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Abstract. Group signature allows a group member to sign messages
anonymously on the behalf of a group. In the case of a dispute, the
designated group manager can open the signature to reveal the identity
of its originator. As far as we know, most of the group signatures are
based on traditional cryptography, such as RSA and discrete logarithm.
Unfortunately these schemes would be broken if quantum computers
emerge. TheMQ-problem based Multivariate Public-Key Cryptosystem
(MPKC) is an important alternative to traditional PKCs for its potential
to resist future attacks of quantum computers. The first group signature
scheme based on MPKC is proposed in this paper. This scheme owns
two special but important features. First, the group signature can be
divided into different time periods. The signatures are linkable in the
same time period, but un-linkable between different time periods. Second,
the privileges of the group manager is limited. The group manager can
not open a signature without the help of the verifier. These features are
important in some applications such as e-voting systems. The theory
of this scheme is simple and its security relies on the Isomorphism of
Polynomials (IP) Problem and random hash function.

Keywords: multivariate public-key cryptosystem, group signature, iso-
morphism of polynomials, e-voting

1 Introduction

The concept of group signature was first introduced by Chaum and van Heyst [1]
in 1991. A group signature scheme allows members of a group to sign messages
on behalf of the group. A verifier can only tell that the signature is signed
by a member of the group, but can not discover the identity of the signer.
Furthermore, the verifier can’t distinguish whether two signatures are issued by
the same group member. However, in exceptional case such as legal dispute,
the designated group manager can open a signature to reveal the identity of its
originator. At the same time, no one(including the group manager) can forge a
signature of other group members.

Because of its salient features, group signature attracts many researchers’
attentions. Besides the first realization Chaum and van Heyst proposed in [1],
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there are many other schemes emerge in recent years. L. Chen and T. Pedersen
proposed a new group signature scheme which hid the identity of the signer
unconditionally and allowed new members to join the group [2]. J. Camenish
presented a model of generalized group signature and its first realization [3].
This scheme allows the definition of coalition of group members to sign on the
behalf of the group. In 1997, J. Camenish and M. Stadler proposed the first
efficient group signature scheme for large groups, where the length of public
keys and the length of signatures were independent of the number of group
members [4]. Later G. Ateniese proposed a group signature scheme based on
other number theory assumptions with better efficiency and stronger security
[5]. More researches on group signature include group signatures for hierarchical
multi-groups [6], group blind signatures [7], multi-group signatures [8], sub-group
signatures [8], ID-based group signatures [9], and so on.

The properties of group signature make it attractive for many specialized
applications, such as e-bidding, e-voting, e-cash, and so on. For example, in e-
bidding systems all companies with invitation to tender form a group and each
company uses the group signature to sign its tender anonymously. The verifier
can check whether a tender was submitted by a company in the group, but he
can’t know which company submitted it. Once the preferred tender is selected,
the winner can be traced while other bidders remain anonymous.

But in e-voting systems, the situation is a little bit different. The voters
are not allowed to vote multiple times. So the tallying authority must be able
to distinguish the reduplicative votes without opening the ballots. Moreover,
there usually exists supervision authority to limit the privileges of the tallying
authority and guarantee the justice of the voting in a voting system. Therefore,
the general group signature schemes can not be applied to e-voting systems
directly.

As far as we know, most of the group signatures are based on traditional
cryptography, such as RSA and discrete logarithm. Unfortunately, the algorith-
m discovered by Peter Shor shows that finding discrete logarithms and factoring
integers can be accomplished in polynomial time on a quantum computer [10].
When the quantum computers arrive, the traditional PKCs based on these prob-
lem, such as RSA and ECC, will be broken. Multivariate public-key cryptosystem
(MPKC) is considered to be one of the best alternative. The security founda-
tion of MPKC is the knowledge that solving a set of multivariate polynomial
equations over a finite filed is a NP-hard problem [11]. Quantum computers do
not appear to have any advantage when dealing with this NP-hard problems,
and it seems that we can not find a solution to a set of polynomial equations
efficiently even in the future. Moreover, MPKC schemes are more efficient than
traditional PKCs. It makes them suitable for limited computing devices, such
as smart cards. Various MPKC schemes have been proposed in recent years, for
example, [12], [13], [14], [15], [16].

In most MPKC schemes, the public key is a set of polynomials p = (p1, · · · , pm)
in variables x = (x1, · · · , xn), where all variables and coefficients are in K =



GF (k). This is usually accomplished via P = S ◦ Q ◦ T : Kn → Km, or

P : w = (w1, · · · , wn) ∈ Kn T7→ x = MTw + cT
Q7→ y

S7→ z = MSy + cS = (z1, · · · , zm) ∈ Km

The central map Q belongs to a certain class of quadratic maps whose inverse
can be computed easily. The maps S and T are affine and bijective. The private
key consist of the central map Q and affine maps S, T . For more details about
MPKC, we refer the reader to [17].

Our Contribution: This paper proposes the first group signature scheme
based on multivariate public-key cryptosystem. Compared with general group
signature schemes, our scheme is specific to e-voting systems. Our scheme can
satisfy the requirements of e-voting systems we mention above due to two special
properties, Special Unlinkability and Special Traceability. Special Unlinkability
means that the group signature can be divided into several time periods. The
signatures are linkable in the same time period, but un-linkable between differ-
ent time periods. So, the tallying authority can detect reduplicative votes before
OPEN them. Special Traceability means that the group manager can not open
the signatures alone. In order to reveal the identity of the signer, he has to co-
operate with the verifier. So there are two managements in our group signature,
which is common in voting systems for the tallying authority and supervision
authority. Besides, the length of signatures and the computation overhead are
independent of the number of group members in our scheme. Therefore, it’s
efficient for large groups.

The rest of this paper is organized as follows. The next section presents the
formal model of our group signature scheme. Section 3 introduces the signature
of knowledge protocol based on MPKC, which is the basic building block of our
scheme. The details of our novel group signature scheme are described in section
4. The security of our scheme is discussed in section 5. Our scheme is compared
with other schemes in section 6. Finally, the paper concludes in section 7.

2 The Model of Our Group Signature Scheme

The traditional group signature schemes allow a member to sign messages anony-
mously on the behalf of his group. The verifier can verify that the signature was
signed by a member of the group, but can not discover which group member made
it. Moreover, the signatures are un-linkable, which means, given two group signa-
tures, the verifier can’t know whether they are issued by the same group member
or not. But the unlinkability seems not adaptive to some applications such as
e-voting systems. The verifier need to be able to distinguish the reduplicative
votes, meanwhile the anonymity should be guaranteed. Besides, in traditional
group signatures, the group manager can open any group signature arbitrari-
ly. But in the e-voting systems, there usually exists a supervision authority to
guarantee the justice of the voting. Therefore we need to limit the privileges of



the group manager. So, the traditional group signatures can not be applied to
e-voting systems directly.

In order to solve these problems, we propose a novel group signature scheme
specific to e-voting systems. Our scheme is defined as follows.

- Correctness: A group signature issued by the valid group member must be
accepted by the verifier.

- Unforgeability: Only the valid group members are able to sign messages on
the behalf of the group.

- Exculpability: Neither the group member nor the group manager is able to
sign messages on the behalf of other group members. This also makes the
group signature undeniable.

- Anonymity: Given a valid group signature, no one can reveal the identity
of the actual signer, unless the group manager opens the signature with the
help of the verifier.

- Special Unlinkability: The group signature can be divided into several time
periods. The signatures in the same time period are linkable. The verifier
can verify whether two signatures are issued by the same group member.
But the signatures between different time periods are un-linkable. They are
completely anonymous.
This feature is useful in e-voting systems. For example, in an election con-
ference, there are several positions need to be selected. Thus the voting can
be divided into several time periods, each period for one position. As the
votes in the same period are linkable, the verifier is able to distinguish the
reduplicative votes without opening them. At the same time, the votes be-
tween different periods are un-linkable, so the votes for different position are
anonymous.

- Special Traceability: Neither the group manager nor the verifier can reveal
the identity of a signature alone, but they can do it together.
In our scheme, the group manager can not open a signature arbitrarily. His
privileges is limited. This property is important in some application such as
e-voting systems. The management usually consists of the tallying authority
and the supervision authority. Neither of them can reveal the identity of a
ballot alone. They have to work together to open a ballot to reveal the actual
identity. This property makes the voting more open.

3 Signature of Knowledge Based on MPKC

In this section we introduce the signature of knowledge protocol based on MPKC,
which is the building block of our scheme.

3.1 Isomorphism of Polynomials (IP) Problem

The Isomorphism of Polynomials (IP) problem was first introduced by Patarin
in [13]. It is a fundamental problem of multivariate cryptography as it is related



to the hardness of the key recovery of such cryptosystems. The concept of IP is
described as follows. For more details, we refer the reader to [13].

Let K = GF (k) be a finite field. All variables are over the field K.
Let A be a set of u quadratic equations with n variables x1, · · · , xn that give

the y values from the x values:

yk =
∑
i

∑
j

γijkxixj +
∑
i

µikxi + δk , k = 1, · · · , u

Let B be a set of u quadratic equations with n variables x′1, · · · , x′n that give
the y′ values from the x′ values:

y′k =
∑
i

∑
j

γ′ijkx
′
ix
′
j +

∑
i

µ′ikx
′
i + δ′k , k = 1, · · · , u

Let T be a bijective affine transformation of the variables x′i, 1 ≤ i ≤ n, S
be a bijective affine transformation of the variables yk, 1 ≤ k ≤ u. That is :

T (x′1, · · · , x′n) = (x1, · · · , xn), S(y1, · · · , yu) = (y′1, · · · , y′u)

If there exists such transformation pair (S, T ) and satisfy B = S ◦ A ◦ T ,
Then we call A and B are “isomorphic”, and the bijective affine transformation
pair (S, T ) is an “isomorphism” from A to B.

The Isomorphism of Polynomials Problem is : if A and B are two public sets
of u quadratic equations, and A and B are isomorphic, find an isomorphism
(S, T ) from A to B.

3.2 Signature of Knowledge Protocol

Zero-knowledge Proofs of Knowledge allow a prover to demonstrate the knowl-
edge of a secret, but without leaking any useful information.

Patarin presented a Non-interactive Zero-knowledge Proofs of knowledge
scheme based on the Isomorphism of Polynomials Problem in [13]. In this paper,
we will use a simpler but workable scheme as follows. We call it signature of
knowledge.

Parameters: Let K be a finite field. Let n, u, q be three integers. H is a
collision-resistant hash function H : {0, 1}∗ → {0, 1}q which maps a binary
string of arbitrary length to a q-bit hash value.

Definition 1. Let A and B be two sets of u quadratic equations with n vari-
ables as follows:

A : yk =
∑
i

∑
j

γijkxixj +
∑
i

µikxi + δk , k = 1, · · · , u

B : y′k =
∑
i

∑
j

γ′ijkx
′
ix
′
j +

∑
i

µ′ikx
′
i + δ′k , k = 1, · · · , u



Let m be the message to be signed. We call the q + 1 tuples
V = [H, (S1, T1), (S2, T2), . . . , (Sq, Tq)] a signature of knowledge related to (A,B)
and message m, if and only if the following conditions are satisfied:

Ci =

{
Si ◦A ◦ Ti, if H(i) = 0
Si ◦B ◦ Ti, if H(i) = 1

, 1 ≤ i ≤ q

and H = H(m||C1||C2|| . . . ||Cq).

If the prover knows the isomorphism (S, T ) from A to B, that means B =
S ◦A ◦ T , then the signature of knowledge can be constructed as follows.

First, the prover selects q random bijective affine transformation pairs
(S′1, T

′
1), (S′2, T

′
2), · · · , (S′q, T ′q), which look like:

T ′1(x
(1)
1 , · · · , x(1)n ) = (x1, · · · , xn), S′1(y1, · · · , yu) = (y

(1)
1 , · · · , y(1)u )

· · · · · ·
T ′q(x

(q)
1 , · · · , x(q)n ) = (x1, · · · , xn), S′q(y1, · · · , yu) = (y

(q)
1 , · · · , y(q)u )

The prover computes
C1 = S′1 ◦A ◦ T ′1
C2 = S′2 ◦A ◦ T ′2
· · · · · ·
Cq = S′q ◦A ◦ T ′q

And obtains q sets of u quadratic equations with n variables as follows:

y
(1)
k =

∑
i

∑
j

γ
(1)
ijkx

(1)
i x

(1)
j +

∑
i

µ
(1)
ik x

(1)
i + δ

(1)
k , k = 1, · · · , u

. . . . . .

y
(q)
k =

∑
i

∑
j

γ
(q)
ijkx

(q)
i x

(q)
j +

∑
i

µ
(q)
ik x

(q)
i + δ

(q)
k , k = 1, · · · , u

Second, the prover computes the hash value H = H(m‖C1‖C2‖ . . . ‖Cq),
where ‖ is the concatenation function. Suppose the binary format of value H is
presented as H(q) . . . H(2)H(1) ∈ {0, 1}q. The prover computes

(Si, Ti) =

{
(S′i, T

′
i ), if H(i) = 0

(S′i ◦ S−1, T−1 ◦ T ′i ), if H(i) = 1
, 1 ≤ i ≤ q

Thus, the signature of knowledge V is constructed.

When the verifier receives the public key (A,B), the message m , and the
signature of knowledge V , the verification of the signature is easy.

First, the verifier computes q sets of u quadratic equations via

Ci =

{
Si ◦A ◦ Ti, if H(i) = 0
Si ◦B ◦ Ti, if H(i) = 1

1 ≤ i ≤ q

Then the verifier computes the hash value H ′ = H(m‖C1‖C2‖ . . . ‖Cq), and
checks whether the new hash value H ′ is equal to H .



4 A Novel Group Signature Scheme Based on MPKC

In this section we present a novel group signature scheme based on MPKC,
specific to e-voting systems.

4.1 System Setup

The group manager setup the system’s parameters.

- Let n, u, q be three integers. K = GF (k) be a finite field.
- H is a collision-resistant hash function H : {0, 1}∗ → {0, 1}q which maps a

binary string of arbitrary length to a q-bit hash value.
- Q is the central map selected by the group mannager.
- Each user i has his private key (L1,i, L2,i), and his public key Ai = L1,i ◦
Q ◦ L2,i.

4.2 Joining Group

Every user needs to join the group to obtain the qualification of signing on the
behalf of the group. Suppose a user i wants to join the group.

JOIN:

1. User i selects a random bijective affine transformation pair (Si, Ti), and
maps Ai to Bi via Bi = Si ◦Ai ◦ Ti. Thus, Ai and Bi are isomorphic, and
the affine transformation pair (Si, Ti) is the isomorphism from Ai to Bi.
We call (Ai, Bi) the public key of user i in the group, and call (Si, Ti) the
private key of user i in the group.

2. User i generates a signature of knowledge of (Ai, Bi), denoted by Vi, and
sends the knowledge Vi and (Ai, Bi) to the group manager. We assume the
communication between the user i and the group manager is secure, i.e.,
private and authentic.

3. The group manager verifies the signature of knowledge. If it’s valid, he
saves the knowledge Vi and (Ai, Bi). Otherwise, he deletes the knowledge
Vi and (Ai, Bi) and refuses user i’s application.

4.3 Signing Messages

The group manager can divide the group signature into several time periods.
The change of the period is controlled by the group manager.

In order to change a period, the group manager executes the following steps.

CHANGE PERIOD:



1. The group manager selects the public keys of some group members. These
members form a sign group.

2. For every public key (Ai, Bi) in the sign group, the group manager gener-
ates a random bijective affine transformation pair (S1,i, T1,i), and computes

A
(1)
i = S1,i ◦Ai ◦ T1,i

B
(1)
i = S1,i ◦Bi ◦ T1,i

The group manager publishes (A
(1)
i , B

(1)
i ) to the bulletin board. Then

he sends every affine transformation pair (S1,i, T1,i) to the corresponding
member i in the sign group via the secure channel.

Within each period, group members in the sign group can sign any mes-
sages on the behalf of the group. But the signatures are linkable. Suppose group
member i wants to sign a message m, he will execute the following steps.

SIGN:

1. The member i sends his (A
(1)
i , B

(1)
i ) to verifier v.

2. The verifier v checks whether (A
(1)
i , B

(1)
i ) is in the bulletin board. If yes, he

selects a random bijective affine transformation pair (S2,i, T2,i) and sends

them to member i. Then he computes A
(2)
i = S2,i ◦ A(1)

i ◦ T2,i , B
(2)
i =

S2,i ◦B(1)
i ◦ T2,i , and saves (A

(2)
i , B

(2)
i ) and (S2,i, T2,i) in his database.

3. The member i computes (A
(2)
i , B

(2)
i ) as the verifier did. Meanwhile he com-

putes the isomorphism (S′i, T
′
i ) from A

(2)
i to B

(2)
i via

S′i = (S2,i ◦ S1,i) ◦ Si ◦ (S2,i ◦ S1,i)
−1

T ′i = (T1,i ◦ T2,i)−1 ◦ Ti ◦ (T1,i ◦ T2,i)

With (S′i, T
′
i ), member i can generate the signature of knowledge of message

m and (A
(2)
i , B

(2)
i ), denoted by V

(2)
i . Thus [V

(2)
i , (A

(2)
i , B

(2)
i )] is the group

signature issued by member i.

4.4 Verifying Signatures

After receiving the group signature [V
(2)
i , (A

(2)
i , B

(2)
i )], the verifier v can check

the legality of the signature via two steps.

VERIFY:

1. The verifier v recovers the (A
(1)
i , B

(1)
i ) via

A
(1)
i = S−12,i ◦A

(2)
i ◦ T

−1
2,i



B
(1)
i = S−12,i ◦B

(2)
i ◦ T−12,i

Then he checks whether (A
(1)
i , B

(1)
i ) exists in the bulletin board (This op-

eration can be finished in constant time via some special technologies, such
as hash table.). If yes, he goes to next step. Otherwise the signature is
illegal.

2. The verifier v checks whether V
(2)
i is a valid signature of knowledge of

message m and (A
(2)
i , B

(2)
i ) via the steps in 3.2. If yes, he accepts the

signature. Otherwise the signature is illegal.

4.5 Linking Signatures

Given two group signatures [V
(2)
i , (A

(2)
i , B

(2)
i )] and [V

(2)
j , (A

(2)
j , B

(2)
j )], the judg-

ment of reduplicative signatures is easy.

LINK:

1. The verifier checks whether (A
(2)
i , B

(2)
i ) is equals to (A

(2)
j , B

(2)
j ). If yes, the

two signatures are issued by the same member. Otherwise, goto next step.

2. The verifier recovers the (A
(1)
i , B

(1)
i ) and the (A

(1)
j , B

(1)
j ) as follows:

(A
(1)
i , B

(1)
i ) = (S−12,i ◦A

(2)
i ◦ T

−1
2,i , S

−1
2,i ◦B

(2)
i ◦ T−12,i )

(A
(1)
j , B

(1)
j ) = (S−12,j ◦A

(2)
j ◦ T

−1
2,j , S

−1
2,j ◦B

(2)
j ◦ T−12,j )

If (A
(1)
i , B

(1)
i ) and (A

(1)
j , B

(1)
j ) are still different, then the two signatures

are issued by different group members. Otherwise, they are issued by the
same member.

Note that if two signatures are from different periods, they are un-linkable.
That means that the result of the LINK operation is always “issued by different
group members”.

4.6 Opening Signatures

In order to open a group signature to reveal the actual identity of the signer, the
group manager has to cooperate with the verifier. For example, to open the group

signature [V
(2)
i , (A

(2)
i , B

(2)
i )], the group manager receives an affine transformation

pair (S2,i, T2,i) from the verifier. Then the group manager computes (Ai, Bi)
using (S2,i, T2,i) together with his own (S1,i, T1,i):

Ai = (S2,i ◦ S1,i)
−1 ◦A(2)

i ◦ (T1,i ◦ T2,i)−1

Bi = (S2,i ◦ S1,i)
−1 ◦B(2)

i ◦ (T1,i ◦ T2,i)−1



The isomorphism from (A
(2)
i , B

(2)
i ) to (Ai, Bi) is ((S2,i◦S1,i)

−1, (T1,i◦T2,i)−1).
Thus the group manager gets the identity of the actual signer.

5 Security Analysis

5.1 Security of IP Problem

Due to its nice properties, the Isomorphism of Polynomials has been used in
numerous applications, such as the authentication / signature schemes proposed
by J. Patarin in [13] and the traitor tracing scheme described by O. Billet and
H. Gilbert in [18]. At the same time, many researchers are trying to solve the
IP problem in an efficient way.

N. Courtois proposed the first significant algorithm for IP in [19], known
as the “To and Fro” technique. This algorithm assumes the ability to invert
the polynomial systems, therefore has an exponential complexity. Moreover, this
paper gave an upper bound on the theoretical complexity of IP. Perret and
Faugère pointed out that the proof in [19] was not complete. They gave an upper
bound on the theoretical complexity of “IP-like” problems, and presented a new
algorithm for solving IP when S and T are linear mappings [20]. C. Bouillaguet
presented an improved algorithm in [21]. Their algorithm combined several new
techniques and they claimed that their algorithm got the best result on the state
of the art.

An important special case of IP is the IP problem with one secret (IP1S for
short). Although most of the algorithms for IP can be applied to IP1S almost
directly, several algorithms are proposed to solve IP1S. Geiselmann proposed the
first algorithm for IP1S, using an exhaustive search to find the solutions of an
algebraic system of equations [22]. Later, Levy-dit-Vehel and Perret improved it
by using the Gröbner basis computation [23]. Perret presented a new approach
for solving IP1S using the Jacobian matrix [24]. The algorithm is polynomial
when the number of polynomials u is equal to the number of variables n, but
inefficient when u is much smaller than n.

The best algorithms for IP and IP1S, as far as we know, are summarized
in Table 1. We can see that the best algorithm for some instances of IP is still
exponential. Solving the IP problem is computationally hard if we choose the
parameter properly.

To strengthen the security of our scheme, we suggest that the parameters of
our scheme should satisfy the following conditions:
1) the transformations should be affine;
2) the polynomials in Q should be homogeneous;
3) the number of polynomials u should be smaller than the number of variables
n.

5.2 Security of Our Scheme

1. Correctness: A group signature issued by the valid group member must be
accepted by the verifier.



Table 1. The Best Algorithms for IP and IP1S

Problem Subcase Complexity

degree = 2 O(n6)
IP1S degree = 3, u� n, inhomogeneous O(n6)

degree = 3, u� n, homogeneous O(n6 · qn/2)

degree = 2, u = n, inhomogeneous Heuristic:O(n3) / Rigorous:O(n6)
IP

degree = 2, u = n, homogeneous O(n3.5 · qn/2)

Notation: u is the number of polynomials in Q, n is the number of variables.

Proof. By inspection.

2. Unforgeability: Only the valid group members are able to sign messages on
the behalf of the group.

Proof. As mentioned in section 4.3, the verifier will check the public keys
in the bulletin board. So in order to get the transformation pair (S2,i, T2,i)
from verifier and generate a signature, the user i has to get the qualification
from the group manager.

3. Anonymity: Given a valid group signature, no one can reveal the identity
of the actual signer, unless the group manager opens the signature with the
help of the verifier.

Proof. Given a group signature [V
(2)
i , (A

(2)
i , B

(2)
i )], in order to reveal the

identity of the signer, the attacker has to find the affine transformation pair

(S′i, T
′
i ) that maps (Ai, Bi) to (A

(2)
i , B

(2)
i ). That means that he has to solve

the Isomorphism of Polynomials Problem. As we seen in section 5.1, it is
computationally hard without (S1,i, T1,i) and (S2,i, T2,i), which owned by
the group manager and the verifier respectively.

4. Exculpability: Neither the group member nor the group manager is able to
sign messages on the behalf of other group members.

Proof. Suppose the group member j wants to sign messages on the behalf
of the group member i. Member j may ask the group manager for the affine
transformation pair (S1, T1) and ask the verifier for the affine transformation

pair (S2, T2). Then he can compute (A
(2)
i , B

(2)
i ):

A
(2)
i = S2 ◦ S1 ◦Ai ◦ T1 ◦ T2

B
(2)
i = S2 ◦ S1 ◦Bi ◦ T1 ◦ T2

In order to generate a signature of knowledge of (A
(2)
i , B

(2)
i ), he need to find

out the isomorphism from A
(2)
i to B

(2)
i . That means that he has to solve the

Isomorphism of Polynomials Problem. It is computationally hard without
the private key (Si, Ti) of member i.



5. Special Unlinkability : The signatures are linkable in the same time period,
but un-linkable in different time periods.

Proof. In one period, group member j can only get one “license” (S1, T1)

from the group manager. Thus he can only produce one (A
(1)
j , B

(1)
j ). Maybe

he could ask the verifier twice for (S2, T2) and (S′2, T
′
2), then produces (A

(2)
j , B

(2)
j )

and (A′j
(2)
, B′j

(2)
), but the verifier will recover the same (A

(1)
j , B

(1)
j ) using

(S2, T2) and (S′2, T
′
2) respectively. So the signatures in the same time period

are linkable.
While in different periods, the member j will get different “licenses” (S1, T1)

and (S′1, T
′
1) from group manager, and he produces (A

(1)
j , B

(1)
j ) and (A′j

(1)
, B′j

(1)
).

The verifier may recover them using (S2, T2) and (S′2, T
′
2) , but he can not

recover the origin (Aj , Bj). Therefore, the signatures between different time
periods are unlinkable.

6. Special Traceability : Neither the group manager nor the verifier can reveal
the identity of a signature alone, but they can do it together.

Proof. In our scheme, after the computation of (A
(1)
i , B

(1)
i ), the signer i map-

s his (A
(1)
i , B

(1)
i ) to (A

(2)
i , B

(2)
i ) by applying the affine transformation pair

(S2,i, T2,i) given by the verifier. Thus, the group manager can not establishes

the relationship between (A
(2)
i , B

(2)
i ) and (A

(1)
i , B

(1)
i ) without (S2,i, T2,i). So

the group manager can not reveal the identity of a signature by himself. Sim-

ilarly, the verifier can not establishes the relationship between (A
(1)
i , B

(1)
i )

and original (Ai, Bi). So the verifier can not open a signature alone either.
However, as shown in 4.6, the group manager and the verifier can discover
the identity of a signature if they work together.

6 Comparison

In Table 2, we compare our scheme with several classical group signature schemes
in [1], [25], [5]. As far as we know, our scheme is the first group signature scheme
based on MPKC, and is likely the first group signature scheme that resists the
future attacks of quantum computers. So we can only compare our scheme with
the schemes based on traditional cryptography.

The early proposed group signature schemes are inefficient for large groups,
as the length of signatures or the computation of operations (i.e. SIGN, VER-
IFY, OPEN ) is linear to the number of group members. Some practical group
signature schemes for large groups are proposed in [4], [5]. In our scheme, the
computation of all operations ( including JOIN, SIGN, LINK, VERIFY and
OPEN ) are independent of the number of group members. The length of signa-
tures and the length of keys of users are constant. But the length of keys of group
manager are linear in the number of group members, so reducing the storage of
the scheme may be part of our future work. Nevertheless, this scheme is efficient
for large groups.



Besides, compared with other schemes, our scheme can be applied to e-voting
systems directly due to two special properties, the special linkability and the
special traceability.

Table 2: Comparisons of Different Group Signatures

Property Cham in [1] Petersen in
[25]

Ateniese in
[5]

Our Scheme

Cryptographic
Assumption

Discrete
Logarithm

Discrete
Logarithm

Strong RSA
and Diffie-
Hellman

Isomorphism
of Polynomials

Quantum
Attack

yes yes yes no

SIGN O(n) O(n) constant constant
VERIFY O(n) O(n) constant constant
OPEN O(n) O(n) constant constant
Length of Sig-
nature

O(n) O(n) constant constant

Length of Key O(n) constant constant Manager:O(n)
Users:constant

Notation: n is the number of group members.

7 Conclusion

This paper proposes the first group signature scheme based on multivariate
public-key cryptosystem. Its security relies on the Isomorphism of Polynomi-
als (IP) Problem in MPKC and random hash function. Compared with general
group signature schemes, our scheme is specific to e-voting systems. Due to two
special properties, Special Unlinkability and Special Traceability, our scheme can
satisfy the extra requirements of e-voting systems. Besides, the length of signa-
tures and the computation overhead are independent of the number of group
members. Therefore, it’s efficient for large groups.
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