 and kc

1
 simultaneously so he cannot to decrypt

entries of the truth table that are not indexed by his real input
value. Similarly, a malicious sender cannot know the results
of the chooser’s selection (Ic

0
or Ic

1
) since k cannot be derived

from PKy and P.

B. ECC-based Gate Garbling Protocol (EGG Protocol)

In a general SMC protocol, a sender keeps the
computation logic and its inputs in secret. A chooser
provides his inputs and eventually obtains the computation
results without knowing sender’s inputs, while the sender
also does not learn the chooser’s inputs. Usually any
complicated computation logic can be represented as the
combination of multi-level Boolean gates. Although the
garbling/de-garbling behaviors are slightly changed when the
gate’s arity and inputs’ type are different, the truth table
encryption/decryption scheme does not change. In this
section, the discussion of the EGG protocol is based on a
prototype of the 2-arity gate with two inputs from a chooser
and a sender, respectively. This gate is of the CS (chooser-
sender) type. The security properties of EGG protocol under
the semi-honest model are:

[1]. The chooser is able to decrypt only one of the four
entries, which is indexed by the inputs from both
sides;

[2]. Neither the chooser nor the sender knows the other’s
input value;

[3]. Any third-party adversary cannot decrypt the truth
table entry;

To achieve Property 1, garbling/de-garbling needs to
utilize the standard ECC point addition and subtraction (i.e.
given point P and Q, P+Q-Q=P). To achieve Property 2 and
3, one 1-out-of-2 OT instance is invoked to transfer the key
determined by the chooser’s input. Fig. 4 illustrates the
encryption/decryption scheme. The EGG protocol can be
described as follows:

(1)Step S1: the sender generates two 160-bit large
integers, Is

0
 and Is

1
, and another two 160-bit large integers IO

0

and IO
1
. Then the sender calculates ECC points ks

0
, ks

1
, kO

0

and kO
1
following the formula that ks

i
 = [Is

i
]P, kO

z
 = [IO

z
]P,

here i, z = 0 or 1, and P is one public point on the pre-
selected curve. Points ks

0
and ks

1
 are used to map the possible

value 0 and 1 of sender’s 1-bit input x. Similarly, kO
0
 and kO

1

map to the possible value 0, 1 of output z.
Preparation for 1-out-of-2 OT: Although we mentioned

the generation of kc
0
 and kc

1
 in ECC-based 1-out-of-2 OT

protocol, they were actually generated kc
0
 and kc

1
. Sender

generates kc
0
and kc

1
 that map to the possible values 0 and 1

of the chooser’s 1-bit input y. As we will see later,
generation of kc

0
and kc

1
 is counted as the execution of the 1-

out-of-2 OT instance in benchmarking.
(2)Step S2: we denote the four entries of plain truth table

as T00, T01, T10, and T11 respectively, where the subscripts of
T are actually specified by the gate description in the circuit
list file. For convenience, T’s 1

st
 subscript represents the

sender’s input bit, and T’s 2
nd

 subscript representing the
chooser’s input bit. For each truth table entry, the sender
encrypts it as: E(Tij) = kO

z
 + ks

i
 + kc

j
. Here, ko

z
 is the point

that maps to the output value z as the result of corresponding
truth table entry Tij. By denoting the sender’s real input value
as x, x = 0 or 1, the sender transfers εg ={randomly
disordered {E(Tij)}, ks

x
, and randomly disordered {kO

0
, kO

1
}}

to the chooser.
(3)Step S3: The sender invokes an ECC-based 1-out-of-2

OT instance (sender side) so that the chooser can select to
know either kc

0
 or kc

1
 based on the value of his 1-bit input y.

The key the chooser finally obtained is denoted by kc
y
.

(4)Step C1: The chooser invokes an ECC-based 1-out-of-
2 OT instance (chooser side) and gets kc

y
. The chooser also

receives εg.
(5)Step C2: For each encrypted truth table entry E(Tij),

the chooser tries to decrypt it as: D(E(Tij)) = E(Tij) – ks
x
 – kc

y
.

Although he gets four different points as computation results,
only one of them matches the kO

z
 generated by sender. The

chooser takes kO
z
 as the computing results.

The size of the data transferred from the sender to the
chooser is 2

arity
*320+320*2+320. Given that a gate’s arity is

2, the total size is 2240bit. Since our protocol follows the
standard SMC architecture [6] and elliptic curve discrete
logarithm problem (ECDLP) [1], the proofs of all the three
security properties are obvious and omitted here.

In terms of computing cost, the sender needs four scalar
point multiplications in its key generation phase ([Is

i
]P,

[IO
z
]P, i,z=0,1), and 2

arity
*2 point additions for online

encryption. The chooser only needs 2
arity

*2 point subtractions
for online decryption, and (2

arity
+2) point normalizations to

normalize the decryption results D(E(Tij)) and {kO1, kO2} to
affine co-ordinates for point equality checking. In the EGG
protocol, the most expensive computation is the sender’s key
generation operations, since it needs expensive point
multiplication operations. However, random point generation
is independent of the truth table encryption/decryption
process, and the number of random points N needed to be
generated for each gate is fixed. Pre-computation of random
points when computation resources are free is an optional
way to reduce the computing cost.

C. 3-DES-based Gate Garbling Protocol (3-DGG Protocol)

Based on the 2-arity CS type gate, the 3-DGG protocol is
as follows:

(1)Step 3D-S1: The sender generates four 160-bit random
integers ks

0
, ks

1
, IO

0
, IO

1
, and then generates a set of three

different 64-bit keys Ks
0
 = {key1s

0
, key2s

0
, key3s

0
} from ks

0
,

and another set Ks
1
 = {key1s

1
, ke2s

1
, key3s

1
} from ks

1
.

Like the EGG protocol, the sender prepares point kc
0
 and

kc
1
 for the 1-out-of-2 OT that will be invoked in step 3D-S4.
(2)Step 3D-S2: The sender generates a set of 64-bit keys

Kc
0
 = {key1c

0
, key2c

0
, key3c

0
} from ECC points kc

0
, and

another set Kc
1
 = {key1c

1
, key2c

1
, key3c

1
} from kc

1
. All the

keys are generated based on different segments of the point’s
X and Y co-ordinates.

(3)Step 3D-S3: For each truth table entry Tij, the index i
and j represent the input value from the sender and the
chooser, respectively. Suppose the plain output value of this
entry is z, z is 0 or 1, then Tij = IO

z
<< 32 + 0x0000, so that

the chooser can easily identify which entry is decrypted
successfully because the probability of generating a 32-bit
consecutive 0 using two levels of 192-bit triple-DES with
incorrect keys is very low. Encryption of entry Tij is E(Tij) =
3-des(Kc

j
, (3-des(Ks

i
, Tij, ENCRYPT), ENCRYPT). Sender

sends εm={randomly re-ordered {E(Tij)}, ks
x
} to the chooser.

(4)Step 3D-S4: The sender invokes a 1-out-of-2 OT
instance (sender side) in order to transfer either kc

0
 or kc

1
 to

chooser, the point chooser finally gets is denoted by kc
y
.

(5)Step 3D-C1: The chooser invokes a 1-out-of-2 OT
instance (chooser side) to receive kc

y
. The chooser also

receives εm.
(6)Step 3D-C2: The chooser generates Ks

x
 = {key1s

x
,

key2s
x
, key3s

x
} from ks

x
, and generates Kc

y
 from ECC point

kc
y
.
(7)Step 3D-C3: The chooser decrypts truth table entries

as D(E(Tij)) = 3-des(Ks
x
, (3-des(Kc

y
, E(Tij), DECRYPT),

DECRYPT). In the end, only D(E(Tij)) that has the last 32-bit
as 0x0000 is the correct decryption result. The chooser stores
Io

z
 = D(E(Tij)) >> 32.

The size of data transfer from the sender to the chooser is
2

arity
*192+160. Given arity equals to 2, this size is 928 bit.

Gate 1

Gate 2

sender’s

input

chooser’s

 input

sender’s

input

chooser’s

 input

Gate 3

k1S
0, k1S

1

k1C
0, k1C

1

chooser holds

k1O
0 / k1O

1

k2S
0, k2S

1

k2C
0, k2C

1

sender holds

k1O
0 and k1O

1

sender holds

k2O
0 and k2O

1

sender generate

k3O
0 , k3O

1

chooser holds

k2O
0 / k2O

1

chooser holds

k3O
0 / k3O

1

CS type GGF/GDF

CS type GGF/GDF

II type GGF/GDF

... ...

Figure 5. GGFs/GDFs connection for gate-level hierarchy

IV. FUNCTION LAYER

The task of the gate garbling task dispatcher is to extract
information about the gates and identifying the type of
GGFs/GDFs needed to be invoked. Although all the
GGFs/GDFs in the GPU-based/multicore-based groups
follow the prototype of EGG /3-DGG protocols respectively,
there are slight differences in certain steps. Taking the 3-arity
gate as an example, its three 1-bit inputs may come from
sender, chooser or predecessor gate(s): if a gate’s input is
from the sender or the chooser, the sender needs to one pair
of points/large integers for itself in step S1/3D-S1. If one
gate itself and all its predecessor gates only take the sender’s
inputs, this gate can be treated as an input wire from the
sender, because the sender himself can decide the output
value of this gate. For the gate that does not directly get input
from the chooser, OT can be ignored.

Besides invoking various types of GGFs/GDFs, the gate
garbling task dispatcher need to fetches the encryption
keys/secure computing results from predecessor gates’
GGFs/GDFs for each gate, so that gates and circuits with
interdependency can be connected. The key issue for gate
connection and circuit connection is key re-using. Taking the
gate-level hierarchy as an example, when a complex circuit
contains hundreds or thousands of gates, it is possible that
some gates’ input(s) are not from the sender or chooser, but
from intermediate results of their predecessor(s). For
succinctness, we still assume all gates are 2-arity, and show
one example of gate connection:

As shown in Fig. 5, two CS type GGFs/GDFs are
invoked for gates 1 and 2, and an II type (Intermediate-
Intermediate) of GGF/GDF are invoked for gate 3. Taking
the GPU-based GGFs/GDFs as an example, gate 3’s GGF
does not need to generate the four random points k3s

0
, k3s

1
,

k3c
0
 and k3c

1
 that are used to encrypt Gate 3’s truth table.

Instead, its GGF encrypts gate 3’s truth table entries by using
the points k1O

0
, k1O

1
, k2O

0
 and k2O

1
 that represent the possible

output of gates 1 and 2. In Step S1, the sender only needs to
generate k3O

0
 and k3O

1
 that represents to gate 3’s possible

output values 0 and 1. When gate 1 and 2 complete their
garbling processes, the sender holds the four points k1O

0
,

k1O
1
, k2O

0
 and k2O

1
; the chooser holds either k1O

0
 or k1O

1
, and

either k2O
0
 or k2O

1
, denoting by k1o

z
, and k2o

w
. Similar with S2

in Fig. 4, the sender encrypts gate 3’s truth table entries by
adding k1O

0
 or k1O

1
, and k2O

0
 or k2O

1
, to k3O

0
 or k3O

1
. On the

other hand, since the chooser has already known k1o
z
, and

k2o
w
, he uses these two points to decrypt the truth table

entries, described as C2 Fig. 4. In the end, he can only
successfully decrypt one of four entries. In such a process
described above, security property 1 is held because the
chooser does not fully hold the two keys to obtain the other
three plain truth table entries. Property 2 is true because gate
1 and gate 2 hold property 2 and gate 3 inherits these inputs
from gate 1 and 2, and does not accept extra inputs. Property
3 holds because gate 1 and gate 2 hold property 3, so that a
3

rd
 party adversary cannot decrypt gate 1’s and 2’s truth table

and thus them do not know k1o
z
, and k2o

w
. Consequently, they

cannot decrypt gate 3’s truth table. The multicore-based
GGFs/GDFs follow the same idea and are omitted here.

Furthermore, such a gate connection scheme also
supports the multi-level circuit hierarchy if several circuits
are combined together to form a more complicated
computation logic. Supposing circuit A provides 1-bit output
to circuit B. When secure computing of A is done, the sender
holds the two points kAo

0
 and kAo

1
, meanwhile the chooser

saves the point kAo
z
 as the secure computing result of A. In

the secure computing of B, The sender will use kAo
0
 and kAo

1

to encrypt the truth table entries of the gate that accepts A’s
output. As a result, the chooser can only decrypt one entry
successfully because he only knows one of kAo

0
 and kAo

1

exclusively.

V. ARITHMETIC LAYER

A. GPGPU Parallel Computing Architecture

The architecture of GPGPU follows the SIMD (single
instruction multiple data) architecture. That is, all processing
unit executes the same instruction with various operands.
Currently, two of the most popular GPGPU architectures are
NVIDIA CUDA (Compute Unified Device Architecture) and
ATI Stream. The CUDA architecture includes two parts: host
and device. Host determines what data is fed to the devices,
when devices start to run, how parallel computation is
organized and how the data are saved and accessed on
device. In hardware, the device contains one or more GPU
boards, and each board has several streaming
multiprocessors (SM). By containing multiple pipelined
ALUs, one SM is able to support simultaneous execution of
a warp of threads, whose size is 32, and one SM is able to
schedule up to 24 warps in the most CUDA platforms.
Registers and local memory are private for each thread;
shared memory is private for each SM, and all the threads
running on this SM share it; the global memory is open for
all threads on the board. The delays of accessing a register
and shared memory are almost the same, without considering
write conflicts. Accessing global memory or local memory is
hundreds times slower than accessing register or shared
memory. In software, the CUDA programming language
provides the software interface for developers to access and
control devices on the host. The program that runs on
devices is called as kernel program. Before a kernel program

host-subsystem

ECC-based

1-out-of-2

OT protocol

EGG

protocol

GPU

execution

control

interface

...

CPU

threads

...GPU device 1

ECC-based

1-out-of-2

OT protocol

EGG

protocol

Socket

Connection

Parallel

 Implementation

 Layer

Sender Chooser

Protocol

Layer

GPU device 0

GPU threads

...
globalè shared mem

Arithmetic cell 1

...
Arithmetic cell ...

sync

shared è global mem

sync

EAGL

host-subsystem

GPU

execution

control

interface

Arithmetic

cell 1

Arithmetic

cell ...

EAGL

kernel

program 1 device-subsystem

device-subsystem

GPU device 0
...

GPU

device 1

kernel program 2

sync

shared mem set up

Figure 6. The execution process of GPU execution control interface

runs, its parallelism parameters – number of blocks and
number of threads per block are specified. One SM can only
concurrently run one block and threads in this block is
organized as one or multiple warps. In sum, the parallelism
that one GPU board provides equals to (number of blocks *
number of threads per block). More details are referred to
[42].

Our motivation for parallel execution of ECC arithmetic
on a GPU platform is based on two observations. First, one
of the most frequent ECC arithmetic operations in the EGG
protocol and the ECC-based 1-out-of-2 OT protocol is point
multiplication [k]P, where P is a fixed unique base point and
can be shared by all threads. Consequently, part of point
multiplication can be moved to offline pre-computing, and
the shared memory space is saved by maintaining one copy
of P for all threads on the same SM. Furthermore, as we will
show later, the size of the ECC point (320 bit) is small and
thus ECC arithmetic is suitable for porting to a computation
platform with constrained fast-accessing memory resource.

Porting a complicated system from CPU-based
programming model to a GPGPU based model is
challenging. For example, SMs on most GPGPU platforms
do not have a branch predictor, threads in the same warp
have to wait until all members calculate their jump address
and finish the IF (instruction fetch) phase when they meet a
branch. Identifying the potential write conflicts is another
critical issue. The constrained fast-accessing memory
resource requires highly efficient space utilization
mechanism for buffering intermediate results, i.e. buffer re-
using and dynamic data structure size optimization, etc.. The
accessing of slow local memory and global memory has to
be minimized in usual case, however, sometimes there is a
tradeoff between accessing high delay memory and
maintaining a high degree of parallelism. For complicated
programs, it is critical to identify which part of code is most
suitable to run on a CPU, and which part is better for
GPGPU-based execution. In the end, most CUDA platforms

only support debugging in simulation mode, not real-time
debugging.

The rest of this section presents the two part of ECC
Arithmetic GPU Library (EAGL): GPU execution control
interfaces running on the host sub-system, and the EAGL
arithmetic cells running on device sub-system.

B. ECC Arithmetic GPU Library (EAGL)

In the secure protocol layer, any operation that uses
elliptic curve cryptography arithmetic needs EAGL to be
involved in the parallel implementation layer. The theory of
Elliptic Curve Cryptography (ECC) was first proposed by
Koblitz [1] and Miller [2]. Let K be a finite field, and
suppose E(K) is an additive group of points on an elliptic

curve E over K, E(K) is defined as the set of points (x, y), 

x, y  K, (x, y) satisfy y
2
 = x

3
 + ax + b (the curve used in our

implementation). Here we took K as Fp - as a finite prime
field, where p is a large prime number. Here we use P, Q, R
to denote points in E(K), and k to denote a large integer, The
regular elliptic curve arithmetic operations are point addition
(R=P+Q), point subtraction (R=P-Q), point doubling, (Q =
[2]P), and point multiplication (Q = [k]P). Given certain
elliptic curve E(Fp), the arithmetic routines of all the
operations discussed above can be computed on projective
coordinates [23]. The main reason is that elliptic curve group
operations on projective coordinates do not need inversions
and are more efficient that those on affine coordinates.
Before running these ECC arithmetic routines on GPU
platforms, GPU execution control interface need to set up an
execution environment, and then these routines are fulfilled
by one or several EAGL arithmetic cells.

1) GPU Execution control Interfaces
The relationship of GPU-based GGF or GDF to GPU

execution control interface is 1:1, so that there is no branch
for identifying whether certain gate garbling behavior, i.e. 1-
out-of-2 OT or key generation, needs to be done or not. As
shown in Fig. 6, the GPU execution control interface first
sets up CPU threads and bind each CPU thread to an

struct large_int{

 unsigned int array[k];

 unsigned in length;

}

struct Point{

 struct large_int X;

 struct large_int Y;

 struct large_int Z;

 unsigned int marker;

}

Figure 7. Data structures of large integer and ECC point

rand() initial

parameters

point

P
large

int q

CPU division

normalization

norm

q

compute

(m’)*P

(m’)*P

table

rand()

parameter
Global Mem

(-m’)*P

table
q

norm

q 0

work

space

0

Y of (-m’)*P

table

(m’)*P

table

norm

q 1
...

work

space

1

...

random large int

generation

reuse norm q

to save result

fast point mul for base

point P: result=[k]P

Pre-

computing

0 1 ...

seeds

G*b*n-1

GPU

Device 0

0 1 ... b*n-1

([k] P) array

...b*n-1

CPU

thread 0

CPU thread (G-1)

GPU device (G-1)

Host

Mem

0 1 ... b*n-1

seeds

Seed

generation

G*b*n-1...

Shared

Mem

q

0 1 ... b*n-1

([k] P) array

norm

q n-1

SM 0

work

space

n-1

Arithmetic cell 1

.........
GPU threads:

n threads per SM

0 1 n-1

0 1 ... n-1

seeds

0 1 ... n-1

point array

n-1...

SM (b-1)

n-1...

.........

0 1 n-1

Arithmetic cell 2

no need for sync

when n <=32

Figure 8. The online data flow of EAGL’s arithmetic cell rand+pt mul

available GPU device. As CPU threads start to execute, the
GPU execution control interface takes the charge of runtime
synchronization of GPU and CPU threads and their data
movement, GPU context initialization and destroying, GPU
parallelism configuration, GPU execution runtime exception
handling. To minimize the overheads on GPU context
initiation and device memory allocation, the GPU execution
interface always stays in the same GPU context as long as it
is not interrupted by necessary data communication, and
always allocates a large chunk of device memory and
partitions it for all the EAGL arithmetic cells invoked in its
life time.

The GGFs/GDFs in the multicore-based group do not
depend on GPU execution control interfaces as much as
those in GPU-based group. The GPU execution interface is
invoked only in step 3D-S1 for parallel generation of a large
volume of random large integers, and in step 3D-S4 and 3D-
C1 where ECC-based 1-out-of-2 OT instances are called.

2) EAGL Arithmetic cells (EAC)
When the GPU execution control interface dispatches

kernel programs to GPU devices, the kernel programs’
programming model generally follows a 3-step scheme,
including (1) setting up shared memory space and moving
data from global to shared memory, (2) calling certain
arithmetic cell, and (3) updating the result back to global
memory.

The basic data structures in EAC are shown in Fig. 7 –
the large integer and ECC point. Large integer precision is
32*k bits. Although 160-bit keys are secure enough as the
key length in ECC, k is set as 7 in EAC for preventing
possible overflow. In certain arithmetic cell like large integer
modular multiplication, k temporarily grows to 11 and
recovers back to 7 after it completes. However, points are
normalized and k is cut to 5, Z coordinate and the marker are
removed in protocol communication messages for saving

bandwidth.
All EAGL’s arithmetic cells share public knowledge {a

point P, a large prime integer q, and the set Zq = [0,q)}. The
public q is used in the generating random large integer k up
bound by q. As shown in Fig. 8, this paper uses two of the
most frequently invoked arithmetic cells – random large
integer generation and point multiplication [k]P to illustrate
how a cell interacts with its peer, how the offline and online
part are split in original code base, and how the shared
memory space is organized, given the parallelism
environment as G available GPU devices, each device runs b
blocks, and there are n threads per block.

The random large integer generation adopts the
Marsaglia & Zaman random number generator [43, 44],
where mod q is involved. According with [45], mod q needs
to compute q’s division normalized form. Since q is fixed,
q’s division normalized form can be pre-computed. So does
the sliding window table {[m’]P} (m’ = 3, 5, 7, …,15) for
signed m’-ary sliding window point multiplication algorithm.
By doing so, redundant computing is removed, and the
consuming of shared memory at runtime is reduced. There
are two types of data in the data flow; one is the R-only data
that is constant and shared by all threads, the other type is
RW data, which is owned by each thread. The data flow
follows a three-tier dispersion model. The row on the top
represents initial value and expected computing result in
memory of the host sub-system. When it is moved to global

Table 1. Execution time (unit: ms) of GGFs (sender side)

GGFs used &

input circuit

(1) key

gen
(2) GCID

(3) ENC (4) OT

DMA KPE Sum INIT ONLINE Sum

GPU GGFs +

equality check
133146 2328.9 3863.0 2996.7 6859.8 48190.4 24414.1 72604.5

Multicore GGFs+

eq check
1304.6 2.4 4790.0 47764.3 24323.2 72087.5

serial 3-DES
GGFs+OT+eqcheck

24201 -- 12333.8 2588.3*103

GPU-based GGFs

& min of 2
23008.9 369.1 687.1 521.2 1208.3 12177.0 5388.8 17565.8

multicore-based

GGFs & min of 2
267.5 3.5 838.8 12269.0 5398.4 17667.4

serial 3-DES
GGFs+OT&minof2

4699 -- 2017.3 612.1*103

Host

data bus

Memory

Memory

Bridge

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel Xeon 5500

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel i7

@ 2.67GHz

Intel Xeon 5500

Tesla

C870

Device: Tesla S870

1.5 GB

DDR3 RAM

Tesla

C870

Tesla

C870

1.5 GB

DDR3 RAM

Tesla

C870

Work

distribution

switch

PCIe Host

Adapter Card

PCIe Host

Adapter Card

PCI Express 1.0

Work

distribution

switch

1.5 GB

DDR3 RAM

1.5 GB

DDR3 RAM

Tesla

C870

Device: Tesla S870

1.5 GB

DDR3 RAM

Tesla

C870

Work

distribution

switch 1.5 GB

DDR3 RAM

PCIe Host

Adapter Card

Figure 9. The experiment environment

memory, each RW data is split into G equal pieces, each
piece is assigned to one GPU device, as shown in the middle
row in Fig. 8. Then, the RW data in the middle row is
divided into n equal parts, each part is copied to one block
owns by a SM on the GPU device. When n <=32, all threads
are in the 1

st
 warp, and concurrently runs the same cell,

which leads to no need of thread-level synchronization.
Overall, the parallelism on each GPU device = b*n. Denoted
the size of shared memory consumed by each thread as x,
then n equals to . By
minimizing the temporary variable saving in the work space
and reducing the space waste in point and integer structure,
most of EACs support the configuration of a full warp as the
size of shared memory per SM = 16384 Bytes, so that the
SM is fully loaded in these EACs.

However, [k]P is not the only type of point
multiplication utilized in the ECC 1-out-of-2 OT protocol.
As part of the homomorphic operations, the sender side
needs to compute [r0]PKy and [r1]PK1-y and the chooser side
needs to compute [k]([r0]P) or [k]([r1]P). In any one of
these four point multiplications, each thread's curve points
PKy, PK1-y, ([r0]P) or ([r1]P) are different, and thus each
thread needs to compute the sliding window table of these
point and maintain a unique table for each point online. In
these four point multiplications, we found that it is
impossible to save all threads' sliding window tables in the
shared memory. There are two alternative solutions to solve
this problem: either reducing the number of thread per block
from n to n/4 so that all the sliding window tables can still be
saved in the shared memory, or putting the slide window
tables [m']P in global memory and loads the specific table
entry into the shared memory when necessary so that n keeps
to be the size of a full warp. The latter one is preferred
because it saves the time of launching and exiting kernel
function, synchronization in EAC. And Fastplay selects the
latter solution in [r0]PKσ, [r1]PK1-σ, [k]([r0]P) and [k]([r1]P)
to keep the parallelism. However, we choose the former
solution in computation of PKσ’s, PK1-σ’s, ([r0]P)’s and
([r1]P)’s sliding window tables because there would be large
number of if-else branches if the form solution is adopted.

And this reduction on parallelism degree is hidden for GPU
execution control interfaces.

VI. PERFORMANCE EVALUATION

The elliptic curve E used in the experiment is E: y
2
 = x

3

+ ax + b mod p, where a = -3, b = 157. The large prime
modular p and the order of the curve q are:
p=1461501637330897725906826297907101233233312874
497, and
q=1461501637330897725906824301401491257823677986
243, respectively.

The affine coordinate (x, y) of the base point P is
x=1285014020286381351588483375298861384381400195
358, and
y=4968485340331732032416985889023918384206262119
36, respectively.

The parameters are chosen to construct an ordinary
elliptic curve with sufficient protection strength of ECDLP.
We do not choose other elliptic curves in MIRACL [5]
because they are either super-singular elliptic curves, which
are known to have some security weakness [21][22], or have
larger parameters.

The experiment platform is illustrated in Fig. 9. The host

Table 2. Execution time (unit: ms) of GDFs (chooser side)

GGFs used &

input circuit
(1) GCID

(2) DEC (3) OT

DMA KPE Sum INIT ONLINE Sum

GPU GGFs +
equality check

1336.9 10792.9 5136.3 15929.2 9846.2 12623.8 22470.0

Multicore GGFs+

eq check
-- 4834.5 9896.4 12288.5 22184.9

serial 3-DES
GGFs+OT+eqcheck

-- 12392.3 746.9*103

GPU-based GGFs

& min of 2
163.441 1684.9 925.5 2610.4 2412.4 3215.4 5627.8

multicore-based

GGFs & min of 2
-- 904.9 2416.9 3100.8 5517.7

serial 3-DES
GGFs+OT&minof2

-- 2025.7 170.5*103

sub-system has two Intel Xeon 5500 quad-core processors
with 12GB host memory. The device sub-system is consisted
of one and a half Tesla S870 cards that contain 6 Tesla C870
units, or G=6. Each Tesla C870 has 16 streaming
multiprocessors (SM), which support concurrent running of
16 blocks of threads (b=16). Each SM has 16k bytes of
shared memory. Every two C870 chips share a PCI-Express
v1.0 to communicate with the host.

Let the native parallelism degree (n-degree) denote the
maximum number of thread that a GPU cluster can run
concurrently. N-degree is equal to 6*16*32=3072 in our
experiment. Let the actual parallelism degree (a-degree)
denote the number of actual threads assigned to be run on the
cluster. In other words, a-degree = G’* b’* n’, where G’ is
the actual number of GPU device utilized, b’ the actual
number of blocks, and n’ the actual number of threads per
block. Given G’ = G, when a-degree is greater than n-
degree, context switching occurs in order for a device run
multiple tasks.

As for the multicore-based GGFs/GDFs on the host, the
degree of parallelism is 6.

A. Execution Time and Bandwidth

The goal of the first experiment is to evaluate the
acceleration benefits of GPU cluster based SMC
parallelization. For the multicore implementation, we built a
serial version of 3-DES based GGFs/GDFs, and ECC-based
OT protocol. The program was tested on a system with
2.53GHz duo core CPU and 4GB memory. All the ECC-
based computations in this serial program are based on the
MIRACL [5]. The a-degree is made equal to n-degree in all
GPU based experiments. Due to the simplicity of the 3-DES
operations, and its minor computing costs, we did not
implement it on GPU, but run it on the multicore host for
both the sender side, and the chooser side. Effectiveness on
acceleration of OT by GPU is the primary design concern.

The circuits used in this experiment are the equality
check circuit with 32-bit from each party, which has 190
gates, and the minimum of 2 circuit with 8-bit from each
party, which has 30 gates. The gate net-lists are generated by

SFDL compiler. In the experiment, 3072 equality check
circuits and 3072 minimum of 2 circuits are parallel executed

The results shown in the OT column of Table 1 and
Table 2 show that the speed up on the GPU-based version is
generally achieves 35~40 times of acceleration over the
serial version, with both the INIT (which was often excluded
as off-line preparation in some evaluations) and ONLINE
computations included. Details on breakdowns of different
computing elements are discussed next.

The execution time for each sub-task in sender side and
chooser side is shown in Table 1 and Table 2. Each reported
result is the average of 20 runs. More details on four types of
measurements in Table 1 are discussed follows:

(1) key ks
0
, ks

1
, ko

0
, ko

1
 generation (key gen) for all gates

in the gates net-list. These keys are ECC points in EGG
protocol and 160-bit data for 3-DGG protocol. This part is
traditionally counted as the initialization phase of gate
garbling protocol. Key generation has the highest computing
cost, when points are used as keys based on point
multiplication. For each gate, GPU-based GGF needs to
construct at least two random points kO

0
 and kO

1
, and may

also need to construct ks
0
 and ks

1
. Our experiments showed

that the average execution time of point multiplication is
around 280~310ms, but the point addition and doubling
usually takes several milliseconds.

(2) The GPU context initialization and destroying
(GCID) when GGFs/GDFs re-enter and leave the GPU
execution environment. Multiple entering and leaving of
GPU by 1-out-of-2 OT instances are accounted for
separately.

(3) Encryption (ENC) in GPU-based GGFs, i.e,, sender’s
S2 step in Fig. 4. This part is traditionally counted as a part
of the online phase in gate garbling protocol. It is further
split into (3-1) device memory allocation (DMA), and (3-2)
kernel program execution and host/device memory updating
via PCI-E (KPE). The running time for ENC grows linearly
with the circuit size, with the DMA overheads and the KPE
actual computations evenly divided the total execution time.
As a result, the encryption scheme in GPU-based GGFs may
not outperform multicore-based GGFs in certain system

0

2000

4000

6000

8000

10000

12000

Scalar Point Multiplication Sender OT Chooser OT complete OT

b'=16

b'=24

b'=32

b'=64
e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Figure 10. The execution time of point multiplication and 1-out-of-2 OT with various b’

Table 3. Bandwidth (unit: MB) of EGG, 3-DGG and ECC-based ½-OT
protocols

bandwidth
ECC

½-OT
EGG 3-DGG

equality

check
22.5 133.6 60.6

min of 2 5.6 20.5 9.7

configurations, because of the substantial DMA overheads.
(4) The sender side’s 1-out-of-2 OT instance execution

phase (OT) invoked by all GPU-based GGFs when
necessary. OT part is divided into two sub-parts -- INIT sub-
part that generates key kc

0
, kc

1
, [r0]P, [r1]P, [s]P, and the

ONLINE sub-part that performs the rest in step OT-S2.
For this part of experiments, a total number of 3072*32

1-out-of-2 OT instances are executed for an equality check
circuit, and a total number of 3072*8 1-out-of-2 OT for a
min of 2 circuit. The OT time in min of 2 is three to four
times smaller than that in equality check. A large proportion
of time is occupied by INIT. The average execution time of
one ECC-based 1-out-of-2 OT instance is 2226.75ms, of
which around 1470ms are spent in generating random points
[Ic

0
]P, [Ic

1
]P, [r0]P, [r1]P, [s]P.

The chooser side exhibited similar performance
characteristics as the sender side. The three parts of
measurements report in Table 2 are summarized as follows:

(1) GCID is similar to that of the sender side. It has
relatively small running time. (2) Decryption (DEC) in GPU-
based GDFs, or chooser’s C3 step in Fig. 4. Similarly, this
part can be divided into DMA and KPE as in the sender side;
The DEC time grows linearly with the circuit size. (3) The
chooser side’s 1-out-of-2 OT instance execution phase (OT
part) invoked by all GPU-based GDFs when necessary.
Generation of [k]P in step OT-C1 is counted as INIT, and the
rests as ONLINE in OT related evaluation.

There are several ways to optimize the cost of key
generation phase. For example, if the n-degree is much
larger than the number of circuit simultaneously requested to
execute, then generating kc

0
, kc

1
 in sender side’s OT does not

fully utilized the parallelism, and thus, the rest of random

key generated in this phase can be assigned to ks
0
, ks

1
, ko

0
,or

ko
1
. Some other methods are like maintaining a large pool of

random key for ks
0
, ks

1
, ko

0
, ko

1
 if it is allowed, or generating

ks
0
, ks

1
, ko

0
, ko

1
 for first several gates in the circuit so that the

SFE process can start, and generating them for the rest of
gates when GPU platform is free, such as the interval of data
communication between two parties. And the multicore-
based GGFs/GDFs are an alternative heuristic for the cases
when these optimization methods are infeasible.

Table 3 illustrates the bandwidth of data communication
generated by EGG, 3-DGG, and ECC-based 1-out-of-2 OT
protocols respectively in this experiment. Comparing with
EGG protocol, 3-DGG protocol needs fewer bandwidths
because of shorter truth table entries. In the basic 1-out-of-2
OT protocol presented in [3][42], the size of data
communication between sender and chooser is 5*1024 bit,
given the fact that DLP requires 1024 bit group element for
maintaining sufficient security. For comparison, that in the
ECC-based 1-out-of-2 OT protocol is 5*320bit. As a result,
the bandwidth of this part is cut to about 1/3 of the previous
OT implementation by utilizing ECC. The bandwidth would
be further decreased by applying point compression
technique that represents a point in the form of its X
coordinate only, and computes its Y coordinate on the fly.

B. Overloading Effect

This experiment is going to explore the effect on the
execution time of various parts when a-degree exceeds the n-
degree. Similar to previous experiment, the execution time of
OT is also concerned in this experiment.

Given the formula a-degree = G’*b’*n’, the 1
st
 term is

limited by G, and the augmentation of the 3
rd

 term is limited
by the size of shared memory in each SM. In all point
multiplications used in OT, the shared memory is almost
fully utilized when n’ is set as the size of one full warp, and
the potential gap of increasing this term is small. When the
size of threads per block is greater than 32 and smaller than
64, all the newly increased threads are scheduled into the 2

nd

warp, which cannot concurrently run with the 1
st
 one.

Increasing the 3
rd

 term brings trivial augmentation on a-
degree in this experiment. Hence, only the 2

nd
 term will be

enlarged to various values greater than b (b=16).
Subsequently, certain SMs are assigned to more than one

block. It is not clear whether the performance benchmark
will be hurt to overheads of block switching or be improved
because of the reduction on times of kernel launching/exiting
and the augmentation of the a-degree. It is unknown which
factor plays a heavier role. We tests three various cases of
overloading by increasing number of blocks from 16 to 24,
32, and 64, and the a-degree grows from 3072 to 4068, 6144,
and 12288.

Fig. 10 illustrates the effect on execution time. When b’
increases from 16 to 24, the execution time is nearly
doubled. It is because that the newly increased 8 blocks are
suspended until first 16 blocks completes. When b’ increases
from 16 to 32, the newly created 16 blocks can be executed
on 16 SMs simultaneously. As a result, enlarging b’ from 24
to 32 does not bring significant growth on execution time.
The experiment results illustrate when the a-degree is
doubled by doubling b’, the corresponding execution time of
a full ECC-based 1-out-of-2 OT instance grows 1.93 times,
and when the number of blocks is enlarged 4 times, the
execution time of a full ECC-based 1-out-of-2 OT instance
grows 3.78 times. The low overhead on system overloading
further proves that speeding up by enlarging the a-degree is
highly efficient.

VII. RELATED WORK

The idea of oblivious transfer was first proposed in [18].
In its initial form [18] the sender sent a message to the
chooser with probability 1/2, and he does not know whether
or not the chooser received the message. A more useful form
known as 1-out-of-2 was proposed in [3][17]. It allowed a
chooser to choose one secret from any two secrets generated
by a sender, without knowing the other one. During the
process the sender could not know which secret the chooser
chose. It was then generalized to 1-out-of-n oblivious
transfer [19], where the chooser got exactly one secret from a
sender’s n secrets without disclosing which secret was
chosen to the sender. A more recent OT protocol was
proposed in [20], which was universally composable in the
common reference string model.

The idea of secure multi-party computation (SMC) was
first proposed by Yao [8] based on the solutions to the
Millionaire’s Problem. A general secure two-party
computation model was later presented in [6]. The idea of
SMC was to enable multiple untrusting parties to compute
certain common function based on their own private inputs.
After a successful secure multi-party computation each party
only knows the output of the function based on their inputs
and does not know other’s inputs. For example, a secure
two-party computation protocol enables two parties P1 and
P2 to compute a function f based on their inputs x and y.
During the interaction P1 and P2 learn the output f(x, y) but
nothing else. The main framework of two-party SMC [6] [9]
was to allow one party (sender) to build circuits that can
fulfill a function f with inputs from him and the other party
(chooser). An important issue in SMC protocols is the
classification of adversaries. The two most studied models
are the semi-honest model (where an adversary follows the
protocol but tries to learn more than he should by launching
passive attacks like eavesdropping) and the malicious model

(where an adversary can behave arbitrarily). It was proven
that any probabilistic polynomial time functionality can be
securely computed under the semi-honest adversary model
[6] and malicious adversary model [10]. Different SMC
protocols have been proposed based on different designs.
One secure two-party computation protocol proposed in [11]
was based on the construction of a single circuit. This
solution only needed a constant number of exponentiations
per gate of the circuit. It was very efficient when the circuit
size is small. The SMC protocol in [15] adopted the cut-and-
choose methodology to build circuits. Its computational
complexity was linear to the input length with respect to the
number of oblivious transfers. Their protocol was then
improved in [16] with less computing cost based on
decisional Diffie-Hellman (DDH) assumption. The LEGO
protocol [12] also followed the cut-and-choose methodology.
In their design the sender first sent the chooser many gates,
and then the chooser asked the sender to open some of them
to check whether they were correctly constructed. Then the
two parties interacted to securely combine the separate
circuits into a complete one for secure computation. The
methods proposed in [13][14] allowed the parties to simulate
a virtual multi-party protocol with an honest majority. The
cost of the protocols basically consisted of running a semi-
honest protocol for computing the multiplication of additive
shares. In [38] an OT protocol was also proposed based on
ECC. Both our solution and their solution followed the
standard framework of the original OT protocol. The
difference is that our protocols used point addition to hide
the sender’s inputs and was fully implemented on GPU with
dedicatedly chosen parameters.

VIII. CONCLUSION

In this paper we propose a parallelization model, named
as Fastplay, for implementation of secure multi-party
computation on GPU cluster architecture. More specifically,
Fastplay is partitioned into 4 layers: the specification layer
adopts SFDL for specification of applications and
compilation of an SFDL program into SHDL; the function
layer contains the high-level control functions for gate
garbling and 1-out-of-2 oblivious transfer; the protocols
layer specifies how gate garbling and 1-out-of-2 OT are
fulfilled based on ECC arithmetic operations, and the lowest
parallel implementation layer provides support for high
parallel implementation of ECC arithmetic on CUDA based
GPU cluster architecture. The performance benchmarking
results illustrate that the ECC-based OT on the GPU cluster
is accelerated 35~40 times faster than its serial version. The
experiment results further demonstrate that the fine-grained
and large scale parallelization architecture is able to achieve
significant acceleration improvement for SMC.

REFERENCES

[1] N. Koblitz, “Elliptic curve cryptosystems.” Mathematics of
Computation, Vol.48, No.5, pp.203-209, 1987.

[2] V. Miller, “Use of elliptic curves in cryptography.” Proceedings of
CRYPTO'85, LNCS 218, pp.417-426, Springer-Verlag, 1986.

[3] Mihir Bellare, Silvio Micali, “Non-interactive oblivious transfer and
applications”, In CRYPTO ’89, 1989.

http://en.wikipedia.org/wiki/Probability

[4] Lawrence C. Washington. Elliptic Curves: Number Theory and
Cryptography. Published by Chapman & Hall/CRC, 2003.

[5] Shamus Software Ltd. MIRACL. URL: http://www.shamus.ie/

[6] A. C. Yao, “How to Generate and Exchange Secrets”, In 27th FOCS,
pages 162–167, 1986.

[7] Henri Cohen, Gerhard Frey, Roberto Avanzi, “Handbook of Elliptic
Curve and Hyperelliptic Curve Cryptography.” CRC Press, 2006.

[8] A. C. Yao, “Protocols for secure computations”, In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science,
1982.

[9] Y. Lindell and B. Pinkas, “A Proof of Yao’s Protocol for Secure
Two-Party Computation”, Cryptology ePrint Archive, Report
2004/175, 2004.

[10] O. Goldreich, S. Micali and A. Wigderson, “How to Play any Mental
Game – A Completeness Theorem for Protocols with Honest
Majority”, In 19th STOC, pages 218-229, 1987.

[11] S. Jarecki and V. Shmatikov, “Efficient Two-Party Secure
Computation on Committed Inputs”, In EUROCRYPT 2007,
Springer-Verlag (LNCS 4515), pages 97-114, 2007.

[12] J.B. Nielsen and C. Orlandi, “LEGO for Two-Party Secure
Computation”, In TCC 2009, Springer-Verlag (LNCS 5444), pages
368-386, 2009.

[13] Y. Ishai, M. Prabhakaran and A. Sahai, “Founding Cryptography on
Oblivious Transfer – Efficiently”, In CRYPTO 2008, Springer-
Verlag (LNCS 5157), pages 572-591, 2008.

[14] Y. Ishai, M. Prabhakaran and A. Sahai, “Secure Arithmetic
Computation with No Honest Majority”, In TCC 2009, Springer-
Verlag (LNCS 5444), pages 294 -314, 2009.

[15] Y. Lindell and B. Pinkas, “An Efficient Protocol for Secure Two-
Party Computation in the Presence of Malicious Adversaries”, In
EUROCRYPT 2007, Springer-Verlag (LNCS 4515), pages 52-78,
2007.

[16] Y. Lindell and B. Pinkas, “Secure Two-Party Computation via Cut-
and-Choose Oblivious Transfer”, Cryptology ePrint Archive, Report
2010/284.

[17] S. Even, O. Goldreich and A. Lempel, “A Randomized Protocol for
Signing Contracts”, In Communications of the ACM, 28(6):637–647,
1985.

[18] Michael O. Rabin, "How to exchange secrets by oblivious transfer",
Technical Report TR-81, Aiken Computation Laboratory, Harvard
University, 1981.

[19] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky, “Single
Database Private Information Retrieval Implies Oblivious Transfer” ,
In Proceedings of Advances in Cryptology (EUROCRYPT-2000)
Springer-Verlag Lecture Notes in Computer Science.

[20] C. Peikert, V. Vaikuntanathan and B. Waters, “A Framework for
Efficient and Composable Oblivious Transfer”, In CRYPTO’08,
Springer-Verlag (LNCS 5157), pages 554-571, 2008.

[21] M. Scott and P. S. L. M. Barreto, “Generating more MNT elliptic
curves,” Cryptology ePrint Archive, Report 2004/058, 2004.

[22] D. Page, N. P. Smart and F. Vercauteren, “A comparison of MNT
curves and supersingular curves,” Cryptology ePrint Archive, Report
2004/165, 2004.

[23] I. F. Blake, G. Seroussi and N. P. Smart, “Elliptic Curves in
Cryptography”, Volume 265 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 1999.

[24] D.V. Chudnovsky and G.V.Chudnovsky, “Sequences of numbers
generated by addition in formal groups and new primality and
factorization tests”, Adv. In Appl. Math., 1987.

[25] G. Reitwiesner. “Binary Arithmetic”. Adv. In Comp., 1, 231-308,
1960.

[26] W.E. Clark and J.J. Liang. “On arithmetic weight for a general radix
representation of integers”. IEEE Trans. Info. Theory, 19, 823-826,
1973.

[27] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for
genomic computation”, In 2008 IEEE Symposium on Security and
Privacy, 2008.

[28] R. Wang, X. Wang, Z. Li, H. Tang, M. Reiter and Z. Dong, “Privacy-
Preserving Genomic Computation Through Program Specialization”,
CCS’09.

[29] H. Ringberg, B. Applebaum, M. J. Freedman, M. Caesar, J. Rexford,
“Collaborative, Privacy-Preserving Data Aggregation at Scale”,
available at http://eprint.iacr.org/2009/180.pdf.

[30] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design”, In ACM Conf. on Electronic Commerce, pages
129-139, 1999.

[31] P. Lincoln, P. Porras and V. Shmatikow, “Privacy-Preserving Sharing
and Correlation of Security Alerts”, In Proceedings of the 13th
USENIX Security Symposium, 2004.

[32] C. Cachin. “Efficient Private Bidding and Auctions with Oblivious
Third Party”. In proc. of the 6th ACM conference on Computer and
communication security. Page 120~127. Nov. 1999.

[33] D. Malkhi, N. Nisan, B. Pinkas and Y. Sella, “Fairplay – A Secure
Two-Party Computation System”, 13th USENIX Security
Symposium, pages 287-302, 2004.

[34] B. Pinkas, T. Schneider, N.P. Smart and S.C. Williams, “Secure Two-
Party Computation Is Practical”, In ASIACRYPT 2009, Springer-
Verlag (LNCS 5912), pages 250-267, 2009.

[35] M. Blanton. “Empirical Evaluation of Secure Two-Party Computation
Models”. CERIAS Tech Report 2005-58. 2005.

[36] P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen,
M. Kroigaard, J.D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M.
Schwartzbach, T. Toft. “Secure Multiparty Computation Goes Live”.
In proc. of the Financial Cryptography and Data Security: 13th
International Conference. Feb. 2009.

[37] G. Wang, T. Luo, M. Goodrich, W. Du, Z. Zhu. “Bureaucratic
Protocols for Secure Two-Party Sorting, Selection, and Permuting”.
In proc. of the 5th ASIAN ACM Symposium on Information,
Computer and Communications Security, Apr. 2010.

[38] A. Parakh, “Communication Efficient Oblivious Transfer Using
Elliptic Curves”. In proc. of Conference on Theoretical and Applied
Computer Science (TACS’09), Oct. 2009.

[39] The OpenMP API Specification for Parallel Programming. Available
at http://openmp.org/wp/.

[40] N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz. “Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs”. In proc. of
workshop on Cryptographic Hardware and Embedded Systems 2004
(CHES 2004), Aug. 2004.

[41] NVIDIA CUDA programming guide 3.2
http://developer.nvidia.com/page/documentation.html

[42] M. Naor, B. Pinkas, “Efficient Oblivious Transfer Protocols”. In proc.
of the 12th annual ACM-SIAM symposium on Discrete algorithms
(SODA '01), Jan., 2001.

[43] M.D. Maclaren, G. Marsaglia, “Uniform Random Number
Generators”. In proc. of Journal of the ACM. Vol 12, issue 1, page
83~89. Jan., 1965.

[44] G. Marsaglia, A. Zaman. “A New Class of Random Number
Generators”. In proc. of the Annual of Applied Probability. Vol. 1,
No. 3 page 462~480. Aug., 1991.

[45] D. E. Knuth, “The Art of Computer Programming”, Volume 2.
Addison Wesley, 1998

http://en.wikipedia.org/wiki/Michael_O._Rabin
http://www.cs.ucla.edu/~rafail/PUBLIC/47.pdf
http://www.cs.ucla.edu/~rafail/PUBLIC/47.pdf
http://eprint.iacr.org/2009/180.pdf
http://openmp.org/wp/
http://developer.nvidia.com/page/documentation.html

