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Abstract— We propose a four-tiered parallelization model for 

acceleration of the secure multiparty computation (SMC) on 

the CUDA based Graphic Processing Unit (GPU) cluster 

architecture. Specification layer is the top layer, which adopts 

the SFDL of Fairplay for specification of secure computations.  

The SHDL file generated by the SFDL compiler of Fairplay is 

used as inputs to the  function layer, for which we developed 

both multi-core and GPU based control functions for garbling  

of various types of Boolean gates, and ECC-based 1-out-of-2 

Oblivious Transfer (OT). These high level control functions 

invoke computation of 3-DGG (3-DES gate garbling), EGG 

(ECC based gate garbling), and ECC based OT that run at the 

secure protocol layer. An ECC Arithmetic GPU Library 

(EAGL), which co-run on the GPU cluster and its host, 

manages utilization of GPUs in parallel computing of ECC 

arithmetic. Experimental results show highly linear 

acceleration of ECC related computations when the system is 

not overloaded; When running on a GPU cluster consisted of  6 

Tesla C870 devices, with GPU devices fully loaded with over 

3000 execution threads, Fastplay achieved 35~40 times of 

acceleration over a serial implementation running on a 

2.53GHz duo core CPU and 4GB memory. When the execution 

thread count exceeds this number, the speed up factor remains 

fairly constant, yet slightly increased. 

 Keywords- secure multiparty computation (SMC), Oblivious 

Transfer (OT), ECC, Graphic Processing Unit (GPU) 

I.  INTRODUCTION 

Since publication of the seminal work of the 
Millionaire’s problem [8] two decades ago, the secure 
multiparty computation (SMC) paradigm has been widely 
recognized as a general framework for design of privacy-
preserving protocols. In the Millionaires problem, two 
principals Alice and Bob want to know who has more wealth 
without telling each other their own amounts. A 
generalization of this problem, called secure function 
evaluation (SFE), was further proposed in [6]. In SFE, two 
or more parties perform a joint computing function, e.g., 
ordering of inputs, matching of inputs, addition, etc., so that 
specific inputs and outputs are unveiled or protected under 
controlled conditions. The integration of the oblivious 
transfer (OT) protocol [18] and garbled circuit is a time 
proven architecture to implement different SMC based 
computing functions.  

SMC provides strong privacy protection but it incurs 
significant computations and bandwidth costs. To meet the 
performance needs of real world applications, there is a 
strong need to accelerate SMC computations for large scale  

privacy preserving applications,  e.g., DNA based biometrics 
[27][28], information queries [29], auctions [30], network 
security alert correlation [31], etc. Some systems directly 
customized the secure functions to fit certain specialized 
functionality, for example, auction or edit distance 
computation [28, 30, 32]. On the other hand, Fairplay [33] 
and its variations proposed in [27, 34, 35, 37] emerge as a 
general framework for specification of secure functions, 
based on the secure function definition language (SFDL). An 
compiler parses an application specified in SFDL to generate 
a net-list of gates and their interconnection topology based 
on the secure hardware definition language (SHDL). 
Fairplay uses Java crypto packages for run-time execution.  

In SMC based computations, OT has the highest cost, 
both for computations and communications, while other 
crypto related functions also incur non-trivial computing 
costs. Noting that because all data bits can be processed 
independently, based on identical computing steps, we 
observe that they are ideal applications for acceleration based 
on the SIMD parallel architectures. 

Based on the above observation, the main objective of 
this paper is aimed at exploring system design issues related 
to parallelization of large scale SMC applications. Our 
system, called Fastplay, has its foundation on the Fairplay 
for specification of applications and compilation of an SFDL 
program into SHDL. For ECC arithmetic operations on 
GPU, we reengineered a portion of MIRACL [5] to fit them 
into the restricted resource environments on GPU. 
Furthermore, we developed a full suite of GPU resource 
management functions, CPU-GPU co-run controls, and 
various Boolean gates used in SMC. 

For performance benchmarking, we dissected the 
complete execution process of an SMC circuit into several 
computing parts and compare the execution time of each part 
with a serial version. We also benchmarked the bandwidth 
for EGG, 3-DGG, and ECC-based 1-out-of-2 OT protocols 
respectively. When running on a GPU cluster consisted of  6 
Tesla C870 devices, with GPU devices fully loaded with 
over 3000 execution threads, Fastplay achieved 35~40 times 
of acceleration over a serial implementation running on a 
2.53GHz duo core CPU and 4GB memory. When the 
execution thread count exceeds this number, the speed up 
factor remains fairly constant, yet slightly increased. 

Main designs to achieve the performance goal are 
summarized as follows: 

[1]. A parallel implementation for ECC-based 1-out-of-2 
OT protocol on the GPU architecture. Both ECC-
based and 3-DES based gate garbling protocols are 
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Figure 1.  The programming model of Fairplay 

 

supported. A caching technique was developed The 
ECC based protocol is well suited for GPU cluster 
architecture because most of its point multiplications 
can share the unique and constant public point P. For 
case studies, we tested “equality checking” and 
“minimum of two” circuits. 

[2]. The ECC Arithmetic GPU Library (EAGL) is 
designed to minimize the context switching 
overhead of GPU execution and full utilization of 
GPU devices.  We streamlined synchronization and 
execution control threads between GPUs and the 
host CPU. 

The rest of this paper is organized as follow: section 2 
presents the foundation work of Fastplay. Section 3 discusses 
secure protocol layer. Section 4 extends the prototype of gate 
garbling protocol to various types of gate garbling functions 
and circuit connection issues. The ECC Arithmetic GPU 
Library is presented in section 5. Experimental results and 
evaluation are illustrated in section 6. Section 7 discusses 
related work. Conclusions are drawn in section 8. 

II. FUNOUNDATIONAL WORK 

The objective of Fastplay is to replicate the single-bit 
Boolean secure function evaluation [9] onto the massive 
number of execution threads available on a GPU cluster to 
achieve the goal of acceleration for large scale applications. 
Fastplay is an ECC-based implementation for the Boolean 
secure function evaluation. For ECC-based arithmetic 
computations, we made extensive modifications to some 
portion of the MIRACL code base for optimal execution on 
the GPU architecture. Moreover, we adopt the Fairplay [33] 
as the programming model to achieve compatibility with 
existing serial solutions. 

In the Boolean secure function evaluation problem A 
secure function f(x, y) has 1-bit input x from a sender, 1-bit 
input y from a chooser, and one 4-entry truth table. The 
sender and the chooser are not allowed to learn about each 
other’s input during the protocol execution. To achieve this 
goal, sender generates two random N-bit integers ks

0
 and ks

1
 

mapping to x’s potential values 0 and 1, kc
0
 and kc

1
 mapping 

to y’s potential values, ko
0
 and ko

1
 mapping to potential 

output values 0 and 1. Sender holds the plain truth table, 
which saves plain output values 0 or 1, indexed by its 
corresponding input values (00, 01, 10, 11). For each plain 
truth table entry Tij that saves output value z, sender encrypts 
it as E(Tij) = E_ks

i
(E_kc

j
(ko

z
)), where E_ks

i
 means encryption 

using key ks
i
 that represent sender’s input value i. After 

encrypting all four truth table entries (ij = 00, 01, 10 and 11), 
sender transfers message ε = {{E(Tij)}, ks

x
 that maps x’s real 

value, pre-defined unique characteristic of ko
0 

and ko
1
} to 

Bob, and delivers kc
y
 to chooser via OT. Finally, chooser can 

successfully decrypt one of four E(Tij) = ko
z
 that maps the 

output value z = f(x, y). 
Fairplay system is the first general software suite that 

supports implementation of the general SMC scheme based 
on SFDL and its compiler tools. The programming model of 
Fairplay system is illustrated in Fig. 1. The programming 
model can be modeled into four layers: specification layer, 
function layer, secure protocol layer, and arithmetic layer. 

We adopted the SFDL compiler in specification layer for 
Fastplay, but we developed our own implementations for 
remaining layers. 

At the specification layer, SFDL supports specification of 
a general secure function f(x,y) as a circuit that includes 
customized multi-bit I/O from two parties, and the function 
body describing the functionality of the circuit. An offline 
SFDL compiler is employed to convert a circuit program 
into a gates-level hierarchy file written in SHDL.  Function 
layer includes an online SHDL parser that generates a net-list 
of gates based on the SHDL file, a circuit engine that collects 
each gate’s information and invokes a pair-wise gate 
garbling/de-garbling function (GGF/GDF) on each side 
respectively, and a pair-wise sender/chooser 1-out-of-2 OT 
instances that are invoked by GGF/GDF. The gate garbling 
schemes and various DLP-based OT implementation 
derivations can be summarized as the secure protocol layer. 
The arithmetic layer is composed of interfaces in java large 
integer, security and associated packages. At runtime, the 
sender/chooser side independently runs on a Java virtual 
machine, and connects with the other side via socket. 

MIRACL [5] contains comprehensive elliptic curve point 
arithmetic routines, e.g., point multiplication, point addition, 
subtraction, doubling, normalization and so on. Our initial 
attempts to port MIRACL directly to the CUDA 
environment proved to be virtually impossible due to 
numerous challenges in buffer management, memory access 
model, and execution control, etc.  

Fig. 2 depicts the high-level programming model of 
Fastplay. In function layer, the circuit engine of Fastplay 
employs a gate garbling task dispatcher to organize the gate-
level and circuit-level connections, and identify the type of 
GGFs/GDFs needed to invoke. Similar to solutions discussed 
in [27, 37], a large application can be decomposed into 
multiple circuits. This dispatcher also supports the multi-
level circuit hierarchy by re-using predecessor circuits’ keys 
saved by the sender in successor circuit’s gate garbling. It 
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Figure 2.  The high-level programming model of Fastplay 
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Figure 3.  ECC-based 1-out-of-2 Oblivious Transfer Protocol 

allows the chooser to decrypt successor circuit based on the 
predecessor circuit’s SMC result. 

Fastplay supports both multicore-based and GPU-based  
GGFs/GDFs. Triple-DES is used for gate garbling protocol 
(3-DGG protocol) in the multicore implementation, and the 
encryption messages εm = ε. On the other hand, an ECC-
based gate garbling protocol (EGG protocol) was 
implemented for the GPU-based GGFs/GDFs. The 3

rd
 

component of their encryption messages εg uses {kO
0
, kO

1
} 

directly, without leaking any sensitive data. We further note 
that the gate’s arity and types of gate inputs can determine 
details of a garbling function, such as whether or not OT 
needs to be involved. As a result, we implemented one type 
of GGF/GDF for each type of gate so that the 
synchronization mechanism can be greatly simplified.  

For the secure protocol layer, Fastplay consists of three 
secure protocols: ECC-based gate garbling protocol (EGG 
protocol), triple-DES based gate garbling protocol (3-DGG 
protocol), and ECC-based 1-out-of-2 OT protocol. Both 
EGG and 3-DGG protocols need to use the ECC-based 1-
out-of-2 OT protocol for the secure transferring of kc

0
 (or kc

1
) 

that will be needed for decryption of the truth table. 
The arithmetic layer of Fastplay, the ECC Arithmetic 

GPU Library (EAGL), consists of two major modules for 
control and interfaces between the host and GPU devices.  
The GPU execution control interface runs on host and 
manages synchronization of GPU-host threads, their data 
movements. It is also responsible for configuration, 
initialization and destroying of GPU context, and exception 
handling. A massive number of instances can be dispatched 
to GPU threads for parallel executions. Major reengineering 

efforts include (1) elimination of unused branches, 
concurrent write conflicts, one-time use variables, and (2) 
optimization of data structures for more efficient memory 
usage.  
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Figure 4.  Prototype of EGG protocol 

III. SECURE PROTOCOL LAYER 

A. ECC-based 1-out-of-2 OT protocol 

In the literature, oblivious transfer (OT) [18] can be 
conceptually understood as sender controls the garbling 
parameters I0 and I1 for the plaintext message of M0 and M1 
at each transaction, and chooser can choose between one of 
the two input values 0 or 1. M0 and M1 can be published after 
they are encrypted by a well known encryption scheme using 
[I0]P and [I1]P as their keys, respectively. Generation of the 
M0 and M1 is domain dependent, and therefore not 
considered as a part of the OT. In the context of the EGG and 
3-DGG protocol, the output value 0 and 1 of a gate’s plain 
truth table entries are M0 and M1, whose decryption keys Ic

0
 

and Ic
1
 plays the role of garbling parameters I0 and I1 in the 

general OT paradigm. For consistency, we use Ic
0
 and Ic

1
 in 

the following descriptions of our ECC-based 1-out-of-2 OT 
protocol. 

The ECC-based 1-out-of-2 OT protocol is illustrated in 
Fig. 3. At first, with no knowledge of the chooser’s privacy 
y, the sender generates two keys kc

0
 = [Ic

0
]P and kc

1
 = [Ic

1
]P, 

where Ic
0
 and Ic

1
 are two large integers and P is a base ECC 

point of a chosen elliptic curve. Here [Ic
0
]P and [Ic

1
]P are 

standard point multiplication method in ECC. Then, the 
sender starts transferring a randomized point [s]P to the 
chooser. After receiving [s]P, chooser generates another 
random point PKy=[k]P if the chooser’s input value y=0, 
otherwise PKy=([s]P - [k]P). In this step, the chooser 
associates its privacy y with PKy and transfers PKy back to 
sender. Then the sender generates two random points [r0]P 
and [r1]P, and seals the garbling parameters Ic

0
 and Ic

1
 

through point multiplication and point addition as the 
homomorphic operation. The encrypted messages are 
denoted by C0 and C1. Finally, the chooser can only correctly 
decrypt either C0 or C1 according to his original privacy y. 
As a result, chooser will hold either [Ic

0
]P (if y=0) or 

kc
1
=[Ic

1
]P (if y=1). In the whole process, generating 

kc
0
=[Ic

0
]P, [Ic

1
]P, [s]P, [k]P, [r0]P and [r1]P are usually 

viewed as sender’s initialization phase [42], so is the [k]P 
for the chooser side. 

In terms of computing cost, the sender needs five point 
multiplications in his initialization phase. In his online 
execution phase, he needs two point multiplications and 
three point additions/subtractions in step OT-S2. For the 
chooser, there is one point multiplication in his initialization 
phase, two point multiplications, and two or three point 
subtractions in his online execution phase. 

As seen later, the size of an elliptic curve point is 320 
bits. In terms of bandwidth, the communications cost from 
sender to chooser is 320 bits in pre-computing phase (OT-
S1), and 4*sizeof(point) = 4*320 bits = 1280 bits in the 
computation phase (OT-S2), and that from chooser to sender 
is 320bits.  

The security of the ECC-based 1-out-of-2 OT protocol is 
based on the well-known ECDLP. For outside adversaries, 
an eavesdropper Eve cannot use P, [s]P and PKy to find s 
and k to discover Ic

0
 and Ic

1
 if he cannot calculate discrete 

logs on an elliptic curve. Similarly, Eve cannot use [r0]P, 
[r1]P, [r0]PKy and [r1]PK1-y to find k to discover Ic

0
 and Ic

1
 if 

she cannot calculate discrete logs. In other words, Eve 
cannot obtain the key kc

0
=[Ic

0
]P or kc

1
=[Ic

1
]P that must be 

uniquely acquired by the chooser to decrypt a certain entry of 
a truth table later in the EGG protocol and the 3-DGG 
protocol. For inside adversaries, we use [r0]PKy + 
[Ic

0
]P/[r1]PK1-y + [Ic

1
]P to protect Ic

0
/Ic

1
. Since r0 and r1 are 

two randomly chosen large integers, a malicious chooser 
cannot use [r0]P/[r1]P and [r0]PKy /[r1]PK1-y to derive 
PKy/PK1-y in {[r0]P, [Ic

0
]P+[r0]PKy} and {[r1]P, 

[Ic
1
]P+[r1]PK1-y} so that Ic

0
 and Ic

1
 are protected unless he 

can solve ECDLP. In other words, the chooser cannot have 
both kc

0
 and kc

1
 simultaneously so he cannot to decrypt 

entries of the truth table that are not indexed by his real input 
value. Similarly, a malicious sender cannot know the results 
of the chooser’s selection (Ic

0 
or Ic

1
) since k cannot be derived 

from PKy and P.  

B. ECC-based Gate Garbling Protocol (EGG Protocol) 

In a general SMC protocol, a sender keeps the 
computation logic and its inputs in secret. A chooser 
provides his inputs and eventually obtains the computation 
results without knowing sender’s inputs, while the sender 
also does not learn the chooser’s inputs. Usually any 
complicated computation logic can be represented as the 
combination of multi-level Boolean gates. Although the 
garbling/de-garbling behaviors are slightly changed when the 
gate’s arity and inputs’ type are different, the truth table 
encryption/decryption scheme does not change. In this 
section, the discussion of the EGG protocol is based on a 
prototype of the 2-arity gate with two inputs from a chooser 
and a sender, respectively. This gate is of the CS (chooser-
sender) type. The security properties of EGG protocol under 
the semi-honest model are: 



[1]. The chooser is able to decrypt only one of the four 
entries, which is indexed by the inputs from both 
sides; 

[2]. Neither the chooser nor the sender knows the other’s 
input value; 

[3]. Any third-party adversary cannot decrypt the truth 
table entry; 

To achieve Property 1, garbling/de-garbling needs to 
utilize the standard ECC point addition and subtraction (i.e. 
given point P and Q, P+Q-Q=P). To achieve Property 2 and 
3, one 1-out-of-2 OT instance is invoked to transfer the key 
determined by the chooser’s input. Fig. 4 illustrates the 
encryption/decryption scheme. The EGG protocol can be 
described as follows: 

(1)Step S1: the sender generates two 160-bit large 
integers, Is

0
 and Is

1
, and another two 160-bit large integers IO

0
 

and IO
1
. Then the sender calculates ECC points ks

0
, ks

1
, kO

0
 

and kO
1
following the formula that ks

i
 = [Is

i
]P, kO

z
 = [IO

z
]P, 

here i, z = 0 or 1, and P is one public point on the pre-
selected curve. Points ks

0 
and ks

1
 are used to map the possible 

value 0 and 1 of sender’s 1-bit input x. Similarly, kO
0
 and kO

1
 

map to the possible value 0, 1 of output z.  
Preparation for 1-out-of-2 OT: Although we mentioned 

the generation of kc
0
 and kc

1
 in ECC-based 1-out-of-2 OT 

protocol, they were actually generated kc
0
 and kc

1
. Sender 

generates kc
0 
and kc

1
 that map to the possible values 0 and 1 

of the chooser’s 1-bit input y. As we will see later, 
generation of kc

0 
and kc

1
 is counted as the execution of the 1-

out-of-2 OT instance in benchmarking. 
(2)Step S2: we denote the four entries of plain truth table 

as T00, T01, T10, and T11 respectively, where the subscripts of 
T are actually specified by the gate description in the circuit 
list file. For convenience, T’s 1

st
 subscript represents the 

sender’s input bit, and T’s 2
nd

 subscript representing the 
chooser’s input bit. For each truth table entry, the sender 
encrypts it as: E(Tij) = kO

z
 + ks

i
 + kc

j
. Here, ko

z
 is the point 

that maps to the output value z as the result of corresponding 
truth table entry Tij. By denoting the sender’s real input value 
as x, x = 0 or 1, the sender transfers εg ={randomly 
disordered {E(Tij)}, ks

x
, and randomly disordered {kO

0
, kO

1
}} 

to the chooser. 
(3)Step S3: The sender invokes an ECC-based 1-out-of-2 

OT instance (sender side) so that the chooser can select to 
know either kc

0
 or kc

1
 based on the value of his 1-bit input y. 

The key the chooser finally obtained is denoted by kc
y
. 

(4)Step C1: The chooser invokes an ECC-based 1-out-of-
2 OT instance (chooser side) and gets kc

y
. The chooser also 

receives εg. 
(5)Step C2: For each encrypted truth table entry E(Tij), 

the chooser tries to decrypt it as: D(E(Tij)) = E(Tij) – ks
x
 – kc

y
. 

Although he gets four different points as computation results, 
only one of them matches the kO

z
 generated by sender. The 

chooser takes kO
z
 as the computing results. 

The size of the data transferred from the sender to the 
chooser is 2

arity
*320+320*2+320. Given that a gate’s arity is 

2, the total size is 2240bit. Since our protocol follows the 
standard SMC architecture [6] and elliptic curve discrete 
logarithm problem (ECDLP) [1], the proofs of all the three 
security properties are obvious and omitted here. 

In terms of computing cost, the sender needs four scalar 
point multiplications in its key generation phase ([Is

i
]P, 

[IO
z
]P, i,z=0,1), and 2

arity
*2 point additions for online 

encryption. The chooser only needs 2
arity

*2 point subtractions 
for online decryption, and (2

arity
+2) point normalizations to 

normalize the decryption results D(E(Tij)) and {kO1, kO2} to 
affine co-ordinates for point equality checking. In the EGG 
protocol, the most expensive computation is the sender’s key 
generation operations, since it needs expensive point 
multiplication operations. However, random point generation 
is independent of the truth table encryption/decryption 
process, and the number of random points N needed to be 
generated for each gate is fixed. Pre-computation of random 
points when computation resources are free is an optional 
way to reduce the computing cost. 

C. 3-DES-based Gate Garbling Protocol (3-DGG Protocol) 

Based on the 2-arity CS type gate, the 3-DGG protocol is 
as follows: 

(1)Step 3D-S1: The sender generates four 160-bit random 
integers ks

0
, ks

1
, IO

0
, IO

1
, and then generates a set of three 

different 64-bit keys Ks
0
 = {key1s

0
, key2s

0
, key3s

0
} from ks

0
, 

and another set Ks
1
 = {key1s

1
, ke2s

1
, key3s

1
} from ks

1
.  

Like the EGG protocol, the sender prepares point kc
0
 and 

kc
1
 for the 1-out-of-2 OT that will be invoked in step 3D-S4.  
(2)Step 3D-S2: The sender generates a set of 64-bit keys 

Kc
0
 = {key1c

0
, key2c

0
, key3c

0
} from ECC points kc

0
, and 

another set Kc
1
 = {key1c

1
, key2c

1
, key3c

1
} from kc

1
. All the 

keys are generated based on different segments of the point’s 
X and Y co-ordinates. 

(3)Step 3D-S3: For each truth table entry Tij, the index i 
and j represent the input value from the sender and the 
chooser, respectively. Suppose the plain output value of this 
entry is z, z is 0 or 1, then Tij = IO

z 
<< 32 + 0x0000, so that 

the chooser can easily identify which entry is decrypted 
successfully because the probability of generating a 32-bit 
consecutive 0 using two levels of 192-bit triple-DES with 
incorrect keys is very low. Encryption of entry Tij is E(Tij) = 
3-des(Kc

j
, (3-des(Ks

i
, Tij, ENCRYPT), ENCRYPT). Sender 

sends εm={randomly re-ordered {E(Tij)}, ks
x
} to the chooser. 

(4)Step 3D-S4: The sender invokes a 1-out-of-2 OT 
instance (sender side) in order to transfer either kc

0
 or kc

1
 to 

chooser, the point chooser finally gets is denoted by kc
y
. 

(5)Step 3D-C1: The chooser invokes a 1-out-of-2 OT 
instance (chooser side) to receive kc

y
. The chooser also 

receives εm. 
(6)Step 3D-C2: The chooser generates Ks

x
 = {key1s

x
, 

key2s
x
, key3s

x
} from ks

x
, and generates Kc

y
 from ECC point 

kc
y
. 
(7)Step 3D-C3: The chooser decrypts truth table entries 

as D(E(Tij)) = 3-des(Ks
x
, (3-des(Kc

y
, E(Tij), DECRYPT), 

DECRYPT). In the end, only D(E(Tij)) that has the last 32-bit 
as 0x0000 is the correct decryption result. The chooser stores 
Io

z
 = D(E(Tij)) >> 32. 

The size of data transfer from the sender to the chooser is 
2

arity
*192+160. Given arity equals to 2, this size is 928 bit.  
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Figure 5.  GGFs/GDFs connection for gate-level hierarchy 

IV. FUNCTION LAYER 

The task of the gate garbling task dispatcher is to extract 
information about the gates and identifying the type of 
GGFs/GDFs needed to be invoked. Although all the 
GGFs/GDFs in the GPU-based/multicore-based groups 
follow the prototype of EGG /3-DGG protocols respectively, 
there are slight differences in certain steps. Taking the 3-arity 
gate as an example, its three 1-bit inputs may come from 
sender, chooser or predecessor gate(s): if a gate’s input is 
from the sender or the chooser, the sender needs to one pair 
of points/large integers for itself in step S1/3D-S1. If one 
gate itself and all its predecessor gates only take the sender’s 
inputs, this gate can be treated as an input wire from the 
sender, because the sender himself can decide the output 
value of this gate. For the gate that does not directly get input 
from the chooser, OT can be ignored.  

Besides invoking various types of GGFs/GDFs, the gate 
garbling task dispatcher need to fetches the encryption 
keys/secure computing results from predecessor gates’ 
GGFs/GDFs for each gate, so that gates and circuits with 
interdependency can be connected. The key issue for gate 
connection and circuit connection is key re-using. Taking the 
gate-level hierarchy as an example, when a complex circuit 
contains hundreds or thousands of gates, it is possible that 
some gates’ input(s) are not from the sender or chooser, but 
from intermediate results of their predecessor(s). For 
succinctness, we still assume all gates are 2-arity, and show 
one example of gate connection: 

As shown in Fig. 5, two CS type GGFs/GDFs are 
invoked for gates 1 and 2, and an II type (Intermediate-
Intermediate) of GGF/GDF are invoked for gate 3. Taking 
the GPU-based GGFs/GDFs as an example, gate 3’s GGF 
does not need to generate the four random points k3s

0
, k3s

1
, 

k3c
0
 and k3c

1
 that are used to encrypt Gate 3’s truth table. 

Instead, its GGF encrypts gate 3’s truth table entries by using 
the points k1O

0
, k1O

1
, k2O

0
 and k2O

1
 that represent the possible 

output of gates 1 and 2. In Step S1, the sender only needs to 
generate k3O

0
 and k3O

1
 that represents to gate 3’s possible 

output values 0 and 1. When gate 1 and 2 complete their 
garbling processes, the sender holds the four points k1O

0
, 

k1O
1
, k2O

0
 and k2O

1
; the chooser holds either k1O

0
 or k1O

1
, and 

either k2O
0
 or k2O

1
, denoting by k1o

z
, and k2o

w
. Similar with S2 

in Fig. 4, the sender encrypts gate 3’s truth table entries by 
adding k1O

0
 or k1O

1
, and k2O

0
 or k2O

1
, to k3O

0
 or k3O

1
. On the 

other hand, since the chooser has already known k1o
z
, and 

k2o
w
, he uses these two points to decrypt the truth table 

entries, described as C2 Fig. 4. In the end, he can only 
successfully decrypt one of four entries. In such a process 
described above, security property 1 is held because the 
chooser does not fully hold the two keys to obtain the other 
three plain truth table entries. Property 2 is true because gate 
1 and gate 2 hold property 2 and gate 3 inherits these inputs 
from gate 1 and 2, and does not accept extra inputs. Property 
3 holds because gate 1 and gate 2 hold property 3, so that a 
3

rd
 party adversary cannot decrypt gate 1’s and 2’s truth table 

and thus them do not know k1o
z
, and k2o

w
. Consequently, they 

cannot decrypt gate 3’s truth table. The multicore-based 
GGFs/GDFs follow the same idea and are omitted here. 

Furthermore, such a gate connection scheme also 
supports the multi-level circuit hierarchy if several circuits 
are combined together to form a more complicated 
computation logic. Supposing circuit A provides 1-bit output 
to circuit B. When secure computing of A is done, the sender 
holds the two points kAo

0
 and kAo

1
, meanwhile the chooser 

saves the point kAo
z
 as the secure computing result of A. In 

the secure computing of B, The sender will use kAo
0
 and kAo

1
 

to encrypt the truth table entries of the gate that accepts A’s 
output. As a result, the chooser can only decrypt one entry 
successfully because he only knows one of kAo

0
 and kAo

1
 

exclusively.  

V. ARITHMETIC LAYER 

A. GPGPU Parallel Computing Architecture 

The architecture of GPGPU follows the SIMD (single 
instruction multiple data) architecture. That is, all processing 
unit executes the same instruction with various operands. 
Currently, two of the most popular GPGPU architectures are 
NVIDIA CUDA (Compute Unified Device Architecture) and 
ATI Stream. The CUDA architecture includes two parts: host 
and device. Host determines what data is fed to the devices, 
when devices start to run, how parallel computation is 
organized and how the data are saved and accessed on 
device. In hardware, the device contains one or more GPU 
boards, and each board has several streaming 
multiprocessors (SM). By containing multiple pipelined 
ALUs, one SM is able to support simultaneous execution of 
a warp of threads, whose size is 32, and one SM is able to 
schedule up to 24 warps in the most CUDA platforms. 
Registers and local memory are private for each thread; 
shared memory is private for each SM, and all the threads 
running on this SM share it; the global memory is open for 
all threads on the board. The delays of accessing a register 
and shared memory are almost the same, without considering 
write conflicts. Accessing global memory or local memory is 
hundreds times slower than accessing register or shared 
memory. In software, the CUDA programming language 
provides the software interface for developers to access and 
control devices on the host. The program that runs on 
devices is called as kernel program. Before a kernel program 
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Figure 6.  The execution process of GPU execution control interface 

runs, its parallelism parameters – number of blocks and 
number of threads per block are specified. One SM can only 
concurrently run one block and threads in this block is 
organized as one or multiple warps. In sum, the parallelism 
that one GPU board provides equals to (number of blocks * 
number of threads per block). More details are referred to 
[42].  

Our motivation for parallel execution of ECC arithmetic 
on a GPU platform is based on two observations. First, one 
of the most frequent ECC arithmetic operations in the EGG 
protocol and the ECC-based 1-out-of-2 OT protocol is point 
multiplication [k]P, where P is a fixed unique base point and 
can be shared by all threads. Consequently, part of point 
multiplication can be moved to offline pre-computing, and 
the shared memory space is saved by maintaining one copy 
of P for all threads on the same SM. Furthermore, as we will 
show later, the size of the ECC point (320 bit) is small and 
thus ECC arithmetic is suitable for porting to a computation 
platform with constrained fast-accessing memory resource. 

Porting a complicated system from CPU-based 
programming model to a GPGPU based model is 
challenging. For example, SMs on most GPGPU platforms 
do not have a branch predictor, threads in the same warp 
have to wait until all members calculate their jump address 
and finish the IF (instruction fetch) phase when they meet a 
branch. Identifying the potential write conflicts is another 
critical issue. The constrained fast-accessing memory 
resource requires highly efficient space utilization 
mechanism for buffering intermediate results, i.e. buffer re-
using and dynamic data structure size optimization, etc.. The 
accessing of slow local memory and global memory has to 
be minimized in usual case, however, sometimes there is a 
tradeoff between accessing high delay memory and 
maintaining a high degree of parallelism. For complicated 
programs, it is critical to identify which part of code is most 
suitable to run on a CPU, and which part is better for 
GPGPU-based execution. In the end, most CUDA platforms 

only support debugging in simulation mode, not real-time 
debugging. 

The rest of this section presents the two part of ECC 
Arithmetic GPU Library (EAGL): GPU execution control 
interfaces running on the host sub-system, and the EAGL 
arithmetic cells running on device sub-system. 

B. ECC Arithmetic GPU Library (EAGL) 

In the secure protocol layer, any operation that uses 
elliptic curve cryptography arithmetic needs EAGL to be 
involved in the parallel implementation layer. The theory of 
Elliptic Curve Cryptography (ECC) was first proposed by 
Koblitz [1] and Miller [2]. Let K be a finite field, and 
suppose E(K) is an additive group of points on an elliptic 

curve E over K, E(K) is defined as the set of points (x, y),  

x, y  K, (x, y) satisfy y
2
 = x

3
 + ax + b (the curve used in our 

implementation). Here we took K as Fp - as a finite prime 
field, where p is a large prime number. Here we use P, Q, R 
to denote points in E(K), and k to denote a large integer, The 
regular elliptic curve arithmetic operations are point addition 
(R=P+Q), point subtraction (R=P-Q), point doubling, (Q = 
[2]P), and point multiplication (Q = [k]P). Given certain 
elliptic curve E(Fp), the arithmetic routines of all the 
operations discussed above can be computed on projective 
coordinates [23]. The main reason is that elliptic curve group 
operations on projective coordinates do not need inversions 
and are more efficient that those on affine coordinates. 
Before running these ECC arithmetic routines on GPU 
platforms, GPU execution control interface need to set up an 
execution environment, and then these routines are fulfilled 
by one or several EAGL arithmetic cells. 

1) GPU Execution control Interfaces 
The relationship of GPU-based GGF or GDF to GPU 

execution control interface is 1:1, so that there is no branch 
for identifying whether certain gate garbling behavior, i.e. 1-
out-of-2 OT or key generation, needs to be done or not. As 
shown in Fig. 6, the GPU execution control interface first 
sets up CPU threads and bind each CPU thread to an 



struct large_int{

  unsigned int array[k];

  unsigned in length;

}

struct Point{

  struct large_int X;

  struct large_int Y;

  struct large_int Z;

  unsigned int marker;

}
 

Figure 7.  Data structures of large integer and ECC point 
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Figure 8.  The online data flow of EAGL’s arithmetic cell rand+pt mul 

available GPU device. As CPU threads start to execute, the 
GPU execution control interface takes the charge of runtime 
synchronization of GPU and CPU threads and their data 
movement, GPU context initialization and destroying, GPU 
parallelism configuration, GPU execution runtime exception 
handling. To minimize the overheads on GPU context 
initiation and device memory allocation, the GPU execution 
interface always stays in the same GPU context as long as it 
is not interrupted by necessary data communication, and 
always allocates a large chunk of device memory and 
partitions it for all the EAGL arithmetic cells invoked in its 
life time. 

The GGFs/GDFs in the multicore-based group do not 
depend on GPU execution control interfaces as much as 
those in GPU-based group. The GPU execution interface is 
invoked only in step 3D-S1 for parallel generation of a large 
volume of random large integers, and in step 3D-S4 and 3D-
C1 where ECC-based 1-out-of-2 OT instances are called. 

2) EAGL Arithmetic cells (EAC) 
When the GPU execution control interface dispatches 

kernel programs to GPU devices, the kernel programs’ 
programming model generally follows a 3-step scheme, 
including (1) setting up shared memory space and moving 
data from global to shared memory, (2) calling certain 
arithmetic cell, and (3) updating the result back to global 
memory.  

The basic data structures in EAC are shown in Fig. 7 – 
the large integer and ECC point. Large integer precision is 
32*k bits. Although 160-bit keys are secure enough as the 
key length in ECC, k is set as 7 in EAC for preventing 
possible overflow. In certain arithmetic cell like large integer 
modular multiplication, k temporarily grows to 11 and 
recovers back to 7 after it completes. However, points are 
normalized and k is cut to 5, Z coordinate and the marker are 
removed in protocol communication messages for saving 

bandwidth.  
All EAGL’s arithmetic cells share public knowledge {a 

point P, a large prime integer q, and the set Zq = [0,q)}. The 
public q is used in the generating random large integer k up 
bound by q. As shown in Fig. 8, this paper uses two of the 
most frequently invoked arithmetic cells – random large 
integer generation and point multiplication [k]P to illustrate 
how a cell interacts with its peer, how the offline and online 
part are split in original code base, and how the shared 
memory space is organized, given the parallelism 
environment as G available GPU devices, each device runs b 
blocks, and there are n threads per block. 

The random large integer generation adopts the 
Marsaglia & Zaman random number generator [43, 44], 
where mod q is involved. According with [45], mod q needs 
to compute q’s division normalized form. Since q is fixed, 
q’s division normalized form can be pre-computed. So does 
the sliding window table {[m’]P} (m’ = 3, 5, 7, …,15) for 
signed m’-ary sliding window point multiplication algorithm. 
By doing so, redundant computing is removed, and the 
consuming of shared memory at runtime is reduced. There 
are two types of data in the data flow; one is the R-only data 
that is constant and shared by all threads, the other type is 
RW data, which is owned by each thread. The data flow 
follows a three-tier dispersion model. The row on the top 
represents initial value and expected computing result in 
memory of the host sub-system. When it is moved to global 



Table 1.  Execution time (unit: ms) of GGFs (sender side) 

GGFs used & 

input circuit 

(1) key 

gen 
(2) GCID 

(3) ENC (4) OT 

DMA KPE Sum INIT ONLINE Sum 

GPU GGFs + 

equality check 
133146 2328.9 3863.0 2996.7 6859.8 48190.4 24414.1 72604.5 

Multicore GGFs+ 

eq check 
1304.6 2.4 4790.0 47764.3 24323.2 72087.5 

serial 3-DES 
GGFs+OT+eqcheck 

24201 -- 12333.8 2588.3*103 

GPU-based GGFs 

& min of 2 
23008.9 369.1 687.1 521.2 1208.3 12177.0 5388.8 17565.8 

multicore-based 

GGFs & min of 2 
267.5 3.5 838.8 12269.0 5398.4 17667.4 

serial 3-DES 
GGFs+OT&minof2 

4699 -- 2017.3 612.1*103 
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Figure 9.  The experiment environment 

memory, each RW data is split into G equal pieces, each 
piece is assigned to one GPU device, as shown in the middle 
row in Fig. 8. Then, the RW data in the middle row is 
divided into n equal parts, each part is copied to one block 
owns by a SM on the GPU device. When n <=32, all threads 
are in the 1

st
 warp, and concurrently runs the same cell, 

which leads to no need of thread-level synchronization. 
Overall, the parallelism on each GPU device = b*n. Denoted 
the size of shared memory consumed by each thread as x, 
then n equals to                              . By 
minimizing the temporary variable saving in the work space 
and reducing the space waste in point and integer structure, 
most of EACs support the configuration of a full warp as the 
size of shared memory per SM = 16384 Bytes, so that the 
SM is fully loaded in these EACs. 

However, [k]P is not the only type of point 
multiplication utilized in the ECC 1-out-of-2 OT protocol. 
As part of the homomorphic operations, the sender side 
needs to compute [r0]PKy and [r1]PK1-y and the chooser side 
needs to compute [k]([r0]P) or [k]([r1]P). In any one of 
these four point multiplications, each thread's curve points 
PKy, PK1-y, ([r0]P) or ([r1]P) are different, and thus each 
thread needs to compute the sliding window table of these 
point and maintain a unique table for each point online. In 
these four point multiplications, we found that it is 
impossible to save all threads' sliding window tables in the 
shared memory. There are two alternative solutions to solve 
this problem: either reducing the number of thread per block 
from n to n/4 so that all the sliding window tables can still be 
saved in the shared memory, or putting the slide window 
tables [m']P in global memory and loads the specific table 
entry into the shared memory when necessary so that n keeps 
to be the size of a full warp. The latter one is preferred 
because it saves the time of launching and exiting kernel 
function, synchronization in EAC. And Fastplay selects the 
latter solution in [r0]PKσ, [r1]PK1-σ, [k]([r0]P) and [k]([r1]P) 
to keep the parallelism. However, we choose the former 
solution in computation of PKσ’s, PK1-σ’s, ([r0]P)’s and 
([r1]P)’s sliding window tables because there would be large 
number of if-else branches if the form solution is adopted. 

And this reduction on parallelism degree is hidden for GPU 
execution control interfaces. 

VI. PERFORMANCE EVALUATION 

The elliptic curve E used in the experiment is E: y
2
 = x

3
 

+ ax + b mod p, where a = -3, b = 157. The large prime 
modular p and the order of the curve q are: 
p=1461501637330897725906826297907101233233312874
497, and 
q=1461501637330897725906824301401491257823677986
243, respectively. 

The affine coordinate (x, y) of the base point P is 
x=1285014020286381351588483375298861384381400195
358, and 
y=4968485340331732032416985889023918384206262119
36, respectively. 

The parameters are chosen to construct an ordinary 
elliptic curve with sufficient protection strength of ECDLP. 
We do not choose other elliptic curves in MIRACL [5] 
because they are either super-singular elliptic curves, which 
are known to have some security weakness [21][22], or have 
larger parameters. 

The experiment platform is illustrated in Fig. 9. The host 



Table 2.  Execution time (unit: ms) of GDFs (chooser side) 

GGFs used & 

input circuit 
(1) GCID  

(2) DEC (3) OT  

DMA KPE Sum INIT ONLINE Sum 

GPU GGFs + 
equality check 

1336.9 10792.9 5136.3 15929.2 9846.2 12623.8 22470.0 

Multicore GGFs+ 

eq check 
-- 4834.5 9896.4 12288.5 22184.9 

serial 3-DES 
GGFs+OT+eqcheck 

-- 12392.3 746.9*103 

GPU-based GGFs 

& min of 2 
163.441 1684.9 925.5 2610.4 2412.4 3215.4 5627.8 

multicore-based 

GGFs & min of 2 
-- 904.9 2416.9 3100.8 5517.7 

serial 3-DES 
GGFs+OT&minof2 

-- 2025.7 170.5*103 

 

sub-system has two Intel Xeon 5500 quad-core processors 
with 12GB host memory. The device sub-system is consisted 
of one and a half Tesla S870 cards that contain 6 Tesla C870 
units, or G=6. Each Tesla C870 has 16 streaming 
multiprocessors (SM), which support concurrent running of 
16 blocks of threads (b=16).  Each SM has 16k bytes of 
shared memory. Every two C870 chips share a PCI-Express 
v1.0 to communicate with the host. 

Let the native parallelism degree (n-degree) denote the 
maximum number of thread that a GPU cluster can run 
concurrently. N-degree is equal to 6*16*32=3072 in our 
experiment.  Let the actual parallelism degree (a-degree) 
denote the number of actual threads assigned to be run on the 
cluster. In other words, a-degree = G’* b’* n’, where G’ is 
the actual number of GPU device utilized, b’ the actual 
number of blocks, and n’ the actual number of threads per 
block. Given G’ = G, when a-degree is greater than n-
degree, context switching occurs in order for a device run 
multiple tasks. 

As for the multicore-based GGFs/GDFs on the host, the 
degree of parallelism is 6. 

A. Execution Time and Bandwidth 

The goal of the first experiment is to evaluate the 
acceleration benefits of GPU cluster based SMC 
parallelization. For the multicore implementation, we built a 
serial version of 3-DES based GGFs/GDFs, and ECC-based 
OT protocol. The program was tested on a system with 
2.53GHz duo core CPU and 4GB memory. All the ECC-
based computations in this serial program are based on the 
MIRACL [5].  The a-degree is made equal to n-degree in all 
GPU based experiments. Due to the simplicity of the 3-DES 
operations, and its minor computing costs, we did not 
implement it on GPU, but run it on the multicore host for 
both the sender side, and the chooser side. Effectiveness on 
acceleration of OT by GPU is the primary design concern. 

The circuits used in this experiment are the equality 
check circuit with 32-bit from each party, which has 190 
gates, and the minimum of 2 circuit with 8-bit from each 
party, which has 30 gates. The gate net-lists are generated by 

SFDL compiler. In the experiment, 3072 equality check 
circuits and 3072 minimum of 2 circuits are parallel executed 

The results shown in the OT column of Table 1 and 
Table 2 show that the speed up on  the GPU-based version is 
generally achieves 35~40 times of acceleration over the  
serial version, with both the INIT (which was often excluded 
as off-line preparation in some evaluations) and ONLINE 
computations included. Details on breakdowns of different 
computing elements are discussed next. 

The execution time for each sub-task in sender side and 
chooser side is shown in Table 1 and Table 2. Each reported 
result is the average of 20 runs. More details on four types of 
measurements in Table 1 are discussed follows: 

(1) key ks
0
, ks

1
, ko

0
, ko

1
 generation (key gen) for all gates 

in the gates net-list. These keys are ECC points in EGG 
protocol and 160-bit data for 3-DGG protocol. This part is 
traditionally counted as the initialization phase of gate 
garbling protocol.  Key generation has the highest computing 
cost, when points are used as keys based on point 
multiplication. For each gate, GPU-based GGF needs to 
construct at least two random points kO

0
 and kO

1
, and   may 

also need to construct ks
0
 and ks

1
. Our experiments showed 

that the average execution time of point multiplication is 
around 280~310ms, but the point addition and doubling 
usually takes several milliseconds. 

(2) The GPU context initialization and destroying 
(GCID) when GGFs/GDFs re-enter and leave the GPU 
execution environment. Multiple entering and leaving of 
GPU by 1-out-of-2 OT instances are accounted for 
separately.  

(3) Encryption (ENC) in GPU-based GGFs, i.e,, sender’s 
S2 step in Fig. 4. This part is traditionally counted as a part 
of the online phase in gate garbling protocol. It is further 
split into (3-1) device memory allocation (DMA), and (3-2) 
kernel program execution and host/device memory updating 
via PCI-E (KPE).  The running time for ENC grows linearly 
with the circuit size, with the DMA overheads and the KPE 
actual computations evenly divided the total execution time. 
As a result, the encryption scheme in GPU-based GGFs may 
not outperform multicore-based GGFs in certain system 
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Figure 10.  The execution time of point multiplication and 1-out-of-2 OT with various b’ 

Table 3.  Bandwidth (unit: MB) of EGG, 3-DGG and ECC-based ½-OT 
protocols 

bandwidth 
ECC  

½-OT 
EGG 3-DGG 

equality 

check 
22.5 133.6 60.6 

min of 2 5.6 20.5 9.7 

 

configurations, because of the substantial DMA overheads. 
(4) The sender side’s 1-out-of-2 OT instance execution 

phase (OT) invoked by all GPU-based GGFs when 
necessary. OT part is divided into two sub-parts -- INIT sub-
part that generates key kc

0
, kc

1
, [r0]P, [r1]P, [s]P, and the 

ONLINE sub-part that performs the rest in step OT-S2.  
For this part of experiments, a total number of 3072*32 

1-out-of-2 OT instances are executed for an equality check 
circuit, and a total number of 3072*8 1-out-of-2 OT for a 
min of 2 circuit. The OT time in min of 2 is three to four 
times smaller than that in equality check. A large proportion 
of time is occupied by INIT. The average execution time of 
one ECC-based 1-out-of-2 OT instance is 2226.75ms, of 
which around 1470ms are spent in generating random points 
[Ic

0
]P, [Ic

1
]P, [r0]P, [r1]P, [s]P.  

The chooser side exhibited similar performance 
characteristics as the sender side. The three parts of 
measurements report in Table 2 are summarized as follows:  

(1) GCID is similar to that of the sender side. It has 
relatively small running time. (2) Decryption (DEC) in GPU-
based GDFs, or chooser’s C3 step in Fig. 4.  Similarly, this 
part can be divided into DMA and KPE as in the sender side; 
The DEC time grows linearly with the circuit size. (3) The 
chooser side’s 1-out-of-2 OT instance execution phase (OT 
part) invoked by all GPU-based GDFs when necessary. 
Generation of [k]P in step OT-C1 is counted as INIT, and the 
rests as ONLINE in OT related evaluation.  

There are several ways to optimize the cost of key 
generation phase. For example, if the n-degree is much 
larger than the number of circuit simultaneously requested to 
execute, then generating kc

0
, kc

1
 in sender side’s OT does not 

fully utilized the parallelism, and thus, the rest of random 

key generated in this phase can be assigned to ks
0
, ks

1
, ko

0
,or 

ko
1
. Some other methods are like maintaining a large pool of 

random key for ks
0
, ks

1
, ko

0
, ko

1
 if it is allowed, or generating 

ks
0
, ks

1
, ko

0
, ko

1
 for first several gates in the circuit so that the 

SFE process can start, and generating them for the rest of 
gates when GPU platform is free, such as the interval of data 
communication between two parties. And the multicore-
based GGFs/GDFs are an alternative heuristic for the cases 
when these optimization methods are infeasible. 

Table 3 illustrates the bandwidth of data communication 
generated by EGG, 3-DGG, and ECC-based 1-out-of-2 OT 
protocols respectively in this experiment. Comparing with 
EGG protocol, 3-DGG protocol needs fewer bandwidths 
because of shorter truth table entries. In the basic 1-out-of-2 
OT protocol presented in [3][42], the size of data 
communication between sender and chooser is 5*1024 bit, 
given the fact that DLP requires 1024 bit group element for 
maintaining sufficient security. For comparison, that in the 
ECC-based 1-out-of-2 OT protocol is 5*320bit. As a result, 
the bandwidth of this part is cut to about 1/3 of the previous 
OT implementation by utilizing ECC. The bandwidth would 
be further decreased by applying point compression 
technique that represents a point in the form of its X 
coordinate only, and computes its Y coordinate on the fly. 

B. Overloading Effect 

This experiment is going to explore the effect on the 
execution time of various parts when a-degree exceeds the n-
degree. Similar to previous experiment, the execution time of 
OT is also concerned in this experiment. 

Given the formula a-degree = G’*b’*n’, the 1
st
 term is 

limited by G, and the augmentation of the 3
rd

 term is limited 
by the size of shared memory in each SM. In all point 
multiplications used in OT, the shared memory is almost 
fully utilized when n’ is set as the size of one full warp, and 
the potential gap of increasing this term is small. When the 
size of threads per block is greater than 32 and smaller than 
64, all the newly increased threads are scheduled into the 2

nd
 

warp, which cannot concurrently run with the 1
st
 one. 

Increasing the 3
rd

 term brings trivial augmentation on a-
degree in this experiment. Hence, only the 2

nd
 term will be 

enlarged to various values greater than b (b=16). 
Subsequently, certain SMs are assigned to more than one 



block. It is not clear whether the performance benchmark 
will be hurt to overheads of block switching or be improved 
because of the reduction on times of kernel launching/exiting 
and the augmentation of the a-degree. It is unknown which 
factor plays a heavier role. We tests three various cases of 
overloading by increasing number of blocks from 16 to 24, 
32, and 64, and the a-degree grows from 3072 to 4068, 6144, 
and 12288. 

Fig. 10 illustrates the effect on execution time. When b’ 
increases from 16 to 24, the execution time is nearly 
doubled. It is because that the newly increased 8 blocks are 
suspended until first 16 blocks completes. When b’ increases 
from 16 to 32, the newly created 16 blocks can be executed 
on 16 SMs simultaneously. As a result, enlarging b’ from 24 
to 32 does not bring significant growth on execution time. 
The experiment results illustrate when the a-degree is 
doubled by doubling b’, the corresponding execution time of 
a full ECC-based 1-out-of-2 OT instance grows 1.93 times, 
and when the number of blocks is enlarged 4 times, the 
execution time of a full ECC-based 1-out-of-2 OT instance 
grows 3.78 times. The low overhead on system overloading 
further proves that speeding up by enlarging the a-degree is 
highly efficient. 

VII. RELATED WORK 

The idea of oblivious transfer was first proposed in [18]. 
In its initial form [18] the sender sent a message to the 
chooser with probability 1/2, and he does not know whether 
or not the chooser received the message. A more useful form 
known as 1-out-of-2 was proposed in [3][17]. It allowed a 
chooser to choose one secret from any two secrets generated 
by a sender, without knowing the other one. During the 
process the sender could not know which secret the chooser 
chose. It was then generalized to 1-out-of-n oblivious 
transfer [19], where the chooser got exactly one secret from a 
sender’s n secrets without disclosing which secret was 
chosen to the sender. A more recent OT protocol was 
proposed in [20], which was universally composable in the 
common reference string model. 

The idea of secure multi-party computation (SMC) was 
first proposed by Yao [8] based on the solutions to the 
Millionaire’s Problem. A general secure two-party 
computation model was later presented in [6]. The idea of 
SMC was to enable multiple untrusting parties to compute 
certain common function based on their own private inputs. 
After a successful secure multi-party computation each party 
only knows the output of the function based on their inputs 
and does not know other’s inputs. For example, a secure 
two-party computation protocol enables two parties P1 and 
P2 to compute a function f based on their inputs x and y. 
During the interaction P1 and P2 learn the output f(x, y) but 
nothing else. The main framework of two-party SMC [6] [9] 
was to allow one party (sender) to build circuits that can 
fulfill a function f with inputs from him and the other party 
(chooser). An important issue in SMC protocols is the 
classification of adversaries. The two most studied models 
are the semi-honest model (where an adversary follows the 
protocol but tries to learn more than he should by launching 
passive attacks like eavesdropping) and the malicious model 

(where an adversary can behave arbitrarily). It was proven 
that any probabilistic polynomial time functionality can be 
securely computed under the semi-honest adversary model 
[6] and malicious adversary model [10]. Different SMC 
protocols have been proposed based on different designs. 
One secure two-party computation protocol proposed in [11] 
was based on the construction of a single circuit. This 
solution only needed a constant number of exponentiations 
per gate of the circuit. It was very efficient when the circuit 
size is small. The SMC protocol in [15] adopted the cut-and-
choose methodology to build circuits. Its computational 
complexity was linear to the input length with respect to the 
number of oblivious transfers. Their protocol was then 
improved in [16] with less computing cost based on 
decisional Diffie-Hellman (DDH) assumption. The LEGO 
protocol [12] also followed the cut-and-choose methodology. 
In their design the sender first sent the chooser many gates, 
and then the chooser asked the sender to open some of them 
to check whether they were correctly constructed. Then the 
two parties interacted to securely combine the separate 
circuits into a complete one for secure computation. The 
methods proposed in [13][14] allowed the parties to simulate 
a virtual multi-party protocol with an honest majority. The 
cost of the protocols basically consisted of running a semi-
honest protocol for computing the multiplication of additive 
shares. In [38] an OT protocol was also proposed based on 
ECC. Both our solution and their solution followed the 
standard framework of the original OT protocol. The 
difference is that our protocols used point addition to hide 
the sender’s inputs and was fully implemented on GPU with 
dedicatedly chosen parameters. 

VIII. CONCLUSION 

In this paper we propose a parallelization model, named 
as Fastplay, for implementation of secure multi-party 
computation on GPU cluster architecture. More specifically, 
Fastplay is partitioned into 4 layers: the specification layer 
adopts SFDL for specification of applications and 
compilation of an SFDL program into SHDL; the function 
layer contains the high-level control functions for gate 
garbling and 1-out-of-2 oblivious transfer; the protocols 
layer specifies how gate garbling and 1-out-of-2 OT are 
fulfilled based on ECC arithmetic operations, and the lowest 
parallel implementation layer provides support for high 
parallel implementation of ECC arithmetic on CUDA based 
GPU cluster architecture. The performance benchmarking 
results illustrate that the ECC-based OT on the GPU cluster 
is accelerated 35~40 times faster than its serial version. The 
experiment results further demonstrate that the fine-grained 
and large scale parallelization architecture is able to achieve 
significant acceleration improvement for SMC. 
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