
COMPUTING DISCRETE LOGARITHMS IN THE JACOBIAN

OF HIGH-GENUS HYPERELLIPTIC CURVES OVER EVEN

CHARACTERISTIC FINITE FIELDS

M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

Abstract. We describe improved versions of index-calculus algorithms for
solving discrete logarithm problems in Jacobians of high-genus hyperelliptic
curves de�ned over even characteristic �elds. Our �rst improvement is to
incorporate several ideas for the low-genus case by Gaudry and Theriault,
including the large prime variant and using a smaller factor base, into the
large-genus algorithm of Enge and Gaudry. We extend the analysis in [24] to
our new algorithm, allowing us to predict accurately the number of random
walk steps required to �nd all relations, and to select optimal degree bounds
for the factor base. Our second improvement is the adaptation of sieving
techniques from Flassenberg and Paulus, and Jacobson to our setting. The
new algorithms are applied to concrete problem instances arising from the Weil
descent attack methodology for solving the elliptic curve discrete logarithm
problem, demonstrating signi�cant improvements in practice.

1. Introduction

Elliptic curves [26, 33] and hyperelliptic curves [27] were proposed for use in
public-key cryptographic protocols based on the discrete logarithm problem in the
Jacobian of these curves. Elliptic curves have become a popular choice in many
protocols. Recent attacks (see e.g. [16, 38, 15]) show that hyperelliptic curves of
genus 2 and possibly genus 3 have comparable properties.

Hyperelliptic curves are not only of interest on the constructive side. High genus
hyperelliptic curves are of cryptographic interest in the analysis of elliptic curve
cryptosystems in the context of the Weil descent attack methodology [12, 14]. Weil
descent allows one to reduce the elliptic curve discrete logarithm problem (ECDLP)
on some elliptic curves de�ned over a �nite �eld of composite degree to an instance of
the hyperelliptic curve discrete logarithm problem (HCDLP) of high genus de�ned
over a smaller �eld. Under certain circumstances, the resulting instance of the
HCDLP can be solved in subexponential time using index calculus algorithms. In
our case, we only consider �elds of characteristic 2.

In [24], the authors looked at the cost of using Weil descent to solve some speci�c
instances of the elliptic curve discrete logarithm problem in practice. The main tool
was an improved version of the Enge-Gaudry algorithm [9] for solving instances of
the hyperelliptic curve discrete logarithm problem over high-genus curves, that
includes an enhanced smoothness-testing algorithm and a strategy for selecting

2010 Mathematics Subject Classi�cation. Primary 14G50; Secondary 11G20,11Y16,11Y40.
Key words and phrases. hyperelliptic curves, discrete logarithm problem, sieving, Weil descent.
The �rst author's research was supported by NSERC of Canada.
The second author's research is supported by NSERC of Canada.

1



2 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

an optimal factor base empirically. Four instances of the elliptic curve discrete
logarithm problem were considered for which the curves were de�ned over F262 ; F293 ;
F2124 ; and F2155 : Weil descent reduces these to instances of the hyperelliptic curve
discrete logarithm problem where the curves have genus 31 and are de�ned over
F22 ; F23 ; F24 ; and F25 : The �rst three discrete logarithm problems were solved using
a parallel implementation of the improved Enge-Gaudry algorithm, and estimates
for the fourth example were given indicating that it should be solveable, as the
time required is comparable to that required to break the data encryption standard
block cipher.

In this paper1, we describe further improvements to the Enge-Gaudry algorithm
in the large genus case that allowed us to solve the remaining discrete logarithm
problem from [24] (elliptic curve over F2155) in less time than predicted. The algo-
rithm is extended, in terms of both the implementation and the empirical parameter
selection strategy, to incorporate the large prime variants described by Th�eriault
[38] for low-genus hyperelliptic curves. In addition, the sieving strategy for re-
lation generation of Flassenberg and Paulus [10] is optimized for characteristic 2
and extended to work with the well-known self-initialization strategy employed in
integer factorization and index-calculus in quadratic number �elds. The resulting
algorithms are applied to the same Weil descent examples as in [24], showing that
each of the modi�cations does indeed lead to improved performance in practice.

This paper is organized as follows. We describe the relevant background material
on hyperelliptic curves and the hyperelliptic curve discrete logarithm problem in
Section 2. Our adaptation of Th�eriault's large prime variation [38] to the version of
the Enge-Gaudry algorithm from [24], as well as the revised empirical estimates for
parameter selection, are described in Section 3. The sieve-based improvements are
described in Section 4. Our numerical results are presented in Section 5, followed
by a summary of possible future research directions.

2. Hyperelliptic Curves

For details on hyperelliptic curves arithmetic, we refer to [5, 31, 7]. Here, we
brie
y sketch the basics.

Let k = Fq denote the �nite �eld with q elements and k =
S
n�1 Fqn its algebraic

closure. A hyperelliptic curve C of genus g over k is de�ned by a non-singular
equation

v2 + h(u)v = f(u) ;

where h; f 2 k[u]; deg f = 2g + 1; and deg h � g: Let L be an extension �eld of k:
The set of points on C is C(k) = f(x; y) : x; y 2 k; y2+h(x)y = f(x)g[f1g: The
opposite of P = (x; y) 2 C(k) n f1g is eP = (x;�y � h(x)) and f1 =1:

2.1. Jacobian of a Hyperelliptic Curve. A degree zero divisor D of C is a
formal sum

P
P2C(k)mPP; wheremP 2 Z; only a �nite number of themP 's are non-

zero, and
P

mP = 0: The set D0 of zero divisors is an additive group under formal
addition

P
mPP+

P
nPP =

P
(mP+nP )P: The Frobenius map � : k ! k, x 7! xq;

extends naturally to C(k) by (x; y) 7! (x�; y�) and1� 7! 1; and homomorphically
to D0 by

P
mPP 7!P

mPP
�: Let D0

k = fD 2 D0 : D� = Dg be the set of zero
divisors de�ned over k and let k(C) be the function �eld of C over k; i.e., the �eld of

1The results presented in this paper are described in more detail in M. Velichka's M.Sc. thesis
[39].



COMPUTING DISCRETE LOGARITHMS 3

fractions of the integral domain of polynomial functions k[u; v]=(v2+h(u)v�f(u)):
For f 2 k(C); the divisor of f is de�ned as div(f) =

P
P2C(k) vP (f)P; where vP (f)

denotes the multiplicity of P as a root of f: If we let Prink = fdiv(f) : f 2 k(C)g,
then Prink is a subgroup of D0

k: Finally, the Jacobian of C de�ned over k is the
quotient group JC(k) = D0

k=Prink:
The Jacobian JC(k) is a �nite abelian group of size #JC(k) � qg: We write

D1 � D2 to denote that D1 and D2 lie in the same equivalence class of divisors in
JC(k). In our situation, we know that each equivalence class has a unique reduced

divisor, i.e., a divisor
P

P 6=1mPP � (
P

P 6=1mP )1 satisfying (i) mP � 0 for

all P ; (ii) if mP � 1 and P 6= eP ; then m
eP
= 0; (iii) mP = 0 or 1 if P = eP ;

and (iv)
P

mP � g: Each reduced divisor can be uniquely represented by a pair
of polynomials a; b 2 k[u] where (i) deg b < deg a � g; (ii) a is monic; and (iii)
a j (b2+ bh�f): We write D = div(a; b) to mean D = gcd(div(a); div(b� v)) where
the gcd of two divisors

P
mPP and

P
nPP is de�ned to be

P
min(mP ; nP )P: The

identity of JC(k) is represented by the the divisor div(1; 0):
In order to measure the size of a divisor, we now de�ne the degree ofD = div(a; b)

as degD = deg a: Notice that by the degree of a divisor, we do not mean the degree
of D 2 D0 as a formal sum (which is of course 0). Similarly, we de�ne the norm

of D to be N(D) = a; and note that N(D1 +D2) = N(D1)N(D2); where D1 +D2

denotes the formal sum.
The group law in JC(k) can be e�ciently computed via NUCOMP as described

in [25]. For two reduced divisors D1 and D2, a reduced divisor D3 � D1 +D2 can
be determined by this algorithm in polynomial time.

2.2. The Hyperelliptic Curve Discrete Logarithm Problem. Let C be a
genus g hyperelliptic curve over k = Fq: The hyperelliptic curve discrete logarithm
problem (HCDLP) is the following: given C; D1 2 JC(k); r = ord(D1); and D2 2
hD1i; �nd the integer s 2 [0; r � 1] such that D2 = sD1: We shall assume that r is
prime, and #JC(k) � r:

Enge and Gaudry [9] developed an index-calculus algorithm suitable for solv-
ing the HCDLP on high-genus hyperelliptic curves. Under the assumptions that
g= log q ! 1 and that #JC(k) is known, their algorithm requires Lqg [

p
2] =

Lq2g+1 [1] bit operations, where LN [�] = exp((� + o(1))
p
logN log logN): Our

improved algorithms are based on the Enge-Gaudry method; we begin with an
overview of this algorithm.

The key to the e�ciency of any index-calculus algorithm, including the Enge-
Gaudry algorithm, is being able to e�ciently and with high probability �nd and
recognize elements that are \smooth" in some sense. In the hyperelliptic curve
case, we need to �nd divisors that are the sum of small-degree prime divisors. A
reduced divisor D = div(a; b) 2 JC(k) is called a prime divisor if a is irreducible
over k: Throughout the paper, primes and prime divisors are simply identi�ed with
reduced divisors div(p; b) 2 JC(k), denoted as P = div(p; b), where p is a prime
polynomial. Its degree is degP = deg p. The size of P is measured by the degree
of p as a polynomial (even though its degree as formal divisors is 0). It makes
therefore sense to de�ne smooth divisors as follows: A reduced divisor is said to be
t-smooth if it can be expressed as a sum of prime divisors that all have degee � t:

The set of all prime divisors of degree � t can be found as follows. For each monic
irreducible polynomial p 2 k[u] of degree � t; �nd the roots of v2 + h(u)v � f(u)



4 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

modulo p(u): For each root b(u) (there are either 0, 1 or 2 such roots), div(p; b) is a
prime divisor. In order to ensure we always use the same prime divisor for a given
polynomial p in the cases where 2 roots exist, we take the root b(u) for which the
integer value of b(u) evaluated at q is smaller.

A reduced divisorD = div(a; b) 2 JC(k) can be e�ciently decomposed into prime
divisors in expected time polynomial in the degree of a and b. Simply factor a into

monic irreducibles over k and obtain a =
QL

i=1 a
ei
i . Then D =

PL
i=1 eidiv(ai; bi),

where bi = b mod ai for 1 � i � L:

2.3. The Enge-Gaudry index-calculus algorithm. As in any index-calculus
algorithm, the Enge-Gaudry index-calculus algorithm requires to choose a factor
base S of suitable prime elements of small norm. Select a degree bound t and de�ne
the factor base S = fP1; P2; : : : ; Pwg as the set of prime divisors of degree � t. The
crucial input is a pseudo-random walk (see e.g. [37]) in the set of reduced divisors.
This walk produces random linear combinations of the form �D1 + �D2. If the
reduced divisor R equivalent to this form is t-smooth, it will be stored. This leads
to relations of the form �iD1 + �iD2 � Ri =

P
j eijPj : Once we have encountered

w + 1 distinct relations, we apply linear algebra modulo r to obtain a non-trivial
linear combination

Pw+1
i=1 
i(ei1; ei2; : : : ; eiw) = (0; 0; : : : ; 0): This yields the discrete

logarithm logD1
D2 = �(P 
i�i)=(

P

i�i) mod r, if

P

i�i is invertible modulo r.

The pseudo-random walk is constructed by �rst computing 20 random reduced
divisors Ti � aiD1 + biD2 for 0 � i � 19, where ai; bi are randomly selected
integers from [0; r � 1]. The starting point of the walk is a reduced divisor R0 �
�0D1 + �0D2, where �0 and �0 are randomly selected from [0; r � 1]: In each step
of the pseudo-random walk, the reduced divisor Ri is derived from the previous
reduced divisor Ri�1 = div(a; b) as Ri � Ri�1 + Tj ; where j is obtained by taking
the integer formed from the 5 least signi�cant bits of the binary representation of
a; and reducing it modulo 20: We then obtain a representation Ri � �iD1 + �iD2

where �i = (�i�1 + aj) mod r and �i = (�i�1 + bj) mod r: Thus the pair (�i; �i)
can be easily computed from the pair (�i�1; �i�1): For the high-genus examples
we are interested in, NUCOMP as described in [25] is the most e�cient choice for
divisor arithmetic.

In order to �nd relations, each divisor produced by the random walk must be
tested for smoothness. Suppose that the factor base contains all prime divisors
with degree � t: Given a reduced divisor D = div(a; b); a(u) is �rst subjected to
a square-free factorization algorithm (e.g., see [3]). The square-free portion a(u) is

then tested for t-smoothness using the fact that xq
l � x is the product of all monic

irreducible polynomials in Fq[x] of degree dividing l: If a(u) is indeed t-smooth,
then the factorization can be obtained using, for example, the Cantor-Zassenhaus
factoring algorithm [6].

Note that it is straightforward to parallelize this algorithm. Each processor
independently executes a di�erent random walk and sends the relations to a master
process responsible for coordinating the algorithm.

3. Improvements to the Enge-Gaudry Algorithm

Th�eriault [38] describes two improvements to Gaudry's index-calculus algorithm
[13] for solving the HCDLP on low-genus hyperelliptic curves. In this case, the
factor base consists only of degree 1 prime divisors. Th�eriault shows how the use of



COMPUTING DISCRETE LOGARITHMS 5

large primes, as previously employed in integer factorization and discrete logarithm
computation in �nite �elds and class groups of number �elds, and a novel idea of
using only a portion of the degree one prime divisors in the factor base, can be used
to obtain algorithms with improved asymptotic run times over [13].

Let r be a parameter such that 2=3 < r < 1: Then prime divisors are added to
the factor base until jSj = qr: In the remainder of this section we will use the term
smooth to mean smooth over S. We will use P to denote all prime divisors that
have norms with degree equal to one. A potentially smooth divisor is one that is
smooth over P (but not necessarily over S). A divisor is almost smooth if all of its
factors are in S with the exception of one, which is in P n S: That is, a divisor D

is almost smooth if D � P +
PjSj

i=1 eiPi; where the divisors Pi are again the prime
divisors in D; and P 2 P n S: Such a prime divisor P is called a large prime.

If two almost smooth divisors share the same large prime divisor, or one has the
large prime P and the other has its inverse �P; then we have an intersection, and

these two divisors can be combined to form a relation. Let E1 � P +
PjSj

i=1 e1;iPi �
a1D1 + b1D2 and E2 � P +

PjSj
i=1 e2;iPi � a2D1 + b2D2: Then

E1 � E2 �
jSjX
i=1

(e1;i � e2;i)Pi � (a1 � a2)D1 + (b1 � b2)D2 ;

and we have a relation. If E2 has large prime �P , we consider E1 + E2.
This gives rise to two variations of the random walk strategy as used by Gaudry

in [13]. The �rst is almost exactly the same as the original. Each divisor is checked
to see if it is potentially smooth. If so, it is completely factored and if the factors
are all in S a relation has been found. Otherwise the divisor is discarded and the
next one is tested. The e�ect of this strategy is that relations will be harder to �nd
as compared with Gaudry's algorithm, but the factor base is smaller, allowing the
linear system to be solved faster. By balancing the time for �nding relations with
the linear algebra, Th�eriault obtained an improved asypmptotic run time.

The second variation that Th�eriault analyzes takes advantage of the almost
smooth divisors. Again, a divisor is �rst checked for smoothness over P: If it
passes this �rst test then it is completely factored. If the divisor turns out to be
smooth over S; a relation is recorded. If the divisor is almost smooth then the
corresponding prime divisor is tested for intersections with any previously found
almost smooth divisors. If so, a relation is formed and recorded, with both almost
smooth divisors being removed. Otherwise, the almost smooth divisor is saved and
the next divisor is checked.

We now describe our method of incorporating these ideas into the Enge-Gaudry
algorithm as described in the previous section. Similar to that done by Th�eriault in
[38], we introduce a parameter r such that 0 < r � 1: Then we create a factor base
that contains all prime divisors with degree up to and including t�1: In addition, if
there are At prime divisors with degree equal to t; we add rAt of them to the factor
base. Then the size of the factor base is

Pt�1
i=1 Ai + rAt: Note that the previous

de�nitions of smooth and potentially smooth carry over. We let P denote not the
prime divisors with degree equal to 1; but rather all of the prime divisors with
degree up to and including t:

The random walk operates in a similar manner as before. A divisor is tested
for potential smoothness over P using the test described in the previous section. If



6 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

the divisor div(a; b) passes this �rst test, then a is explicitly factored to see if it is
actually smooth over the norms of the prime divisors in the factor base.

Recall that this is essentially how Th�eriault's algorithm works. The change in
what is included in the factor base obviously results in a change in how the large
prime variations works. We consider two di�erent ideas for incorporating large
primes into the large genus case.

First we describe the obvious generalization of Th�eriault's work. Suppose we
let r be such that 0 < r < 1 as above. Then there will be some prime divisors
with degree equal to t that are not in the factor base. Similar to [38], these are
our large primes. These large prime divisors work in the exact same manner as
described above. A divisor div(a; b) is tested for smoothness over the factor base
using the test from the previous chapter. If it passes, then a is factored, and if the
divisor turns out to be almost smooth we check for intersections. If this results in
a relation being formed, then it is added to the collection of relations that have
been found. Otherwise the almost smooth divisor is stored. If the tested divisor is
neither smooth nor almost smooth, it is discarded.

The second idea is to �x the degree bound for the divisors in the factor base to
be t and include in the set P the prime divisors with norms having degree t+1: We
allow our r parameter to be in the range (0; 1] and thus the large prime divisors
include all of the prime divisors with degree equal to t + 1 and possibly prime
divisors with degree t; if r is not equal to 1:We proceed in a similar manner. Test a
divisor for smoothness over P: If it passes, factor the divisor. If it is almost smooth,
check for intersections and form relations or store the almost smooth divisor.

3.1. Empirical Analysis. In [24], empirical estimates are provided for the ex-
pected number of random walk steps required to �nd all required relations. We now
extend this analysis to incorporate our adaptations of Th�eriault's improvements.
Given empirical data about the amount of time required to generate and test a
divisor, these computations can give estimated runtimes for various combinations
of t; r and di�erent strategies for applying the large prime variant. Furthermore,
if estimated running times for the linear algebra with di�erent sized matrices are
available, we can compute estimated times for solving the discrete logarithm prob-
lem. We apply these methods to concrete examples in Section 5.

We �rst recap the analysis developed by Jacobson, Menezes, and Stein [24] for the
Enge-Gaudry algorithm without r and large primes. Assume that we are working
with a hyperelliptic curve of genus g de�ned over Fq: Let Al be the number of
irreducible polynomials p of degree l for which there exists a prime divisor div(p; b);
where 1 � l � t: From Chapter 14 in [41] we know that there are

I(l; q) =
1

l

X
djl

�

�
l

d

�
qd

monic irreducible polynomials of degree l in Fq[X]; where �(x) is the M�obius func-
tion. Recall that �(x) evaluates to 1 if n = 1; (�1)k if n is the product of k distinct
primes and 0 if n is not square free. We expect about half of the irreducible poly-
nomials to split in the �eld [41] which gives us

Al � 1

2

0@1

l

X
djl

�

�
l

d

�
qd

1A :



COMPUTING DISCRETE LOGARITHMS 7

Recall that from each irreducible polynomial that splits we obtain two prime divisors
that are inverses of each other; one of these becomes an element in the factor base.

As in [24], and generalized in [30] by Maurer, Menezes and Teske, let M(g; t)
denote the number of t-smooth reduced divisors with norms having degree at most
g: Then we get

M(g; t) =

gX
i=1

 
[xi]

tY
l=1

�
1 + xl

1� xl

�Al
!

where we use [xi] to denote the coe�cient of xi: When Al is known, M(g; t) can be

computed by �nding the �rst g+1 terms of the Taylor expansion of
Qt

l=1

�
1+xl

1�xl

�Al

about x = 0 and summing the coe�cients of x; x2; : : : ; xg:
We assume that reduced t-smooth divisors are distributed evenly in the Ja-

cobian. With this assumption we can compute the expected number of random
walk iterations needed to �nd a reduced t-smooth divisor. We denote this value
by E(t) = #JC(k)=M(g; t): Since each splitting polynomial gives rise to a prime

divisor in the factor base, let F (t) =
Pt

l=1Al be the size of the factor base. In
[24] the authors �nd F (t) + 5 relations before performing the linear algebra step,
a decision made based on empirical data. We use the same value here. Then we
expect to create and test T (t) = (F (t) + 5)E(t) divisors to �nd a su�cient number
of relations.

Adding the parameter r. If we introduce the parameter r only and do not use large
primes, as in the �rst variant analyzed by Th�eriault in [38], the only change is
the number of prime divisors with degree t in the factor base. Thus, we repeat
the above calculations using rAt in place of At and obtain M(g; t); E(t); and

F (t) =
Pt�1

l=1 Al + rAt as before.

Adding Large Primes and setting r = 1. We now explain how we can estimate the
number of random walk steps needed when using the large prime versions of the
algorithm. We start with the most basic situation: setting r = 1 and using the
prime divisors of degree t + 1 as large primes. During the search for relations we
encounter both smooth relations and almost smooth relations. We have to consider
how many of each are encountered in the search.

The number of t-smooth divisors is still M(g; t) as de�ned above. We also need
to count the number of almost smooth divisors. An almost smooth divisor is one
that is smooth over the prime divisors of degree less than or equal to t; with the
exception of a single factor which has degree equal to t + 1: Then the number of
almost smooth divisors is the number of t-smooth divisors with degree less than or
equal to (g� (t+1)); given by M(g� (t+1); t); multiplied by the number of prime
divisors with degree equal to t+1: A divisor with degree equal to (g�(t+1)) added
to a divisor with degree equal to t + 1 has degree less than or equal to g; so the
divisors we are counting are reduced, as are the divisors produced by the random
walk that are tested for smoothness.

Recall that Al represents the number of irreducible polynomials of degree l
and each irreducible polynomial gives rise to two distinct prime divisors, a di-
visor and its negation. Then there are 2At+1 large prime divisors and a total
of A(g; t) = 2At+1M(g � (t + 1); t) almost smooth divisors. We assume that
these are also randomly distributed amongst the set of e�ective degree zero di-
visors. Then, the number of steps required to �nd an almost smooth divisor is



8 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

ELP (t) = #JC(k)=A(g; t) and the number of steps required to �nd a smooth divi-
sor is E(t) = #JC(k)=M(g; t) as described above.

If in the course of our search we �nd x almost smooth divisors then we expect

that in xELP (t) random walk steps we would also �nd xELP (t)
E(t) = xM(g;t)

A(g;t) smooth

divisors. We need to compute the number of relations we expect to obtain by
combining the x almost smooth divisors. In Section 5.6 of [38], Th�eriault provides
us with the required information. Let En;s be the expected number of intersections
when s samples are drawn with replacement from a set of n elements. Then from

Theorem 1 in [38] we know that when 3 � s < n=2; 2s
2

3n � En;s � s2

n
: Here we have

n = 2At+1; the number of possible large prime divisors, and s = x is the number
of almost smooth divisors found. The number of intersections, En;s = E2At+1;x; is
thus the number of relations we expect to �nd from the almost smooth divisors.

Again, we would like the search to yield a total of F (t) + 5 relations. Still using
x to represent the number of almost smooth divisors found, we need x such that

x
M(g; t)

A(g; t)
+

2

3

x2

2At+1
= F (t) + 5 :

Solving for x and taking the positive root gives

x =

p
9M(g; t)2(2At+1)2 + 48F (t)A(g; t)2At+1 + 120A(g; t)2At+1 � 3M(g; t)At+1

4A(g; t)
:

This gives us an expected value of T (t) = xELP (t) random walk steps needed to
generate the relations for the linear system.

Using Large Primes with r 6= 1 and degree t polynomials. We now consider the
computations in the case where we allow r to vary and use only the prime divisors
having norms with degrees equal to t not in the factor base as the large primes. Let
L(t; r) = At�rAt denote the number of irreducible polynomials that generate large
prime divisors resulting from �xing r: Then as before we have 2L(t; r) large prime
divisors and A(g; t) = 2L(t; r)M(g� t; t) almost smooth divisors, where rAt is used
in place of At in computing M(g � t; t); M(g; t) and F (t): ELP (t) = N=A(g; t) as
before. We then �nd x using the same method as above and represent the number
of divisors we expect to be tested by T (t) = xELP (t):

Using Large Primes with r 6= 1 and degree t + 1 polynomials. Finally, we consider
the computations for the case where we allow r to vary and use both the remaining
prime divisors with degree equal to t along with the prime divisors with degree
equal to t + 1 as large primes. Then L(t; r) = At � rAt is as above and A(g; t) =
2L(t; r)M(g � t; t) + 2At+1M(g � (t+ 1); t) is the number of large prime divisors,
where again M(g � t; t); M(g � (t+ 1); t) and F (t) are all computed using rAt in
place of At: Once again, compute ELP (t) = N=A(g; t); x and T (t) = xELP (t) using
the previous method.

4. A Sieve-based Algorithm

In [40], Vollmer introduced a subexponential algorithm for computing discrete
logarithms in the class group of an imaginary quadratic number �eld. This al-
gorithm was of interest because it did not require the class number a priori. In
our setting we assume that the class number #JC(k) is available, but the interest-
ing aspect of Vollmer's algorithm is that is is amenable to an especially e�cient
sieve-based relation generation strategy in the number �eld case. In this section



COMPUTING DISCRETE LOGARITHMS 9

we describe a version of Vollmer's algorithm for the HCDLP. We also describe an
improved version of the sieving methods of Flassenberg and Paulus [10] that is
suitable to our setting.

Vollmer's algorithm [40], given divisors D1 and D2 such that D2 = sD1; com-
putes s as follows:

(1) Generate a factor base S = fP1; : : : ; Pkg with degPi � t as described above.
(2) Randomly generate k + 5 relations ~ej = (e1;j ; : : : ; ek;j) such that

kX
i=1

ei;jPi � div(1; 0) :

Set A = (ei;j):
(3) Find vectors ~v�D1

= (v�D1;1; : : : ; v�D1;k) and ~vD2
= (vD2;1; : : : ; vD2;k),

such that �D1 �
Pk

i=1 v�D1;iPi andD2 �
Pk

i=1 vD2;iPi: Note that we have

�D1+
Pk

i=1�v(�D1; i)Pi � div(1; 0) andD2+
Pk

i=1 v(D2; i)Pi � div(1; 0);
so the vectors (1; 0;� ~v�D1

) and (0; 1; ~vD2
) are relations over the extended

factor base f�D1; D2; P1; : : : ; Pkg:
(4) Set �A =

�
1 0 ~0
0 1 ~0

� ~v�D1

T � ~D2

T
A

�
=
�
~a
A0

�
and solve the linear system A0~v =(1;

0; 0; 0; : : : ; 0)T over the integers modulo N
(5) Set s � ~v � ~a mod N:

We show that s is indeed the discrete logarithm. If A0~v � (1; 0; 0; 0; : : : ; 0)T

(mod N) has a solution then we can compute �A~v � (s; 1; 0; : : : ; 0)T (mod N);
and thus (s; 1; 0; : : : ; 0) is a linear combination of the columns of �A: This implies
that �sD1+D2 � div(1; 0); since the columns of �A; when taken as coe�cients of a
linear combination on the extended factor base f�D1; D2; P1; : : : ; Pkg; also result
in div(1; 0): Finally, since �sD1 +D2 � div(1; 0); we know that D2 � sD1; giving
us the correct result.

Since we are computing relations randomly, there are circumstances in which
this could fail. Consider the homomorphism � : Zk ! JC(k) that takes vectors ~v in

Zk to the linear combination over the factor base
Pk

i=1 viPi: The set of relations,
i.e., those vectors ~v for which this linear combination results in div(1; 0); forms the
kernel of �; and we have Zk= ker� �= JC(k); provided that the factor base generates
the entire Jacobian. If the lattice generated by the columns of A is not equal to
the above kernel then it is possible that we cannot �nd a solution vector ~x:

In an attempt to avoid this situation we can take some measures to make it more
likely that the sublattice generated by the columns of A has full rank. For example,
it is straightforward to ensure that multiples of existing relations are discarded. One
could also generate relations such that each member of the factor base is used in
at least one relation. This can still be done randomly, as discussed later, but slows
down computations considerably.

In [40], Vollmer analyses his algorithm in the quadratic number �eld setting and
shows that its run time is subexponential in log j�j; where � is the discriminant of
the �eld. In the hyperelliptic curve setting, assuming we know #JC(k); we expect
an asymptotic result similar to that of Enge and Gaudry, but the work is left for
future consideration.



10 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

4.1. Sieving. An alternative method of relation generation in hyperelliptic curves
is motivated by the use of sieving in factoring, such as in [35] and [28]. Sieving is
used to generate relations in order to compute class groups in quadratic number
�elds by Jacobson in [21] and by Jacobson to solve discrete logarithms in quadratic
number �elds in [23]. In [10], Flassenberg and Paulus provide an algorithm for siev-
ing in hyperelliptic curves with characteristic not equal to 2. In the following we
describe how sieving can be employed e�ectively in the framework of Vollmer's algo-
rithm to solve the HCDLP by generalizing the approach in [10] to the characteristic
2 scenario and by incorporating a number of practical improvements.

The basic idea behind using sieving to generate relations, generalized to our
context, is as follows. We use the well-known correspondence between divisors
of a hyperelliptic curves C and integral ideals of the corresponding function �eld
(see, for example, [7, Sec.4.4.6]). Recall that we have v2 + hv = f; where f is
monic with deg(f) = 2g + 1; and since we are considering the characteristic two
case, h 6= 0 has degree at most g: Suppose we have a divisor D = div(a; b) that is
known to be smooth over the factor base. The divisor D corresponds to the ideal
a = aFq[X] + (b + v)Fq[X]: Let � = aS + (b + v)T 2 a with S; T 2 Fq[X]; where
a j b2 + bh+ f; be an arbitrary element in a: Then N(�); the product of � and its
conjugate, is:

(aS + (b+ v)T ) (aS + (b+ h+ v)T ) = a

�
aS2 + hST +

b2 + bh+ f

a
T 2
�

:

Since a = N(a) there exists an ideal b with N(b) = F (S; T ) = aS2 + hST + cT 2;

where c = b2+bh+f
a

such that ab = (�): In terms of divisors, this means that there
exists a divisor D0 corrsponding to b such that D + D0 = div(�) (i.e., D + D0

is principal) and N(D0) = F (S; T ): If F (S; T ) is smooth for some S; T 2 Fq[x];
then we can factor D0 over the factor base and since D is also smooth over the
factor base, this yields a relation. Thus, given a smooth divisor D; �nding relations
reduces to �nding smooth values of F (S; T ): Sieving allows us to e�ciently �nd
such smooth values.

We consider one dimensional sieving, as in [22]. Fix T = 1 and let F (S) =
aS2 + hS + c be the sieving polynomial with coe�cients in Fq[X]: Fix a prime
divisor P from the factor base and consider N(P ) = p: Let r be a root of F (S)
modulo p: Then F (r) is divisible by p; as is F (z) for z = r + ip for i 2 Fq[X]:

To illustrate the basic functionality of sieving, we describe the case where F (S) 2
Z[x] �rst. We begin by selecting a sieve interval (�M; M), where M is a positive
integer, and initializing the sieve array D by setting D[i] = 0 for i = �M to
M: Next, for each prime p; compute the roots of F (S) modulo p (there could
be one or two roots), and for each root r; add log p to D[r + ip] for i such that
�M � r+ ip �M: After all primes have been processed, traverse through the sieve
array and any c such that D[c] is larger than a given tolerance value Y is marked
as a candidate. For each candidate c; compute F (c) and test for smoothness over
the factor base. Any smooth candidates result in relations.

By using a tolerance value to determine smooth candidates we can allow for
prime powers that divide F (c): A lower tolerance value results in more candidates
that have to be tested, but through tuning a value can be chosen that allows for a
balance between the amount of time spent testing non-smooth values and the time
saved by using candidates that have powers of primes as factors.



COMPUTING DISCRETE LOGARITHMS 11

As Flassenberg and Paulus point out in [10], sieving in the hyperelliptic curve
context provides a new challenge: representing and moving through a sieve array
where all values involved are polynomials. In the integer case we can represent the
sieve array by integer indices of an array, as the map from (�M;M) to these indices
is trivial. However, in the hyperelliptic curve context it is not as clear how we can
map polynomials in Fq[X] to these integer indices e�ciently. Additionally, moving
from r+ ip to r+(i+1)p in the integer case is easy as we just move p places in the
array. Again, in the hyperelliptic curve context we do not have this luxury because
the distance between interesting array entries is not constant.

We now present a generalization of Flassenberg and Paulus' sieving strategy
suitable to the characteristic 2 case. As before, we continue to consider one dimen-
sional sieving, and set F (S) = F (S; 1) to be the sieving polynomial. In this case
we can set bF = aS + b and �nd the signs of the exponents in ~v by �nding si such
that si = 1 if bF � bpi (mod pi) and si = �1 if bF � bpi +h (mod pi) for all prime
divisors Pi in the factor base with N(Pi) = pi:

Since we are working over a characteristic two �eld we cannot use the familiar
quadratic formula to �nd the roots of this polynomial. However, the task is made
easier by recalling that we are �nding roots modulo p where p is the norm of a
prime divisor in the factor base. If p j a then

F (S) � hS + c (mod p)

and r � ch�1 (mod p) is clearly the single root. If p j f and p - a then

F (S) � aS2 + hS + b2(a�1) + bh(a�1) (mod p)

and the roots are given by r � ba�1 (mod p) and r � (b + h)a�1 (mod p); by
inspection. Finally, if p - a and p - f then we can solve

r2 + rha�1 + ca�1 � 0 (mod p)

using a generalized version of the RESSOL algorithm by Shanks as in [10]. This
gives us the roots X and X +ha�1 (mod p): Thus we have the roots of the sieving
polynomial and can proceed with the rest of the algorithm.

Sieve Array Implementation. E�ciently moving through the sieve array given a
root is one of the main complications in the hyperelliptic curve case. As originally
presented in [10], we assign a sieve array for which each element of the array cor-
responds to a polynomial in i 2 Fq[X] with deg(i) �M for some degree bound M:
Each such polynomial i is mapped to a unique index �(i) 2 [0; : : : qM�1] as follows.
We de�ne a map �0 : Fq ! Z�0 that takes every element 
 2 Fq to a unique integer
between 0 and q � 1: If the elements of Fq are represented as polynomials, this is
done by evaluating the polynomial at the characteristic of the �eld. Then the map

� : Fq[X]! Z�0 is de�ned for S 2 Fq[X] by �(S) =
Pdeg S

i=0 �0(Si)q
i:

Moving through the sieving array from one index to the next requires the compu-
tation of �(r+(k+1)p) given �(r+kp): Our method, which improves on that of [10],
is as follows. For a prime divisor P with norm p; start by computing and storing
�0(pi) for all the coe�cients of p: To compute kj+1p from kjp we have to consider
what happens when we add 1 to k: We perform a place-wise addition of the coe�-
cients of p; which gives us �0((kp)i) for i � deg (kp); where (kp)i denotes the coef-

�cient of xi in the polynomial kp: Then we compute �(kp) =
Pdeg (kp)

i=0 �0((kp)i)q
i

with deg (kp) multiplications and additions, assuming that the qi terms have been



12 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

precomputed. This simpli�es the computation by avoiding the evaluation of �0
every time. Finally, �(r + kp) is calculated by summing �(r) and �(kp):

This idea could be taken even further. One could create aM+1 dimensional sieve
array, whereM is the upper bound on the degree of the sieve radius, as described in
the previous chapter, and where each dimension has size q: Then by maintaining a
series of pointers representing the various coe�cients of the polynomials evaluated
at r + kp; we can step through the array and mark spots as being divisible or
not. This results in the removal of most of the polynomial evaluations, and could
possibly result in further improvement.

Low-degree Sieving. The factor base typically consists of a much larger number
of prime divisors having norms with large degree than divisors with small degree
norms. Considering the norms of these prime divisors, we expect fewer of these
higher degree irreducible polynomials to divide the test polynomials. However, a
signi�cant amount of time is spent checking for divisibility by these high-degree
irreducible polynomials.

This observation leads to the idea of sieving with only the norms with lower
degrees. For example, sieve with the norms of prime divisors that have degree up
to t�1 if the factor base degree bound is t: The tolerance value can then be adjusted
accordingly to account of the possibility of a higher degree factor that has not been
sieved. How we do this is discussed at the end of the section. Clearly the amount
of time spent sieving is reduced, but there is a trade o� in that potentially smooth
candidates have to be tested for smoothness over the factor base. The hope is that
a tolerance value can be chosen such that the extra amount of time spent testing
for smoothness is less than the time that would have been spent sieving with the
higher degree norms.

Self-Initialization. The sieving process relies greatly on the speed at which sieving
polynomials can be created and the time taken to compute the roots of these
polynomials modulo primes. For factoring [1, 8] and computing class groups in
quadratic number �elds [22], a process called self-initialization has been introduced
which allows the amount of computation done to be reduced signi�cantly. As
there are no known implementations of self-initialization being used in conjunction
with sieving in the hyperelliptic curve case, we now describe self-initialization as
described in [22], generalized to work in this context in characteristic 2:

Suppose we have a divisor D with norm a that is the sum of j distinct prime

divisors Qi; with norms qi: Then D =
Pj

i=1 viQi where vi 2 f�1; 1g and a =Qj
i=1 qi

jvij: Note that
Pj

i=1�viQi = �D; so to avoid duplicate relations we �x
vj = 1 and only produce 2j�1 divisors, denoted by D1 = div(a; b1); D2 = div(a; b2);

: : : ; Dj�1
2 = div(a; b2j�1): The trick is computing these divisors without actually

computing the various products of prime ideals. In fact, both this and the com-
putation of most of the roots of the corresponding sieving polynomials modulo the
norms of the factor base elements can be computed in an e�cient manner.

Let Fi(S) = aS2 + hS + ci denote the sieving polynomial corresponding to Di;

where ci = (b2i+bih+f)=a and, as noted above, a =
Qj

i=1 qi: Similar to Theorem 4.1
in [22], for 1 � i � j we write

Bi = (a=qi)
�
(a=qi)

�1
ti (mod qi)

�
(mod a)



COMPUTING DISCRETE LOGARITHMS 13

and

B
0

i = (a=qi)
�
(a=qi)

�1
(ti + h) (mod qi)

�
(mod a)

where ti is a solution to x2 + xh � f (mod qi): Then b = �B1 � B2 � � � + Bj is

a solution to x2 + xh � f (mod a); where we use �Bi to denote B
0

i : To see this,

�rst recall that the Chinese Remainder Theorem tells us that if a =
Qj

i=1 qi then
b2 + bh + f � 0 (mod a) () b2 + bh + f � 0 (mod qi) for all 1 � i � j: Note
that Bi � ti (mod qi) and Bi � 0 (mod qk) for 1 � k � j; k 6= i: Similar results

hold for B
0

i : Then b2 + bh + f � t2i + tih + f � 0 (mod qi) or b2 + bh + f �
(ti + h)2 + (ti + h)h+ f � 0 (mod qi) for all 1 � i � j: Thus b as de�ned above is
a solution to b2 + bh � f (mod a):

Now we can easily change sieving polynomials. Let ~v = fv1; v2; : : : ; vjg with
vi = 1 for i = 1; : : : ; j: Then we can compute the sieving polynomial by �nding

a =
Qj

i=1 qi and b1 =
Pj

i=1Bi; giving F1(S) = aS2 + hS + (b1
2 + b1h+ f)=a: Note

that we �x vj = 1 in order to ensure we do not use both ~v and �~v: Now, consider a
j�1 bit Gray code, starting with ~v: Then iterating through the possible values for ~v
in this manner results in each ~vl di�ering from ~vl�1 in a single place, say k: Suppose
Dl�1 = (a; bl�1) with bl�1 = v1B1+v2B2+ � � �+vkBk+vk+1Bk+1+ � � �+Bj : Then

bl = v1B1 + v2B2 + � � � + (�vk)Bk + vk+1Bk+1 + � � � + Bj where �Bk = B
0

k; and

we have bl = bl�1 + Bk + B
0

k: This gives Dl = (a; bl) and the sieving polynomial

Fl(S) = aS2 + hS + (bl
2 + blh+ f)=a with two additions, assuming the previously

computed Bi and B
0

i values are stored.
In addition to computing the next sieving polynomial we can easily compute the

roots of the new sieving polynomial modulo the norms of the prime divisors P in
the factor base. Let P be an divisor in the factor base such that P =2 fQ1; : : : ; Qjg:
First, suppose that N(P ) = p; p - a and let r be a root of Fl(S) (mod p): Then

r+(Bk+B
0

k)a
�1 (mod p) is a root of Fl+1(S) (mod p); where k is the place where

~vl and ~vl+1 di�er. This is easy to con�rm with substitution, and easy to compute

if (Bk + B
0

k)a
�1 is precomputed. To �nd the roots for the remaining norms of

the prime divisors, that is for p j a; we have to compute r � cl+1h�1 (mod pi)
directly. However, there are only j of these roots that need computing. Thus, we
can compute new sieving polynomials and their roots e�ciently from previously
computed polynomials and roots.

4.2. Parameter Selection. Sieving introduces a number of parameters into the
algorithms for solving discrete logarithm problems. In addition to the factor base
bound t; we have to consider how large the sieve radius M should be. For this
discussion, let M be the degree of the maximum polynomial in the sieve array. We
also need to determine the degree of polynomials with which to sieve, the tolerance
value Y that decides whether or not we should check a candidate for smoothness
and j; the number of prime divisors used to create the divisor that gives rise to
a sieve polynomial. Note that all these parameters are positive integers. Our
approach for �nding values for these parameters was a combination of analysis and
empirical work. Analytical work helped to determine ranges in which we should
search for paramters. Then we ran test programs in which several hundred relations
were found using di�erent combinations of parameters. The set of parameters that
resulted in the fastest computation was our �nal choice. In this section we provide



14 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

guidance for choosing these values, assuming that self-initalized sieving is being
used.

Selecting the sieveing polynomial in such a way that degF (S) is as small as
possible for all S in the sieving interval is important, as smaller-degree polynomials
are more likely to be smooth than those with large degree. With this in mind, we
want a; the leading coe�cient of F (S) = aS2+hS+c; to have degree approximately
g �M; the genus minus the sieve radius. Because deg(S) � M; this ensures that
degF (S) � g +M + 1; since

deg(F (S)) � max(deg(aS2); deg(hS); deg(c))

and we have

deg(aS2) = deg(a) + 2 deg(S) � (g �M) + 2M = g +M ;

deg(hS) = deg(h) + deg(S) � g +M ;

and

deg(c) � deg(b2 + bh+ f)� deg(a)

= max(deg(b2); deg(bh); deg(f))� deg(a)

� max(2(g �M); (g �M) + g; 2g + 1)� (g �M)

= max(g �M; g; g + 1 +M)

= g +M + 1 ;

since deg(b) < deg(a) = g �M: In fact, deg(b2 + bh) < deg(f); so no cancellation
in the numerator of c is possible and we have deg(c) = g +M + 1 for our sieve
polynomials.

Since j irreducible polynomials are used to generate a; each should have degree
(g � M)=j: In order to ensure that this is possible, this value must be smaller

than the maximum degree of the factor base, t; so we must take j � g�M
t

: As a
starting point we assume that t is the optimal value determined by the expected
random walk values computed using the formulas discussed in Section 3.1. Once
we have chosen M and j we can use these to choose which prime divisors are used
to generate the sieving polynomials. We simply add any j prime divisors from the
factor base with degree equal to (g �M)=j or as close to it as possible.

Using the search method described above we found empirical data that suggests
setting M = t� 2 and taking j such that (g�M)=j � t� 1 are reasonable settings
to use. This makes sense, as we wish to ensure there are enough prime divisors
available to generate enough sieving polynomials to �nd the relations needed. The
relationship between j; M and t was used to dictate the parameter search space.

The last parameter is the tolerance value used for sieving. Recall that we only
sieve with prime divisors of degree � t � 1 and do not explicitly test for repeated
factors, so we need to select a tolerance value that accounts for this. In order to
ensure that most of the candidates produced really are smooth, we need to account
for not only the degrees of the prime divisors in the factor base, but also the
degree of F (S) when evaluated at polynomials in the sieve radius and the bound
on potential large prime divisors occuring in almost smooth divisors.

We �rst derive a lower bound on deg(F (S)): For all S with deg(S) �M; we have
deg(aS2 + hS) < deg(c); so deg(F (S)) = deg(c) = g +M + 1:



COMPUTING DISCRETE LOGARITHMS 15

Now consider some F (S) that is smooth over the factor base. Then F (S) =Qk
i=1 p

ai
i where pi = N(Pi) for Pi in the factor base, and degF (S) =

Pk
i=1 ai deg pi:

If ai = 1 for all i and we sieve with all primes in the factor base, then using
g +M + 1 as a tolerance value will cause F (S) to be marked as a candidate, as
degF (s) � g +M + 1 for all S in the sieve radius. However, if we want to be able
to catch factors that are squares we have to make the tolerance value smaller, for
example, g + 1 would allow for a square factor.

When using large primes, the tolerance value must be smaller to allow for the
large prime factor. For example, if we are in the case where the large prime divisors
are those with norms of degree t + 1 we must reduce the tolerance value by t + 1;
because an almost smooth candidate has degree that is the sum of the degrees of
the prime divisors in the factor base plus the degree of the large prime, t+ 1 (or t;
depending on the variation and value of r). Furthermore, when sieving with only
divisors of degree � t � 1 we have to use an even smaller tolerance value, such as
min(deg(F (S))� it = g+M+1� it; for some integer i; to allow for multiple factors
of degree t dividing F (S): This is to account for any missing degree t factors not
marked during the sieving process.

These guidelines should be used as a starting point for �nding the tolerance
value, which can be �ne-tuned using the tests mentioned above. We used test
values in the range Y � i where i depended on how long the tests were expected to
take, and the results of previous tests, starting with Y = g �M + 1� 2T:

5. Numerical Results

We have implemented our improvements to the Enge-Gaudry algorithm and
our sieve-based hyperelliptic curve version of Vollmer's algorithm in C++. NTL
[36] is used to perform the �nite �eld arithmetic An implementation of the Lanczos
algorithm from the linbox package [29] was used to solve the resulting linear systems.

We used the Advanced Cryptography Laboratory (ACL) at the University of
Calgary as our testing platform. The ACL is a Beowulf cluster consisting of 152
nodes, 139 of which have dual Intel P4 Xeon 2.4 Ghz processors with 512 kb cache.
The remaining 13 nodes have dual Intel P4 Xeon 2.8 Ghz processors with 512 kb
cache. All nodes have 2 GB of RAM and 40 GB hard drives. These nodes are
interconnected with gigabit Ethernet. The nodes all run Red Hat Enterprise Linux
3 and have the GNU Multi-Precision C library (GMP) version 4.2.2 ([18]) installed,
along with NTL version 5.4.1 ([36]) and the MPICH Message Passing Interface
(MPI) version 1.2.5 ([32]). Additionally, we have installed the Automatically Tuned
Linear Algebra Software (ATLAS) version 3.7.31 ([2]) and linbox version 1.1.3 ([29])
to perform linear algebra. The compiler used was GCC version 3.4.4 ([17]).

We now describe some features of our implementations. The relation genera-
tion phase is done in parallel in all cases. For the random walk algorithms, each
process initializes and performs its own random walk and all smooth and almost
smooth relations are reported back to a single \master" process. For the sieve-
based algorithm, the master process coordinates which sieve polynomials are used
by each process by sending a di�erent set of j prime divisors to be used with
self-initialization.

Rather then searching the almost smooth divisors for potential intersections each
time we �nd a new one, we wait until the expected number of intersections plus
the number of relations currently found is large enough. We use Theorem 1 in [38]



16 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

to determine when this happens. To be exact, we wait until x2

6At+1
plus the current

number of relations found is greater than F (t) + 5; the total number of relations
we wish to �nd. In this, x is the number of almost smooth divisors found and
At+1 is the number of degree t+1 irreducible polynomials, which give rise to 2At+1

large prime divisors, divisors and their inverses, as discussed earlier. Combining
the almost smooth relations is done by the master process at this point.

The special relations corresponding to �D1 and D2 required for Vollmer's al-
gorithm are produced by sieving with divisors of the form �D1 + D0 or D2 + D0

for randomly-produced smooth divisors D0 without using self-initialization. Any
smooth value of the corresponding sieving polynomials lead to a factorization of
�D1 or D2: This step is also done in parallel by sending di�erent random divisors
D0 to each process.

Once we have enough relations we move on to the linear algebra phase. In the
Enge-Gaudry algorithm we �nd a non-zero vector in the kernel of A; i.e., we �nd ~x
such that A~x � ~0 (mod N); where N is the provided class number. Note that our
implementation assumesN is prime. If not, one can factorN and compute solutions
to A~x � ~0 modulo each factor, combining the results with the Chinese Remainder
Theorem, as discussed in Section 4 of [9]. We �nd a solution to this linear system
by �nding a random vector ~v and using the Lanczos system solver provided by the
linbox library to solve A~x � A~v (mod N): The vector ~x�~v is, with high probability,
a non-zero vector in the kernel of A: We use the function LinBox::solve using the
Lanczos method with the default preconditioner FULL DIAGONAL, specifying that
the matrix is singular, limiting the maximum number of tries to 1; and ignoring the
ability to certify a system without a solution. This last decision was made so that
rather than spending time con�rming that the system is not solvable we generate
5 more relations and try again. Our experiments show that very few additional
iterations are required, if any, before a solution is found.

We use the same linbox function and options to solve the linear system A0~x =
(1; 0; : : : ; 0) required for Vollmer's algorithm. In addition to computing 5 new re-
lations in the event that we cannot solve this linear system, we also recompute the
special relations corresponding to a

�1 and b: Our experiments suggest again that
very few, if any, iterations of this process are necessary.

Empirical Estimates and Parameter Selection. We tested our algorithms on
instances of the HCDLP in the Jacobian of four genus 31 hyperelliptic curves de�ned
over k = Fq for q = 4; 8; 16 and 32: The hyperelliptic curves over these �elds, taken
from [24], are denoted C62, C93, C124 and C155. They all have #JC(k) = 2r where
r is prime and as described in [24], were obtained by applying the GHS attack to an
instance of the ECDLP on elliptic curves de�ned over F262 ; F293 ; F2124 ; and F2155 ;
respectively. The curve parameters are listed in Table 1. The curve equations are
given by v2 + h(u)v = f(u); where h; f 2 Fq[u]; and the prime factorizations of
#JC(k) are also listed.

In Section 3.1 we generalized the method of [24] for estimating the number of
random divisors that must be tested in order to �nd a total of F (t) + 5 relations
to methods that also make use of a reduced factor base and large primes. We
now apply these ideas to the curves C62, C93, C124, and C155 in order to �nd
optimal parameters for our improved versions of Enge-Gaudry. We also estimate
the amount of time required to perform the entire algorithm by measuring the
time required to create a smaller number of divisors, for example 1000 divisors,



COMPUTING DISCRETE LOGARITHMS 17

Table 1. Hyperelliptic curves C62, C93, C124, and C155 of genus
g = 31:

C62, q = 4; F22 = F2[w]=(w
2 + w + 1)

f(u) = u63 + w2u62 + u48 + w2

h(u) = u31 + u30 + wu28 + u24 + w2u16 + w2

#JC62(F22) = 2 � 2305843007560748609
C93, q = 8; F23 = F2[w]=(w

3 + w + 1)
f(u) = w4u63 + w5u62 + w5u60 + w3u56 + w5u48 + wu32 + w5

h(u) = w2u31 + w5u30 + u28 + w6u24 + w6

#JC93(F23) = 2 � 4951760157141611728579495009
C124, q = 16; F24 = F2[w]=(w

4 + w + 1)
f(u) = w3u63 + w7u60 + w3u56 + w3u48 + 1
h(u) = w9u31 + w12u30 + w8u28 + w13u24 + w6u16 + w6

#JC124(F24) = 2 � 10633823966279326985483775888689817121
C155, q = 32; F25 = F2[w]=(w

5 + w2 + 1)
f(u) = w4u63 + w6u62 + w15u60 + w26u56 + w25u48 + w7u32 + w13

h(u) = w2u31 + w7u30 + w30u28 + w22u24 + w3u16 + w22

#JC155(F25) = 2 � 22835963083295358096932727763065266972881541089

and test them for smoothness. With this information we can estimate how long
the relation generation stage will take, through interpolating and extrapolating the
data. We also have estimated linear algebra times based on some trial runs and
extrapolation. Finally, the time required for initialization (that is, creating the
factor base) has been measured and used in these estimates. With these timings we
can compute estimated runtimes for the Enge-Gaudry algorithm with the curves
above and di�erent choices for the factor base bound t; the parameter r and what
form of almost smooth divisors are considered.

When not using large primes, there are two parameters we can vary: the factor
base bound t and the parameter r controlling the number of the largest degree
polynomials we use to create prime divisors for our factor base. When using large
primes, we consider the case where we use just the prime divisors having norm with
degree equal to t as large prime divisors and the case where we also include the
prime divisors having norms with degree equal to t+ 1:

Tables 2 to 5 provide sample points for each variation of the random walk param-
eters and each curve we are considering. In these tables LP indicates the number
of large prime divisors that exist with these settings, E(t) is the expected number
of steps required to �nd a smooth divisor, ELP (t) is the expected number of tests
to �nd an almost smooth divisor, T (t) is the total number of steps expected to �nd
F (t) + 5 relations, T represents the estimated time required to test T (t) divisors
using 256 processors. The column LA refers to the estimated time required for the
linear algebra stage. The total time is the sum of LA; T and the time required
for initialization (not shown). Those lines marked with (�) represent the settings
recommended in [24].

Note that, when incorporating large primes and r 6= 1; the values of t suggested
in [24] may not necessarily be the best ones (see C62 and C124). In addition,
the use of large primes with appropriate parameter selection results in a signi�cant



18 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

Table 2. Estimated C62 runtimes in seconds.

t r F (t) LP E(t) ELP (t) T (t) T LA total

Not considering almost smooth divisors

5 1.00 144 - 36296 - 5408075 51.61 0.07 54.14
6 0.50 309 - 7776 - 2441636 24.13 0.34 27.24
6 1.00 474 - 2614 - 1251873 13.20 0.81 16.97
7 0.50 1059 - 921 - 980453 10.37 4.04 19.06

(�) 7 1.00 1644 - 421 - 694997 7.57 9.73 23.48

Using only degree t norms

5 0.90 134 10 48446 162924 5050630 48.67 0.07 51.21
6 0.60 342 132 6092 6443 1391785 13.67 0.48 17.02
6 0.80 408 66 3900 9256 1249536 12.37 0.68 16.03
6 0.90 441 33 3177 15884 1223078 12.15 0.79 15.97
7 0.10 591 1053 2058 996 802851 8.44 1.43 13.28

Using degree t+ 1 norms

5 1.00 144 330 36296 9436 2604401 25.49 0.08 28.04
6 0.50 309 1335 7776 1656 1280375 13.36 0.39 16.52
6 1.00 474 1170 2614 1051 809562 8.78 0.92 12.65
7 0.50 1059 4665 921 304 664803 7.58 4.58 16.81
7 1.00 1644 4080 421 258 542944 6.35 11.04 23.57

Table 3. Estimated C93 runtimes in minutes.

t r F (t) LP E(t) ELP (t) T (t) T LA total

Not considering almost smooth divisors

4 1.00 596 - 1830509 - 1.10 �109 178.34 0.03 178.46
5 0.50 2234 - 145591 - 325977380 56.30 0.45 56.88

(�) 5 1.00 3872 - 28668 - 111146195 19.26 1.35 20.77
6 0.50 14771 - 6281 - 92810648 17.12 19.64 37.42

Using only degree t norms

4 0.90 546 50 2834369 6261994 1.04 �109 168.44 0.03 168.56
5 0.50 2234 1638 145591 75143 171550333 29.47 0.51 30.11
5 0.80 3217 655 51489 82729 115159023 20.11 1.06 21.31
5 0.90 3544 328 38100 130084 108360217 18.93 1.28 20.37
6 0.10 6052 19618 20016 6513 75517246 13.67 3.74 17.67

Using degree t+ 1 norms

4 1.00 596 3276 1830509 266121 484073278 83.42 0.04 83.54
5 0.50 2234 23436 145591 19132 167421504 30.55 0.51 31.19
5 1.00 3872 21798 28668 7577 71792103 13.03 1.53 14.72
6 0.50 14771 160695 6281 1394 64731785 13.70 22.29 36.65

reduction in the expected number of random walk steps required to generate F (t)+5
relations.

Using Tables 2 to 5 we can pick optimal parameters for the Enge-Gaudry al-
gorithm with random walks for relation generation. It would appear that in our
situation, with the relation generation being done in parallel on 256 processors,
we should use the variation of large primes that considers the set of large prime
divisors to include those divisors having norms with degree equal to t+1 in all four
curves. It also appears that we should set r = 1 for all four curves. See Table 6 for
a summary of what we used for input for random walks. The large prime bound is
the degree of the norms of divisors that we use in our set of large prime divisors.
We also list in Table 7 the settings from [24] for reference and comparison.



COMPUTING DISCRETE LOGARITHMS 19

Table 4. Estimated C124 runtimes in hours.

t r F (t) LP E(t) ELP (t) T (t) T LA total

Not considering almost smooth divisors

4 0.50 4808 - 18991245 - 9.14 �1010 267.29 0.07 267.37
4 1.00 8872 - 1498799 - 1.33 �1010 38.86 0.24 39.11
5 0.32 42426 - 267103 - 1.13 �1010 36.39 5.59 42.01
5 0.50 61300 - 127546 - 7.82 �109 25.37 11.67 37.08

(�) 5 1.00 113728 - 25876 - 2.94 �109 10.34 40.15 50.59

Using only degree t norms

4 0.50 4808 4064 18991245 6040905 3.60 �1010 104.42 0.08 104.50
4 0.90 8059 813 2308631 5163911 1.28 �1010 37.39 0.23 37.62
5 0.32 42426 71302 267103 88111 5.84 �109 18.82 6.34 25.18
5 0.50 61300 52428 127546 67239 4.38 �109 14.28 13.24 27.56

Using degree t+ 1 norms

4 0.50 4808 108920 18991245 1336140 3.98 �1010 124.06 0.08 124.15
4 1.00 8872 104856 1498799 225558 7.72 �109 23.96 0.28 24.24
5 0.32 42426 1469042 267103 27402 7.18 �109 24.66 6.34 31.03
5 0.50 61300 1450168 127546 17154 5.16 �109 17.80 13.24 31.09
5 1.00 113728 1397740 25876 6964 2.28 �109 9.37 45.57 55.04

Table 5. Estimated C155 runtimes in days.

t r F (t) LP E(t) ELP (t) T (t) T LA total

Not considering almost smooth divisors

4 0.80 110365 - 3358791 - 3.71 �1011 60.76 1.61 62.37
(�) 4 1.00 136528 - 1378374 - 1.88 �1011 33.17 2.47 35.65

5 0.20 807616 - 440408 - 3.56 �1011 114.64 86.36 201.10

Using only degree t norms

4 0.80 110365 26163 3358791 3510031 2.13 �1011 35.20 1.83 37.03
4 0.92 126063 10465 1939095 5529341 1.79 �1011 30.71 2.39 33.11
5 0.20 807616 2684352 440408 109868 1.91 �1011 64.89 98.02 163.00

Using degree t+ 1 norms

4 0.80 110365 3381603 3358791 382768 2.40 �1011 41.55 1.83 43.38
4 1.00 136528 3355440 1378374 210311 1.33 �1011 24.76 2.80 27.56
5 0.20 807616 92160024 440408 37543 2.72 �1011 99.37 98.02 197.48

Table 6. Random Walk Parameters for the Enge-Gaudry Algorithm.

Curve C62 C93 C124 C155

Factor Base Bound t 6 5 4 4
Parameter r 1 1 1 1

Large Prime Bound 7 6 5 5
Estimated Time 12.65 Seconds 14.72 Minutes 24.24 Hours 27.56 Days

Table 7. Random Walk Parameters from [24] for the Enge-
Gaudry Algorithm.

Curve C62 C93 C124 C155

Factor Base Bound t 7 5 5 4
Parameter r 1 1 1 1

Estimated Time 23.48 Seconds 20.77 Minutes 50.59 Hours 35.65 Days



20 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

We used the settings in Table 6 as a starting point for selecting the sieve pa-
rameters. The remaining parameters were generated by starting with the strategy
described in Section 4.2. The �nal parameters selected are listed in Table 8.

Table 8. Parameters for Sieve-Based Algorithm.

Curve C62 C93 C124 C155
Factor Base Bound t 6 5 4 4

Parameter r 1 1 1 1
Large Prime Bound 7 6 5 5

Divisors used j 5 7 9 9
Radius Degree M 4 3 2 2
Tolerance Value Y 19 21 25 25

Numerical Results. We have used our implementation to solve discrete loga-
rithm problems in C62, C93 and C124 using both the Enge-Gaudry algorithm and
our sieve-based adaptation of Vollmer's algorithm with self-initialized sieving and
parameters as selected above. Tables 9 to 12 list the results for C62 to C155,
respectively. We list estimated and actual runtimes and statistics using the strat-
egy and optimal paramters from [24] (labelled as \JMS"), our optimized version
incorporating large primes, and our sieve-based version of Vollmer's algorithm.

Table 9. C62 Results

JMS EG JMS EG Opt. EG Opt. EG Sieving
Estimate Result Estimate Result Result

Initialization Time 6.18s 6.28s 2.96s 2.73s 0.76s

Total Relations 1649 1649 479 479 489

Full Relations 1649 1649 310 302 321

Almost
Smooth Relations - - 770 780 986

Intersections - - 169 198 180

Unique Intersections - - 169 198 180

Sieve Polynomials - - - - 618361

Total Divisors Tested 694997 590394 809562 640471 633201664

Total Search Time 32.31m 27m 25.31s 37.44m 27m 51.86s 21m 40.78s

Real Search Time 7.57s 6.42s 8.78s 6.53s 8.21s

Total Iterations - 1 - 1 3

Special
Divisors Checked - - - - 1081344

Special Rels Time - - - - 0.99s

Linear Algebra Time 9.73s 34.45s 0.92s 2.85s 13.03s

Total Time 32.57m 28m 6.66s 37.51m 27m 57.91s 21m 56.45s

Real Total Time 23.48s 47.77s 12.65s 12.58s 22.90s

First notice that the linear algebra times were signi�cantly underestimated in all
cases. Using more accurate estimates might result in di�erent choices for t and r as
we attempt to choose settings that result in the lowest runtime. However, in most
cases it is the search for smooth relations that dominated the computation time,
especially when considering the total times as opposed to the real time required
with 256 processors.



COMPUTING DISCRETE LOGARITHMS 21

Table 10. C93 Results

JMS EG JMS EG Opt. EG Opt. EG Sieving
Estimate Result Estimate Result Result

Initialization
Time 9.67s 9.76s 9.67s 8.70s 4.55s

Total
Relations 3877 3877 3877 3877 3892

Full
Relations 3877 3877 2504 2480 2547

Almost Smooth
Relations - - 9475 9546 13246

Intersections - - 1373 1834 5271

Unique
Intersections - - 1373 1834 1496

Sieve
Polynomials - - - - 8889395

Total Divisors
Tested 111146195 101080503 71792103 70951503 36410961920

Total Search 3d 4h 2d 5h 11h 36m
Time 3.42d 2m 9.10s 2.32d 41m 16.87s 43.94s

Real Search
Time 19.26m 17m 49.25s 13.03m 12m 34.98s 3m 13.40s

Total
Iterations - 1 - 1 3

Special Divisors
Checked - - - - 11501568

Special Rels
Time - - - - 7.92s

Linear Algebra
Time 1.35m 6m 5.73s 1.53m 4m 57.28s 22m 7.37s

3d 4h 2d 5h 11h 58m
Total Time 3.43d 8m 26.11s 2.32d 46m 28.02s 59.23s

Real Total Time 20.77m 24m 6.26s 14.72m 17m 46.13s 25m 20.80s

For the C62 case (Table 9) we notice that signi�cantly fewer divisors were tested
than we expected in both the version of Enge-Gaudry from [24] and our optimized
version. One possible cause of this is if a large number of smooth or almost smooth
relations are found early in random walks. This, spread over the 256 random
walks occurring, could explain this di�erence. Further evidence for this idea was
provided when we ran the same test using a smaller number of processors. Tests
using both 10 processors and 1 processor resulted in the number of divisors tested
to be much closer to the estimates. We also point out that in our optimized version
of Enge-Gaudry we expected T (t)=ELP (t) = 809562=1051 � 770 almost smooth
relations to be found, and this is almost exactly what we did �nd. Comparing
our optimal results to the results produced using the version from [24] we see
that the search times are almost the same, but due to the larger factor base size
recommended by JMS, the linear algebra time is signi�cantly larger. Finally, we
note that the time spent searching for relations was improved signi�cantly using
sieving. Unfortunately, the �rst relation matrix did not yield a solution to the
HCDLP, and in fact the linear algebra had to be repeated three times, negating
the impact of the speed-up in relation generation. Even so, the total time spent
on all processors was the least when using Vollmer's algorithm, but the fact that



22 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

Table 11. C124 Results

JMS EG JMS EG Opt. EG Opt. EG Sieving
Estimate Result Estimate Result Result

Initialization
Time 5.56m 5m 44.75s 17.64s 15.59s 10.44s

Total Relations 113733 113733 8879 8879 8870

Full Relations 113733 113733 5154 5176 5084

Almost
Smooth Relations - - 34232 34106 34520

Intersections - - 3725 4953 4510

Unique
Intersections - - 3725 4953 4510

Sieve
Polynomials - - - - 1581411077

Total Divisors
Tested 2942900860 2931742632 7721296965 7557879515 6477459771392

Total Search 115d 5h 243d 23h 81d 6h
Time 110.32d 56m 15.77s 255.59d 42m 45.22s 59m 28.12s

Real Search 10h 22h 7h
Time 10.34h 48m 15.99s 23.96h 52m 25.95s 37m 14.86s

Total
Iterations - 1 - 1 1

Special Divisors
Checked - - - - 143921152

Special Rels
Time - - - - 3m 34.67s

Linear Algebra
Time 40.15h 0.28h 37m 43.56s 1h 44.90s

244d 81d 8h
Total Time 112d 255.60d 21m 2.53s 3m 47.69s

23h 8h
Real Total Time 50.59h 24.24h 30m 43.26s 42m 3.49s

the relation generalization was distributed over 256 processors meant that the real
time was not.

For C93 (Table 10) we see that the number of divisors tested in both the JMS
and optimal results are much closer to that which we expected. This time the same
factor base size was recommended for the version from [24] and our optimized ver-
sion. Here we see that using large primes does reduce the amount of time needed in
the search. Again, when comparing the results to the sieve-based algorithm we see
that while relation generation with sieving is signi�cantly faster, taking around a
quarter of the time, once again the linear algebra took three iterations. This signi�-
cantly increases the amount of time this test took to run on the cluster, as the linear
algebra implementation we used is not parallelized. If adjusting the algorithm to
produce the extra relations results in a reduction on the number of linear algebra
iterations then this would result in the sieve-based method being signi�cantly bet-
ter here. We also note that while there were a signi�cant number of almost smooth
relations and intersections in the sieve-based method, a large number of the rela-
tions formed by the intersections were discarded as being duplicate relations. This
consistently happened, and we can o�er no explanation for this behavior.

We now consider the results for C124 in Table 11. Again our results are quite
close to the expected values. Relation generation takes signi�cantly longer with our



COMPUTING DISCRETE LOGARITHMS 23

Table 12. C155 Results

JMS EG Opt. EG Sieving
Estimate Estimate Result

Initialization
Time 5.95m 5.95m 6m 4.87s

Total Relations 136533 136533 136533

Full Relations 136533 96662 99226

Partial Relations - 633522 612780

Intersections - 39871 51660

Unique
Intersections - 39871 51660

Sieve
Polynomials - - 3036124745

Total Divisors
Tested 188193560300 133236952000 99484699519415

Total Search 1720d 19h
Time 8492.67d 6338.01d 37m 34.28s

Real Search 6d 21h
Time 33.17d 24.76d 15m 44.92s

Total
Iterations - - 1

Special Divisors
Checked - - 177531606

Special Rels
Time - - 6m 35.15s

Linear Algebra 14d 5h
Time 2.47d 2.80d 51m 26.46s

1735d 1h
Total Time 8495.14d 6340.81d 30m 6.81s

21d 7h
Real Total Time 35.65d 27.56d 39m 17.12s

optimized version of Enge-Gaudry than with the version in [24]. However, we note
that due to the larger factor base required in [24], we expect the linear algebra to
take signi�cantly longer in that case. Since the di�erence in the search time can
be spread out over a parallel system but the linear algebra cannot, our settings
should be better, and increasing the number of processors would only improve that
situation. However the most dramatic result that we see is that from the sieve-based
algorithm. Here the search time is less than the time using [24], and additionally,
while the linear algebra is worse than that in our optimal Enge-Gaudry case, it is
signi�cantly better than that using the settings from [24], giving us a very signi�cant
improvement.

Finally we examine the results for C155 in Table 12. Once again we see that
the use of sieving results in a much faster search for relations when compared
to the random walk estimates we have computed. In this case, the search takes
approximately a quarter of the time that we expect to take with the Enge-Gaudry
algorithm. As mentioned before, the linear algebra estimates are very wrong and
require further investigation. Because the linear algebra algorithm used depends
both on the size of the matrix and the number of non-zero entries in the matrix,
we see the large jump in linear algebra time from the C124 example to the C155
example. This result makes computing linear algebra estimates for the C155 case



24 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

di�cult. In any case, because our parameter search suggests that we would be
using the same size factor base for both the Enge-Gaudry algorithm and the sieve-
based algorithm, we would expect the linear algebra time to be close to the same
for both. Correcting our optimal Enge-Gaudry estimates with this observation, we
see that the sieve-based algorithm takes little more than half the time we expect
the Enge-Gaudry algorithm to take in its best case

Our results show that using sieving to compute relations can be much faster than
using random walks. In conjunction with our adaptation of Vollmer's algorithm
for solving the discrete logarithm problem, we have a more e�cient algorithm for
computing discrete logarithms in divisor class groups of hyperelliptic curves de�ned
over even characteristic �nite �elds.

6. Further Work

There are several potential improvements and extensions possible with this work.
A number of these, most of which are already work in progress, are listed below.

Although the introduction of large primes and sieving does result in signi�cant
performance improvements in practice as opposed to the random walks strategy,
there is still further room for improvement. The empirical analysis used to �nd
optimal parameters for our improved versions of the random walks strategy can
likely be extended to our sieve-based version of Vollmer's algorithm. While we do
some analysis in this case, the �nal parameter selection is currently done empirically.
A careful analysis may yield optimal parameter choices without the experimental
trials.

Further algorithmic improvements are also forseable. A double large prime vari-
ant, again adapted from integer factorization, is described in [15] for solving the
HCDLP in the low genus case. It should be equally applicable to high-genus curves;
work on adapting our optimal parameter selection strategy is in progress. Improved
sieving and smoothness testing methods, including the multi-dimensional array ap-
proach mentioned in Section 4.1 and Bernstein's batch smoothness test [4], may
also yield improvements in performance.

The examples we chose for this paper are interesting in that they shed some light
on the feasibility of the Weil descent attack on the elliptic curve discrete logarithm
problem. However, it would certainly be interesting the explore the utility of our
algorithms in additional settings, including lower-genus curves and curves de�ned
over odd characteristic �nite �elds. An investigation into the performance of the
algorithm as g and q vary would also be useful in �nding the limits of our methods.

It is well-known [9, 40] that the index calculus methods described in this paper
can be adapted easily to compute the order and structure of the Jacobian JC(k):
Roughly, the same relation generation strategies can be employed, including the im-
provements described in this paper, resulting in a relation matrix A whose columns
correspond to principal divisors. Computing the determinant of the lattice gener-
ated by the columns of A and the Smith normal form of A yields #JC(k) and the
elementary divisors of JC(k); respectively. The required linear algebra is signi�-

cantly harder than solving A~x = ~b (mod #JC(k)) as is required for compting the
HCDLP. It would be interesting to extend our empirical analysis to this case taking
into account the increased complexity of the linear algebra, and see how e�ciently
we can compute these invariants with our improved algorithms.



COMPUTING DISCRETE LOGARITHMS 25

Finally, in [34], M�uller, Stein, and Thiel present index calculus algorithms for
computing the regulator and solving the infrastructure discrete logarithm problem
in a real quadratic function �eld. Recent work by Hammell [19, 20] shows that
the sieving approach discussed here gives similar results in this setting. However,
attempts to apply sieving to real quadratic function �elds of odd characteristic were
not as successful. More work is required to determine whether sieving can be made
more e�cient in this setting, and in the low genus case.

References

1. W. R. Alford and C. Pomerance, Implementing the self-initializing quadratic sieve on a dis-
tributed network, Proceedings of International Conference \Number Theoretic and Algebraic
Methods in Computer Science" (Moscow, 1993) (A.J. van der Poorten, I. Shparlinski, and
H.G Zimmer, eds.), World Scienti�c, 1995, pp. 163{174.

2. ATLAS, Automatically tuned linear algebra software, Software, 2007, See http://math-atlas.
sourceforge.net/.

3. E. Bach and J. Shallit, Algorithmic number theory, MIT Press, Cambridge, Massachusetts
and London, England, 1996.

4. D. Bernstein, How to �nd small factors of integers, to appear in Math. Comp.
5. D. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of Computation

48 (1987), 95{101.
6. D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over �nite �elds,

Math. Comp. 36 (1981), no. 154, 587{592.
7. H. Cohen and G. Frey, editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography,

Number 34 in Discrete Mathematics and Its Applications. Chapman& Hall/CRC, 2005.
8. S. Contini, Factoring integers with the self-initializing quadratic sieve, Master's thesis, Uni-

versity of Georgia, Athens, Georgia, 1997.
9. A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algorithms,

Acta Arithmetica 102 (2002), 83{103.
10. R. Flassenberg and S. Paulus, Sieving in function �elds, Experimental Mathematics 8 (1999),

339{349.
11. G. Frey, How to disguise an elliptic curve (Weil descent), Talk at ECC '98, Waterloo,

1998. Slides available from http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/

slides.html

12. G. Frey, Applications of arithmetical geometry to cryptographic constructions, Proceedings of
the Fifth International Conference on Finite Fields and Applications, Springer, 2001, pp. 128{
161.

13. P. Gaudry, An algorithm for solving the discrete log problemon hyperelliptic curves, Advances
in Cryptology - EUROCRYPT '2000, Lecture Notes in Computer Science, vol. 1807, 2000,
pp. 19{34.

14. P. Gaudry, F. Hess, and N. Smart, Constructive and destructive facets of weil descent on
elliptic curves, Journal of Cryptology 15 (2002), 19{46.

15. P. Gaudry, E. Thom�e, N. Th�eriault, and C. Diem, A double large prime variation for small
genus hyperelliptic index calculus, Math. Comp. 76 (2007), no. 257, 475{492.

16. P. Gaudry, On breaking the discrete log on hyperelliptic curves, Advances in Cryptology -
Eurocrypt 2000, Lecture Notes in Computer Science, vol. 1807, 2000, pp. 19{34.

17. GCC, GCC, the GNU compiler collection, Software, 2007, See http://gcc.gnu.org/.
18. GMP, The GNU multiple precision bignum library, Software, 2007, See http://gmplib.org/.
19. J. F. Hammell, Index calculus in the infrastructure of real quadratic function �elds, Master's

thesis, University of Calgary, Canada, 2008.
20. J. F. Hammell and M. J. Jacobson, Jr., Index-calculus algorithms in real quadratic function

�elds, In preparation, 2011.
21. M. J. Jacobson, Jr., Applying sieving to the computation of quadratic class groups, Math.

Comp. 68 (1999), no. 226, 859{867.
22. , Subexponential class group computation in quadratic orders, Ph.D. thesis, Technische

Universit�at Darmstadt, Darmstadt, Germany, 1999.



26 M. D. VELICHKA, M. J. JACOBSON, JR., AND A. STEIN

23. , Computing discrete logarithms in quadratic orders, Journal of Cryptology 13 (2000),
473{492.

24. M. J. Jacobson, Jr., A. J. Menezes, and A. Stein, Solving elliptic curve discrete logarithm
problems using Weil descent, J. Ramanujan Math. Soc. 16 (2001), no. 3, 231{260.

25. M. J. Jacobson, Jr., R. Scheidler, and A. Stein, Fast arithmetic on hyperelliptic curves via
continued fraction expansions, Advances in Coding Theory and Cryptology (T. Shaska, W.C.
Hu�man, D. Joyner, and V. Ustimenko, eds.), Series on Coding Theory and Cryptology, vol. 3,
World Scienti�c Publishing, 2007, pp. 201{244.

26. N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1987), 203{209.
27. N. Koblitz, Hyperelliptic cryptosystems, Journal of Cryptology, 1 (1989), 139{150.
28. A. K. Lenstra and H. W. Lenstra, Jr., The development of the number �eld sieve, Lecture

Notes in Mathematics, vol. 1554, Springer-Verlag, Berlin, 1993.
29. LinBox, Project LinBox: Exact computational linear algebra, Software, 2007, See http://

www.linalg.org/.
30. M. Maurer, A. J. Menezes, and E. Teske, Analysis of the GHS Weil descent attack on the

ECDLP over characteristic two �nite �elds of composite degree, LMS Journal of Computation
and Mathematics 5 (2002), 127{174.

31. A. Menezes, Y.-H. Wu, and R. J. Zuccherato, An elementary introduction to hyperelliptic
curves, Algebraic Aspects of Cryptography, Algorithms and Computation in Mathematics,
vol. 3, Springer Verlag, Berlin, 1998, pp. 155{178.

32. MPI, Message passing interface, Software, 2007, See http://www-unix.mcs.anl.gov/mpi/.
33. V. Miller, Uses of elliptic curves in cryptography', Advances in Cryptology - CRYPTO 85,

Lecture Notes in Computer Science, vol. 218, 1986, pp. 417{426.
34. V. M�uller, A. Stein, and C. Thiel, Computing discrete logarithms in real quadratic congruence

function �elds of large genus, Math. Comp. 68 (1999), 807{822.
35. C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology - EURO-

CRYPT 84, Lecture Notes in Computer Science, vol. 209, 1985, pp. 169{182.
36. V. Shoup, NTL: A library for doing number theory, http://www.shoup.net, 2008.
37. E. Teske, Speeding up Pollard's rho method for computing discrete logarithms, Algorithmic

Number Theory - ANTS-III (Portland, Oregon), Lecture Notes in Computer Science, vol.
1423, Springer-Verlag, Berlin, 1998, pp. 541{554.

38. N. Th�eriault, Index calculus attack for hyperelliptic curves of small genus, Advances in Cryp-
tology - ASIACRYPT 2003, Lecture Notes in Computer Science, vol. 2894, 2003, pp. 75{92.

39. M. D. Velichka, Improvements to index calculus algorithms for solving the hyperelliptic curve
discrete logarithm problem over characteristic two �nite �elds, Master's thesis, University of
Calgary, Canada, 2008.

40. U. Vollmer, Asymptotically fast discrete logarithms in quadratic number �elds, Algorithmic
Number Theory | ANTS-IV, Lecture Notes in Computer Science, vol. 1838, 2000, pp. 581{
594.

41. J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press,
1999.

Institute for Security, Privacy and Information Assurance, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail address: mdvelich@ucalgary.ca

Institute for Security, Privacy and Information Assurance, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail address: jacobs@cpsc.ucalgary.ca

Institut f�ur Mathematik, Carl-von-Ossietzky Universit�at Oldenburg, D-26111 Old-

enburg, Germany

E-mail address: andreas.stein1@uni-oldenburg.de


