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Abstract. We present a complete set of efficient explicit formulas for arith-
metic in the degree 0 divisor class group of a genus two real hyperelliptic curve
givenin affine coordinates. In addition to formulas suitable for curvesdefined
over an arbitrary finite field, we give simplified versions for both the odd and
the even characteristic cases. Formulas for baby steps, inverse baby steps, di-
visor addition, doubling, and special cases such as adding a degenerate divisor
are provided, with variations for divisors given in reduced and adapted basis.
We describe the improvements and the correctness together with a comprehen-
sive analysis of the number of field operations for each operation. Finally, we
perform a direct comparison of cryptographic protocols using explicit formulas
for real hyperelliptic curves with the corresponding protocols presented in the
imaginary model.

1. Introduction and Motivation for explicit formulas in the real
case

In 1989, Koblitz [Kob88] first proposed the Jacobian of an imaginary hyperelliptic
curve for use in public-key cryptographic protocols. Hyperelliptic curves are in a
sense generalizations of elliptic curves and can be used with the same key-per-
bit strength as long as the genus is very small. More precisely, because of recent
attacks [Gau00, DGTT07], only genus 2 and possibly genus 3 hyperelliptic curves
might offer the same advantage as elliptic curves.

The Jacobian of a hyperelliptic curve defined over a finite field is a finite abelian
group which, like elliptic curve groups, has unique representatives of group elements

2000 Mathematics Subject Classification: Primary: 94A60, 14H45; Secondary: 14Q05.
Key words and phrases: hyperelliptic curve, reduced divisor, infrastructure and distance, Can-

tor’s algorithm, explicit formulas, efficient implementation, cryptographic key exchange.
The second author is supported in part by NSERC of Canada.

1 c©2010 AIMS-SDU



2 S. Erickson, M. J. Jacobson, Jr., and A. Stein

and efficient arithmetic (divisor addition and reduction). Although the arithmetic
appears more complicated than that of elliptic curves [Lan05, PWP03, WPP05,
Ava04, JMS04], there are some indications that it can be more efficient in some
cases. Those results are based on optimized explicit formulas and very efficient
implementations for genus 2 and 3 imaginary hyperelliptic curves.

Several years later, a key exchange protocol was presented for the real model
of a hyperelliptic curve [SSW96]. Its underlying key space was the set of reduced
principal ideals in the ring of regular functions of the curve, together with its group-
like infrastructure. Although the main operation of divisor addition and reduction
is comparable in efficiency to that of the imaginary model [Ste01], the protocol in
[SSW96] was significantly slower and more complicated than its imaginary cousin
[Kob88], while offering no additional security; the same was true for subsequent
modifications presented in [Sch01].

Despite the apparent short-comings of the real model, recent work [JSS06] shows
that it may admit protocols that are comparable in efficiency to those based on the
imaginary model. The main idea is that, in addition to the divisor addition opera-
tion, the real model has a second operation called a baby step that is significantly
more efficient. By exploiting this operation and relying on some reasonable heuris-
tics, new public-key protocols for key exchange, digital signatures, and encryption
have been devised that are significantly faster than all previous protocols in real
hyperelliptic curves and might even be comparable in efficiency with analogous pro-
tocols in the imaginary setting. However, the numerical results in [JSS06] were
based on a generic implementation and did not incorporate explicit formulas. In
order to examine the efficiency of these new protocols completely, it is necessary to
devise explicit formulas for divisor arithmetic in the real model of cryptographically-
relevant low genus curves.

From [SSW96, PR99, JSS06], we know that the underlying computationally hard
problem of these protocols is the infrastructure discrete logarithm problem, which
has the same complexity as the discrete logarithm problem in the Jacobian of a
hyperelliptic curve. In the case of a real hyperelliptic curve, the infrastructure
operation plus some information on the distance can be interpreted as a group
operation in the Jacobian of the curve. A more general interpretation of the infras-
tructure including a precise definition of baby steps, giant steps, and distances has
been provided in [Fon08a, Fon08b]. As a special case, the author gives a complete
description of the one-dimensional infrastructure, as is the case for real hyperelliptic
curves, and thus provides an interpretation of the protocols for real hyperelliptic
curves [SSW96, JSS06] in a group setting. A similar result is described in [Mir08],
in which the infrastructure is embedded explicitly in the subgroup of the Jacobian
generated by the divisor ∞1 −∞2, allowing infrastructure-based algorithms to be
described in the Jacobian in a more efficient way than those found in [PR99].

The case of the general one-dimensional infrastructure gives rise to various re-
alizations of cryptographic protocols, which are in concept similar to the ones for
imaginary hyperelliptic curves. In an explicit situation, the correct choice of the
base divisor and the interpretation of the points at infinity appears to be very
flexible. This line of research appears to still be very promising and should allow
several improvements. For low genus hyperelliptic curves, especially for genus 2, it
is therefore important to develop the fastest explicit formulas that can be used in
any realization.
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The contribution of this paper is to present a complete set of efficient explicit
formulas for divisor arithmetic on real hyperelliptic curves. We concentrate on
genus 2 real hyperelliptic curves in affine coordinates. We thus provide explicit
formulas for the protocols in [JSS06], thereby enabling a direct comparison with the
corresponding protocols presented in the imaginary model. The formulas for the
case where the underlying finite field has characteristic greater than 3 first appeared
in [EJS+07]. This paper completes the picture for genus two by including formulas
for arbitrary characteristic, divisor arithmetic in both reduced and adapted basis,
and formulas for various special cases that can arise. As indicated in [EJS+07], our
formulas also lead to a savings of one field squaring in the general addition formula
in the imaginary case.

Although there exist easy transformations from the imaginary model to the real
model of a hyperelliptic curve, the converse is only possible if the curve contains
an Fq-rational point defined over Fq. If q is odd and one uses an irreducible poly-
nomial for the generation of the real hyperelliptic curve, then in the worst case
one has to extend the field of constants to Fq2g+2 in order to be able to perform
this transformation, which is unrealistic for efficient implementations. Furthermore,
complex multiplication methods for generating hyperelliptic curves of small genus
often produce real hyperelliptic curves. With an efficient arithmetic, those curves
can be readily used in cryptographic protocols. Another important motivation is
that explicit formulas will enable a real-world comparison of index-calculus attacks
on hyperelliptic curve cryptosystems in both the real and imaginary setting. Finally,
real hyperelliptic curves have become very popular in recent developments in ellip-
tic and hyperelliptic curve cryptography. Real models of elliptic and hyperelliptic
curves appear to be at least comparable to imaginary models in various applica-
tions. A novel approach was given in [GLM08], where the authors showed how real
hyperelliptic curves can be used in pairing-based cryptography. The authors make
use of an interesting approach using so-called balanced divisors [GHM08] in order
to get rid off unnecessary baby steps in certain protocols. This representation of
divisors, when used for key exchange, likely yields comparable performance to the
protocols in [JSS07]. Both the balanced divisor approach and infrastructure compu-
tations require the same underlying arithmetic operations, so the explicit formulas
presented in this paper will be useful in either model.

Analysis of our formulas shows that they require a few more finite field multipli-
cations than their imaginary counterparts. However, the baby step operation in its
explicit form is significantly more efficient than divisor addition in either setting,
and as a result, the cryptographic protocols in the real setting perform almost as
well as those in the imaginary case. 1 In addition, even though the formulas are
not as fast as those in the imaginary case, they are certainly more efficient than
using generic algorithms in the real setting. Thus, using our formulas will signif-
icantly speed other computations in the divisor class group or infrastructure of a
real hyperelliptic curve, such as computing the regulator or class number.

The paper is organized as follows. We first provide the necessary background
on real hyperelliptic curves and introduce the notation. We also present the es-
sential, generic algorithms for real hyperelliptic curves and explain how to perform
arithmetic in the degree 0 divisor class group via ideal arithmetic. In Section 3, we
present the explicit formulas for the basic algorithms in even and odd characteristic,

1Though, it should be mentioned that in the imaginary case, one could also enforce a baby
step-like operation by using degenerate divisors.
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as well as descriptions of their derivation, correctness, and a comprehensive anal-
ysis of the number of field operations required. Section 9 contains numerical data
comparing cryptographic protocols based on real hyperelliptic curves with those
using imaginary hyperelliptic curves, where divisor arithmetic is implemented using
explicit formulas in both cases.

2. Background and Notation

Throughout this paper, let Fq be a finite field with q = pl elements, where p is a

prime, and let Fq =
⋃

n≥1 Fqn be its algebraic closure. For details on the arithmetic

of hyperelliptic curves we refer to [MWZ96, JMS04, CF05, JSS06], and specifically
for real hyperelliptic curves we refer to [PR99, Ste01, Eng01, JSS06, JSS07].

Definition 2.1. A hyperelliptic curve C of genus g defined over Fq is an absolutely
irreducible non-singular curve defined by an equation of the form

(2.1) C : y2 + h(x)y = f(x),

where f, h ∈ Fq[x] are such that y2 + h(x)y − f(x) is absolutely irreducible, i.e.

irreducible over Fq, and if b2+h(a)b = f(a) for (a, b) ∈ Fq ×Fq, then 2b+h(a) 6= 0
or h′(a)b− f ′(a) 6= 0. A hyperelliptic curve C is called

1. an imaginary hyperelliptic curve if the following hold: If q is odd, then f is
monic, deg f = 2g + 1, and h = 0. If q is even, then h and f are monic,
deg f = 2g + 1, and deg h ≤ g.

2. a real hyperelliptic curve if the following hold: If q is odd, then f is monic,
deg f = 2g + 2, and h = 0. If q is even, then h is monic, deg h = g + 1, and
either (a) deg f ≤ 2g + 1 or (b) deg f = 2g + 2 and the leading coefficient of
f is of the form β2 + β for some β ∈ F

∗
q.

The function field K = Fq(C) of a hyperelliptic curve C is a quadratic, separable
extension of Fq(x), and the integral closure of Fq(x) in K is given by Fq[C] =
Fq[x, y]/(y

2 + h(x)y − f(x)). Let S∞ denote the set of points at infinity. Then the

set C(Fq) = {(a, b) ∈ Fq × Fq : b2 + h(a)b = f(a)} ∪ S∞ is called the set of (Fq-

rational) points on C. For a point P = (a, b) ∈ C(Fq), the hyperelliptic involution

is given by ι(a, b) = (a,−b− h(a)) ∈ C(Fq).
Notice that in both cases we can assume h = 0 if q is odd. The imaginary

model2 corresponds to the case where S∞ = {∞1}. In the real model3, there exist
two points at infinity so that S∞ = {∞1,∞2}. Let v1 and v2 be the corresponding
normalized valuations of K. From now on, we only consider the real case4.

Let C be a real hyperelliptic curve given as in Definition 2.1. A divisor of C
is a finite formal sum D =

∑
P∈C mPP of points P ∈ C(Fq), where mP ∈ Z

and mP = 0 for all but finitely many P . The degree of D is defined by degD =∑
P mP . A divisor D of C is effective if mP ≥ 0 for all P , and a divisor D is

defined over Fq if Dσ =
∑

P mPP
σ = D for all automorphisms σ of Fq over Fq.

The set Div(K) of divisors of C defined over Fq forms an additive abelian group
under formal addition with the set Div0(K) of all degree zero divisors of C defined

2In function field terms, the pole divisor ∞ of x in Fq(x) is totally ramified in K so that

Con(∞) = 2∞1.
3In function field terms, the pole divisor ∞ of x in Fq(x) splits completely in K so that

Con(∞) = ∞1 +∞2.
4There is one additional model which corresponds to the case where the infinite prime of Fq(x)

is inert in K. Those hyperelliptic curves are called unusual .

Advances in Mathematics of Communications Volume , No. (2010),



Explicit formulas for real hyperelliptic curves 5

over Fq being a subgroup. For G ∈ Fq[C], we can associate a principal divisor
div(G) =

∑
P vP (G)P , where vP (G) is the valuation of G at P . The group of

principal divisors P (K) = {div(G) : G ∈ K} of C forms a subgroup of Div0(K).
The factor group J(K) = Div0(K)/P (K) is called the divisor class group of K.
We denote by D ∈ J(K) the class of D ∈ Div0(K).

As C is a real hyperelliptic curve, we have S∞ = {∞1,∞2}. From [PR99], every
degree 0 divisor class can be represented by D such that D =

∑r

i=1 Pi−r∞2, where

Pi ∈ C(Fq), Pi 6= ∞2, and Pi 6= ιPj if i 6= j. The representative D of D is then
called semi-reduced. In addition, there exists a representative D such that r ≤ g;
such a representative D is called reduced. Notice that Pi = ∞1 is allowed for some
i. It follows that every degree 0 divisor class contains a unique representative

D =

l(D)∑

i=1

Qi − l(d)∞2 + v1(D)(∞1 −∞2) ,

where Qi ∈ C(Fq), Qi 6= ∞1,∞2, Qi 6= ιQj if i 6= j, and 0 ≤ l(D) + v1(D) ≤ g.
The regulator R of Fq(C) in Fq[C] is defined to be the order of the degree 0 divisor
class containing ∞1 −∞2.

In this paper, we follow the basic setting of hyperelliptic curves described above.
One interesting alternative is given in [GHM08, GLM08], where the authors use
balanced divisors in order to produce a more efficient representation. Their results
and possible alternatives, such as those that can be derived from [Fon08a, Fon08b]
or [Mir08], warrant further investigation.

It is well-known that we can identify a (real) hyperelliptic function field as a
subfield Fq(C) ⊆ Fq〈t

−1〉 of the field of Puiseux series in t−1. Any non-zero α ∈
Fq〈t

−1〉 is a power series α =
∑m

i=−∞ ait
i, where m ∈ Z, ai ∈ Fq for −∞ ≤ i ≤ m,

and am 6= 0. Then ⌊α⌋ =
∑m

i=0 ait
i , sgn(α) = am, and deg(α) = m. For α = 0, we

put ⌊0⌋ = 0 and deg(0) = −∞.
We know that Fq[C] is a Dedekind domain and the ideal class group Cl(K) of

K = Fq(C) is the factor group of fractional Fq[C]-ideals modulo principal fractional
ideals. A non-zero integral ideal a in Fq[C] is a fractional ideal such that a ⊆ Fq[C].
It can be represented as a = k[x] d(x)u(x) + k[x] d(x)(v(x) + y), where u, v ∈ k[x]
and u | f+hv−v2. Note that d and u are unique up to factors in F

∗
q and v is unique

modulo u. The ideal a is said to be primitive if we can take d(x) = 1, in which case
we simply write a = [u(x), v(x)+y]. A primitive ideal a = [u(x), v(x)+y] is reduced if
deg u ≤ g. A basis {u(x), v(x)+y} of a primitive ideal is called adapted or standard if
deg(v) < deg(u) and u is monic. For instance, Fq[C] is represented as Fq[C] = [1, y].
The degree of a primitive ideal is deg(a) = deg u. We call a basis {u(x), v(x)+ y} of
a primitive ideal reduced if −v1(v−h−y) < −v1(u) = deg(u) < −v1(v+y) and u is
monic. In practice, it is common to have reduced ideals given in adapted form for
imaginary and unusual curves and in reduced (or possibly adapted) form for real
curves.

For any two ideals a and b in the same ideal class, there exists α ∈ Fq(C)∗

with b = (α)a. We then define the distance of b with respect to a as δ(b, a) =
−v1(α) (mod R) where R is the regulator. Note that the distance is only well-
defined and unique modulo R. In each ideal class, we expect up to R many reduced
ideals. If we restrict to the principal ideal class, then we may assume that a =
a1 = Fq[C] = (1). Then, for any principal ideal b = (α), we let δ(b) = δ(b, a1) =
−v1(α) (mod R). The distance defines an order on all reduced principal ideals,
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i.e., the set of reduced principal ideals is R = {a1, a2, . . . , am} where δ(a1) = 0 <
δ(a2) < . . . < δ(am) < R and δ(ai) is the unique nonnegative integer between 0 and
R− 1 modulo R.

The following theorem gives a representation of degree 0 divisor classes in terms
of reduced ideals and corresponds to the Mumford representation [Mum84, page
317] in the imaginary model.

Theorem 2.1. (Paulus-Rück, 1999) There is a canonical bijection between the
divisor class group J(K) and the set of pairs {(a, n)}, where a is a reduced ideal of
Fq[C] and n is an integer with 0 ≤ deg(a) + n ≤ g.

The bijection is such that the unique reduced divisor D in a degree 0 divisor
class D corresponds to such a pair {(a, n)}. It follows that arithmetic in J(K) can
be performed via arithmetic of reduced ideals. An algorithm for computing the
group law in J(K) based on this theorem is presented in [SSW96, PR99, Ste01]. It
consists of three steps, namely (a) multiplication of reduced ideals, (b) reduction
of the primitive part of the product, and (c) baby steps, i.e. adjusting the output
of the reduction so that the degree condition of the theorem is satisfied. Step
(a) and (b) together are called a giant step. A giant step is the analogue of the
group operation in the imaginary case. Elements in J(K) can be represented as
triples [u, v, n] where [u(x), v(x) + y] is a reduced ideal and 0 ≤ deg(a) + n ≤ g.
It can be easily seen that the arithmetic can be restricted to the special subset
R = {(a, 0) : a reduced and principal} called the infrastructure, which is not a
group. Those elements can be represented as [u, v, 0] or simply as pairs [u, v]. We
therefore assume that we only perform operations on elements of J(K) which are
given by a pair D = [u, v], where u, v ∈ Fq[x] such that

1. u is monic,
2. deg(u) ≤ g,
3. u | f + hv − v2,
4. one of the following degree conditions is satisfied, namely

(a) for the reduced basis: −v1(v − h− y) < −v1(u) = deg(u) < −v1(v + y),
or

(b) for the adapted (standard) basis: deg(v) < deg(u) .

If only 1, 3, and 4 are satisfied, the ideal [u(x), v(x) + y] is only primitive and the
corresponding representative D ∈ D is semi-reduced. We also denote this element
by [u, v].

In [JSS06], several optimized key-exchange protocols were presented that use
arithmetic in R. In fact, under reasonable assumptions, one can avoid the addi-
tional adjusting steps and replace some giant steps by baby steps. Furthermore,
in each giant step, it is easy to keep track of the distances of the corresponding
reduced ideals. In fact, assuming certain heuristics, one can even avoid computing
distances when |Fq| is sufficiently large. We will therefore ignore the computation
of distances. Even in those cases, where distances are needed, the running time for
the computation of the distance is negligible. The protocols for real hyperelliptic
curves are analogous to the ones in the imaginary setting, but they also make use of
the additional baby step operation in order to improve their efficiency significantly.

We now give all three relevant generic algorithms. For details on how to produce
key exchange protocols with these algorithms, we refer to [SSW96, JSS06]. We
will use additive notation in order to express the group operation in J(K) even
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though ideal arithmetic is usually denoted multiplicatively. Note that, by using
these algorithms, arithmetic in J(K) is reduced to polynomial arithmetic in Fq[x].

Algorithm 2.1 (Multiplication).

Input: D1 = [u1, v1], D2 = [u2, v2], and h(x), f(x) as in (2.1).
Output: D = [u, v] such that D is semi-reduced and D = D1 +D2.

1. Compute d, x1, x2, x3 ∈ Fq[x] such that

d = gcd(u1, u2, v1 + v2 + h) = x1u1 + x2u2 + x3(v1 + v2 + h) .

2. Put u = u1u2/d
2 and v = (x1u1v2 + x2u2v1 + x3(v1v2 + f))/d (mod u).

For the group operation, we assume that the representatives of the divisor classes
D1 and D2 are reduced so that the ideals [u1(x), v1(x)+y] and [u2(x), v2(x)+y] are
reduced, i.e. deg(u1), deg(u2) ≤ g. However, the algorithm also allows semi-reduced
representatives D1 and D2 as an input. Notice that the output of this algorithm
D = [u, v] corresponds to a semi-reduced divisor so that (u, v + y) is a primitive
ideal which is not necessarily reduced.

For the second step, we need to precompute the principal part H(y) = ⌊y⌋ of a
root y of y2 + h(x)y − f(x) = 0. The other root is −y − h. If y =

∑m

i=−∞ yix
i ∈

Fq〈x
−1〉, then H(y) =

∑m

i=0 yix
i.

Algorithm 2.2 (Reduction).

Input: D = [u, v], where D is semi-reduced, and h(x), f(x) as in (2.1).

Output: D
′
= [u′, v′] such that D′ is reduced and D

′
= D.

1. Compute a = (v +H(y)) div u.
2. Let v′ = au− v + h, u′ = (f + hv′ − v′2)/u.
3. If deg(u′) > g, put u = u′, v = v′, and goto 1.
4. Make u′ monic. If an adapted basis is required, reduce v′ mod u′.

If we allow the input of Algorithm 2.2 to be reduced and only perform Steps 1,
2, 4, then the output will be another reduced divisor. In this case, we call this
operation a baby step, and denote it by ρ([u, v]).

3. Explicit formulas

In the following sections, we present explicit formulas for giant steps and baby
steps on genus 2 real hyperelliptic curves given in affine representation. Let [u, v]
be a reduced representative of a divisor class. We present formulas assuming both
adapted and reduced bases for the divisors. Recall that for the adapted basis, v is
the unique polynomial which has degree strictly less than deg(u), so for genus 2 and
deg(u) = 2, we have v = v1x + v0. For the reduced basis, v is the unique degree 3
polynomial of the form (y3+h3)x

3+(y2+h2)x
2+v1x+v0. Note that the degree two

and three terms depend only on the equation of the curve, so, as with the adapted
basis, only two coefficients are required to represent v in an implementation.

For the operation counts, some generic assumptions on the coefficients can be
made after applying certain isomorphic transformations. If the underlying finite
field has odd characteristic, then the equation of a genus 2 hyperelliptic curve in
the real model can be written as y2 = f(x), where f(x) = x6 + f5x

5 + f4x
4 +

f3x
3 + f2x

2 + f1x+ f0. If the characteristic is not 3, then the linear transformation
x 7→ x − f5/6 eliminates the x5 term in f(x). In even characteristic, the curve
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can be written as y2 + h(x)y = f(x), where h(x) = x3 + h2x
2 + h1x + h0 and

f(x) = f6x
6+ f5x

5+ f4x
4+ f3x

3+ f2x
2+ f1x+ f0. The isomorphic transformation

x 7→ x+ h2, y 7→ y + f5x
2 + (f4 + h2f5 + f2

5 + h2
2f6)x + (f3 + f5(h1 + h2

2))

makes the x2 term in h(x) and the x5, x4, x3 terms in f(x) vanish. Thus we can
assume the hyperelliptic curve is of the form

y2 + (x3 + h1x+ h0)y = f6x
6 + f2x

2 + f1x+ f0 .

Given f(x) and h(x), it is a straightforward matter to compute the coefficients
of H(y) by computing y2 + h(x)y symbolically and equating coefficients with f .
If f(x) and h(x) have no restrictions on their coefficients, then y3 is set to be a
solution of the quadratic equation y23 + h3y3 = f6, while the remaining coefficients
are computed as follows:

y2 = (f5 − y3h2)/(2y3 + h3)

y1 = (f4 − y3h1 − y2(y2 + h2))/(2y3 + h3)

y0 = (f3 − y3h0 − y2(2y1 + h1)− y1h2)/(2y3 + h3) .

In summary, we will assume the following simplified forms for the curve equation.
Here H(y) = y3x

3 + y2x
2 + y1x+ y0.

• Odd Characteristic: h(x) = 0, f6 = 1, y3 = 1. If the field characteristic is not
3, then f5 = 0 and y2 = 0 (assumed in the operations counts). The formulas
above for the coefficients of H(y) reduce to y1 = f4/2 and y0 = f3/2.

• Even Characteristic: h3 = 1, h2 = y2 = f5 = f4 = f3 = 0, and y3 = β, where
f6 = β2 + β comes from Definition 2.1. The formulas for the coefficients of
H(y) reduce to y1 = h1y3 and y0 = h0y3.

Although the formulas in the tables below are completely general, we make these
assumptions when counting the number of field operations and giving simplified
formulas for both odd and even characteristic.

We only count inversions, squarings and multiplications of finite field elements,
which consist of the bulk of the computation when compared with additions and
subtractions. In the tables below, we let I, S and M denote “inversion,” “squaring,”
and “multiplication,” respectively. QR denotes “quadratic root,” which only occurs
in the precomputation when calculating y3 given generic coefficients.

Most of the cases below use several precomputed constants that follow directly
from the curve coefficients. We present these precomputations in Table 1 and do
not include them in the operation counts. Under the isomorphic transformations
described above, most of these precomputed constants are very simple (0, 1, or 2)
and are not necessary.

It may be necessary to change from the adapted basis into the reduced basis or
vice versa. To change a divisor [u, v] from reduced basis into adapted basis,

u′ = u

v′ = v mod u .

To change a divisor [u, v] from adapted basis into reduced basis,

u′ = u

v′ = H(y) + h− [(H(y) + h− v) mod u] .
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Table 1. Table of precomputed constants.

Precomputation
Step Expression Operations

Generic Coefficients
1 y3 is a root of y23 + h3y3 − f6 = 0. 1QR, 1I, 9C

c3 = 2y3 + h3, d3 = c−1
3 ,

y2 = d3(f5 − y3h2),
y1 = d3(f4 − y3h1 − y2(y2 + h2)),
y0 = d3(f3 − y3h0 − y2(2y1 + h1)− y1h2)

2 c2 = 2y2 + h2, c1 = y1 + h1, c0 = y0 + h0

3 d2 = f2 − h0y2 − c2y0, 5C
d1 = f2 − h0y2 − c1y1, d0 = f1 + c1h0

Odd Characteristic
1 y3 = 1, y2 = 0, y1 = f4/2, y0 = f3/2
2 c3 = 2, c2 = 0, c1 = f4/2, c0 = f3/2
3 d3 = 1/2, d2 = f2, d1 = f2 − y21 , d0 = f1 1C

Even Characteristic
1 y3 is a root of y23 + y3 + f6 = 0, 1QR, 2C

y2 = 0, y1 = y3h1, y0 = y3h0

2 c3 = 1, c2 = 0, c1 = (y3 + 1)h1, c0 = (y3 + 1)h0

3 d3 = 1, d2 = f2, d1 = f2 + y1(y1 + h1), 2C
d0 = f1 + h0(y1 + h1)

One disadvantage of the reduced basis is that hyperelliptic involution is not
necessarily a trivial operation. In the adapted basis, one must perform the following
operations:

u′ = u

v′ = h− v mod u

In the reduced basis, it is necessary to change the result of hyperelliptic involution
into the reduced basis. This turns out to be equivalent to Step 1 in the Baby Step
formulas in the reduced basis:

u′ = u

v′ = H(y) + h− [(H(y) + v) mod u]

In both even and odd characteristic, it is possible to reduce the operation count
to 1S, 1M (see the Simplifications for Odd and Even Characteristic after the Baby
Step formulas).

4. Baby Step

Let [u, v] be a reduced representative of a divisor class. To compute the baby step
ρ[u, v] = [u′, v′], we apply the following formulas (Steps 1, 2, and 4 of Algorithm 2.2):

v′ = H(y) + h− [(H(y) + v) mod u] ,

u′ = Monic

(
f + hv′ − (v′)2

u

)
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where, as mentioned above, H(y) = y3x
3 + y2x

2 + y1x+ y0 is the principal part of
a root y of y2 + h(x)y − f(x) = 0.

Explicit formulas are derived by simply expanding the operations and using the
formula for reducing a degree three polynomial (H(y) + v) modulo a monic poly-
nomial of degree two (u) described in [Lan05]. In Step 2, we equate the x4 and x3

coefficients of f and H(y)2 +H(y)h to simplify expressions involving coefficients of
f, H(y), and h. The resulting formulas are presented in the following tables.

4.1. Baby Step, Reduced Basis.

Baby Step, Reduced Basis, deg u = 2
Input u = x2 + u1x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ[u, v]

Step Expression Operations
1 v′ = H(y) + h− [(H(y) + v) mod u] 2M, 1C

t1 = c3u1, t2 = c2 − t1, t3 = t2 · u0

v′1 = h1 − v1 + (c3 + t2) · (u0 + u1)− t1 − t3
v′0 = h0 − v0 + t3

2 w0 = c0 − v′0, w1 = c1 − v′1
General case: w1 6= 0 (deg(u′) = 2)

3 u′ = Monic((f + hv′ − (v′)2)/u) 1I, 4M, 3C

w2 = c2w0, w3 = c3w1, I = w−1
3

u′
1 = I · ((c2 + c3)(w0 + w1)− w2 − w3)− u1

u′
0 = I · (d2 + v′1 · (h1 − v′1) + w2)− u0 − u1 · u

′
1

Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′
0)

3′ u′ = Monic((f + hv′ − (v′)2)/u) 1I, 2M, 2C

w2 = c2w0, w3 = c3w0, I = w−1
3

u′
0 = I · (d2 + v′1 · (h1 − v′1) + w2)− u1

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = y + h)
3′′ u′

0 = 1

Total General case 1I, 6M, 4C
Special case 1 1I, 4M, 3C
Special case 2 2M, 1C

Simplifications for Odd and Even Characteristic.

1. In Step 1, we skip the calculation of t1, t2, and t3. Let

v′1 = −v1 − 2(u2
1 − u0) ,

v′0 = −v0 − 2u0 · u1

in odd characteristic. In even characteristic, let

v′1 = h1 + v1 + u2
1 + u0 ,

v′0 = h0 + v0 + u0 · u1 .

This reduces the operation count of Step 2 to 1S, 1M in both odd and even
characteristic.
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2. In Step 3, the general case simplifies to

w3 = f4 − 2v′1 ,

u′
1 = I · (f3 − 2v′0)− u1 ,

u′
0 = I ·

(
f2 − (v′1)

2
)
− u0 − u1 · u

′
1

in odd characteristic, and in even characteristic

w3 = y1 + h1 + v′1 ,

u′
1 = I · (y0 + h0 + v′0) + u1 ,

u′
0 = I · (f2 + v′1 · (h1 + v′1)) + u0 + u1 · u

′
1 .

This reduces the operation count of Step 3 to 1I, 1S, 3M in odd characteristic
and 1I, 4M in even characteristic. For special values of h1 (such as 0 or 1),
one multiplication can be changed into a squaring for an operation count of
1I, 1S, 3M in even characteristic.

If w1 = 0 and w0 6= 0, then Step 3′ in Special case 1 simplifies to

w3 = f3 − 2v′0 ,

u′
0 = I ·

(
f2 − (v′1)

2
)
− u1

in odd characteristic, and in even characteristic

w3 = y0 + h0 + v′0 ,

u′
0 = I · (f2 + v′1 · (h1 + v′1)) + u1 .

If w0 = 0, then Special case 2 applies and the output can be computed directly.

In summary, the number of operations required to compute a baby step in the gen-
eral case (deg(u) = 2) in odd characteristic is 1I, 2S, and 4M. In even characteristic,
the operation count is 1I, 1S, 5M.

Baby Step, Reduced Basis, Special Case (deg(u) = 1). One special case of the baby
step operation is when the input divisor has deg(u) = 1. Explicit formulas for the
operation in this case follow.
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Baby Step, Reduced Basis, deg u = 1
Input u = x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 + h1)x + v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ[u, v]

Step Expression Operations
Baby Step

1 v′ = H(y) + h− [(H(y) + v) mod u] 2M, 1C

v′1 = c1, v
′
0 = h0−v0+u0 ·(c1+y1−u0 ·(c2−c3u0))

2 w0 = d1 + c2(h0 − v′0), w1 = c0 − v′0 1C
General case: w1 6= 0 (deg(u′) = 2)

3 u′ = Monic((f + hv′ − (v′)2)/u) 1I, 3M, 2C

w3 = c3w1, I = w−1
3

u′
1 = I ·w0−u0, u

′
0 = I ·(d0 − (c1 + y1)v

′
0)−u0 ·u

′
1

Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′
0)

3′ u′ = Monic((f + hv′ − (v′)2)/u) 1I, 1M, 1C

I = w−1
0 , u′

0 = I · (d0 − (c1 + y1)v
′
0)− u0

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = y + h)
3′′ u′

0 = 1

Total General case 1I, 5M, 4C
Special case 1 1I, 3M, 3C
Special case 2 2M, 2C

Simplifications for Odd and Even Characteristic.

1. In Step 1, we let

v′1 = y1 ,

v′0 = 2(y1 + u2
0) · u0 − v0

in odd characteristic. In even characteristic, let

v′1 = y1 + h1 ,

v′0 = h0 + v0 + (h1 + u2
0) · u0 .

This reduces the operation count of Step 2 to 1S, 1M in both odd and even
characteristic.

2. In Step 3, the general case simplifies to

w3 = f3 − 2v′0 ,

u′
1 = d1I − u0 ,

u′
0 = I · (f1 − 2y1v

′
0)− u0 · u

′
1

in odd characteristic and

w3 = y0 + h0 + v′0 ,

u′
1 = d1I + u0 ,

u′
0 = I · (d0 + h1v

′
0) + u0 · u

′
1

in even characteristic. This reduces the operation count of Step 3 to 1I, 2M,
2C in both cases.
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If w1 = 0 and w0 6= 0, then Step 3′ of Special case 1 simplifies to

I = d−1
1 ,

u′
0 = I (d0 − 2v′0y1))− u0

in odd characteristic and

I = d−1
1 ,

u′
0 = I (d0 + h1v

′
0) + u0

in even characteristic. Note that d1 is a precomputed constant, so finding
I = d−1 can be treated as a constant multiplication. If w1 = 0 and w0 = 0,
then Special case 2 applies and the output can be computed directly.

When deg(u) = 1, the number of operations for the general case (deg(u′) = 2) is
1I, 1S, 3M, and 2C in both odd and even characteristic.

Baby Step, Reduced Basis, Special Case (deg(u) = 0). The last special case to
consider is when the input divisor is the identity, which in reduced basis means
u = 1 and v = H(y) + h. In this case, we have v′ = H(y) + h and u′ = Monic(f −
hH(y) −H(y)2), so the formulas for u′ and v′ only involve on constants from the
defining equations of the function field. Thus, the output for this special case may
be completely precomputed when fixing the field parameters.

4.2. Baby Step, Adapted Basis. The same formulas are used to compute baby
steps in adapted basis. There are two differences from the reduced basis formulas:

1. The input divisor has deg(v) < deg(u) (i.e., it is in adapted basis).
2. The output v′ is reduced modulo u′ (to ensure that the result is again in

adapted basis).

The resulting explicit formulas are given below.
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Baby Step, Adapted Basis, deg u = 2
Input u = x2 + u1x+ u0, v = v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ[u, v]

Step Expression Operations
1 ṽ = H(y) + h− [(H(y) + v) mod u] 2M, 1C

t1 = y3u1, t2 = y2 − t1, t3 = t2 · u0

ṽ1 = h1 − v1 + (y3 + t2) · (u0 + u1)− t1 − t3
ṽ0 = h0 − v0 + t3

2 w0 = c0 − ṽ0, w1 = c1 − ṽ1
General case: w1 6= 0 (deg(u′) = 2)

3 u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 4M, 3C

w2 = c2w0, w3 = c3w1, I = w−1
3

u′
1 = I · ((c2 + c3)(w0 + w1)− w2 − w3)− u1

u′
0 = I · (d2 + ṽ1 · (h1 − ṽ1) + w2)− u0 − u1 · u

′
1

4 v′ = ṽ mod u′ 2M, 1C
t1 = (y3 + h3)u

′
1, t2 = y2 + h2 − t1, t3 = t2 · u

′
0

v′1 = ṽ1−(c3−y3+t2)·(u
′
0+u′

1)+t1+t3, v
′
0 = ṽ0−t3

Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′
0)

3′ u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 2M, 2C

w2 = c2w0, w3 = c3w0, I = w−1
3

u′
0 = I · (d2 + ṽ1 · (h1 − ṽ1) + w2)− u1

4′ v′ = ṽ mod u′ 2M, 1C
v′1 = 0, v′0 = ṽ0−u′

0 ·(ṽ1−u′
0 ·(c2−y2−(c3−y3)u

′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = 0)
3′′ u′

0 = 1, v′1 = 0, v′0 = 0

Total General case 1I, 8M, 5C
Special case 1 1I, 6M, 4C
Special case 2 2M, 1C

Simplifications for Odd and Even Characteristic.

1. In Step 1, we skip the calculation of t1, t2, and t3. In odd characteristic, let

ṽ1 = u0 − u2
1 − v1 ,

ṽ0 = −v0 − u0 · u1

and in even characteristic, let

ṽ1 = h1 + v1 + y3(u
2
1 + u0) ,

ṽ0 = h0 + v0 + y3u0 · u1 .

This reduces the operation count of Step 2 to 1S, 1M in odd characteristic
and 1S, 1M, 2C in even characteristic.

2. In Step 3, the same simplifications can be made as for the reduced basis
for the general and special cases (with v′1 and v′0 replaced with ṽ1 and ṽ0,
respectively). In the general case, this results in operation counts of to 1I, 1S,
3M in odd characteristic and 1I, 4M in even characteristic. For special values
of h1 (such as 0 or 1), one multiplication can be changed into a squaring for
an operation count of 1I, 1S, 3M in even characteristic.
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3. In Step 4, assuming the general case with deg(u′) = 2, let

v′1 = ṽ1 − u′
0 + (u′

1)
2 ,

v′0 = ṽ0 + u′
0 · u

′
1

in odd characteristic and

v′1 = ṽ1 + (y3 + 1)((u′
1)

2 + u′
0) ,

v′0 = ṽ0 + (y3 + 1)u′
0 · u

′
1

in even characteristic. This costs 1S, 1M in odd characteristic, and 1S, 1M,
2C in even characteristic.

For Step 4′ of Special case 1, we have v′0 = ṽ0 − u′
0 · (ṽ1 + (u′

0)
2) in odd

characteristic and v′0 = ṽ0 + u′
0 · (ṽ1 + (y3 + 1)(u′

0)
2) in even characteristic.

When deg(u) = 2, the total number of operations for the general case (deg(u′) = 2)
in odd characteristic is 1I, 3S, and 5M. In even characteristic it is 1I, 2S, 6M, and
4C.

Baby Step, Adapted Basis, Special Case (deg(u) = 1).

Baby Step, Adapted Basis, deg u = 1
Input u = x+ u0, v = v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ[u, v]

Step Expression Operations
1 ṽ = H(y) + h− [(H(y) + v) mod u] 2M, 1C

ṽ1 = c1, ṽ0 = h0 − v0 + u0 · (y1 − u0 · (y2 − y3u0))
2 w0 = d1 + c2(h0 − ṽ0), w1 = c0 − ṽ0 1C

General case: w1 6= 0 (deg(u′) = 2)
3 u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 3M, 2C

w3 = c3w1, I = w−1
3 , u′

1 = I · w0 − u0,
u′
0 = I · (d0 − (c1 + y1)ṽ0)− u0 · u

′
1

4 v′ = ṽ mod u′ 2M, 1C
t1 = (y3 + h3)u

′
1, t2 = y2 + h2 − t1, t3 = t2 · u

′
0

v′1 = ṽ1− (c3+ t2) · (u
′
0+u′

1)+ t1+ t3, v
′
0 = ṽ0− t3

Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′
0)

3′ u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 1M, 1C

I = w−1
0 , u′

0 = I · (d0 − (c1 + y1)ṽ0)− u0

4′ v′ = ṽ mod u′ 2M, 1C
v′1 = 0, v′0 = ṽ0−u′

0·(c1−u′
0 ·(y2+h2−(y3+h3)u

′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = 0)
3′′ u′

0 = 1, v′1 = 0, v′0 = 0

Total General case 1I, 7M, 5C
Special case 1 1I, 5M, 4C
Special case 2 2M, 2C

Simplifications for Odd and Even Characteristic.

1. In Step 1, let

ṽ1 = y1 ,

ṽ0 = (y1 + u2
0) · u0 − v0
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in odd characteristic. In even characteristic, let

ṽ1 = y1 + h1 ,

ṽ0 = h0 + v0 + u0 · (y1 + y3u
2
0) .

This reduces the operation count of Step 2 to 1S, 1M in odd characteristic
and 1S, 1M, 1C in even characteristic.

2. In Step 3, the same simplifications can be made as for the reduced basis
for the general and special cases (with v′0 replaced with ṽ0). In the general
case, this results in operation counts of 1I, 2M, and 2C in both odd and even
characteristic.

3. In Step 4, assuming the general case with deg(u′) = 2, let

v′1 = ṽ1 − u′
0 + (u′

1)
2 ,

v′0 = ṽ0 + u′
0 · u

′
1

in odd characteristic and

v′1 = ṽ1 + (y3 + 1)((u′
1)

2 + u′
0) ,

v′0 = ṽ0 + (y3 + 1)u′
0 · u

′
1

in even characteristic. This costs 1S, 1M in odd characteristic, and 1S, 1M,
2C in even characteristic.

For Step 4′ in Special case 1, we have v′0 = ṽ0 − u′
0(y1 + (u′

0)
2) in odd

characteristic and v′0 = ṽ0 + u′
0(c1 + (y3 + 1)(u′

0)
2) in even characteristic.

When deg(u) = 1, the total number of operations for the general case of deg(u′) = 2
in odd characteristic is 1I, 2S, 4M, and 2C. In even characteristic it is 1I, 2S, 4M,
and 5C.

Baby Step, Adapted Basis, Special Case (deg(u) = 0). As with the reduced basis
description, the last special case to consider is when the input divisor is the identity,
which means u = 1 and v = 0 in adapted basis. In this case, we have u′ =
Monic(f − hH(y)−H(y)2) and v′ = (H(y) + h) mod u′. Again, the formulas for u′

and v′ only involve constants from the defining equations of the function field and
the output for this special case may be completely precomputed when fixing the
field parameters.

5. Inverse Baby Step

Let [u, v] be a reduced representative of a divisor class. To compute ρ−1[u, v] =
[u′, v′], we apply the following formulas:

u′ = Monic

(
f + hv − v2

u

)

v′ = H(y) + h− [(H(y) + v) mod u′] .

Explicit formulas are derived in a similar manner to those for computing ρ[u, v],
and are presented in the following tables.
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5.1. Inverse Baby Step, Reduced Basis.

Inverse Baby Step, Reduced Basis, deg u = 2
Input u = x2 + u1x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ−1[u, v]

Step Expression Operations
1 w0 = c0 − v0, w1 = c1 − v1

General case: w1 6= 0 (deg(u′) = 2)
2 u′ = Monic((f + hv − v2)/u) 1I, 4M, 3C

w2 = c2w0, w3 = c3w1, I = w−1
3

u′
1 = I · ((c2 + c3)(w0 + w1)− w2 − w3)− u1

u′
0 = I · (d2 + v1 · (h1 − v1) + w2)− u0 − u1 · u

′
1

3 v′ = H(y) + h− [(H(y) + v) mod u′] 2M, 1C

t1 = c3u
′
1, t2 = c2 − t1, t3 = t2 · u

′
0

v′1 = h1 − v1 + (c3 + t2) · (u
′
0 + u′

1)− t1 − t3
v′0 = h0 − v0 + t3
Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′

0)
2′ u′ = Monic((f + hv − v2)/u) 1I, 2M, 2C

w2 = c2w0, w3 = c3w0, I = w−1
3

u′
0 = I · (d2 + v1 · (h1 − v1) + w2)− u1

3′ v′ = H(y) + h− [(H(y) + v) mod u′] 2M, 1C

v′1 = c1, v
′
0 = h0−v0+u′

0 ·(c1+y1−u′
0 ·(c2−c3u

′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = y + h)
2′′ u′

0 = 1, v′1 = c1, v
′
0 = c0

Total General case 1I, 6M, 4C
Special case 1 1I, 4M, 3C
Special case 2

Simplifications for Odd and Even Characteristic.

1. In Step 2, let

w3 = f4 − 2v1 ,

u′
1 = I · (f3 − 2v0)− u1 ,

u′
0 = I ·

(
f2 − v21

)
− u0 − u1 · u

′
1

in odd characteristic. In even characteristic, let

w3 = y1 + h1 + v1 ,

u′
1 = I · (y0 + h0 + v′0) + u1 ,

u′
0 = I · (f2 + v1 · (h1 + v1)) + u0 + u1 · u

′
1 .

This reduces the operation count of Step 2 to 1I, 1S, 3M in odd characteristic
and 1I, 4M in even characteristic. For special values of h1 (such as 0 or 1),
one multiplication can be changed into a squaring for an operation count of
1I, 1S, 3M in even characteristic.

If w1 = 0 and w0 6= 0, then Step 2′ of Special case 1 simplifies to

w0 = f3 − 2v0 ,

u′
0 = I ·

(
f2 − v21

)
− u1
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in odd characteristic, and in even characteristic

w0 = y0 + h0 + v0 ,

u′
0 = I · (f2 + v1 · (h1 + v1)) + u1 .

If w1 = 0 and w0 = 0, then Special case 2 applies and the output can be
computed directly.

2. In Step 3, we skip the calculation of t1, t2, and t3. Let

v′1 = −v1 + 2(u′
0 − (u′

1)
2) ,

v′0 = −v0 − 2u′
0 · u

′
1

in odd characteristic. In even characteristic, let

v′1 = h1 + v1 + u′
0 + (u′

1)
2 ,

v′0 = h0 + v0 + u′
0 · u

′
1 .

This reduces the operation count of Step 3 to 1S, 1M in both odd and even
characteristic.

In Step 3′ of Special case 1, we have v′0 = 2u′
0 · (y1 + (u′

0)
2) − v0 in odd

characteristic and v′0 = h0 + v0 + u′
0 · (h1 + (u′

0)
2) in even characteristic.

In the general case where the input divisor has deg(u) = 2, the total number of
operations for an inverse baby step in odd characteristic is 1I, 2S, 4M, and in even
characteristic is 1I, 1S, 5M.

Inverse Baby Step, Reduced Basis, Special Case (deg(u) = 1).

Inverse Baby Step, Reduced Basis, deg u = 1
Input u = x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 + h1)x + v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ−1[u, v]

Step Expression Operations
1 w1 = c0 − v0, w0 = d1 + c2(h0 − v0) 1C

General case: w1 6= 0 (deg(u′) = 2)
2 u′ = Monic((f + hv − v2)/u) 1I, 3M, 2C

w3 = c3w1, I = w−1
3 , u′

1 = I · w0 − u0

u′
0 = I · (d0 − (c1 + y1)v0)− u0 · u

′
1

3 v′ = H(y) + h− [(H(y) + v) mod u′] 2M, 1C

t1 = c3u
′
1, t2 = c2 − t1, t3 = t2 · u

′
0

v′1 = h1 − v1 + (c3 + t2) · (u
′
0 + u′

1)− t1 − t3
v′0 = h0 − v0 + t3
Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′

0)
2′ u′ = Monic((f + hv − v2)/u) 1I, 1M, 1C

I = w−1
0 , u′

0 = I · (d0 − (c1 + y1)v0)− u0

3′ v′ = H(y) + h− [(H(y) + v) mod u′] 2M, 1C

v′1 = c1, v
′
0 = h0−v0+u′

0 ·(c1+y1−u′
0 ·(c2−c3u

′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = y + h)
2′′ u′

0 = 1, v′1 = c1, v
′
0 = c0

Total General case 1I, 5M, 4C
Special case 1 1I, 3M, 3C
Special case 2 1C
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Simplifications for Odd and Even Characteristic.

1. In Step 2, the general case simplifies to

w3 = f3 − 2v0 ,

u′
1 = d1I − u0 ,

u′
0 = I · (f1 − 2y1v0)− u0 · u

′
1

in odd characteristic and

w3 = y0 + h0 + v0 ,

u′
1 = d1I + u0 ,

u′
0 = I · (d0 + h1v0) + u0 · u

′
1

in even characteristic. This reduces the operation count of Step 3 to 1I, 2M,
2C in both cases.

If w1 = 0 and w0 6= 0, then Step 2′ of Special case 1 simplifies to

I = d−1
1 ,

u′
0 = I (d0 − 2y1v0)− u0

in odd characteristic and

I = d−1
1 ,

u′
0 = I (d0 + h1v0) + u0

in even characteristic. If w1 = 0 and w0 = 0, then Special case 2 applies and
the output can be computed directly.

2. The simplifications for Step 3 are the same as in the deg(u) = 2 version of
the algorithm, resulting in operation counts of 1S, 1M for the general case in
both odd and even characteristic.

When deg(u) = 1, the number of operations for the general case (deg(u′) = 2) is
1I, 1S, 3M, and 2C in both odd and even characteristic.

Inverse Baby Step, Reduced Basis, Special Case (deg(u) = 0). The last special case
to consider is when the input divisor is the identity, which in reduced basis means
u = 1 and v = y + h. In this case, we have u′ = Monic(f − hH(y) −H(y)2) and
v′ = H(y) + h− [(2H(y) + h) mod u′], so as before the formulas for u′ and v′ only
involve constants from the defining equations of the function field.

5.2. Inverse Baby Step, Adapted Basis. As with the baby step, almost the
same formulas are used to compute the inverse baby step using adapted basis as in
the reduced basis case. Because the input divisor has deg(v) < deg(u), it first has
to be put into reduced basis before applying the formulas. In addition, the output
should once again be in adapted basis, so the resulting v′ must be reduced modulo
u′. The resulting formulas are

ṽ = H(y) + h− [(H(y) + h− v) mod u]

u′ = Monic

(
f + hṽ − (ṽ)2

u

)

v′ = (H(y) + h− [(H(y) + ṽ) mod u′]) mod u′ = (h− ṽ) mod u′ .

Explicit formulas are presented below.
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Inverse Baby Step, Adapted Basis, deg u = 2
Input u = x2 + u1x+ u0, v = v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ−1[u, v]

Step Expression Operations
1 ṽ = H(y) + h− [(H(y) + h− v) mod u] 2M, 1C

t1 = (c3 − y3)u1, t2 = c2 − y2 − t1, t3 = t2 · u0

ṽ1 = v1+(c3−y3+t2)·(u0+u1)−t1−t3, ṽ0 = v0+t3
2 w0 = c0 − ṽ0, w1 = c1 − ṽ1

General case: w1 6= 0 (deg(u′) = 2)
3 u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 4M, 3C

w2 = c2w0, w3 = c3w1, I = w−1
3

u′
1 = I · ((c2 + c3)(w0 + w1)− w2 − w3)− u1

u′
0 = I · (d2 + ṽ1 · (h1 − ṽ1) + w2)− u0 − u1 · u

′
1

4 v′ = (h− ṽ) mod u′ 2M, 1C

t1 = y3u
′
1, t3 = y2 − t1, t3 = t2 · u

′
0

v′1 = h1 − ṽ1 + (y3 + t2) · (u
′
0 + u′

1)− t1 − t3
v′0 = h0 − ṽ0 + t3
Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′

0)
3′ u′ = Monic((f + hṽ − (ṽ)2)/u) 1I, 2M, 2C

w2 = c2w0, w3 = c3w0, I = w−1
3

u′
0 = I · (d2 + ṽ1 · (h1 − ṽ1) + w2)− u1

4′ v′ = (h− ṽ) mod u′ 2M, 1C

v′0 = h0 − ṽ0 − u′
0 · (h1 − ṽ1 + u′

0 · (y2 − y3u
′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = 0)
3′′ u′

0 = 1, v′1 = 0, v′0 = 0

Total General case 1I, 8M, 5C
Special case 1 1I, 6M, 4C
Special case 2 2M, 1C

Simplifications for Odd and Even Characteristic.

1. In Step 1, we skip the calculation of t1, t2, and t3. In odd characteristic, let

ṽ1 = u0 − u2
1 − v1 ,

ṽ0 = −v0 − u0 · u1

and in even characteristic, let

ṽ1 = h1 + v1 + y3(u
2
1 + u0) ,

ṽ0 = h0 + v0 + y3u0 · u1 .

This reduces the operation count of Step 2 to 1S, 1M in odd characteristic
and 1S, 1M, 2C in even characteristic.

2. Step 3 can be simplified using the same formulas as for Step 2 of the reduced
basis case (with v1 and v0 replaced with ṽ1 and ṽ0, respectively). This reduces
the operation count in the general case (deg(u′) = 2) to 1I, 1S, 3M in odd
characteristic and 1I, 4M in even characteristic. For special values of h1 (such
as 0 or 1), one multiplication can be changed into a squaring for an operation
count of 1I, 1S, 3M in even characteristic.
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3. In Step 4, we skip the calculation of t1, t2, and t3. Assuming the general case
with deg(u′) = 2, let

v′1 = u′
0 − (u′

1)
2 − ṽ1 ,

v′0 = −ṽ0 − u′
0 · u

′
1

in odd characteristic and

v′1 = ṽ1 + y3(u
′
0 + (u′

1)
2) ,

v′0 = ṽ0 + y3u
′
0 · u

′
1

in even characteristic. This costs 1S, 1M in odd characteristic, and 1S, 1M,
2C in even characteristic.

For Step 4′ of Special case 1, we have v′0 = u′
0 · (y1 + (u′

0)
2) − ṽ0 in odd

characteristic and v′0 = h0 + ṽ0 + u′
0 · (y1 + y3(u

′
0)

2) in even characteristic.

When deg(u) = 2, the total number of operations for the general case (deg(u′) = 2)
in odd characteristic is 1I, 3S, and 5M. In even characteristic, the operation count
is 1I, 2S, 6M, and 4C.

Inverse Baby Step, Adapted Basis, Special Case (deg(u) = 1).

Inverse Baby Step, Adapted Basis, deg u = 1
Input u = x+ u0, v = v0

Precomputed Constants in Table 1
Output [u′, v′] = ρ−1[u, v]

Step Expression Operations
1 ṽ = H(y) + h− [(H(y) + h− v) mod u] 2M, 1C

ṽ1 = c1,
ṽ0 = v0+u0 · (c1 − v1−u0 · (c2− y2− (c3− y3)u0))

2 w1 = c0 − ṽ0, w0 = d1 + c2(h0 − ṽ0) 1C
General case: w1 6= 0 (deg(u′) = 2)

3 u′ = Monic((f + hṽ − ṽ2)/u) 1I, 3M, 2C

w3 = c3w1, I = w−1
3 , u′

1 = I · w0 − u0

u′
0 = I · (d0 − (c1 + y1)ṽ0)− u0 · u

′
1

4 v′ = (h− ṽ) mod u′ 2M, 1C

t1 = y3u
′
1, t2 = y2 − t1, t3 = t2 · u

′
0

v′1 = h1 − ṽ1 + (y3 + t2) · (u
′
0 + u′

1)− t1 − t3
v′0 = h0 − ṽ0 + t3
Special case 1: w1 = 0 and w0 6= 0 (u′ = x+ u′

0)
3′ u′ = Monic((f + hv − v2)/u) 1I, 1M, 1C

I = w−1
0 , u′

0 = I · (d0 − (c1 + y1)ṽ0)− u0

4′ v′ = (h− v′′) mod u′ 2M, 1C

v′0 = h0 − ṽ0 − u′
0 · (h1 − ṽ1 + u′

0 · (y2 − y3u
′
0))

Special case 2: w1 = w0 = 0 (u′ = 1, v′ = 0)
3′′ u′

0 = 1, v′1 = 0, v′0 = 0

Total General case 1I, 7M, 5C
Special case 1 1I, 5M, 4C
Special case 2 2M, 2C
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Simplifications for Odd and Even Characteristic.

1. In Step 1, in odd characteristic let

ṽ1 = y1 ,

ṽ0 = v0 + u0 · (y1 − v1 + u2
0)

and in even characteristic, let

ṽ1 = y1 + h1 ,

ṽ0 = h0 + v0 + u0 · (y1 + y3u
2
0) .

This reduces the operation count of Step 2 to 1S, 1M in odd characteristic
and 1S, 1M, 2C in even characteristic.

2. Step 3 can be simplified using the same formulas as for Step 3 of the reduced
basis case (with v0 replaced with ṽ0). This reduces the operation count in the
general case (deg(u′) = 2) to 1I, 2M, 2C both odd and even characteristic.

3. In Step 4, we skip the calculation of t1, t2, and t3. Assuming the general case
with deg(u′) = 2, let

v′1 = u′
0 − (u′

1)
2 − ṽ1 ,

v′0 = −ṽ0 − u′
0 · u

′
1

in odd characteristic and

v′1 = ṽ1 + (y3 + 1)(u′
0 + (u′

1)
2) ,

v′0 = ṽ0 + (y3 + 1)u′
0 · u

′
1

in even characteristic. This costs 1S, 1M in odd characteristic, and 1S, 1M,
2C in even characteristic.

For Step 4′ of Special case 1, we have v′0 = u′
0 · (y1 + (u′

0)
2) − ṽ0 in odd

characteristic and v′0 = h0 + ṽ0 + u′
0 · (y1 + y3(u

′
0)

2) in even characteristic.

When deg(u) = 1, the total number of operations for the general case of deg(u′) = 2
in odd characteristic is 1I, 2S, 4M, and 2C. In even characteristic, the operation
count is 1I, 2S, 4M, and 6C.

Inverse Baby Step, Adapted Basis, Special Case (deg(u) = 0). The last special
case to consider is when the input divisor is the identity. In this case, we have
u′ = Monic(f − hH(y)−H(y)2) and v′ = −H(y) mod u′, so as before the formulas
for u′ and v′ only involve constants from the defining equations of the function field.

6. Divisor Addition

Let [u1, v1] and [u2, v2] be reduced representatives of two divisor classes. The
main case of divisor addition occurs when the two divisor classes consist of four
points on the curve which are different from each other and their opposites. This
situation occurs precisely when deg(u1) = deg(u2) = 2 and u1, u2 are relatively
prime. In the rare cases when u1 or u2 has degree less than 2, or when u1 and u2

are not relatively prime, the costs are considerably less than the main case.
In the table below, we do not assume that u1 and u2 are relatively prime before

performing the operations. Since u1 and u2 are not relatively prime exactly when
the computed value r is equal to zero, we treat this special case in the Comments
section after the tables. We also skip the even and odd simplifications for all the
special cases, since they rarely occur.

Advances in Mathematics of Communications Volume , No. (2010),



Explicit formulas for real hyperelliptic curves 23

We describe the main case first. To optimize the computations, as described
in [WPP05], we do not follow Algorithm 2.1 literally. Instead, we compute the
following expressions, then show that these formulas give the desired result:

r = resultant of u1, u2, inv ≡ r(u2)
−1 (mod u1),

s′ = (v1 − v2) · inv (mod u1), s = 1
r
s,

l = s · u2, k =
f+h·v2−v2

2

u2
,

m = k + s · (h− 2v2 − l), m′ = m/m4 = m made monic,

u′ = m′/u1,

Adapted: v′ ≡ h− v2 − l (mod u′), or

Reduced: v′ = H(y) + h− [(H(y) + v2 + l) mod u′] .

Assume u1 and u2 are both degree 2 and are relatively prime. To see that the above
formulas are correct, note that Algorithm 2.1 implies

U0 = u1u2

V0 ≡ v2 + su2 = v2 + l (mod U0)

where s ≡ u−1
2 (v1−v2) (mod u1) and l = su2. The reduction step can be expressed

as

V1 = h− V0 +
⌊
V0+H(y)

U0

⌋
· U0

U1 =
f+h·V1−V 2

1

U0
.

Since V0 and H(y) both have degree 3 and U0 has degree 4,
⌊
V0+H(y)

U0

⌋
= 0, and so

V1 = h− V0 = h− (v2 + l)

Plugging this into the formula U1 yields

U1 = f+h·(h−(v2+l))−(h−(v2+l))2

u1u2

=
f+hv2+hl−v2

2−2v2l−l2

u1u2

= 1
u1

(
f+hv2−v2

2

u2
+ l(h−2v2−l)

u2

)

= k+s(h−2v2−l)
u1

where k =
f+hv2−v2

2

u2
.

The final step is to reduce [U1, V1] into either adapted or reduced basis. For the
adapted basis, [u′, v′] is found by setting u′ to U1 made monic, and v′ ≡ V1 (mod u′).
For the reduced basis, [u′, v′] is found by setting u′ = U1 made monic, and v′ =
H(y) + h− [(H(y) + h− V1) mod u′] = H(y) + h− [(H(y) + v2 + l) mod u′]. In the
formulas, we first find the leading coefficient of m = k+ s(h− 2v2 − l), compute its
inverse, then compute m′ = m made monic.

The major advantage of using the reduced basis over the adapted basis is that
the first two coefficients of v2 are chosen to cancel the coefficients of the two highest
degree coefficients in k regardless of characteristic or assumptions on the curve
coefficients, reducing the number of operations to calculate k to at most one constant
multiplication. In contrast, calculating k in the adapted basis requires at least one
squaring and in general four constant multiplications.
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We also note that the addition of divisors is exactly the same for both real and
imaginary curves. These two steps can replace the first three steps of imaginary
divisor addition found in [Lan05] for a savings of one squaring. For reference, this
improvement makes 1I, 2S, 22M the least known number of field operations needed
for divisor addition in the imaginary case.

Addition, Reduced Basis, deg u1 = deg u2 = 2
Input u1 = x2 + u11x+ u10, v1 = (y3 + h3)x

3 + (y2 + h2)x
2 + v11x+ v10

u2 = x2 + u21x+ u20, v2 = (y3 + h3)x
3 + (y2 + h2)x

2 + v21x+ v20
Precomputed Constants in Table 1

Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
Addition

1 inv = z1x+ z2 4M
z0 = u10 − u20, z1 = u11 − u21, z2 = u11 · z1 − z0
z3 = u10 · z1, r = z1 · z3 − z0 · z2

2 s′ = s′1x+ s′0 4M

w0 = v10 − v20, w1 = v11 − v21,
s′1 = w0 · z1 − w1 · z0, s

′
0 = w0 · z2 − w1 · z3

If r = 0, see Comments below.
Reduction

3 k = k4x
4 + k3x

3 + k2x
2 + k1x+ k0 1C

k2 = c3(c1 − v21)
4 ŵ0 = m′

4 1S, 1M, 1C

r2 = r2, ŵ0 = (s′1 + c3r) · s
′
1

If ŵ0 = 0, see Special case.

5 s = 1
r
s′ = s1x+ s0, ŵ3 = m−1

4 1I, 6M

ŵ1 = (r · ŵ0)
−1, ŵ2 = ŵ0 · ŵ1,

s1 = s′1 · ŵ2, s0 = s′0 · ŵ2, ŵ3 = r · r2 · ŵ1

6 l = l3x
3 + l2x

2 + l1x+ l0 3M
w̃0 = s0 · u20, w̃1 = s1 · u21

l2 = s0 + w̃1, w̃2 = c2 + l2
l1 = (s0 + s1) · (u20 + u21)− w̃0 − w̃1, l0 = w̃0

7 u′ = x2 + u′
1x+ u′

0 6M, 1C

u′
1 = ŵ3 · ((s0 + w̃2) · s1 + c3s0)− u11

u′
0 = ŵ3·((2v21−h1+l1)·s1+w̃2·s0−k2)−u10−u11·u

′
1

8 v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 3M

w0 = c3+s1, w1 = u′
1·w0, w2 = w̃2−w1, w3 = u′

0·w2

v′1 = h1 − v21 − l1 +(u′
0 + u′

1) · (w0 +w2)−w1 −w3,
v′0 = h0 − v20 − l0 + w3

Total General case 1I, 1S, 27M, 3C
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Special case: ŵ0 = 0 (deg(u′) = 1)
5′ ŵ1 = m′

3 1M, 3C

If s′1 = 0, then s1 = 0. Otherwise, s1 = −c3.
t1 = c2 + s1u21, ŵ1 = s1(s

′
0 + r · t1) + (s1 + c3)s

′
0

6′ s = 1
r
s′ = s1x+ s0, ŵ3 = m−1

3 1I, 4M

ŵ2 = (r · ŵ1)
−1, s0 = s′0 · ŵ1 · ŵ2, ŵ3 = r2 · ŵ2

7′ u′ = x+ u′
0 1S, 2M, 2C

w̃0 = s0 · u21, w̃1 = s1u20

u′
0 = ŵ3 · (s

2
0 + c2s0 + s1(2(v21 + w̃0) + w̃1 − h1)−

k2)− u11

8′ v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 3M, 1C

v′1 = c1
v′0 = h0− v20 − s0 ·u20+u′

0 · (y1 + v21 + w̃0+ w̃1 −
u′
0 · (s0 + t1 − (c3 + s1)u

′
0))

Total Special case 1I, 2S, 19M, 8C

Simplifications for Odd and Even Characteristic.

1. In Step 3, let k2 = f4 − 2v21 in odd characteristic. In even characteristic, let
k2 = c1 + v21. This eliminates the constant multiplication in Step 3.

2. In Step 4, let ŵ0 = (s′1 + r)2 − r2 in odd characteristic. In even characteristic,
let ŵ0 = (s′1 + r) · s′1. This reduces the operation count of Step 4 to 2S in odd
characteristic and 1S, 1M in even characteristic.

3. In Step 6, we skip the calculation of w̃2 (since c2 = 0). In Step 7, let

u′
1 = ŵ3 · ((s0 + l2) · s1 + 2s0)− u11 ,

u′
0 = ŵ3 · ((2v21 + l1) · s1 + l2 · s0 − k2)− u10 − u11 · u

′
1

in odd characteristic. In even characteristic, let

u′
1 = ŵ3 · ((s0 + l2) · s1 + s0) + u11 ,

u′
0 = ŵ3 · ((h1 + l1) · s1 + l2 · s0 + k2) + u10 + u11 · u

′
1 .

This reduces the operation count of Step 7 to 6M in both odd and even
characteristic.

4. In Step 8, let

w0 = s1 + 2, w2 = l2 − w1 ,

v′1 = −v21 − l1 + (u′
0 + u′

1) · (w0 + w2)− w1 − w3 ,

v′0 = −v20 − l0 + w3

in odd characteristic. In even characteristic, let

w0 = s1 + 1, w2 = l2 + w1 ,

v′1 = h1 + v21 + l1 + (u′
0 + u′

1) · (w0 + w2) + w1 + w3 ,

v′0 = h0 + v20 + l0 + w3 .

When deg(u1) = deg(u2) = 2, the total operation count for addition in the
reduced basis for the general case of deg(u′) = 2 is 1I, 2S, 26M in odd characteristic
and 1I, 1S, 27M in even characteristic.
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Addition, Adapted Basis, deg u1 = deg u2 = 2
Input u1 = x2 + u11x+ u10, v1 = v11x+ v10

u2 = x2 + u21x+ u20, v2 = v21x+ v20
Precomputed Constants in Table 1

Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
Addition

1 inv = z1x+ z2 4M
z0 = u10 − u20, z1 = u11 − u21, z2 = u11 · z1 − z0
z3 = u10 · z1, r = z1 · z3 − z0 · z2

2 s′ = s′1x+ s′0 4M

w0 = v10 − v20, w1 = v11 − v21,
s′1 = w0 · z1 − w1 · z0, s

′
0 = w0 · z2 − w1 · z3

If r = 0, see Comments below.
Reduction

3 k = k4x
4 + k3x

3 + k2x
2 + k1x+ k0 1S, 4C

k4 = f6, k3 = f5 − f6u21

k2 = f4 + h3v21 − f5u21 + f6(u
2
21 − u20)

4 ŵ0 = m′
4 1S, 1M, 2C

r2 = r2, ŵ0 = s′1 · (s
′
1 − h3r) − k4r2

If ŵ0 = 0, see Special case.

5 s = 1
r
s′ = s1x+ s0, ŵ3 = m−1

4 1I, 6M

ŵ1 = (r · ŵ0)
−1, ŵ2 = ŵ0 · ŵ1,

s1 = s′1 · ŵ2, s0 = s′0 · ŵ2, ŵ3 = r · r2 · ŵ1

6 l = l3x
3 + l2x

2 + l1x+ l0 3M
w̃0 = s0 · u20, w̃1 = s1 · u21,
l2 = s0 + w̃1, w̃2 = h2 − l2
l1 = (s0 + s1) · (u20 + u21)− w̃0 − w̃1, l0 = w̃0

7 u′ = x2 + u′
1x+ u′

0 6M, 1C

u′
1 = ŵ3 · ((s0 − w̃2) · s1 − h3s0 − k3)− u11,

u′
0 = ŵ3 · ((2v21−h1+ l1) ·s1+ w̃2 ·s0−k2)−u10−

u11 · u
′
1

8 v′ = v′1x+ v′0 3M

w0 = h3 − s1, w1 = u′
1 · w0, w2 = w̃2 − w1

w3 = u′
0 · w2,

v′1 = h1−v21− l1− (u′
0+u′

1) · (w0+w2)+w1+w3,
v′0 = h0 − v20 − l0 − w3

Total 1I, 2S, 27M, 7C
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Special case: ŵ0 = 0 (deg(u′) = 1)
5′ ŵ1 = m′

3 1M, 3C

If s′1 = −y3r, let s1 = −y3.
Otherwise, let s1 = y3 + h3.
t1 = s1u21−h2, ŵ1 = (2s1 −h3)s

′
0 +(s1t1 − k3) · r

6′ s = 1
r
s′ = s1x+ s0, ŵ3 = m−1

3 1I, 4M

ŵ2 = (r · ŵ1)
−1, s0 = s′0 · ŵ1 · ŵ2, ŵ3 = r2 · ŵ2

7′ u′ = x+ u′
0 1S, 2M, 2C

w̃0 = s0 · u21, w̃1 = s1u20

u′
0 = ŵ3 · (s

2
0 − h2s0 + s1(2(v21 + w̃0) + w̃1 − h1)−

k2)− u11

8′ v′ = v′0 3M, 1C

v′0 = h0− v20− s0 ·u20+u′
0 · (v21+ w̃0+ w̃1−h1+

u′
0 · (s0 + t1 + (s1 − h3)u

′
0))

Total Special case 1I, 3S, 19M, 12C

Simplifications for Odd and Even Characteristic.

1. In Step 3, let k4 = 1, k3 = −u21, k2 = f4 + u2
21 − u20 in odd characteristic.

In even characteristic, let k4 = f6, k3 = f6u21, k2 = v21 + f6(u
2
21 + u20). This

reduces the operation count of Step 3 to 1S in odd characteristic and 1S, 2C
in even characteristic.

2. In Step 4, let ŵ0 = (s′1)
2 − r2 in odd characteristic. In even characteristic, let

ŵ0 = s′1 · (s
′
1 + r) + f6r2. This reduces the operation count of Step 4 to 2S in

odd characteristic and 1S, 1M, 1C in even characteristic.
3. In Step 6, we skip the calculation of w̃2 (since h2 = 0). In Step 7, let

u′
1 = ŵ3 · ((s0 + l2) · s1 + u21)− u11 ,

u′
0 = ŵ3 · ((2v21 + l1) · s1 + l2 · s0 − k2)− u10 − u11 · u

′
1

in odd characteristic. In even characteristic, let

u′
1 = ŵ3 · ((s0 + l2) · s1 + s0 + k3) + u11 ,

u′
0 = ŵ3 · ((h1 + l1) · s1 + l2 · s0 + k2) + u10 + u11 · u

′
1 .

This reduces the operation count of Step 7 to 6M in both characteristics.
4. In Step 8, let

w0 = −s1, w1 = u′
1 · w0 , w2 = −l2 − w1 , w3 = u′

0 · w2 ,

v′1 = −v21 − l1 − (u′
0 + u′

1) · (w0 + w2) + w1 + w3 ,

v′0 = −v20 − l0 − w3 .

in odd characteristic. In even characteristic, let

w0 = s1 + 1 , w1 = u′
1 · w0 , w2 = l2 + w1 , w3 = u′

0 · w2 ,

v′1 = h1 + v21 + l1 + (u′
0 + u′

1) · (w0 + w2) + w1 + w3 ,

v′0 = h0 + v20 + l0 + w3 .

When deg(u1) = deg(u2) = 2, the total operation count for addition in the
adapted basis for the general case of deg(u′) = 2 is 1I, 3S, 26M in odd characteristic
and 1I, 2S, 27M, 3C in even characteristic.

Advances in Mathematics of Communications Volume , No. (2010),



28 S. Erickson, M. J. Jacobson, Jr., and A. Stein

Comments when r = 0. If r = 0 and u1 = u2 (which is equivalent to z0 = 0 and
z1 = 0), then one of the following must be true:

1. v2 = v1 (which is equivalent to w0 = 0 and w1 = 0). In this case, the doubling
formulas should be applied.

2. v2 = y+h− [y+v1 mod u1] in the reduced basis, or v2 = h−v1 in the adapted
basis. In this case, D1 and D2 are involutions of each other. So adding the
divisors results in the identity divisor (u = 1, v = y + h in reduced basis or
u = 1, v = 0 in adapted basis).

3. Otherwise, D1 and D2 contain one point in common, while the other point
of the divisor are opposites of each other. In this case, we can determine x-
coordinate of the common point by find the root of the difference of v1 and v2.
Since v1 − v2 = w1x + w0 (which are calculated in Step 2), the x-coordinate
is x1 = −w0

w1
. The final result is found by first calculating x1 = −w0

w1
, then

doubling the degree 1 divisor [x− x1, v1(x1)] in adapted basis, then changing
the result into reduced basis if desired.

If r = 0 and u1 6= u2 (which is equivalent to z1 6= 0), then u1 and u2 must have a
common linear factor, which must be u1 − u2 = z1x + z0 since u1 and u2 are both
monic quadratics. Thus, the common root is x0 = − z0

z1
. From here, it depends on

whether v1(x0) = v2(x0), or equivalently if (v1 − v2)(x0) = w1 · (− z0
z1
) + w0 = 0.

Multiplying through by z1, we have s′1 = w0 · z1 − w1 · z0 = 0. Hence, we have the
following cases:

1. r = 0 and s′1 = 0. In this case, D1 = P1 + P2 − 2∞ and D2 = P1 + P3 − 2∞
contain copies of the same point. Let x1 = − z0

z1
, x2 = −u11 − x1, and

x3 = −u21 − x1. Set D′
1 = 2[x − x1, v1(x1)] using the (adapted) doubling

formula for degree 1 divisors, and set D′
2 = [x− x2, v1(x2)] + [x − x3, v2(x3)]

using the (adapted) addition formula for two degree 1 divisors. Finally, apply
the addition formulas toD′ = D′

1+D′
2 to obtain the final result, then changing

to reduced basis if desired.
2. r = 0 and s′1 6= 0. In this case, D1 = P1+P2−2∞ and D2 = (−P1)+P3−2∞

contain negatives of a common point. As above, let x1 = − z0
z1
, x2 = −u11−x1,

and x3 = −u21−x1. The final result is D
′ = [x−x2, v1(x2)]+ [x−x3, v2(x3)]

using the (adapted) addition formula for two degree 1 divisors, then changing
to reduced basis if desired.

6.1. Degenerate Divisor Addition.

Divisor Addition, Reduced Basis, Special Case (deg(u1) = 1, deg(u2) = 2). Let
[u1, v1] and [u2, v2] be two reduced divisors. Assume u1 is degree 1 and u2 is degree
2. The addition and reduction step of Cantor’s Algorithm is then given by

U0 = u1u2

V0 ≡ v2 + su2

V1 = h− V0 +
⌊
V0+H(y)

U0

⌋
· U0

U1 =
f+h·V1−V 2

1

U0
.

In this case,
⌊
V0 +H(y)

U0

⌋
=

⌊
(v23x

3 + . . . ) + (y3x
3 + . . . )

(x3 + . . . )

⌋
= v23 + y3
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Hence,

V1 = h− V0 + (v23 + y3)U0

and, finally,

u′ = U1 made monic ,

Reduced: v′ = H(y) + h− [(H(y) + h− V1) mod u′] or

Adapted: v′ ≡ V1 (mod u′) .

Addition, Reduced Basis, deg u1 = 1, deg u2 = 2
Input u1 = x+ u10, v1 = (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 + h1)x+ v10

u2 = x2 + u21x+ u20, v2 = (y3 + h3)x
3 + (y2 + h2)x

2 + v21x+ v20
Precomputed Constants in Table 1

Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
Addition

1 r = u2 mod u1, s
′
0 1S, 3M

t0 = u10 · u21, r = u20 − t0 + u2
10

z2 = u10 + u21, z1 = t0 + u20, z0 = u10 · u20

s′0 = v10 − v20 − u10 · (c1 − v21).
If r = 0, see Comments below.

Reduction
2 ŵ1 = U ′

12 1M, 1C

ŵ0 = c2 − c3z2, ŵ1 = s′0 + r · ŵ0

If ŵ1 = 0, see Special case.

3 s0, ŵ3 = U−1
12 1I, 1S, 4M

ŵ2 = (r · ŵ1)
−1, s0 = ŵ1 · ŵ2 · s

′
0, ŵ3 = r2 · ŵ2

4 V1 = V13x
3 + V12x

2 + V11x+ V10 2M, 2C
w̃2 = s0 + ŵ0, w̃1 = y1 + v21 + s0 · u21 − c3z1
w̃0 = y0 + v20 + s0 · u20 − c3z0

5 u′ = x2 + u′
1x+ u′

0 5M, 3C

u′
1 = ŵ3 · (d3((c2 − w̃2) · w̃2) + w̃1)− z2

u′
0 = ŵ3 · (d3((c1 + y1 − 2w̃1) · w̃2 + c2w̃1) + w̃0)−

z1 − z2 · u
′
1

6 v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 2M

v′1 = c1 − w̃1 + w̃2 · u
′
1, v

′
0 = c0 − w̃0 + w̃2 · u

′
0

Total 1I, 2S, 17M, 6C

Special case: ŵ1 = 0 (deg(u′) = 1)

3′ s0, ŵ3 = z−1
1 1I, 1S, 6M, 1C

ŵ0 = v21 + y1 − c3z1, ŵ1 = s′0 · u21 + r · ŵ0

ŵ2 = (r · ŵ1)
−1, s0 = ŵ1 · ŵ2 · s

′
0, ŵ3 = r2 · ŵ2

4′ u′ = x+ u′
0 3M, 3C

w̃1 = ŵ0 + s0 · u21

w̃0 = y0 + v20 + s0 · u20 − c3z0
u′
0 = ŵ3 · (d3c2w̃1 + w̃0)− z2

5′ v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 1M

v′1 = c1, v
′
0 = c0 − w̃0 + w̃1 · u

′
0

Total Special Case 1I, 2S, 14M, 5C
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Simplifications for Odd and Even Characteristic.

1. In Step 2, skip the calculation of ŵ0. Let ŵ1 = s′0−2r ·z2 in odd characteristic.
In even characteristic, let ŵ1 = s′0 + r · z2.

2. In Step 4, let

w̃2 = s0 − 2z2 ,

w̃1 = y1 + v21 + s0 · u21 − 2z1 ,

w̃0 = y0 + v20 + s0 · u20 − 2z0

in odd characteristic. In even characteristic, let

w̃2 = s0 + z2 ,

w̃1 = y1 + v21 + s0 · u21 + z1 ,

w̃0 = y0 + v20 + s0 · u20 + z0 .

3. In Step 5, let

u′
1 = ŵ3 · (−

1
2 w̃

2
2 + w̃1)− z2

u′
0 = ŵ3 · ((f4 − w̃1) · w̃2 + w̃0)− z1 − z2 · u

′
1

in odd characteristic. In even characteristic, let

u′
1 = ŵ3 · (w̃

2
2 + w̃1) + z2

u′
0 = ŵ3 · (h1w̃2 + w̃0) + z1 + z2 · u

′
1 .

This reduces the operation count of Step 6 to 1S, 3M in odd characteristic
and 1S, 2M, 1C in even characteristic. For special values of h1 (such as 0 or
1), the constant multiplication can be removed for an operation count of 1S,
2M in even characteristic.

When deg(u1) = 1, deg(u2) = 2, the total operation count for addition in the
reduced basis for the general case of deg(u′) = 2 is 1I, 3S, 16M in odd characteristic
and 1I, 3S, 15M, 1C in even characteristic.
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Divisor Addition, Adapted Basis, Special Case (deg(u1) = 1, deg(u2) = 2).

Addition, Adapted Basis, deg u1 = 1, deg u2 = 2
Input u1 = x+ u10, v1 = v10

u2 = x2 + u21x+ u20, v2 = v21x+ v20
Precomputed Constants in Table 1

Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
Addition

1 r = u2 mod u1, s
′
0 1S, 3M

t0 = u10 · u21, r = u20 − w0 + u2
10

z2 = u10 + u21, z1 = t0 + u20, z0 = u10 · u20

s′0 = v10 − v20 + u10 · v21.
If r = 0, see Comments below.

Reduction
2 ŵ1 = U ′

12 1M, 1C

ŵ0 = y2 − y3z2, ŵ1 = s′0 + r · ŵ0

If ŵ1 = 0, see Special case.
3 s0, ŵ3 = z−1 1I, 1S, 4M

ŵ2 = (r · ŵ1)
−1, s0 = ŵ1 · ŵ2 · s

′
0, ŵ3 = r2 · ŵ2

4 V1 = V13x
3 + V12x

2 + V11x+ V10 2M, 2C
w̃2 = s0 + ŵ0, w̃1 = y1 + v21 + s0 · u21 − y3z1
w̃0 = y0 + v20 + s0 · u20 − y3z2

5 u′ = x2 + u′
1x+ u′

0 5M, 3C

u′
1 = ŵ3 · (d3((c2 − w̃2) · w̃2) + w̃1)− z2

u′
0 = ŵ3·(d3((h1−2w̃1)·w̃2+c2w̃1)+w̃0)−z1−z2·u

′
1

6 v′ = v′1x+ v′0 2M, 1C

w4 = (y3 + h3)u
′
1, w3 = y2 + h2 − w̃2 − w4

w2 = w3 · u
′
0

v′1 = c1− w̃1− (y3+h3+w3) · (u
′
0+u′

1)+w2+w4,
v′0 = c0 − w̃0 − w2

Total 1I, 2S, 17M, 7C

Special case: ŵ1 = 0 (deg(u′) = 1)

3′ ŵ3 = U−1
11 1I, 1S, 6M, 1C

ŵ0 = y1 + v21 − y3z1, ŵ1 = s′0 · u21 + r · ŵ0

ŵ2 = (r · ŵ1)
−1, s0 = ŵ1 · ŵ2 · s

′
0, ŵ3 = r2 · ŵ2

4′ u′ = x+ u′
0 4M, 3C

w̃1 = ŵ0 + s0 · u21,
w̃0 = y0 + v20 + s0 · u20 − y3z0
u′
0 = ŵ3 · (d3c2w̃1 + w̃0)− z2

5′ v′ = v′0 1S, 1M, 2C

v′0 = c0−w̃0−u′
0·(c1−w̃1−(y2+h2)u

′
0+(y3+h3)u

′2
0 )

Total Special case 1I, 2S, 15M, 7C

Simplifications for Odd and Even Characteristic.

1. In Step 2, skip the calculation of ŵ0. Let ŵ1 = s′0 − r · (u10 + u21) in odd
characteristic. In even characteristic, let ŵ1 = s′0 + y3r · (u10 + u21).
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2. In Step 4, let

w̃2 = s0 − 2(u10 + u21) ,

w̃1 = 1
2f4 + v21 + s0 · u21 − (w0 + u20) ,

w̃0 = 1
2f3 + v20 + s0 · u20 − (u10 · u20)

in odd characteristic. In even characteristic, let

w̃2 = s0 + (u10 + u21) ,

w̃1 = y1 + v21 + s0 · u21 + y3(w0 + u20) ,

w̃0 = y0 + v20 + s0 · u20 + y3(u10 · u20) .

3. In Step 5, let

u′
1 = ŵ3 · (−

1
2 w̃

2
2 + w̃1)− z2

u′
0 = ŵ3 · ((f4 − w̃1) · w̃2 + w̃0)− z1 − z2 · u

′
1

in odd characteristic. In even characteristic, let

u′
1 = ŵ3 · (w̃

2
2 + w̃1) + z2

u′
0 = ŵ3 · (h1w̃2 + w̃0) + z1 + z2 · u

′
1

This reduces the operation count of Step 6 to 1S, 4M in odd characteristic
and 1S, 3M, 1C in even characteristic. For special values of h1 (such as 0 or
1), the constant multiplication can be removed for an operation count of 1S,
3M in even characteristic.

4. In Step 6, replace the calculation of w4, w3, and w2 with

w3 = w̃2 + u′
1 ,

v′1 = c1 − w̃1 − u′
0 + w3 · u

′
1

v′0 = c0 − w̃0 + w3 · u
′
0

in odd characteristic. In even characteristic, let

w3 = w̃2 + y3u
′
1 ,

v′1 = c1 + w̃1 + y3u
′
0 + w3 · u

′
1 ,

v′0 = c0 + w̃0 + w3 · u
′
0 .

When deg(u1) = 1, deg(u2) = 2, the total operation count for addition in the
adapted basis for the general case of deg(u′) = 2 is 1I, 3S, 17M in odd characteristic
and 1I, 3S, 16M, 3C in even characteristic.

Comments when r = 0. Since r = u20 − u10 · u21 + u2
10 represents plugging in the

one root of u1 = x + u10 into u2, r = 0 if and only if u1 divides u2. In terms of
divisors, D1 = P1 − ∞ and either D2 = P1 + P2 − 2∞ or D2 = −P1 + P2 − 2∞.
These two cases can be distinguished by v1(−u10) = v2(−u10), or equivalently
s′0 = (v1 − v2)(−u10) = 0. In either case, u2 = x2 + u21x+ u20 = (x− x1)(x − x2),
so the x-coordinate of the second point of D2 can be expressed as x2 = u10 − u21.

1. If s′0 6= 0, then D1 = P1 − ∞ and D2 = −P1 + P2 − 2∞, so D′ = P2 − ∞
can be expressed as D′ = [x + (u21 − u10), (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 +

h1)x + (v20 + (u21 − u10) · (c1 − v21))] in the reduced basis, and D′ = [x +
(u21 − u10), v20 − (u21 − u10) · v21] in the adapted basis.

2. If s′0 = 0, then D1 = P1−∞ and D2 = P1+P2−2∞. There are two subcases,
depending on whether P2 = P1, or equivalently u21 = 2u10.
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(a) If u21 6= 2u10, then compute D′
1 = 2D1 using the degree 1 doubling

formula, and let D′
2 = [x + (u21 − u10), (y3 + h3)x

3 + (y2 + h2)x
2 +

(y1 + h1)x + (v20 + (u21 − u10) · (c1 − v21))] in the reduced basis, and
D′

2 = [x + (u21 − u10), v20 − (u21 − u10) · v21] in adapted basis. The end
result will be D′ = D′

1 +D′
2.

(b) If u21 = 2u10, then compute D′
1 = −D1, D

′
2 = 2D2, and the final result

is D′ = D′
1 +D′

2.

Divisor Addition, Special Case (deg(u1) = 1, deg(u2) = 1). If u1 = u2, there are
two cases. If v1 6= v2, then the two divisors are involutions of each other, and the
output is the identity divisor (u = 1, v = y + h in reduced basis or u = 1, v = 0 in
adapted basis). If v1 = v2, then we are in the doubling case, which will be provided
later.

If u1 6= u2, then Cantor’s Algorithm can be performed without the reduction
step:

u′ = u1 · u2

v′ = v2 + u2 ·
[
(v1 − v2) · u

−1
2 mod u1)

]

Performing this explicitly provides the following formulas:

Addition, Reduced Basis, deg u1 = 1, deg u2 = 1
Input u1 = x+ u10, v1 = (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 + h1)x+ v10

u2 = x+ u20, v2 = (y3 + h3)x
3 + (y2 + h2)x

2 + (y1 + h1)x+ v20
Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
1 u′ = x2 + u′

1x+ u′
0 1M

If u10 = u20, see Comments below.
u′
1 = u10 + u20, u

′
0 = u10 · u20

2 v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 1I, 2M

w0 = (v10 − v20) · (u20 − u10)
−1

v′1 = c1 + w0, v
′
0 = v20 + u20 · w1

Total 1I, 3M

Addition, Adapted Basis, deg u1 = 1, deg u2 = 1
Input u1 = x+ u10, v1 = v10

u2 = x+ u20, v2 = v20
Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations
1 u′ = x2 + u′

1x+ u′
0 1M

If u10 = u20, see Comments below.
u′
1 = u10 + u20, u

′
0 = u10 · u20

2 v′ = v′1x+ v′0 1I, 2M

v′1 = (v10 − v20) · (u20 − u10)
−1, v′0 = v20 + u20 · v

′
1

Total 1I, 3M
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7. Doubling Formulas

Let [u, v] be a reduced representative of a divisor class with deg u = 2. The
divisor [u′, v′] = 2[u, v] can be computed using the following formulas:

ṽ ≡ 2v − h (mod u), inv = r(ṽ)−1 (mod u),

k = f+hv−v2

u
, k′ ≡ k (mod u),

s′ ≡ k′ · inv (mod u), s = 1
r
· s′,

ũ = s2 + (2v−h)·s−k

u
, u′ = ũ made monic,

Adapted: v′ ≡ h− v − su (mod u′) or

Reduced: v′ = H(y) + h− [(H(y) + v + su) mod u′] .

To see that these formulas are correct, observe that Algorithm 2.1 results in [U1, V1]
such that

U0 = u2,

V0 ≡ v (mod u) (V0 = v + su for some s) ,

V1 = h− V0 +
⌊
V0+H(y)

U0

⌋
U0,

U1 =
f+hV1−V 2

1

U0
.

Here, s is chosen such that U0 divides f +hV0−V 2
0 . Again,

⌊
V0+H(y)

U0

⌋
is zero since

U0 has degree 4 and V0 +H(y) has degree 3. Hence, V1 = h− V0 = h− v − su and

U1 = f+h(h−v−su)−(h−v−su)2

u2

= f+hv−v2+(h−2v)su−s2u2

u2

= 1
u

(
f+hv−v2

u
+ (h− 2v)s

)
− s2

= k+(h−2v)s
u

− s2

where the division in k = f+hv−v2

u
is exact. By choosing s ≡ −k·(h−2v)−1 (mod u),

we have

k + (h− 2v)s ≡ k − (h− 2v) · k · (h− 2v)−1 ≡ 0 (mod u)

so that the division of k + (h− 2v)s by u is exact.
The final step is to reduce [U1, V1] into either adapted or reduced basis. For the

adapted basis, [u′, v′] is found by setting u′ to U1 made monic, and v′ ≡ V1 (mod u′).
For the reduced basis, [u′, v′] is found by setting u′ = U1 made monic, and v′ =
H(y)+h− [(H(y)+h−V1) mod u′] = H(y)+h− [(H(y)+ v2+ l) mod u′]. For the

doubling formulas, we compute the leading coefficients ũ = −U1 = s2 + (2v−h)s−k

u

compute the inverse of the first nonzero coefficient, then compute u′ = ũ made
monic. Note that since we have already computed k′ ≡ k (mod u) and ṽ = (2v −
h) (mod u), several of the coefficients of k′ and ṽ appear in the coefficients of ũ.
This observation considerably simplifies the formulas.
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Doubling, Reduced Basis, deg u = 2
Input u = x2 + u1x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = 2[u, v]

Step Expression Operations
Addition

1 ṽ = ṽ1x+ ṽ0 1S, 1M, 3C
t1 = c2 − c3u1, t2 = u2

1,
ṽ1 = 2v1 − h1 − c2u1 + c3(t2 − u0),
ṽ0 = 2v0 − h0 − u0 · t1

2 inv = z1x+ z2 4M
z1 = ṽ1, z2 = u1 · ṽ1 − ṽ0, z3 = u0 · ṽ1,
r = ṽ0 · z2 − ṽ1 · z3
If r = 0, see Comments below.

3 k′ = k′1x+ k′0 4M, 3C

w0 = c0 − v0, w1 = c1 − v1, w2 = c2w0, k
′
2 = c3w1

k′1 = (c2 + c3)(w0 + w1)− w2 − k′2 − 2k′2 · u1

k′0 = d2+w2+(h1−v1) ·v1−k′1 ·u1−k′2 ·(t2+2u0)
4 s′ = s′1x+ s′0 4M

s′1 = ṽ1 · k
′
0 − ṽ0 · k

′
1, s

′
0 = z2 · k

′
0 − z3 · k

′
1.

Reduction
5 ŵ0 = ũ2 1S, 1M, 1C

r2 = r2, ŵ0 = (s′1 + c3r) · s
′
1.

If ŵ0 = 0, see Special case.

6 s = 1
r
s′ = s1x+ s0, ũ

−1
2 1I, 6M

ŵ1 = (r · ŵ0)
−1, ŵ2 = ŵ0 · ŵ1,

s1 = ŵ2 · s
′
1, s0 = ŵ2 · s

′
0, ŵ3 = r · r2 · ŵ1

7 u′ = x2 + u′
1x+ u′

0 5M, 1C

u′
1 = ŵ3 · ((2s0 + t1) · s1 + c3s0)

u′
0 = ŵ3 · ((s0 + t1) · s0 + ṽ1 · s1 − k′2)

8 v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 5M, 2C

z0 = u′
0 − u0, z1 = u′

1 − u1,
w0 = s0 · z0, w1 = s1 · z1, w2 = −w1 + c2 − c3u

′
1

v′1 = h1 − v1 + (s0 + s1) · (z0 + z1) − w0 − w1 +
c3u

′
0 + w2 · u

′
1

v′0 = h0 − v0 + w0 + w2 · u
′
0

Total 1I, 2S, 30M, 10C
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Special case: ŵ0 = 0 (deg(u′) = 1)
6′ ŵ1 = ũ1 1M, 1C

If s′1 = 0, then s1 = 0. Otherwise, s1 = −c3.
ŵ1 = (2s1 + c3)s

′
0 + s′1 · t1

7′ s = 1
r
s′ = s1x+ s0, ŵ3 = ũ−1

1 1I, 4M

ŵ2 = (r · ŵ1)
−1, s0 = s′0 · ŵ1 · ŵ2, ŵ3 = r2 · ŵ2

8′ u′ = x+ u′
0 2M, 1C

u′
0 = ŵ3 · ((s0 + t1) · s0 + s1ṽ1 − k2)

9′ v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 4M, 2C

w̃0 = s0 · u0, w̃1 = s1u1, v
′
1 = c1

v′0 = h0 − v0 − w̃0 + u′
0 · (y1 + v1 +(s0 + s1) · (u0 +

u1)− w̃0 − w̃1 − u′
0 · (c2 + s0 + w̃1 − (c3 + s1)u

′
0))

Total Special case 1I, 2S, 25M, 11C

Simplifications for Odd and Even Characteristic.

1. In Step 1, we skip the computation of t1. Let

ṽ1 = 2(v1 + t2 − u0) ,

ṽ0 = 2(v0 + u0 · u1)

in odd characteristic. Let

ṽ1 = h1 + t2 + u0 ,

ṽ0 = h0 + u0 · u1

in even characteristic. This reduces the operation count of Step 1 to 1S, 1M
in both odd and even characteristic.

2. In Step 3, let

k′2 = f4 − 2v1 ,

k′1 = f3 − 2v0 − 2k′2 · u1 ,

k′0 = f2 − v21 − k′1 · u1 − k′2 · (t2 + 2u0)

in odd characteristic. Let

k′2 = c1 + v1 ,

k′1 = c0 + v0 ,

k′0 = f2 + (h1 + v1) · v1 + k′1 · u1 + k′2 · t2

in even characteristic. This reduces the operation count of Step 3 to 1S, 3M
in odd characteristic and 3M in even characteristic. For special values of h1

(such as 0 or 1), one multiplication can be changed into a squaring for an
operation count of 1S, 2M in even characteristic.

3. In Step 5, let ŵ0 = (s′1 + r)2 − r2 in odd characteristic. In even characteristic,
let ŵ0 = (s′1 + r) · s′1. This reduces the operation count of Step 5 to 2S in odd
characteristic and 1S, 1M in even characteristic.

4. In Step 7, let

u′
1 = 2ŵ3 · ((s0 − u1) · s1 + s0) ,

u′
0 = ŵ3 · (−f4 + 2v1 + (s0 − 2u1) · s0 + ṽ1 · s1)
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in odd characteristic, and

u′
1 = ŵ3 · (s0 + u1 · s1) ,

u′
0 = ŵ3 · (v1 + h1 + ṽ1 · s1 + (u1 + s0) · s0)

in even characteristic. This reduces the operation count of Step 7 to 5M in
both odd and even characteristic.

5. In Step 8, skip the calculation of w2. Let

v′1 = 2u′
0 − v1 + (s0 + s1) · (z0 + z1)− w0 − w1 − u′

1 · (2u
′
1 + w1) ,

v′0 = w0 − v0 − u′
0 · (2u

′
1 + w1)

in odd characteristic, and

v′1 = h1 + v1 + u′
0 + (s0 + s1) · (z0 + z1) + w0 + w1 + u′

1 · (u
′
1 + w1) ,

v′0 = h0 + v0 + w0 + (u′
1 + w1) · u

′
0

in even characteristic. This reduces the operation count of Step 8 to 5M in
both odd and even characteristic.

When deg(u) = 2, the total operation count for doubling in the reduced basis for
the general case of deg(u′) = 2 is 1I, 4S, 28M in odd characteristic and 1I, 2S, 29M
in even characteristic.
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Doubling, Adapted Basis, deg u = 2
Input u = x2 + u1x+ u0, v = v1x+ v0

Precomputed Constants in Table 1
Output [u′, v′] = 2[u, v]

Step Expression Operations
Addition

1 ṽ = ṽ1x+ ṽ0 1S, 1M, 3C
t1 = h2 − h3u1, t2 = u2

1

ṽ1 = 2v1 − h1 + h2u1 − h3(t2 − u0),
ṽ0 = 2v0 − h0 + u0 · t1

2 inv = z1x+ z2 4M
z1 = ṽ1, z2 = u1 · ṽ1 − ṽ0, z3 = u0 · ṽ1,
r = ṽ0 · z2 − ṽ1 · z3
If r = 0, see Comments below.

3 k′ = k′1x+ k′0: 1S, 4M, 11C

w0 = h2v0, w1 = h3v1, k
′
3 = f5 − 2f6u1

k′2 = f4 + w1 − 2f5u1 + f6(3t2 − 2u0)
k′1 = f3 + (h2 + h3)(v0 + v1)− w0 − w1 − f5(t2 +
2u0) + 2(f6(t2 + u0)− k′2) · u1

k′0 = f2 +w0 + (h1 − v1) · v1 − (k′1 + 2f5u0) · u1 −
(k′2 + 4f6u0) · (t2 + 2u0)− 9f6u

2
0

4 s′ = s′1x+ s′0 4M

s′1 = ṽ1 · k
′
0 − ṽ0 · k

′
1, s

′
0 = z2 · k

′
0 − z3 · k

′
1.

Reduction
5 ŵ0 = ũ2 1S, 1M, 2C

r2 = r2, ŵ0 = (s′1 − h3r) · s
′
1 − f6r2.

If ŵ0 = 0, see Special case.

6 s = 1
r
s′ = s1x+ s0, ũ

−1
2 1I, 6M

ŵ1 = (r · ŵ0)
−1, ŵ2 = ŵ0 · ŵ1,

s1 = ŵ2 · s
′
1, s0 = ŵ2 · s

′
0, ŵ3 = r · r2 · ŵ1

7 u′ = x2 + u′
1x+ u′

0 5M, 1C

u′
1 = ŵ3 · ((2s0 − t1) · s1 − h3s0 − k′3)

u′
0 = ŵ3 · ((s0 − t1) · s0 + ṽ1 · s1 − k′2)

8 v′ = v′1x+ v′0 5M, 2C

z0 = u′
0 − u0, z1 = u′

1 − u1,
w0 = z0 · s0, w1 = z1 · s1, w2 = −w1 − h2 + h3u

′
1

v′1 = h1 − v1 + (s0 + s1) · (z0 + z1) − w0 − w1 −
h3u

′
0 + w2 · u

′
1

v′0 = h0 − v0 + w0 + w2 · u
′
0

Total 1I, 3S, 30M, 19C
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Special case: ŵ0 = 0 (deg(u′) = 1)
6′ ŵ1 = ũ1 1M, 3C

If s′1 = −y3r, then s1 = −y3.
Otherwise, s1 = y3 + h3.
ŵ1 = (2s1 − h3)s

′
0 − (s1t1 + k′3) · r

7′ s = 1
r
s′ = s1x+ s0, ŵ2 = ũ−1

1 1I, 4M

ŵ1 = (r · ŵ0)
−1, s0 = s′0 · ŵ0 · ŵ1, ŵ2 = r2 · ŵ1

8′ u′ = x+ u′
0 2M, 1C

u′
0 = ŵ2 · ((s0 − t1) · s0 + s1ṽ1 − k′2)

9′ v′ = v′1x+ v′0 4M, 2C

w̃0 = s0 · u0, w̃1 = s1u1, v
′
1 = 0

v′0 = h0 − v0 − w̃0 + u′
0 · (v1 − h1 +(s0 + s1) · (u0 +

u1)− w̃0 − w̃1 + u′
0 · (s0 + w̃1 − h2 + (s1 − h3)u

′
0))

Total Special case 1I, 3S, 25M, 22C

Simplifications for Odd and Even Characteristic.

1. In Step 1, let ṽ1 = 2v1, ṽ0 = 2v0 in odd characteristic, and ṽ1 = h1 + u0 + t2,
ṽ0 = h0 + u0 · u1 in even characteristic. This reduces the operation count of
Step 1 to 1S in odd characteristic and 1S, 1M in even characteristic.

2. In Step 3, let

k′3 = −2u1 ,

k′2 = f4 + 3t2 − 2u0 ,

k′1 = f3 + 2(t2 + u0 − k′2) · u1 ,

k′0 = f2 − v21 − k′1 · u1 − (k′2 + 4u0) · (t2 + 2u0)− 9u2
0

in odd characteristic. Let

k′3 = 0 ,

k′2 = v1 + f6t2 ,

k′1 = v0 ,

k′0 = f2 + (h1 + v1 + t2) · v1 + u1 · v0 + f6(t
2
2 + u2

0)

in even characteristic. This reduces the operation count of Step 3 to 2S, 3M
in odd characteristic and 2S, 2M, 2C in even characteristic.

3. In Step 5, let ŵ0 = s′21 −r2 in odd characteristic, and let ŵ0 = (s′1+r)·s′1+f6r
2

in even characteristic. This reduces the operation count of Step 5 to 2S in
odd characteristic and 1S, 1M, 1C in even characteristic.

4. In Step 7, let

u′
1 = 2ŵ3 · (u1 + s0 · s1) ,

u′
0 = ŵ3 · (s

2
0 + ṽ1 · s1 − k′2)

in odd characteristic, and

u′
1 = ŵ3 · (s0 + u1 · s1) ,

u′
0 = ŵ3 · ((s0 + u1) · s0 + ṽ1 · s1 + k′2)

in even characteristic. This reduces the operation count of Step 7 to 1S, 4M
in odd characteristic and 5M in even characteristic.
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5. In Step 8, we skip the calculation of w2. Let

v′1 = −v1 + (s0 + s1) · (z0 + z1)− w0 − (1 + u′
1) · w1 ,

v′0 = −v0 + w0 − u′
0 · w1

in odd characteristic, and

v′1 = h1 + v1 + u′
0 + (s0 + s1) · (z0 + z1) + w0 + w1 + u′

1 · (u
′
1 + w1) ,

v′0 = h0 + v0 + w0 + u′
0 · (u

′
1 + w1)

in even characteristic. This reduces the operation count of Step 8 to 5M in
both odd and even characteristic.

When deg(u) = 2, the total operation count for doubling in the adapted basis
for the general case of deg(u′) = 2 is 1I, 6S, 26M in odd characteristic and 1I, 4S,
28M, 3C in even characteristic.

Comments when r = 0. In the doubling formulas, r is the resultant of u and 2v−h.
Here, r = 0 implies that either one or both of the points of D = P1 + P2 − 2∞
equals its own opposite.

1. Both points equal their own opposite if and only if 2v − h ≡ 0 (mod u), or
equivalently, ṽ1 = ṽ0 = 0. In this case, D′ = 2D is the identity divisor (u = 1,
v = y + h in reduced basis or u = 1, v = 0 in adapted basis).

2. If ṽ1 6= 0, then exactly one point of D is equal to its own opposite. In this
case, the common factor of u and 2v − h is ṽ = ṽ1x + ṽ0. The root of ṽ is
the x-coordinate of the point equal to its own opposite, so x1 = − ṽ0

ṽ1
. The

x-coordinate of the other point is x2 = −u1 − x1 = −u1 +
ṽ0
ṽ1
. Subtracting

this point from D and doubling gives the desired result D′ = 2[x− x2, v(x2)],
which can be computed using the (adapted) degree 1 doubling formulas, then
changed into reduced basis if desired.

Divisor Doubling, Special Case (deg(u) = 1). For doubling a degree 1 divisor, the
derivative of the curve equations is required. These are essentially the same formulas
as the imaginary model, with the only difference being to change the result into the
reduced basis if necessary:

u′ = u2

v′ = v + u · (f ′(−u0)− v(−u0) · h
′(−u0)) · (2v(−u0) + h(−u0)))

−1
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Doubling, Reduced Basis, deg u = 1
Input u = x+ u0, v = (y3 + h3)x

3 + (y2 + h2)x
2 + (y1 + h1)x + v0

Precomputed Constants in Table 1
Output [u′, v′] = 2[u, v]

Step Expression Operations
1 u′ = x2 + u′

1x+ u′
0 1S

u′
1 = 2u0, u

′
0 = u2

0

2 v′ = (y3 + h3)x
3 + (y2 + h2)x

2 + v′1x+ v′0 1I, 10M, 5C

w0 = 2v0 + h0 − u0 · (c1 + y1 − u0 · (c2 − c3u0))
If w0 = 0, then u′ = 1, v′ = y + h.
w1 = f ′(−u0) + v(−u0) · h

′(−u0)
w2 = w1 · (w0)

−1

w3 = y2 + h2 − (y3 + h3)u
′
1

v′1 = w2 + (y3 + h3)u
′
0 + w3 · u

′
1

v′0 = ṽ0 + w2 · u0 + w3 · u
′
0

Total 1I, 1S, 10M, 5C

Doubling, Adapted Basis, deg u = 1
Input u = x+ u0, v = v0
Output [u′, v′] = 2[u, v]

Step Expression Operations
1 u′ = x2 + u′

1x+ u′
0 1S

u′
1 = 2u0, u

′
0 = u2

0

2 v′ = v′1x+ v′0 1I, 8M, 5C

w0 = 2v0 + h0 − u0 · (h1 − u0 · (h2 − h3u0))
If w0 = 0, then u′ = 1, v′ = 0.
w1 = f ′(−u0) + v0 · h

′(−u0)
w2 = w1 · (w0)

−1

v′1 = w1, v
′
0 = v0 + w1 · u0

Total 1I, 1S, 8M, 5C

Comments. The only special case occurs when the divisor has order 2, which occurs
exactly when the term w0 = 2ṽ + h(−u0) in reduced basis and w0 = 2ṽ + h(−u0)
in adapted basis equals 0. When this is the case, doubling the divisor results in the
identity divisor (u = 1, v = y+h in reduced basis or u = 1, v = 0 in adapted basis).

8. Summary of Results

The best known results for the imaginary case are found in [Lan05]. As noted
after the divisor addition table, an improvement of one less squaring has been found
which applies to the addition formula in the imaginary case (though not in the dou-
bling case). Compared to the imaginary model, the addition formulas in the main
case for the real model requires four more multiplications in odd characteristic, and
five more multiplications but one less squaring in even characteristic. The doubling
formulas require six more multiplications but one less squaring in odd characteristic
than the imaginary model. It is worth noting that the baby step operation is the
cheapest of all, including adding a degenerate divisor in the imaginary case, the
nearest imaginary analogue to the baby step.
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The table below summarizes the comparison. The operation counts listed assume
that simplified isomorphic models of the imaginary hyperelliptic curves are used, as
in [Lan05]. The operation counts for all operations in the real case include those for
the generic (non-special) cases as well as the simplified isomorphic models in even
and odd characteristic from Section 2 (see Table 1).

Imaginary
Addition (Deg 1 + Deg 2) 1I, 1S, 10M

Addition 1I, 2S, 22M
Doubling 1I, 5S, 22M

Real, Reduced Basis
General Odd Even

(Inverse) Baby Step 1I, 6M, 4C 1I, 2S, 4M 1I, 1S, 5M
Addition (Deg 1 + Deg 2) 1I, 2S, 14M, 6C 1I, 3S, 13M 1I, 3S, 12M, 1C

Addition 1I, 1S, 27M, 4C 1I, 2S, 26M 1I, 1S, 27M
Doubling 1I, 2S, 30M, 10C 1I, 4S, 28M 1I, 2S, 29M

Real, Adapted Basis
General Odd Even

(Inverse) Baby Step 1I, 8M, 5C 1I, 3S, 5M 1I, 2S, 6M, 4C
Addition (Deg 1 + Deg 2) 1I, 2S, 16M, 7C 1I, 3S, 15M 1I, 3S, 14M, 3C

Addition 1I, 2S, 27M, 7C 1I, 3S, 26M 1I, 2S, 27M, 3C
Doubling 1I, 3S, 30M, 19C 1I, 6S, 26M 1I, 4S, 28M, 3C

One immediate conclusion based on the tables is that the reduced basis is more
amendable for computations in the real case than the more standard adapted basis.
All formulas are cheaper or the same using reduced basis. Both bases require the
same amount of storage. Although the reduced basis has deg(v) = 3, the degree 3
and 2 terms are fixed by the curve equation, so only the linear and constant terms
have to be stored in an implementation.

The main obstruction from getting more competitive formulas in the real case
is the extra coefficient interfering with the inversion step. In the imaginary case,
the leading coefficient of the new u is simply s21, which allows one to simplify both
addition and doubling formulas. In the real case, we found that computing s0 and s1
explicitly was the most efficient way to compute addition and doubling of divisors.

9. Numerical results

As cryptographic applications were one of our motivations for developing ex-
plicit formulas for divisor arithmetic on genus 2 real hyperelliptic curves, we have
implemented key exchange protocols in the imaginary and real models in order to
determine whether the real model can be competitive with the imaginary model in
terms of efficiency. In the imaginary case, the main operation is scalar multipli-
cation using non-adjacent form, which we will refer to as SCALAR-MULT. In the
fixed base scenario, we assume that the base divisor is degenerate with deg(u) = 1
in order to take advantage of the special case multiplication formulas, thereby using
the closest analogue to a baby step. In the real case, there are two variations of
scalar multiplication described in [JSS06] that comprise the key exchange proto-
col. Algorithm VAR-DIST2 is a variation of NAF-based scalar multiplication using
doubling and baby steps, whereas Algorithm FIXED-DIST2 generalizes the usual
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NAF-based scalar multiplication algorithm. All three of these algorithms were im-
plemented, using the explicit formulas from [Lan05] for the imaginary case and the
formulas in this paper for the real case.

We used the computer algebra library NTL [Sho01] for finite field and polynomial
arithmetic and the GNU C++ compiler version 4.1.2. The computations described
below were performed on a Intel Core Duo 2.66 GHz computer running Linux. Al-
though faster absolute times could be obtained using customized implementations
of finite field arithmetic, our goal was to compare the relative performance of al-
gorithms in the imaginary and real settings using exactly the same finite fields as
opposed to producing the fastest times possible.

All three algorithms were implemented using curves defined over Fp and F2n . We
ran numerous examples of the three scalar multiplication algorithms using curves
with genus 2 where the underlying finite field was chosen so that the size of the set
R (approximately qg where the finite field has q elements) was roughly 2160, 2224,
2256, 2384, and 2512. These curves offer 80, 112, 128, 192, and 256 bits of security for
cryptographic protocols based on the corresponding DLP. NIST [oSN03] currently
recommends these five levels of security for key establishment in U.S. Government
applications.

For the finite field Fp, we chose a random prime p of appropriate length such that
p2 had the required bit length. For the finite fields F2n , we used n ∈ {80, 112, 128, 192, 256}.
For each finite field, we randomly selected 5000 curves and executed Diffie-Hellman
key exchange once for each curve. Thus, we ran 10000 instances of Algorithm
SCALAR-MULT (two instances for each participant using each curve) and 5000
instances each of Algorithm FIXED-DIST2 and VAR-DIST2 (one instance of each
algorithm per participant using each curve). The random exponents used had 160,
224, 256, 384, and 512 bits, respectively, ensuring that the number of bits of security
provided corresponds to the five levels recommended by NIST (again, considering
only generic attacks). In order to provide a fair comparison between the three al-
gorithms, the same sequence of random exponents was used for each run of the key
exchange protocol.

Tables 2 and 3 contain the average CPU time in milliseconds for each of the
three algorithms. The times required to generate domain parameters, including
the divisors Dd+3 and D∗ required for our real hyperelliptic curve protocols (see
[JSS06]), are not included in these timings, as domain parameter generation is a one-
time computation. In the imaginary case, “Fixed” denotes the time for algorithm
SCALAR-MULT when using a fixed, degenerate degree 1 divisor as the base (round
1 of Diffie-Hellamn key exchange) and “Var” denotes the time for SCALAR-MULT
using an arbitrary base (round 2). In the real case, the time for Algorithm FIXED-
DIST2 by “Fixed” and that for Algorithm VAR-DIST2 by “Var.” We also list the
times required to execute Diffie-Hellman key exchange using both real and imaginary
models, denoted by “DH Total.” The runtimes achieved using the real model are
slower than those using the imaginary model, but they are certainly close, within 6
milliseconds.

10. Conclusions

The formulas presented in this paper are the first complete explicit formulas for
divisor arithmetic on a real hyperelliptic curve. Although they are a few field multi-
plications slower than their imaginary counterparts, they will certainly out-perform
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Table 2. Scalar multiplication and key exchange timings over Fp

(in milliseconds).

Security Level Imaginary Real
(in bits) Fixed Var DH Total Fixed Var DH Total

80 2.137 2.304 4.440 2.307 2.618 4.925
112 3.545 3.942 7.487 3.809 4.469 8.278
128 4.702 5.149 9.851 5.003 5.869 10.872
192 10.526 11.562 22.088 11.192 13.048 24.240
256 15.560 17.077 32.636 16.492 19.168 35.660

Table 3. Scalar multiplication and key exchange timings over F2n

(in milliseconds).

Security Level Imaginary Real
(in bits) Fixed Var DH Total Fixed Var DH Total

80 4.721 5.331 10.052 5.112 6.139 11.250
112 4.096 4.475 8.571 4.425 5.076 9.500
128 4.814 5.304 10.118 5.138 5.920 11.057
192 11.700 12.942 24.641 12.715 14.721 27.436
256 22.255 24.572 46.827 24.525 28.326 52.851

a generic implementation of Cantor’s algorithm and will be useful for any compu-
tational tasks in the class group or infrastructure. Unfortunately, cryptographic
protocols using our formulas in the real model are also slower than those using the
imaginary case, even with the improved protocols described in [JSS06] in which
many divisor additions are traded for significantly faster baby steps. Nevertheless,
we hope the fact that we can achieve run times close to those in the imaginary case
will increase interest in cryptographic protocols in this setting.

There is still much work to be done on this topic. It is certainly possible that
further improvements can be found to our formulas. Reducing the number of field
multiplications required for addition and doubling by only two or three may result
in the cryptographic protocols in the real setting being slightly faster than the imag-
inary case. Another possible improvement is to investigate compound operations.
In particular, compounding the doubling and baby step operations will almost cer-
tainly save a few multiplications as compared to performing them separately, and
this would also improve the speed of the VAR-DIST2 scalar multiplication algo-
rithm (doubling and baby steps) from [JSS06]. Another possibility is to examine the
applicability of the NUCOMP algorithm [JSS07] in the explicit formulas settings.
NUCOMP has proven to offer significant improvement over Cantor’s algorithm even
for quite small genera, and it is possible that the ideas of NUCOMP will lead to
improvements for the low genus case once the formulas are made explicit.

Finally, a great deal of work has been done on explicit formulas in the imaginary
setting including using projective coordinates to obtain inversion-free formulas, for-
mulas for genus 3 and 4, and explicit formulas via theta functions. Formulas using
projective coordinates in the real model of a genus 2 hyperelliptic curves have been
developed recently by Erickson, Ho, and Zemedkun [EHZ10]. All of the other topics
are work in progress.
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