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Abstract
Memory checking studies the problem of cryptographically verifying the correctness of untrusted in-

dexed storage. After a series of results yielding checkers with O(log n) query complexity, Dwork, Naor,
Ruthblum and Vaikuntanathan [9] derived an Ω(log n/ log logn) lower bound on the query complexity
of any checker operating on memory words of polylogarithmic size, where n is the number of memory
indices. In view of this lower bound, we make the following two contributions:

1. We construct an optimal online memory checker of Θ(log n/ log log n) query complexity, closing
in this way the relevant complexity gap. Our construction employs pseudorandom functions and a
simple data grouping technique inspired by I/O algorithms.

2. In our second and main result, we put forth the notion of parallel online memory checking and
provide parallel checker constructions with O(1) query complexity and O(log n) processors. We
initially show that checkers that use secret small memory, including our optimal checker, are eas-
ily parallelizable; However, checkers that use only reliable small memory cannot be naturally
parallelized. We overcome this barrier by employing an algebraic hash function based on lattices
assumptions and construct such parallel checkers with only reliable memory. To achieve our result,
we establish and exploit a property that we call repeated linearity of lattice-based hash functions,
that might be of independent interest.

Applications of our checkers include update-optimal external memory authenticated data structures. We
construct an authenticated B-tree data structure which can be updated with two I/Os, outperforming the
logarithmic update complexity of hash-based external memory Merkle trees.
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1 Introduction
Following the notion of program checking and verification (e.g., [4]), memory checking has received a lot
of attention (e.g., [7, 9, 20]) since it was first introduced by the seminal work of Blum et al. [5]. Unlike the
seemingly close in nature problem of oblivious RAM [21], memory checking is concerned with verifying the
integrity of dynamic data stored at untrusted repositories. It has also become increasingly relevant nowadays:
In the cloud computing paradigm, checking online data storage is critical for businesses and individuals.

In its simplest form, the memory checking problem can be stated as follows: Given an unreliable (mali-
cious) memory of n cells, a user desires to read/write a cell i in the memory. The user’s request is intercepted
by a checker that reads or writes some additional unreliable memory cells and at the same time accesses
some small reliable (and possibly secret) memory of sublinear size. The checker’s task is to either output
the correct answer or reject, if cell i is corrupted. The probability of returning a corrupted cell as correct
should be small, namely an adversary should not be able to tamper with the memory and evade detection.

Two classes of checkers have appeared in the literature so far, namely secret memory checkers and
reliable memory checkers: Secret memory checkers require secret small memory that the adversary cannot
access, e.g., see the PRF (pseudorandom function) construction in [9]. Reliable memory checkers employ
only reliable small memory that can be accessed but not tampered with by the adversary, e.g., see the
UOWHF (universal one-way hash function) construction in [5] or the implicit constructions of Naor and
Nissim [19] and Goodrich and Tamassia [12] that use CRHFs (collision-resistant hash functions). Secret
memory checkers are more restrictive than reliable memory checkers since all their operations are dependent
on a secret key—therefore their operation is not publicly verifiable. This restriction is also witnessed through
a complexity perspective: More efficient checkers are known to exist in the secret key setting. For example,
although Dwork et al. [9] show how to trade-off read and writes for a secret memory checker, they state that
it is “intriguingly” difficult to achieve the same result for checkers using UOWHFs.

The quality of a checker construction depends mainly on its query complexity, defined as the sum of
additional reads and writes that the checker issues to the unreliable memory per user request [20]. Many
checkers with O(log n) query complexity have been constructed so far (see Table 5.1 in the Appendix).
While lots of efforts focused on reducing this logarithmic bound, in TCC 2009, Dwork et al. [9] derived an
Ω(log n/ log logn) lower bound on the query complexity of any checker operating on words of polyloga-
rithmic size.1 The existence of the above lower bound, which applies to both secret and reliable memory
checkers, gives rise to the results in this paper, outlined in the following paragraph.

Our results. Our first result (Theorem 2) is an optimal online memory checker. Our construction can
be viewed as an extension of two independently and previously presented constructions (Papamanthou et
al. [22] and Dwork et al. [9]). It achieves Θ(log n/ log logn) query complexity while operating on words of
O(log2 n) size,2 and is the first construction to match the lower bound by Dwork et al. [9].

Our second and main result (Theorem 4) puts forth the notion of parallel online memory checking, defin-
ing and constructing parallel online memory checkers withO(1) query complexity andO(log n) processors.
We first observe that parallel algorithms are staightforward to achieve for secret memory checkers; however,
checkers using only reliable memory—mostly applicable in practical scenarios—cannot be naturally paral-
lelized. We overcome this barrier by employing lattice-based cryptography to construct such parallel reliable
memory checkers. The security of our solution is based on the difficulty of solving the small integer solution
(SIS) problem, which is at least as hard as approximating several hard problems in lattices (e.g., GAPSVP)

1Although the lower bound by Dwork et al. [9] does not apply to checkers operating on polynomial-sized words, no such checker
that violates this lower bound is known to exist yet. Specifically, constructing such checkers is a long-standing open problem.

2Note that the query complexity depends directly on the bit size m of the memory word: Reading b bits from untrusted memory
requires O(b/m) number of queries. It essentially simulates the notion of a “page” in I/O complexity.
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within polynomial factors [18]. This is the first construction for parallel reliable memory checkers, giving
rise to applications such as update-optimal external memory authenticated data structures [26].

Our techniques. An optimal checker can be derived by using a tree of logarithmic degree for organizing
the untrusted memory. Since the size of the word is allowed to be polylogarithmic, we observe that one
can “compress” sibling data into one word of O(log2 n) size, allowing the checker to access a logarithmic
number of indexed data with a single query. The detailed construction is in the Appendix, see Section 5.2.

Concerning the parallelism results, for secret memory checkers, a simple observation on the construction
of Blum et al. [5] (independence of PRF tags at separate levels of a binary tree), yields parallel algorithms.
In the reliable memory setting, which is the main contribution of this part, our solution is a Merkle tree
construction [17] with different cryptography: It employs lattice-based hash functions instead of generic
collision-resistant hash functions (e.g., MD-5 or SHA-256) [17]. Specifically, a property of lattice-based
hash functions that we call repeated linearity allows us to express the digest of a tree node v as the sum of
well-defined functions (called partial digests) applied to data stored at the leaves of v’s subtree (Theorem 3),
enabling Merkle tree updates to be parallelized. This property may also be of general interest and have other
applications—more details about this property are given in Section 5.6 of the Appendix.

Applications in authenticated data structures. Our lattice-based memory checker can be applied for
verifying queries executed on very large, on-disk, dynamic database indices. In Section 4, we show how
to construct a lattice-based authenticated B-tree that has the following desirable and unique features: (a)
Updating the state (digest) of the index requires two I/Os, outperforming the logarithmic complexity of
hash-based Merkle trees (as opposed to [15]) and at the same time maintaining the logarithmic proof size;
(b) By employing a logarithmic number of machines, all the operations of the authenticated index can be
performed with two I/Os, due to parallelism. We note that the gap between O(1) I/Os and O(log n) I/Os is
especially relevant in practice since an I/O is orders of magnitude slower than an access to internal memory.

Related work. Memory checking has received a lot of attention in the last few years. The problem has
its roots in the seminal paper of Merkle [17], where the first solution for structured data integrity checking
is presented. However, the first formal definition of memory checking appeared in the work of Blum et
al. [5], where two different constructions of logarithmic query complexity were developed. Lower bounds on
space and query complexity of memory checking were subsequently presented by Naor and Rothblum [20]
(information theoretic model) and by Dwork et al. [9] (computational model). Apart from the lower bounds
in [9], new constructions achieving read/write trade-offs, but still of Ω(log n) query complexity, are also
presented. Checking the correctness of more complicated data structures and computation has also been
studied in the field of authenticated data structures [26] and verifiable computation [3, 23] respectively,
where more efficiency is achieved by using more advanced cryptography and slightly stronger assumptions.
All above solutions are not parallelizable, except for the construction of Hall and Jutla [13] (but in the secret
key setting). A comparison of existing literature and our work is provided in Table 5.1 in the Appendix.

As we mentioned above, we achieve our parallelism results by employing lattice-based cryptography.
Lattice-based cryptography began with Ajtai’s construction of an one-way hash function based on hard
lattices problems [1]. Various generalizations and improvements have appeared since then [10, 11, 16, 18,
24]. Finally, and related to the context of this work, Banerjee et al. [2] recently observed that lattice-based
constructions can be used to construct highly-parallelizable pseudorandom functions.

2 Preliminaries
We start with some basic definitions on online memory checking and lattices. In the following, k denotes
the security parameter and PPT stands for probabilistic polynomial-time. Upper case bold letters denote ma-
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trices, e.g., B, lower case bold letters denote vectors, e.g., b, and lower case italic letters denote scalars. For
vector x, ‖x‖ denotes the Euclidean norm of x. We finally use the notation [δ] to denote the set {0, 1, . . . , δ}.

2.1 Online memory checking
The online memory checking model [5], in the sequential model, can be (informally) described as follows:
SupposeM is an unreliable (malicious) memory that stores indexed values T[0] T[1] . . . T[n−1]. Memory
M consists of memory words that can take values from an alphabet Σ. A user U wants to read or write a cell
i ∈ {0, 1, . . . , n− 1}. All requests go through a checker C. The checker executes the requests by accessing
the unreliable memoryM and also some small reliable (and possibly secret) information µ of sublinear size.
The requests are either executed correctly or otherwise the checker outputs reject, with high probability.
For example, and after a read request made by the user, the probability of the checker returning the corrupted
(or outdated) content of a cell as correct should be small, even after several write requests have occurred.
The checker is called non-adaptive, if, given an index i, the set and the order of the cells accessed in order
to output the answer is deterministic. In this paper we are only considering such checkers.

In the following we give the definition (Definition 1) of an online memory checker. For ease of pre-
sentation, we do not employ the Turing machine definition that was originally used in [5] but we provide
an equivalent definition: Both definitions (Turing machine one and the definition in this paper) capture
standard notions of correctness and security in the data outsourcing framework: Namely, (i) as long as the
adversary does not tamper with the unreliable memory and the checker algorithms (therefore correct answers
are returned), verification algorithms always accept (correctness—see Definition 2); (ii) a computationally-
bounded adversary cannot persuade a checker (except with probability ε) for the validity of an incorrect state
ofM, even if he can adaptively update the memory to a state of his liking (security—see Definition 3).

Definition 1 (Online memory checker) Let T = T[0] T[1] . . . T[n− 1] be n indexed values,M be some
public memory over alphabet Σ and µ be some reliable (and secret) memory. An online memory checker
C(Σ,T, n) = {genkey, setup, secureRead, secureWrite} is a tuple of the following four PPT algorithms:

1. (sk, pk) ← genkey(1k). On input the security parameter k, this algorithm outputs secret and public
keys sk and pk respectively;

2. (M, µ) ← setup(T, pk, sk). On input n values T and the secret and public keys sk and pk, this
algorithm outputs the unreliable public memoryM3 and the reliable (and secret) memory µ;

3. {α, reject} ← secureRead(index,M, µ, sk, pk). On input index index ∈ {0, . . . , n− 1}, the unre-
liable public memoryM, the reliable (and secret) memory µ, and the secret and public keys sk and
pk, this algorithm outputs either a value α or reject;

4. {(M′, µ′), reject} ← secureWrite(index, β,M, µ, sk, pk). On input index index ∈ {0, . . . , n−1},
a value β to be written at index index, the unreliable public memory M, the reliable (and secret)
memory µ, and the secret and public keys sk and pk, this algorithm outputs either new valuesM′ and
µ′ or reject.

We continue with the definitions of correctness and ε-security of an online memory checker.

Definition 2 (Correctness) Let C(Σ,T, n) = {genkey, setup, secureRead, secureWrite} be an online mem-
ory checker. We say that the checker C(Σ,T, n) is correct if, for all k ∈ N, for all {sk, pk} output by al-
gorithm genkey, for allM, µ output by one invocation of algorithm setup followed by polynomially-many
invocations of algorithm secureWrite and for all indices 0 ≤ index ≤ n− 1, if α is the correct value stored
at location T[index], then α← secureRead(index,M, µ, sk, pk).

3The unreliable public memoryM output by this algorithm stores, among other quantities, values T themselves.
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Definition 3 (ε-security) Let C(Σ,T, n) = {genkey, setup, secureRead, secureWrite} be an online mem-
ory checker, k be the security parameter and {sk, pk} ← genkey(1k). Denote with Adv a PPT adversary
that has access only to pk and with Chal a challenger that has also access to sk.

1. Initialization and updates. Adv picks an initial state of the index T and sends T to Chal. Chal
computes M, µ through algorithm setup, sends the public memory M to Adv and keeps µ secret.
Then, for i = 1, . . . , h = poly(k), Adv picks an index 0 ≤ indi ≤ n − 1 and a value βi and sends
indi and βi to Chal. Chal executes secureWrite(indi, βi,M, µ, sk, pk). If secureWrite does not reject,
then it outputs the new values ofM′ and µ′ and setsM =M′ and µ = µ′ (if it rejects the valuesM
and µ do not change). Finally Chal sends to the adversary the new public memoryM, keeping the
new memory µ secret.

2. Forge. Adv picks an index ind of T and a final state of the public memory M̄.
We say that the online memory checker C(Σ,T, n) is ε-secure if for all k ∈ N, for all {sk, pk} output by
algorithm genkey, and for all PPT adversaries Adv it is

Pr
[
{ind,M̄} ← Adv(1k, pk,M);α← secureRead(ind,M̄, µ, sk, pk); T[ind] 6= α

]
≤ ε .

On the parameter ε. By default, the above parameter ε is less than or equal to 1/2 in memory checking
literature [9]. Specifically, the lower bound result [9] applies to all ε-secure checkers for ε ≤ 1/3. As such,
our tight upper bound result uses a value of ε = 1/nc for some c > 1. However, our parallel lattice-based
checker uses a value of ε = neg(k).4 Note that, as observed by Dwork et al. [9], smaller ε values result into
more practical checkers, e.g., checkers that provide guarantees even after a detected malfunction.

Query complexity. The quality of a checker depends on its query complexity [9], defined as follows:

Definition 4 (Query complexity) Let C(Σ,T, n) = {genkey, setup, secureRead, secureWrite} be a correct
and ε-secure online memory checker. The query complexity of C(Σ,T, n) is defined as the sum of the number
of queries that algorithms secureRead and secureWrite perform on the unreliable public memory.

2.2 Lattices
Our second result relies on lattice-based cryptography. A full-rank k-dimensional lattice is defined as the
infinite-sized set of all vectors produced as the integer combinations of a basis V = {v1, v2, . . . , vk}, where
v1, v2, . . . , vk are linearly independent, all belonging to Rk. We denote the lattice produced by V with L(V).
Let λ(V) denote the length of the shortest vector (in an Euclidean sense) in L(V). Finding such a vector is a
difficult problem. The security of our constructions is based on the difficulty of solving a similar well-known
problem in lattices, namely the “gap” version of the shortest vector problem (GAPSVPγ):

Definition 5 (Problem GAPSVPγ) An input to the problem GAPSVPγ is a k-dimensional lattice basis V
and a number d. In YES inputs λ(V) ≤ d and in NO inputs λ(V) > γ × d, where γ ≥ 1.

For exponential values of γ, i.e., γ = 2O(k) (k is the security parameter), one can use the LLL al-
gorithm [14] and decide the above problem in polynomial time. However, for polynomial γ, no efficient
algorithm is known to date, even for factors slightly smaller than exponential [25], i.e., very big polyno-
mials. Moreover, for polynomial factors, there is no proof that this problem is NP-hard.5 A well-accepted
assumption we will need to argue about the security of our scheme is the following:

Assumption 1 (Hardness of GAPSVPγ) Let GAPSVPγ be an instance of the gap version of the shortest
vector problem in lattices, as defined in Definition 5 and k be the security parameter. There is no PPT
algorithm for solving GAPSVPγ for γ = poly(k), except with negligible probability neg(k).

4We say that f : N→ R is neg(k) iff for any nonzero polynomial p(k) there is N such that for all k > N it is f(k) < 1/p(k).
5For γ >

√
k/ log k, it is unlikely that this problem is NP-hard and no efficient algorithm is known to date [25].
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2.3 Small integer solution problem
After Ajtai introduced the first one-way function based on hard lattices problems [1], Goldreich et al. [11]
presented a variation of the function with collision resistance, which was finally generalized by Micciancio
and Regev [18]. In our construction we are using a modification (allowing two inputs) of this generalized
function. The security of our function is based on the difficulty of the small integer solution problem (SIS):

Definition 6 (Problem SISq,m,β) Given an integer q, a matrix M ∈ Zk×mq picked uniformly at random and
a real β, find a non-zero integer vector z ∈ Zm\{0} such that Mz = 0 mod q and ‖z‖ ≤ β.

For certain parameters, Gentry, Peikert and Vaikuntanathan [10] proved that SISq,m,β can be reduced to
GAPSVPγ for polynomial γ, and therefore, due to Assumption 1, SISq,m,β is believed to be intractable:

Lemma 1 (Hardness of SISq,m,β) Let SISq,m,β be an instance of the small integer solution problem, as
defined in Definition 6. Let also β, m, q be polynomially-bounded, where q is a prime and q ≥ β ·

√
m ·

ω(
√
k log k). Then the problem SISq,m,β is as hard as approximating the problem GAPSVPγ in the worst

case to within certain γ = O(β ·
√
k · poly(log k)).

We now give the algorithm that chooses the exact values q,m, β, for which the problem SISq,m,β is hard:

Algorithm {q,m, β} ← parameters(k, δ): On input the security parameter k and δ = poly(k), let q be
the smallest positive prime satisfying q/ log q ≥ δk · ω(

√
k log k). Set m = dk log qe and β = δ

√
m.

The parameters chosen by the above algorithm comply with Lemma 1: First, as δ = poly(k), all q,m, β
are poly(k). Second, q/ log q ≥ δk · ω(

√
k log k) ⇔ q ≥ β ·

√
m · ω(

√
k log k), since β = δ

√
m and

m = k log q. Note that there is always a prime q = Θ(δ · k log k
√
k log k) satisfying the inequality above.

2.4 Lattice-based hash function
We now describe our lattice-based hash function which is the main building block of our approach. The
security of our function is based on the difficulty of solving SISq,m,β , as described in the previous paragraph.

Definition 7 (Hash function) Let k be the security parameter, δ = poly(k) and q,m, β be the parameters
output by algorithm parameters(k, δ). Let also L,R ∈ Zk×mq be two k ×m matrices picked uniformly at
random. We define the function hδ : [δ]m × [δ]m → Zkq as hδ(x, y) = L · x + R · y mod q.

Function hδ is collision-resistant based on the difficulty of GAPSVPγ :

Theorem 1 (Strong collision resistance) Let k be the security parameter, δ = poly(k) and {q,m, β} ←
parameters(k, δ). Let also L,R ∈ Zk×mq be two k × m matrices picked uniformly at random. Assuming
hardness of GAPSVPγ for γ = poly(k) (see Assumption 1), there is no PPT algorithm that outputs two
pairs of vectors (x1, y1) ∈ [δ]m × [δ]m and (x2, y2) ∈ [δ]m × [δ]m with (x1, y1) 6= (x2, y2) such that

L · x1 + R · y1 = L · x2 + R · y2 mod q , (1)

except with negligible probability neg(k).

Proof: Let {q,m, β} ← parameters(k, δ). We reduce the problem SISq,2m,β
√
2 to the problem of finding

collisions to the above function. Consider the matrix

M = [L R] ∈ Zk×2mq .

Matrix M is distributed uniformly at random, since L and R are picked uniformly at random. It is easy to
write L and R as a function of M, i.e., L = MU and R = MD, where U = [Im Om]T,D = [Om Im], Im
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denotes the square identity matrix of dimension m and Om denotes the square zero matrix of dimension m.
Therefore Equation 1 can be written as

MU · x1 + MD · y1 = MU · x2 + MD · y2 ⇔M · [U(x1 − x2) + D(y1 − y2)] = 0 .

Consider now the k × 2m vector z = U(x1 − x2) + D(y1 − y2). Since (a) (x1, y1) 6= (x2, y2); (b) the
entries of U(x1 − x2) do not overlap with the entries of D(y1 − y2) (due to matrices U and D), it is z 6= 0.
Moreover, it is ‖z‖ ≤ β

√
2 = δ

√
2m. This is because its coordinates are between −δ and +δ (by the

fact that x1, x2, y1, y2 have coordinates in [δ]) and because z has dimension 2m. Therefore z is a solution
to the problem SISq,2m,β

√
2. By Lemma 1 this gives a solution to GAPSVPγ for polynomial γ, which, by

Assumption 1, happens with probability neg(k). 2

3 Main constructions
In this section we present our constructions. In Section 3.1, we derive an optimal (and parallel) secret mem-
ory checker. In Section 3.2, we construct a parallel reliable memory checker based on lattice assumptions.

3.1 Optimal online memory checking (secret memory)
Our first theorem can be stated as follows. Its detailed proof can be found in the Appendix, see Section 5.2.
Theorem 2 There exists an online secret memory checker C(Σ,T, n) using memory words ofO(log2 n) size
such that: (1) It is correct according to Definition 2 and ε-secure according to Definition 3 and assuming
the existence of pseudorandom functions, where ε = 1

nc and c > 1; (2) Its sequential query complexity is
O(log n/ log log n); (3) Its parallel query complexity is O(1) using O(log n/ log logn) processors in the
EREW (exclusive read/exclusive write) model.
Proof: (sketch) Our construction uses PRF tags [5] and a tree of O(log n/ log logn) levels and O(log n)
degree. In order to verify an operation (read or write), our checker’s algorithms traverse O(log n/ log log n)
levels from the leaves up to the root of the tree, accessing necessary information at each level (e.g., PRF tags,
counters). However, only a constant number of queries are issued per level (instead of O(log n) queries).
To achieve that, we organize sibling nodes in a single word of O(log2 n) size. We also make sure that the
PRF we instantiate has range of polynonial size (and thus ε = 1

nc ), so that PRF tags can fit into a single
memory word. Put together, such checker maintains small memory words and provides all its functionality
(read/write) by issuing one query per level, thus achieving the desired complexity bound. 2

Observation. It is worth noticing that the construction presented in Theorem 2 outperforms other con-
structions in the memory checking model with memory words of polylogarithmic size, where query com-
plexity (see Definition 4) accounts for the number of queries on words of such size. This is the exact model
for which the lower bound by Dwork et al. [9] was given. If one counts the number of bits that need to be
accessed (i.e., bandwidth), then our construction has O(log n) complexity, just like previous constructions.

3.2 Parallel online memory checking (reliable memory)
We continue with our main contribution, i.e., a parallel checker that uses only reliable (but not secret) small
memory. We first present some definitions and algebraic tools needed for proving important properties of
our lattice-based function. Crucial for our constructions are binary and radix-2 representations, used to
represent a vector of big norm with a vector of shorter norm (but of slightly higher dimension). We note that
these were independently used by Brakerski and Vaikuntanathan [6] in the context of fully-homomorphic
encryption.

Definition 8 (Binary representation) We denote with b(x) = [b0 b1 . . . blog q−1]
T ∈ {0, 1}log q the binary

representation of x ∈ Zq, namely x =
∑log q−1

i=0 bi2i mod q.
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Definition 9 (Radix-2 representation) Define r(x) = [r0 r1 . . . rlog q−1]T ∈ Zlog q
q to be a radix-2 repre-

sentation of x ∈ Zq if and only if x =
∑log q−1

i=0 ri2i mod q.

We note here, that while a binary representation is unique, a radix-2 representation is not. For example,
for q = 16, x = 7, r(x) can be [0 1 1 1]T, [0 − 2 0 − 1]T or [−2 2 0 − 1]T (and other). However b(x) is
always [0 1 1 1]T. We now give an important result:

Lemma 2 For any x1, x2, . . . , xt ∈ Zq there exists a radix-2 representation r(.) such that r(x1+x2+. . .+xt
mod q) = b(x1) + b(x2) + . . .+ b(xt) mod q. Also, it is r(x1 +x2 + . . .+xt mod q) ∈ {0, . . . , t}log q.

Lemma 2 is useful in the following sense: Given the binary representations of x1 and x2, namely b1 and
b2, a radix-2 representation of x1 + x2 is b1 + b2. Note now that Definitions 8 and 9 and also Lemma 2 (see
Corollary 1) can be naturally extended for vectors x ∈ Zkq : For i = 1, . . . , k, xi is mapped to the respective
log q entries b(xi) (or r(xi)) in the resulting vector b(x) (or r(x)). Therefore we have the following:

Corollary 1 For any x1, x2, . . . , xt ∈ Zkq there exists a radix-2 representation r(.) such that r(x1+x2+. . .+

xt mod q) = b(x1)+b(x2)+. . .+b(xt) mod q. Also, it is r(x1+x2+. . .+xt mod q) ∈ {0, . . . , t}k log q.
Finally, to constrain the inputs to our hash function, we need the following definition:

Definition 10 (δ-admissible radix-2 representation) Let x be a vector in Zkq . We say that the radix-2 rep-
resentation r(x) ∈ Zk log qq is δ-admissible if and only if r(x) ∈ {0, 1, . . . , δ}k log q.
Lattice-based Merkle tree. As we mentioned in the introduction, our core construction is a Merkle tree
with different cryptography. Instead of employing a typical collision-resistant function such as SHA-2, it
uses our lattice-based hash function hδ(x, y) from Definition 7. We refer to such a Merkle tree as lattice-
based Merkle tree and to its digests as lattice-based digests.

Recall that our lattice-based hash function has domain [δ]m × [δ]m and range Zkq . For our construction
we set δ = n, i.e., we allow the entries of the input vectors to be bounded by n = poly(k), the number of
the indices of our memory. One of the main technical challenges in combining the idea of a Merkle tree
with our lattice-based hash function is to assure that the output of the function y = hn(x, y) ∈ Zkq can be
appropriately prepared to become an input to the function again, namely a vector in [n]m. We achieve that
by transforming y ∈ Zkq to r(y) ∈ Zk log qq , namely to an n-admissible radix-2 representation of y. This
operation provides a representation with small entries, as required by the function definition.

We are now ready to describe our lattice-based Merkle tree in detail. Let T be the initial state of our
table (memory), storing values x0, x1, . . . , xn−1 ∈ Zkq . Let T be the binary tree of ` = log n levels on top
of the values x0, x1, . . . , xn−1 and r be the root of tree T . By convention, the root of the tree lies at level 0
and the leaves of the tree lie at level `. For every leaf node vi of the tree, i = 0, . . . , n− 1, the lattice-based
digest d(vi) is defined as d(vi) = xi. For any internal node w, with left child u and right child v, we define
its lattice-based digest by using the hash function hn(x, y) given in Definition 7 and the transformation of
the function range outlined above. Namely, the lattice-based digest d(w) of node w is recursively defined as

d(w) = hn(r(d(u)), r(d(v))) = L · r(d(u)) + R · r(d(v)) , (2)

where r(d(u)) and r(d(v)) are n-admissible radix-2 representations of d(u) and d(v). Note that our con-
struction follows the logic of a plain Merkle tree that uses a collision-resistant function such as SHA-2,
i.e., computation over the nodes of a binary tree. The difference is, however, that we choose “structure
preserving” transformations (which are not feasible in other primitives such as SHA-2) to go from one level
to another, a general property that we call repeated linearity. We present an abstraction of this propery in
Section 5.6 of the Appendix.
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Partial digests. In Relation 2 of the previous section, we showed that in order to compute the lattice-based
digest d(w) of some internal node w of tree T , we need to access the lattice-based digests of its children.
However, due to the algebraic nature of the used hash function, we can express the digest d(w), as well
as the n-admissible radix-2 representation r(d(w)) of it, somehow differently, namely as a sum of explicit
functions (called here partial digests) of data at the leaves of the tree. We establish these expressions in
Theorem 3 and Corollary 2. These are crucial for deriving our final results.

Let now range(w) be the range of successive indices corresponding to the leaves of the subtree of T
rooted on w. E.g., in Figure 1 in the Appendix, it is range(v11) = {0, 1, 2, 3}. For every node w ∈ T and
for every i ∈ range(w) we define the partial digest D(w, xi) of w with reference to xi:
Definition 11 (Partial digests of a node w) For a leaf node w of tree T storing value xi, the partial digest
of w (wrt xi) is defined as D(w, xi) = xi. For every other internal node w of tree T , with left child u and
right child v, and for every i ∈ range(w), the partial digest D(w, xi) of w wrt xi is recursively defined as

D(w, xi) =

{
L · b(D(u, xi)), if xi belongs to the left subtree of w ,
R · b(D(v, xi)), if xi belongs to the right subtree of w .

E.g., in Figure 1 in the Appendix, the partial digests of root r with reference to x1 and x2 are D(r, x1) =
R · b(R · b(L · b(x1))) and D(r, x2) = R · b(L · b(R · b(x2))) respectively, where b(z) is z’s binary
representation. We note that the left-to-right order of matrices R and L appearing inD(r, xi) coincides with
the binary representation of i (0 is represented with R and 1 is represented with L).

Theorem 3 The lattice-based digest d(w) of a tree node w (given in Relation 2) can be expressed as a sum
of node w’s partial digests wrt node w’s range, i.e., d(w) =

∑
i∈range(w)D(w, xi).

Proof. (sketch) Apply Corollary 1. By induction, the sum of the partial digests of node w with reference to
its range can be expressed as in Relation 2. 2

By Corollary 1 and Theorem 3, we can derive a similar result for the radix-2 representation of node w:

Corollary 2 Let λ(w) =
∑

i∈range(w) b(D(w, xi)). Then λ(w) is an n-admissible radix-2 representation of
the lattice-based digest d(w) of tree node w (given in Relation 2).

3.3 Algorithms of the parallel checker
Setup. We now describe the algorithms of our parallel online memory checker C(Σ,T, n). Our alphabet
Σ contains words that are vectors in Zkq , i.e., of polynomial bit-size (O(k log q)). The algorithms that we
are going to describe write (read) data to (from) either the unreliable or the reliable memory. We recall that
for the query complexity, we are only interested in counting the number of queries to the unreliable memory.

Algorithm (sk, pk) ← genkey(1k): Call {q,m, β} ← parameters(k, n), on input the security parameter
k and the size n of table T. Then sample two matrices L,R ∈ Zk×mq uniformly at random. Output sk = Ø
and pk = {L,R, q}.

Algorithm (M, µ) ← setup(T, pk, sk): Let T be the initial table, storing values x0, x1, . . . , xn−1 ∈ Zkq
and T be the binary tree built on top on the values of table T. The leaves of T store x0, x1, . . . , xn−1 ∈ Zkq .

1. Store in unreliable memoryM the labels λ(w) for every node w of T , as computed in Corollary 2;
2. Store in reliable memory µ the lattice-based digest d(r) of the root r of T , as computed in Theorem 3.

We continue with algorithms secureRead and secureWrite, which are both parellelizable.
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Reading in parallel. Algorithm secureRead is exactly the same as the verification algorithm used in a
Merkle tree [17], performing fully-parallelizable computations along a certain tree path to verify whether
the leaf value is correct or not. We give the algorithm in the following.

Algorithm {α, reject} ← secureRead(index,M, µ, sk, pk): Let v`, . . . , v1 be the path in the lattice-
based Merkle tree T from node v` (v` stores the value T[index]) to the child v1 of the root r of T . Let also
w`, . . . , w1 be the sibling nodes of v`, . . . , v1. Perform the following steps:

1. (computation from untrusted memory) Compute a value yi ∈ Zkq as follows:

yi =

{
T[index], if i = ` ,
L · λ(vi+1) + R · λ(wi+1), if 0 ≤ i < ` and vi+1 is vi’s left child .6

2. (verification) For i = `, . . . , 1, if λ(vi) is not a radix-2 representation of yi or λ(vi), λ(wi) have
entries greater than n output reject. If y0 6= µ, output reject. Output α = T[index].

Writing in parallel. Algorithm secureWrite is similar with an update algorithm in a Merkle tree. The
crucial difference is that updating a label of a node w in a lattice-based Merkle tree does not require
updating the labels of w’s children first—these operations can happen in parallel (Relations 3 and 4). This
is due to the properties of the lattice-based function. The detailed description of the algorithms follows:

Algorithm {(M′, µ′), reject} ← secureWrite(index, β,M, µ, sk, pk): Let v`, . . . , v1 be the path in the
lattice-based Merkle tree T from node v` (v` stores the value T[index]) to the child v1 of the root r of
T . Output α ← secureRead(index,M, µ, sk, pk). If α = reject, then output reject. Else, let λ(vi)
(i = 1, . . . , `) be the values accessed by secureRead. Set T[index] = β and

λ′(vi) = λ(vi)− b(D(vi, α)) + b(D(vi, β)) for i = `, `− 1, . . . , 1 , (3)

µ′ = µ−D(r, α) +D(r, β) . (4)

UpdateM toM′ with the new labels λ′(.) computed above. Finally, update µ to µ′.

Note that Relations 3 and 4 assure that the properties of Theorem 3 and Corollary 2 are maintained and
therefore the new values λ′(vj) and µ′ are correct. We now state our main result for this section:

Theorem 4 Let k be the security parameter. There exists an online reliable memory checker C(Σ,T, n)
using memory words of polynomial size such that: (1) It is correct according to Definition 2 and ε-secure
according to Definition 3 and assuming the hardness of GAPSVPγ , where γ = n · k · poly(log k) and
ε = neg(k); (2) Its sequential query complexity is O(log n); (3) Its parallel query complexity is O(1) using
O(log n) processors in the CREW (concurrent read/exclusive write) model.

Proof: (sketch) Both algorithms secureRead and secureWrite are parallelizable, since the execution of loop
i is completely independent from the execution of the loop for i + 1. Also, correctness follows from the
code of algorithms secureRead and secureWrite: Algorithm secureWrite always updates the lattice-based
digests in a way that these remain consistent with Corollary 3 and algorithm secureRead performs a typical
Merkle tree verification. Finally, security is due to the security of the Merkle tree construction [17], and
is based on the collision resistance of the used lattice-based hash function, which is due to the hardness of
approximating GAPSVPγ for polynomial γ (see Theorem 1). 2

6If vi+1 is vi’s right child, we set yi = R · λ(vi+1) + L · λ(wi+1).
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4 Authenticated data structures with optimal updates
Apart from parallelism, our lattice-based memory checker possesses another desirable feature that emerges
in an application domain: Updating the lattice-based hash of the root of the binary tree T (this hash is used
for verification purposes) involves two operations (see Relation 4). Such an update complexity is essentially
optimal, as opposed to the logarithmic complexity of conventional hash trees, e.g., [5]. Applications that
index and process a large amount of data in external memory (disk)—therefore issuing multiple disk I/Os—
can benefit significantly from this feature. In such scenarios, the difference betweenO(1) I/Os andO(log n)
I/Os is especially relevant since an I/O is orders of magnitude slower than an access to internal memory.7

Consider for example a typical authenticated data structures setting [23, 26]: A trusted authority (e.g.,
government) owns a very large, on-disk, database T to be queried by the citizens. However the government
does not have the computational resources to support queries from such a big population and resorts to
distributed untrusted cloud machines. Aiming to offer security guarantees to the citizens, the government
signs and publishes the Merkle tree digest of the database T (this is the reliable memory µ of the checker)
so that clients can use the digest (along with some proof returned by the cloud) for verifying answers to
database queries executed in the cloud. The database is highly-dynamic, therefore the government should
refresh this digest whenever there is an update to the database. Using our version of Merkle trees, the
government needs to perform only two I/Os per update.

We have therefore designed a lattice-based authenticated data structure [26] for a database table indexed
in external memory, implemented with a B-tree [8]. We recall that a B-tree is more or less similar to a binary
tree with the difference that it is used to index data on disk: Its internal nodes, instead of two children, have
B children, where B is a parameter representing the number of entries/pages that fit into one disk block. As
such, the main overhead in the operation of a B-tree is accessing a block of B entries, which is equivalent to
one I/O. We note here that another construction for verifiable B-trees using generic hash functions was also
proposed by Li et al. [15]—however updates in their schemes require logB N I/Os, where N is the number
of indexed records, and all other operations are inherently sequential.

Our new external memory authenticated data structure is implemented using the lattice-based memory
checker as a building block. However, in order to go from a binary tree to a B-tree, we need to slightly change
our construction (see Appendix). Now, being a cryptographic construction, an authenticated data structure
is described by a collection of algorithms {genkey, setup, update, refresh, query, verify} (see [23]). In our
application, algorithms genkey, setup are initially executed by the government, algorithm update refreshes
the digest signature, algorithm verify is executed by the citizens and the remaining algorithms are executed
by the untrusted cloud. Formal definitions of the above algorithms are given in the Appendix (also appeared
in [23]). We now give our final result. Its proof can be found in the Appendix.

Theorem 5 Let k be the security parameter. There exists an authenticated data structure scheme {genkey,
setup, update, refresh, query, verify} for an external memory dynamic table D of N entries, using blocks
of B = O(1) entries each, such that: (1) The scheme is correct according to Definition 13 and secure
according to Definition 14 and assuming the hardness of GAPSVPγ , where γ = N · k · poly(log k); (2)
The I/O complexity of setup is O(NB logB N) or O(NB ) using O(logB N) processors in the CREW model,
outputting an authenticated data structure auth(D) occupying O(NB ) blocks; (3) The I/O complexity of
update isO(1); (4) The I/O complexity of refresh isO(logB N) orO(1) usingO(logB N) processors in the
CREW model; (5) The I/O complexity of query is O(logB N) or O(1) using O(logB N) processors in the
EREW model, outputting a proof Π(q) for a query q occupying O(logB N) blocks; (6) The I/O complexity
of verify is O(logB N) or O(1) using O(logB N) processors in the CRCW model.

7From en.wikipedia.org/wiki/Hard disk, for a typical 7, 200rpm desktop hard drive, average seek time is 9ms and average
latency time is 4.17ms, making the total time for an I/O equal to 13.4ms.
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5 Appendix
5.1 Detailed comparison with related work
In the table below, we compare sequential and parallel query complexities of memory checkers that have
appeared in the literature, with our solutions. We denote with n the number of user-accessible indices and
with d any function that is O(n). Below, NA stands for not applicable, PRF stands for pseudorandom
function, UOWHF stands for universal one-way hash function and CRHF stands for collision-resistant hash
function. All solutions with O(1) query complexity use O(log n) processors. Also, although the works [12,
13, 19] do not explicitly refer to memory checking, they could be straightforwardly applied therein.

work sequential query parallel query secret cryptographic
complexity complexity memory assumption

Blum et al. [5] O(log n) NA yes PRF
O(log n) NA no UOWHF

Dwork et al. [9] O(d logd n) NA yes PRF
Naor and Nissim [19] O(log n) NA no CRHF (generic)
Goodrich and Tamassia [12]
Hall and Jutla [13] O(log n) O(1) yes PRF
this Θ(log n/ log log n) O(1) yes PRF

O(log n) O(1) no CRHF (lattice-based)

5.2 Optimal secret memory checker based on PRFs (proof of Theorem 2)
Our construction is a modification of the PRF construction from the paper of Blum et al. [5]. Let k be the
security parameter, Σ be the memory alphabet and let U be a polynomially-bounded estimate of how many
writes are going to be performed on the memory. We take the bit size of the word in Σ to be O(log2 n).
Let also S be a k-bit seed to be used for the pseudorandom function. The seed S is kept in secret memory.
Finally, consider a tree T that has O(log n/ log logn) levels and O(log n) degree (note that we can get
exactly the similar results—with increased, still polylogarithmic, memory word size— even when the degree
is O(poly(log n))) and is built on top of our table of values T and denote with ID the sets of all unique
identifiers id(v) of the nodes v of the tree T and with DATA the set of values that can be written in the
database index (we consider binary checkers but it can be extended to checkers of poly(log n) bits). We use
a pseudorandom function

fS : DATA ∪ {0} × ID× {0, . . . , U} → {0, 1}L ,

where L = O(log n). For each leaf node vi, set data(vi) = T[i] ∈ DATA, otherwise for all other nodes of
the tree set data(vi) = 0. Define the pseudorandom function tag of a node v of the tree as

t(v) = fS(data(v), id(v), cnt(v)) ,

where cnt(v) is the number of times that values at the leaves of the subtree rooted on node v have been
written (therefore, initially cnt(v) = 0 for all nodes v of tree T ). In local reliable memory, we also store
cnt(r), where r is the root of T (note that cnt(r) need not be stored in secret memory).

Memory word organization and grouping. Our result is based on a clever organization of the memory
words, inspired by I/O algorithms (e.g., B-trees). As we said before, the bit size of the memory word of our
checker is O(log2 n), meaning that our checker can read and write O(log2 n)-sized words with one query.
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Let v be a node of our tree and let u1, u2, . . . , u` be its children, where ` = O(log n). At every node v we
store in one word the following information

memory(v) = [t(v), label(v), t(u1), label(u1), . . . , t(u`), label(u`)] ,

where label(v) = (data(v), id(v), cnt(v)) (for a leaf node, there are no values for t(ui) and label(ui)).
Note that data(v) can be represented with an O(log n) number of bits, id(v) ≤ 2n (one identifier per tree
node) and cnt(v) ≤ U = poly(n). Therefore label(v) can also be represented with an O(log n) number of
bits. Since memory(v) consists of O(log n) pairs of labels and tags (note that tags also require an O(log n)
number of bits, since the range of fS is {0, 1}L and L = O(log n)), it follows that the bit size of memory(v)
is O(log2 n).

Reading and writing. In order to read the contents of location i, all the nodes v on the path from the root
to location i along with the respective information memory(v) are accessed. For each internal node v on the
path, verify that cnt(v) equals the sum of

∑`
i=1 cnt(ui), where u1, u2, . . . , u` are v’s children. Moreover,

the tags t(v), t(u1), t(u2), . . . , t(u`) are verified as well by having the checker recomputing them (since it
has access to the seed S). Since the levels of the tree T is O(log n/ log logn) and the checker does one
query per level (i.e., accessing memory(v)), it follows that the read complexity of the described solution
is O(log n/ log logn). Note that reading can be parallelized easily as well, since all the checks performed
at some node v require only local information (i.e., information memory(v)). So we can read securely by
employing O(log n/ log logn) checkers, each one performing O(1) queries.

In order to write into location i a new value T′[i], all the nodes v on the path from the root to location i
and the respective information memory(v) are accessed. First, a verification of T[i] as above is performed.
Then the PRF tags along the path need to be recomputed. For leaf v the new tag is fS(T′[i], id(v), cnt(v)+1)
whereas for the other nodes on the path v, the new tag is fS(0, id(v), cnt(v) + 1). This is also easily
parallelizable: The computation of the tag t(v) does not depend of the tags of any of v’s children (unlike the
constructions using UOWHFs). So we can write securely by employing O(log n/ log log n) checkers, each
one performing O(1) queries. Note that there is no need for concurrent read, since no value needs to be read
at the same time (unlike the construction of Theorem 4).

Finally, the correctness and security of the scheme is derived by the same arguments in [5], since we are
only changing the organization of data into words and the algorithms to access them. Moreover, our checker
is ε-secure, where ε = 1/nc, since the range of the PRF that we are using has bit size O(log n). We note
that essentially, this construction resembles the optimized construction given by Dwork et al. [9] that has
O(d logd n) complexity, for d = O(log n). However, instead of forcing the checker to perform d queries
per level, we group all the maximum possible amount of information into one memory word of O(log2 n)
size, achieving one query per level.

5.3 Adding binary representations (proof of Lemma 2)
Let xi = b(xi) be the binary representation of xi for i = 1, . . . , t. Then

t∑
i=1

xi =

[
t∑
i=1

xi0
t∑
i=1

xi1 . . .
t∑
i=1

xi(k−1)

]T
mod q .

The resulting vector is a radix-2 representation of(
t∑
i=1

xi0

)
· 20 +

(
t∑
i=1

xi1

)
· 21 + . . .+

(
t∑
i=1

xi(k−1)

)
· 2k−1 mod q ,
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Figure 1: The lattice-based Merkle tree T built on top of a table with 8 values x0, x1, . . . , x7. At the leaves
of the tree we show the partial digests of the root r with respect to each one of the leaves x0, x1, . . . , xn−1.
The digest of the lattice-based tree is the sum of these terms (see Theorem 3).

which can be written as

k−1∑
j=0

x1j · 2j +
k−1∑
j=0

x2j · 2j + . . .+
k−1∑
j=0

xtj · 2j = x1 + x2 + . . .+ xt mod q.

Therefore there exists a radix-2 representation r such that r(x1 +x2 + . . .+xt mod q) = b(x1) + b(x2) +
. . . + b(xt) mod q. Finally note that since r(.) is the sum of t binary representations, it cannot contain a
entry that is greater than t.

5.4 Expressing lattice-based digests as a sum of partial digests (proof of Theorem 3)
We prove the claim by induction on the levels of the tree T . For any internal node w that lies at level `− 1,
there are only two nodes (that store for example values xi (left child) and xj (right child) and belong to
range(w)) in the subtree rooted on w. Therefore

D(w, xi) +D(w, xj) = L · b(xi) + R · b(xj) = d(w) .

This is due to Relation 2 and also due to the fact that r(.) can be picked to be b(.), which is an n-admissible
radix-2 representation, therefore satisfying the constraint of the inputs of Definition 7. Hence the base case
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holds. Assume the theorem holds for any internal node z that lies at level 0 < t+ 1 ≤ `. Therefore

d(z) =
∑

i∈range(z)

D(z, xi) .

Let w be an internal node that lies at level t and let i1, i2, . . . , iq be the indices in range(w) in sorted order.
Let u be the left child of w and v be the right child of w. Then, by the definition of the partial digest of the
node w (Definition 11) we can write

d(w) =
∑

i∈range(w)

D(w, xi) =

q/2∑
j=1

L · b(D(u, xj)) +

q∑
j=q/2+1

R · b(D(v, xj))

= L ·
q/2∑
j=1

b(D(u, xj)) + R ·
u∑

j=q/2+1

b(D(v, xj)) .

By Corollary 1 there exist r(.) representations whose entries are at most q/2 ≤ n such that

d(w) = L · r

 q/2∑
j=1

D(u, xj)

+ R · r

 u∑
j=q/2+1

D(v, xj)

 .

By the inductive step this can be written as

d(w) = L · r(d(u)) + R · r(d(v)) ,

where r(.) are radix-2 representations that are n-admissible, since they are the sum of at most q/2 = n/2
binary representations. Therefore this satisfies Definition 2 and d(w) is indeed the correct digest of any
internal node w, as computed by Relation 2. This completes the proof.

5.5 Parallel reliable memory checker based on lattices (proof of Theorem 4)
Complexity. For both algorithms secureRead and secureWrite the following are true: (a) since ` =
O(log n), the number of the queries performed to the unreliable public memory is O(log n); (b) the ex-
ecution of loop i is completely independent from the execution of the loop for i + 1; (c) for each i ≤ `,
exactly O(1) queries to the unreliable memory are performed. Specifically, for the case of secureWrite, this
is the case since the binary representation of the partial digest b(D(vi, α)) (see Relations 3 and 4) can be
computed with a single query to the unreliable memory, namely a query for α (all the other information
for its computation is fixed at reliable memory, e.g., matrices L and R). Therefore, both algorithms are
parallelizable using O(log n) processors, each one executing O(1) queries to the unreliable memory. Fi-
nally, the algorithms require concurrent write only to the reliable memory, since all the processors need to
write to a location storing the reject bit concurrently. However, the queries to the unreliable memory can
be implemented in parallel only with exclusive write (EW), since Relation 3 writes on different memory
locations.

Correctness. Let T be any table of n entries. Fix the security parameter k and output sk and pk = (L,R, q)
by calling algorithm genkey. Then output the unreliable memoryM and the respective reliable memory µ,
by calling algorithm setup. We recall that the unreliable memoryM stores the lattice-based Merkle tree T
of ` levels. Pick a polynomial number of updates—namely, pick a polynomial number of pairs of indices and
values—and updateM and µ by calling algorithm secureWrite. Let T be the final table,M be the produced
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unreliable memory and µ be the final reliable memory. Let index be an index and let α = T[index] be the
correct value of index index. To prove correctness, we must show that, with all but negligible probability8,
α ← secureRead(index,M, µ, sk, pk). The only way this could fail is for algorithm secureRead to reject
at Item 2. We prove that this cannot be the case if algorithms genkey, setup, secureWrite are executed
honestly. First, note that algorithm secureRead accesses pairs λ(vi), λ(wi) (i = `, ` − 1, . . . , 1) of n-
admissible representations, where v`, v`−1, . . . , v1 are the nodes on the path from index index (i.e., node v`)
to the first child v1 of the root of the tree T and w`, w`−1, . . . , w1 are their respective siblings. By the way
λ(vi), λ(wi) (i = `, `− 1, . . . , 1) have been computed by the initial call to setup and the subsequent calls to
secureWrite, the following are true:

1. λ(v`) = b(α) (definition of a leaf digest);
2. d(vi) = Lλ(vi+1) + Rλ(wi+1) or d(vi) = Rλ(vi+1) + Lλ(wi+1)—according to left child or right

child relation—, for i = `− 1, . . . , 0 and where v0 is the root of the tree. This follows by Relation 2
and Corollary 2;

3. For i = `, . . . , 0, the representations in λ(vi) accessed by secureRead are always n-admissible radix-
2 representations of d(vi), since secureWrite always updates λ(vi) through Relation 3 so that the
invariant of Corollary 2 is maintained.

Based on the above observations, and the code of secureRead, we conclude that if α is the correct value
stored at index index, even after updates, then α is always output by secureRead(index,M, µ, sk, pk),
namely Item 2 of secureRead never rejects.

Security.
1. Initialization and updates. Fix the security parameter k and output sk and pk = (L,R, q) by calling

algorithm genkey. Let Adv be a polynomially-bounded adversary. Adv picks an initial table T0 of n
entries and sends it to the challenger Chal. Chal outputs the unreliable memoryM0 (storing a lattice-
based tree T of ` levels) and the respective reliable memory µ0 by calling algorithm setup and sends
the unreliable memory to the adversary. Then, for t = 1, . . . , h = poly(k), the adversary Adv picks
an index 0 ≤ indt ≤ n− 1 and a value βt ∈ Σ and sends them to Chal. Chal outputs the final values
ofMt and µt by calling algorithm secureWrite (namely the adversary chooses arbitrary write queries
to the public memory). Note that the adversary, at each point can tamper withMt but not with µt.

2. Forge. Let ind be a query index and α 6= T[ind] be an incorrect value for index ind picked by
Adv (as in the security definition, see Definition 3). Let also v`, v`−1, . . . , v0 be the path of T from
the node referring to index ind to the root of T . We prove, that for all polynomial t ≥ 0 and for
all 0 ≤ ind ≤ n − 1, the probability that α ← secureRead(ind,Mt, µt, sk, pk) while α 6= T[ind] is
negligible. To proceed with the proof, we recall that algorithm secureRead accesses pairs λ(vi), λ(wi)
(i = `, ` − 1, . . . , 1), where v`, v`−1, . . . , v1 are the nodes on the path from index ind (i.e., node v`)
to the first child v1 of the root of the tree T and w`, w`−1, . . . , w1 are their respective siblings. These
pairs reside in public unreliable memory Mt and are completely controlled by the adversary. We
prove our claim with induction on t:

Base case. First, we prove our claim for t = 0: To do that, we define the following events, related
to the values of λ(vi), λ(wi), as output by the adversary. Our goal will be to express the probability
that α ← secureRead(ind,M0, µ0, sk, pk) while α 6= T[ind] (for all 0 ≤ ind ≤ n − 1) as a function
of the following events. Initially, µ0 is the correct digest of the initial lattice-based Merkle tree:

(a) E`,0: The value λ(v`) picked by Adv is such that λ(v`) is an n-admissible radix-2 representation
of α 6= T[ind];

8In our scheme, correctness holds with probability 1.
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(b) Ei: For i = `− 1, . . . , 1, the values λ(vi) and λ(vi+1), λ(wi+1) ∈ {0, 1, . . . , n}k log q picked by
Adv are such that λ(vi) is an n-admissible radix-2 representation of

L · λ(vi+1) + R · λ(wi+1 .

Assume, without loss of generality that a convenient index ind = 0 is used so that the order of
L and R is always the same (the proof is independent of ind). This event can be partitioned into
two mutually exclusive events, i.e., Ei = Ei,0 ∪ Ei,1 such that
• Ei,0: Value λ(vi) is not an n-admissible radix-2 representation of the lattice-based digest of

node vi, as defined in Relation 2;
• Ei,1: Value λ(vi) is an n-admissible radix-2 representation of the lattice-based digest of

node vi, as defined in Relation 2.
(c) E0,1: The values λ(v1) ∈ {0, 1, . . . , n}k log q and λ(w1) ∈ {0, 1, . . . , n}k log q picked by Adv are

such that
µ0 = L · λ(v1) + R · λ(w1).

The probability that α← secureRead(ind,M0, µ0, sk, pk), while α 6= T[ind] is the probability

Pr[E`,0 ∩ E`−1 ∩ E`−2 ∩ . . . ∩ E0,1]
= Pr[E`,0 ∩ (E`−1,0 ∪ E`−1,1) ∩ (E2,0 ∪ E2,1) ∩ . . . ∩ E0,1]
≤ Pr[E`,0|E`−1,1] + Pr[E`−1,0|E`−2,1] + Pr[E`−2,0|E`−3,1] + . . .+ Pr[E1,0|E0,1]

=
∑̀
i=1

Pr[Ei,0|Ei−1,1] .

Note that the event Ei,0|Ei−1,1 implies the following:
(a) λ(vi) is not an n-admissible radix-2 representation of d(vi);
(b) λ(vi−1) is an n-admissible radix-2 representation of d(vi−1), where d(vi−1) = L · λ(vi) + R ·

λ(wi).
However, from Relation 2, it should be that

d(vi−1) = L · r(d(vi)) + R · r(d(wi)) ,

where d(vi) and d(wi) are the digests of nodes vi and wi respectively and r(d(vi)) and r(d(wi)) are
n-admissible radix-2 representations of them. Therefore (λ(vi), λ(wi)) is a collision with the pair
(r(d(vi)), r(d(wi))), since λ(vi) 6= r(d(vi)). Note now that by Theorem 1 and since all the param-
eters used have been output by algorithm parameters (called in algorithm genkey), the probability
Pr[Ei,0|Ei−1,1] is neg(k), for all i = `, `− 1, . . . , 1. Therefore the sum

∑̀
i=1

Pr[Ei,0|Ei−1,1]

is also neg(k), since ` = O(log n) = O(log k). All the above claims hold assuming the hardness of
GAPSVPγ for polynomial values of γ (see Lemma 1) and specifically for

γ = β
√

2 ·
√
k · poly(log k) = δ

√
2m ·

√
k · poly(log k) = n · k · poly(log k) ,

since β = n
√

2m and m = 2k log q. This concludes the proof for the base case.
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Inductive hypothesis. Let (ind1, β1), (ind2, β2), . . . , (indr+1, βr+1) be the pairs of update indices
and values chosen by the adversary, according to the security definition. Suppose our claim holds for
1 ≤ t ≤ r, i.e., the probability that α ← secureRead(ind,Mt, µt, sk, pk) while α 6= T[ind] (for all
ind) is neg(k) and whereMt, µt are output by secureWrite(indt, βt,Mt−1, µt−1, sk, pk).

Inductive step. We prove our claim for t = r + 1: By the base case of the induction and the
inductive hypothesis, T[indt] ← secureRead(indt,Mt−1, µt−1, sk, pk) with probability 1 − neg(k),
for all t = 1, . . . , r+1. Note now that since secureRead(indt,Mt−1, µt−1, sk, pk) does not reject and
outputs the correct value T[indt], secureWrite(indt, βt,Mt−1, µt−1, sk, pk) does not reject either9 and
outputs the correct lattice-based digest µt with probability 1−neg(k). This is because, by Relation 3,
updating µt−1 to µt depends only on the current value of the updated index (i.e., T[indt]) and the new
value βt to be written at indt, i.e.,

µt = µt−1 − b(D(r,T[indt])) + b(D(r, βt)) ,

where r is the root of the tree T . Therefore for all t = 1, . . . , r + 1, as long as

secureRead(indt,Mt−1, µt−1, sk, pk)

does not reject, µt, output by secureWrite(indt, βt,Mt−1, µt−1, sk, pk) is the correct lattice-based
digest of the updated table T. Therefore, we can follow exactly the same procedure with the base case
of the induction to prove that the probability that α ← secureRead(ind,Mr+1, µr+1, sk, pk) while
α 6= T[ind] is negligible.

5.6 Repeated linearity property
One of the main properties of our lattice-based hash function is additive homomorphism, namely, for any
eligible inputs x1 and x2, we have hn(x1, x2) = L · x1 + R · x2. However, this property by itself does not
suffice for deriving our results and this is the reason why we could not employ other additively-homomorphic
collision-resistant hash functions. The crucial additional property of our lattice-based hash function is what
we call repeated linearity: Repeated linearity is the existence of an additively-homomorphic mapping of the
range of our function back to elements of its domain. In our case, this mapping is a radix-2 representation.
We express this property formally as follows. Let (G,+) and (∆,+) be finite groups under addition.

Assume the following: (a) There exists a collision-resistant hash function h : ∆ × ∆ → G that is
additively-homomorphic under some functions λ1 : ∆ → G and λ1 : ∆ → G, i.e., for all x1, x2 ∈ ∆, it is
h(x1, x2) = λ1(x1) +λ2(x2); (b) There exists an additively-homomorphic function10 g : G→ ∆ such that
for all y1, y2 ∈ G, it is g(y1 + y2) = g(y1) + g(y2).

Then we say that function h satisfies the repeated linearity property. Any function h satisfying the
repeated linearity property could be used to derive our results. In this work, we have: G = Zkq ; ∆ = [n]k log q;
h(x1, x2) = L ·x1 + R ·x2; and g(x) = r(x) is the radix-2 representation function11 whose additive property
is established in Corollary 1.

5.7 Authenticated data structures definitions
We first give with the authenticated data structures definition, as appeared in [23]:

9This is because the first thing secureWrite does is calling secureRead in order to verify the current value of the index it is
updating.

10These functions should be “at least 1-1”, namely, one input should map to at least one output.
11Function r(.) outputs radix-2 representations of elements in Zk

q with entries less than or equal to n.
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Definition 12 (ADS scheme) Let D be any data structure that supports queries q and updates u. Let
auth(D) denote the resulting authenticated data structure and d the digest of the authenticated data struc-
ture, i.e., a constant-size description ofD. An ADS schemeA is a collection of the following six probabilistic
polynomial-time algorithms:

1. {sk, pk} ← genkey(1k): On input the security parameter k, it outputs a secret key sk and a public
key pk;

2. {auth(D0), d0} ← setup(D0, sk, pk): On input a (plain) data structure D0 and the secret and public
keys, it computes the authenticated data structure auth(D0) and the respective digest d0 of it;

3. {Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk): On input an update u on
data structureDh, the authenticated data structure auth(Dh), the digest dh, and the secret and public
keys, it outputs the updated data structure Dh+1 along with the updated authenticated data structure
auth(Dh+1), the updated digest dh+1 and some relative information upd;

4. {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input an update u on data
structure Dh, the authenticated data structure auth(Dh), the digest dh, relative information upd
(output by update), and the public key, it outputs the updated data structure Dh+1 along with the
updated authenticated data structure auth(Dh+1) and the updated digest dh+1;

5. {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): On input a query q on data structure Dh, the authenti-
cated data structure auth(Dh) and the public key, it returns the answer α(q) to the query, along with
a proof Π(q);

6. {accept, reject} ← verify(q, α,Π, dh, pk): On input a query q, an answer α, a proof Π, a digest
dh and the public key, it outputs either accept or reject.

Let {accept, reject} ← check(q, α,Dh) be an algorithm that decides whether α is a correct answer
for query q on data structure Dh (check is not part of the definition of an ADS scheme). There are two
properties that an ADS scheme should satisfy, namely correctness and security (intuition follows from
signature schemes definitions).

Definition 13 (Correctness) Let ASC be an ADS scheme {genkey, setup, update, refresh, query, verify}.
We say that the ADS scheme ASC is correct if, for all k ∈ N, for all {sk, pk} output by algorithm genkey,
for all Dh, auth(Dh), dh output by one invocation of setup followed by polynomially-many invocations of
refresh, where h ≥ 0, for all queries q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk), with
all but negligible probability, whenever algorithm check(q, α(q), Dh) outputs accept, so does algorithm
verify(q,Π(q), α(q), dh, pk).

Definition 14 (Security) Let ASC be an ADS scheme {genkey, setup, update, refresh, query, verify}, k
be the security parameter, ν(k) be a negligible function and {sk, pk} ← genkey(1k). Let also Adv be
a probabilistic polynomial-time adversary that is only given pk. The adversary has unlimited access to
all algorithms of ASC, except for algorithms setup and update to which he has only oracle access. The
adversary picks an initial state of the data structure D0 and computes D0, auth(D0), d0 through oracle
access to algorithm setup. Then, for i = 0, . . . , h = poly(k), Adv issues an update ui in the data structure
Di and computes Di+1, auth(Di+1) and di+1 through oracle access to algorithm update. Finally the
adversary picks an index 0 ≤ t ≤ h+ 1, and computes a query q, an answer α and a proof Π. We say that
the ADS scheme ASC is secure if for all k ∈ N, for all {sk, pk} output by algorithm genkey, and for any
probabilistic polynomial-time adversary Adv it holds that

Pr

[
{q,Π, α, t} ← Adv(1k, pk); accept← verify(q, α,Π, dt, pk);

reject← check(q, α,Dt).

]
≤ ν(k) . (5)

20



5.8 External memory authenticated B-tree with optimal updates (proof of Theorem 5)
Let C(Σ,T, n) = {genkey, setup, secureRead, secureWrite} be the lattice-based memory checker derived in
our main contribution. Security and correctness of the authenticated table follows directly from the security
and correctness of C(Σ,T, n).
Overview of the construction. We build a B-tree [8] T on top of table T. We recall that the B-tree is a
balanced tree that has internal degree B and height O(logB N). The internal nodes of the tree contain B
entries and are usually stored in one disk block. Now, algorithm genkey() works as follows: On input the
security parameter k, it computes q as before, for some δ = N = poly(k). Then it samples B = O(1)
matrices Li ∈ Zk×mq uniformly at random (i = 1, . . . , B). It outputs an empty secret key sk and pk =
{L1,L2, . . . ,LB, q}. Note that instead of two matrices L and R, we have set B matrices L1,L2, . . . ,LB , to
compensate for the increased internal degree.

Let now u be an internal node of the B-tree T , that has children v1, v2, . . . , vB . By following the
same techniques as in the main section of the paper, but expanded for internal nodes of degree B, we can
recursively define the digest d(u) of node u of the B-tree by using a lattice-based hash function that takes B
inputs instead of two inputs (see Definition 7), as d(u) =

∑B
i=1 Lir(d(vi)), where r(d(vi)) are n-admissible

radix-2 representations of d(vi) (i = 1, . . . , B).
We can now naturally define the partial digest of a node u in the B-tree T , as in Definition 11 (which

was for a binary tree):
Definition 15 (Partial digest for a B-tree node u) For a leaf node u ∈ T storing value xi, the partial digest
of u with reference to xi is defined as D(u, xi) = xi. Else, for every other node u of T , and for every
i ∈ range(u), the partial digest D(u, xi) of u with reference to xi is recursively defined as D(u, xi) =
Ljb(d(vj , xi)), if xi belongs to the j-th subtree of u and where vj is the j-th child of u.

Having a new definition for the partial digest on a B-tree, we can express the digest d(u) that we showed
above as a function (sum) of the partial digests, and exactly as in Theorem 3. Moreover, the state (digest)
of the external memory authenticated table can be updated again by using Relation 3 and with only two
additions of vectors in Zkq .
Complexity of algorithm setup and group complexity of auth(D). The algorithm needs to compute the
N -admissible radix-2 representations λ(u) of digests d(u) for every internal node u of the tree T . Note that
by Corollary 2, there are N/B,N/B2, N/B3, . . . , B such representations that need to be computed for lev-
els logB N −1, logB N −2, logB N −3, . . . , 1 respectively, each one being the sum ofB,B2, B3 . . . , N/B
binary representations respectively, i.e.,

λ(u) =
∑

i∈range(u)

b(d(u, xi)) .

Since computing b(d(u, xi)) has access complexity O(1) (they are just functions of specific values), it
follows that the computation of the λ() representations for all the internal nodes of the tree requires I/O
complexity

N

B
+B

N

B2
+B2 N

B3
+ . . .+

N

B
= O

(
N

B
logB N

)
.

Note now in the CREW model, we can use O(logB N) processors, i.e., one processor for each level of the
tree. By reading the values xi concurrently and writing the values λ(u) at different memory locations, it
follows that each processor will have to do O(N/B) accesses in the CREW model. Finally, we note that the
output authenticated data structure stores with each internal node u of the tree T the respective n-admissible
radix-2 representations λ(u). Therefore the authenticated data structure auth(D) occupies has O(N/B)
blocks.
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Complexity of algorithm update. Follows from the complexity of secureWrite and from the fact that
update needs to update only λ(r), where r is the root of the tree. In other words, update does not update
the whole authenticated data structure, but just the digest.

Complexity of algorithm refresh. Follows from the complexity of secureWrite.

Complexity of algorithms query and verify and size of Π(q). Follow from the complexity of secureRead.
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