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Abstract. Common Randomness Generation (CRG) and Secret Key Establishment (SKE) are funda-

mental primitives that are used in information-theoretic coding and cryptography. We study these two

problems over the two-way channel model of communication, introduced by Shannon. In this model, the

common randomness (CK) capacity is defined as the maximum number of random bits per channel use

that the two parties can generate. The secret key (SK) capacity is defined similarly when the random bits

are also required to be secure against a passive adversary. We provide lower bounds on the two capacities.

These lower bounds are tighter than those one might derive based on the previously known results. We

prove our lower bounds by proposing a two-round, two-level coding construction over the two-way channel.

We show that the lower bound on the common randomness capacity can also be achieved using a simple

interactive channel coding (ICC) method. We furthermore provide upper bounds on these capacities and

show that the lower and the upper bounds coincide when the two-way channel consists of two independent

(physically degraded) one-way channels. We apply the results to the case where the channels are binary

symmetric.
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1 Introduction

The two-way discrete memoryless channel (TWDMC) setup was initially proposed as a communication model by

Shannon [25], where he studied the problem of reliable message transmission (RMT) between two parties, here

referred to as Alice and Bob. Shannon’s work brought about the foundation of multi-user information theory and

attracted much attention in theory and practice. The TWDMC setup is a general two-party communication

model where in each communication round both parties, simultaneously, provide inputs to the channel, and

receive their corresponding outputs as (possibly probabilistic) functions of the two inputs. In each channel use,

a TWDMC receives the inputs XA and XB from Alice and Bob and returns to them the outputs YA and

YB, respectively. The channel is specified by the conditional distribution PYA,YB |XA,XB
. In Reliable Message

Transmission (RMT) using a TWDMC, Alice and Bob want to reliably send messages to each other. The

reliable message (RM) rate RAB from Alice to Bob is achievable if Alice can send nRAB bits of message reliably

to Bob in n channel uses; in analogy, an achievable RM rate RBA from Bob to Alice is defined. Accordingly, a

pair (RAB, RBA) is achievable if the two rates can be achieved using the TWDMC at the same time. The RM

capacity region is the set of all achievable pairs. An extension of RMT in the above setup when the two-way

channel leaks information to a passive adversary, Eve, is called secure message transmission (SMT) over a two-

way discrete memoryless wiretap channel (TWDMWC) [29]. The secure message (SM) capacity region for this

problem is defined analogously to that of RMT, except that the messages are required to be both reliable and

secure.

This paper considers two other well-studied problems, for the first time, in the above setups. The first

problem is common randomness generation (CRG) over a TWDMC, where Alice and Bob aim at calculating a



shared random variable. The common randomness (CR) rate Rcr is called achievable if the parties can generate

nRcr shared random bits in n channel uses, and the CR capacity is the highest achievable CR rate.

The second problem is secret key establishment (SKE) over a TWDMWC, where Alice and Bob aim at calcu-

lating a shared random variable that is unknown to the adversary, Eve. This problem can be seen as an extension

of CRG when the two-way channel leaks information to Eve and the parties want their shared randomness to

be secure from her. Accordingly, the Secret Key (SK) capacity is defined similarly to the CR capacity with the

extra requirement that the randomness must satisfy reliability and security, both. This immediately induces the

following question.

Question 1. What is the CR/SK capacity of an arbitrarily given two-way channel?

We remark that the two problems of RMT and CRG over TWDMCs are different in general: An RMT

protocol is used to deliver given messages reliably to their destinations, while a CRG protocol produces shared

randomness. However, these problems are related. In particular, when the parties have free access to independent

sources of randomness (which is also assumed in this paper), any RMT protocol can be used to obtain a CRG

protocol by Alice and Bob generating their random variables and sending them to each other reliably using

RMT. A similar argument holds to relate SMT and SKE. As a consequence, an achievable pair (RAB , RBA) for

RMT (resp. SMT) results in an achievable rate RAB + RBA for CRG (resp. SKE). This leads to the following

natural question.

Question 2. Can the CR/SK capacity be obtained from the RM/SM capacity region by maximizing RAB +RBA

over all choices of (RAB , RBA)?

Certainly, this maximization suggests a lower bound on the CR/SK capacity; nevertheless, this trivial lower

bound may not be tight since the shared randomness could also be generated as a result of interaction between

the two parties.

1.1 Our work

We give general descriptions of multi-round CRG and SKE protocols in the above setups and formally define the

CR and the SK capacities. We first use the previous results on RMT and SMT, esp., those in [25,29], to derive

“trivial lower bounds” on the CR and the SK capacities. Next, we prove that the trivial bounds cannot be tight

by giving a simple two-way channel example, where one bit of common randomness (or secret key) per channel

use is achievable while the trivial bound is zero. We finally show that the lower bounds can be improved using

interaction over the channel. The improved lower bounds on the CR and the SK capacities are achieved by a

two-round construction that uses a two-level coding method, i.e., applying two sequential encoding functions to

a message. However, we prove that the lower bound on the CR capacity can also be achieved using a two-round,

but one-level, interactive channel coding (ICC) method, introduced in [6]. In both constructions, the first round

involves sending independent and identically distributed (i.i.d.) random variables and the second round is used

to send encoding information.

We also prove upper bounds on the CR and the SK capacities. We show that the two bounds on the CR

capacity coincide if the TWDMC consists of two independent DMCs in the two directions, and the two bounds

on the SK capacity coincide if the TWDMWC consists of two independent, physically degraded DMWCs. It is

worth mentioning that the bounds proved in this paper are expressed by single-letter formulas, i.e., they can

easily be derived from the channel probability distribution.



1.2 Related work

We first provide a selected summary of the literature on reliable/secure message transmission as related problems,

and then discuss the work in the area of CRG and SKE. The systematic study of reliable message transmission

over noisy channels is due to Shannon [24]. The problem has since been extended to many other communication

setups, e.g., [1,8,25,30]. Shannon [25] introduced the two-way channel setup as an interesting scenario to model

a two-party communication environment, and proved inner and outer bounds on the RM capacity region. In

general, an inner bound contains a subset (not necessarily all) of the achievable pairs of RM rates (RAB , RBA),

whereas an outer bound is a superset of the set of all these pairs. The inner bound in [25] was shown not to

be tight in [13] and was improved later in [15]. The outer bound was also improved in [33]; yet, due to the gap

between the two bounds, finding the capacity region in this setup remains an open problem.

Transmission of secure messages over noisy channels was first considered by Wyner [31] and later discussed

in several other setups, e.g., [10, 20, 27]. Secure message transmission over special cases of two-way wiretap

channels was first investigated by Tekin and Yener [28,29], where inner bounds on the SM capacity region were

derived. The bounds were improved, more recently, in [14,16,21] using feedback and key exchange mechanisms

as techniques to increase achievable rates.

The problem of two-party common randomness generation (CRG) has been previously studied in other

setups, e.g., CRG over noiseless channels using correlated randomness [3, 12] or CRG over noisy channels [26],

where the authors derived expressions for the CR capacity. Determining the CR capacity is important due to

the role of common randomness in building two-party randomized protocols that, compared to deterministic

protocols, have higher computation and communication efficiencies. Examples of such applications appear in

random coding over arbitrarily varying channels (AVC) [11], identification over noisy channels [4], and oblivious

transfer and bit commitment schemes [23, 32].

The CRG problem when the communication is over a hostile environment turns into the fundamental problem

of secret key establishment (SKE) in cryptography: Alice and Bob want to share a common key about which

an adversary Eve should be uncertain. The problem has been studied in numerous setups including noise-

free public channels and noisy broadcast channels. The results on “secure transmission” over one-way wiretap

channels [10,31] imply the possibility of secure key establishment as long as the wiretap channel is not in Eve’s

favor, e.g., adversary’s channel is noisier than the main channel. Maurer [18], concurrently with Ahlswede and

Csiszár [2], showed that by assuming an additional noiseless public discussion channel, available to the parties

in both ways, SKE may be possible even when the wiretap channel is in Eve’s favor. Noiseless channels in

practice are realized from physical noisy channels using error correcting codes. Noting that this approach does

not always lead to the highest achievable secret key rates, recent work studied SKE in setups that replace the

above public discussion channel with other resources, e.g., a wiretap noisy channel in the opposite direction [5]

or correlated sources of randomness [17, 22].

1.3 Discussion

The two-way (wiretap) channel setup naturally captures a communication environment between two parties with

no prior correlated information. The channel combines the inputs that the two parties provide and returns to

each of them a noisy version of this combination. The channel may also leak a noisy version to an eavesdropper

in the environment. Examples of such a communication scenario are mobile ad hoc networks and wireless sensor

networks. We note that noiseless public channel, one-way wiretap channel, or a pair of independent wiretap

channels, studied in [10, 18, 26], are in essence special cases of the general two-way (wiretap) channel setup.

However, none of these settings can model combination of two inputs that are transmitted over the channel

simultaneously.



In this paper, we prove lower and upper bounds on the CR and the SK capacities. The lower bound proofs

use random coding arguments to show the existence of CRG and SKE constructions that achieve the bounds.

One can, however, design practical constructions by using concrete primitives in the CRG/SKE protocols that

are proposed in this paper. An example of such approaches to construct concrete protocols is the work in [7]

that proposes a practical wireless key establishment scheme based on the theoretical results of [18, 31].

1.4 Notation

We use calligraphic letters (X ), uppercase letters (X), and lowercase letters (x) to denote finite alphabets,

random variables (RVs), and their realizations over sets, respectively. The size of X is denoted by |X |. Xn is

the set of all sequences of length n (so called n-sequences) with elements from X . Xn = (X1, X2, . . . , Xn) ∈ Xn

denotes a random n-sequence in Xn, and Xj
i = (Xi, Xi+1, . . . , Xj) is a subsequence. To save space, we may use

bold X and x to denote a random sequence and its realization. For the RVs X , Y , and Z, we use X ↔ Y ↔ Z

to denote a Markov chain between them. ‘||’ denotes concatenation of sequences. For a value x, we use [x]+ to

show max{0, x} and, for 0 ≤ p ≤ 1, h(p) = −p log p − (1 − p) log(1 − p) denotes the binary entropy function.

Hereafter, we use the terms CRG and SKE specifically for the two-way (wiretap) channel setup.

1.5 Paper organization

Section 2 describes the two-way channel model, related problems, and current results. Section 3 summarizes

our main results in the paper, including lower and upper bounds and their coincidence. In Section 4, we briefly

present our CRG and SKE constructions that achieve the lower bounds on the CR and the SK capacities.

Section 5 applies the lower bound results to the case of two-way binary channels. We conclude the paper in

Section 6.

2 Model and Definitions

2.1 CRG in the TWDMC setup

Alice and Bob are connected by a Two-Way Discrete Memoryless Channel (TWDMC) that is denoted by

(XA, XB) → (YA, YB) and specified by the conditional probability distribution PYA,YB |XA,XB
over the finite sets

XA,XB ,YA,YB . The channel is indicated in Fig. 1. We furthermore assume that each party has free access to

an independent source of randomness.

XA

BobAlice

XB
TWDMC

YA YBBABA XXYYP |

Fig. 1. The Two-Way Discrete Memoryless Channel (TWDMC) setup.

Alice and Bob follow a Common Randomness Generation (CRG) protocol over the TWDMC to generate a

shared random variable. In general, the protocol consists of a certain number of communication rounds, denoted

by t. In each round, 1 ≤ r ≤ t, Alice and Bob send sequences of random variables (RVs) X:r
A and X:r

B, each of



length nr, and receive the nr-sequences Y
:r
A and Y:r

B , respectively. The sequence X
:r
A (resp. X:r

B) is determined as

a function of some independent randomness and the previously communicated (sent and received) sequences by

Alice (resp. Bob). At the end of round r, the view of each party from the protocol is the set of their communicated

sequences. Letting V :r
A and V :r

B be respectively the views of Alice and Bob at the end of round r, we have

V :r
A = ||ri=1

(

X:i
A||Y

:i
A

)

, V :r
B = ||ri=1

(

X:i
B ||Y

:i
B

)

. (1)

Finally, V iewA = V :t
A and V iewB = V :t

B are the views at the end of the last communication round. Alice

uses V iewA to calculate SA ∈ S and Bob uses V iewB to calculate SB ∈ S. The total number of channel uses is

calculated as

n =

t
∑

r=1

nr. (2)

Fig. 2(a) indicates the relationship between the final randomness and the views of the parties in rounds t

and t− 1 of a CRG protocol. For instance, Alice calculates X :t
A based on her view V :t−1

A as X :t
A = f(Rt, V

:t−1
A ),

where f is a deterministic function and Rt is her local randomness that is used in round t and is independent of

the views in round t− 1. This means that, given V :t−1
A , X :t

A is independent of V :t−1
B which implies the Markov

chain V :t−1
B ↔ V :t−1

A ↔ X :t
A. In a similar way, one can derive Markov chains between other sets of variables in

a general CRG protocol. These Markov chains are later used in proving of an upper bound on the capacity.

Bob

1:  t

AV 1:  t

BV

Alice Bob

t

BX :t

AX :

Alice

S S

t

BY:
t

AY:

AS
BS

(a) The CRG protocol

Bob

1:  t

AV 1:  t

BV

1:  t

EV

Alice Eve Bob

t

BX :t

AX :

Alice Eve

S S

t

BY:
t

AY: tZ:

AS
BS

(b) The SKE protocol

Fig. 2. The relationship between variables in the CRG/SKE protocol

Definition 1. For Rcr ≥ 0 and 0 ≤ δ ≤ 1, the CRG protocol Π in the TWDMC setup is (Rcr, δ)-reliable if

there exists a random variable S ∈ S such that

H(S)

n
> Rcr − δ, (3)

Pr(SA = SB = S) > 1− δ. (4)

Definition 2. The common randomness (CR) rate Rcr ≥ 0 in the TWDMC setup is achievable if for an

arbitrarily small δ > 0, there exists an (Rcr, δ)-reliable CRG protocol. The CR capacity in this setup is denoted

by CTWDMC
cr and is defined as the highest achievable CR rate.

2.2 SKE in the TWDMWC setup

As indicated in Fig. 3, Alice and Bob are connected by the Two-Way Discrete Memoryless Wiretap Channel

(TWDMWC) (XA, XB) → (YA, YB, Z) that receives inputs from Alice and Bob and returns outputs to Alice,



TWDMWC

XA

BobAlice

XB

YA YB
BABA XXZYYP |

Z
Eve

Fig. 3. The Two-Way Discrete Memoryless Wiretap Channel (TWDMWC) setup.

Bob, and the adversary, Eve, respectively. The channel is specified by the conditional distribution PYA,YB ,Z|XA,XB

over the finite sets XA,XB,YA,YB ,Z. Again, the parties have free access to independent sources.

A general t-round SKE protocol in this setup is described analogously to a general CRG protocol except

that, in each round r, Eve receives an nr-sequence Z:r and her view at the end of this round is written as

V :r
E = ||ri=1Z

:i. (5)

Eve’s view at the end of the protocol is V iewE = V :t
E . Fig. 2(b) shows how the parties’ views in round t− 1 and

t are related to the keys, calculated by Alice and Bob.

Definition 3. For Rsk ≥ 0 and 0 ≤ δ ≤ 1, the SKE protocol Π in the TWDMWC setup is (Rsk, δ)-secure if

there exists a random variable S ∈ S such that

H(S)

n
> Rsk − δ, (6)

Pr(SA = SB = S) > 1− δ, (7)

H(S|V iewE)

H(S)
> 1− δ. (8)

Definition 4. The secret key (SK) rate Rsk ≥ 0 in the TWDMWC setup is achievable if for an arbitrarily

small δ > 0, there exists an (Rsk, δ)-secure SKE protocol. The secret key capacity in this setup is denoted by

CTWDMWC
sk and is defined as the highest achievable SK rate.

Remark 1. The above definition of SK capacity follows those in [2, 10, 17, 18, 22, 31]. This definition is referred

to as the weak SK capacity as it requires Eve’s uncertainty rate about the secret key to be negligible (as in (8)),

whereas the “strong” SK capacity [19] requires Eve’s total uncertainty to be negligible, i.e., requiring

H(S|V iewE) > H(S)− δ. (9)

It is shown [19] that, for the setups in [10, 18, 31], the weak definition can be replaced by the strong definition

without sacrificing the SK capacity. This result can also be extended to the TWDMBC setup by modifying the

proof in [19]. This is left as future work.

2.3 Known results on two-way channels

Shannon’s work [25] on reliable message transmission (RMT) over TWDMCs proved the following inner bound,

GI , and outer bound, GO, on the RM capacity region of the channel (XA, XB) → (YA, YB). Letting P =

PXA,XB ,YA,YB
,

R(P ) = {(RAB, RBA) : RAB ≤ I(XA;YB|XB), RBA ≤ I(XB;YA|XA)},

GI =
⋃

PXA,XB
=PXA

.PXB
R(P ), (10)

GO =
⋃

PXA,XB
R(P ), (11)



where, by ∪, we mean the convex closure of the union of R(P )’s. The bound on RAB (if maximized w.r.t.

PXA,XB
) somehow reflects the capacity of the one-way channel XA → YB from Alice to Bob when XB is known

to Bob; similarly, one can interpret the bound on RBA. The two inner and outer bounds in (10) and (11) have

been later discussed and slightly improved (see, e.g., [13, 15, 33]).

Tekin and Yener [28, 29] considered secure message transmission (SMT) over Gaussian and binary two-way

wiretap channels. The authors proved the following set of achievable pairs as an inner bound on the SM capacity

region. Letting P = PXA,XB ,YA,YB ,Z ,

Rs(P ) = { (Rs,AB , Rs,BA) : Rs,AB ≤ [I(XA;YB|XB)− I(XA;Z)]+, Rs,BA ≤ [I(XB;YA|XA)− I(XB;Z)]+,

Rs,AB +Rs,BA ≤ [I(XA; YB|XB) + I(XB; YA|XA)− I(XA, XB ;Z)]+ },

Gs,I =
⋃

PXA,XB
=PXA

.PXB
Rs(P ). (12)

The bound on Rs,AB (if maximized w.r.t. PXA,XB
) shows the SM capacity of the channel XA → (YA, Z)

when XB is known to Bob; similar is the bound on RBA. It is noteworthy that the inner bound (12) has

been improved in [14, 16, 21] using techniques such as feedback and key exchange mechanisms in addition to

cooperative jamming.

2.4 Two-way channels with independent components

A special class of TWDMCs includes those which consist of two independent DMCs in the two directions, i.e.,

PYA,YB |XA,XB
= PYB |XA

.PYA|XB
.

We refer to this class as 2DMC. The CRG problem in this setup when Alice and Bob have “limited” access to

independent sources of randomness has been considered in [26], where a single letter formula for the capacity

was determined.

Likewise, 2DMWCs refer to a class of TWDMWCs that consist of two independent DMWCs in opposite

directions. More precisely, a TWDMWC (XA, XB) → (YA, YB, Z) is a 2DMWC when

Z = (Z1, Z2), and

PYA,YB ,Z|XA,XB
= PYB ,Z1|XA

.PYA,Z2|XB
.

The SKE problem in this setup has been recently studied in [5], where lower and upper bounds on the SK

capacity were provided and were shown to coincide when each DMWC is physically degraded. Informally, in a

physically degraded DMWC, one of the receivers always receives a noisy version (though a noisy channel) of

what the other receiver receives. This can be modeled using a Markov chain. e.g., the Markov chain X ↔ Y ↔ Z

indicates a degraded channel where Y is a noisy version of the input X and Z (as a noisy version of Y ) is a

noisier version of X . This Markov chain implies I(X ;Z|Y ) = 0.

Definition 5. The DMWC X → (Y, Z) is called obversely degraded if X ↔ Y ↔ Z forms a Markov chain. It

is called reversely degraded if X ↔ Z ↔ Y forms a Markov chain. The DMWC is called physically degraded

if we can write X = [XO, XR], Y = [YO, YR], and Z = [ZO, ZR], where

ZO ↔ YO ↔ XO ↔ XR ↔ ZR ↔ YR

holds.

In this paper, we verify our results on SKE in the TWDMWC setup by simplifying them for the case of

2DMWCs with degraded components and seeing whether our results are consistent with the results in [5]. For

simplicity, we only consider obversely degraded channels; nonetheless, the results of this verification can be

easily extended to the general physically degraded DMWCs, as defined above.



3 Statement of the Main Results

3.1 Trivial lower bounds and a TWDMC example

From (10) and (12), we can derive trivial lower bounds on the CR and the SK capacities, respectively. Again,

note that if (RAB , RBA) is an achievable RM/SM rate, then RAB + RBA is an achievable CR/SK rate. As a

consequence, the two following expressions respectively give trivial lower bounds on the CR capacity, CTWDMC
cr ,

and the SK capacity, CTWDMWC
sk .

C
TWDMC
cr ≥ max

PXA,XB
=PXA

.PXB

[I(XA;YB|XB) + I(XB ;YA|XA)], (13)

C
TWDMWC
sk ≥ max

PXA,XB
=PXA

.PXB

[[I(XA; YB|XB)− I(XA;Z)]+ + [I(XB ;YA|XA)− I(XB;Z)]+] . (14)

One may ask whether the above trivial lower bounds cannot be improved or, more generally, whether the

RM/SM capacity region specifies a tight lower bound on the CR/SK capacity, by maximizing RAB +RBA over

all choices of achievable pairs. We give a negative answer to this question using the following simple example.

Consider the TWDMC shown in Fig. 4 which is a modified version of Shannon’s modulo-two additive two-

way channel example [25, Fig. 4], where there exists a binary symmetric channel (BSC) with bit error probability
1
2 , right after the XOR operand. In this example, the channel outputs are independent of the inputs; hence,

little chance of reliable message transmission. This implies that no pair of rates except (RAB = 0, RBA = 0) is

achievable; in this case, the inner bound (10) is tight and represents the capacity region.

BSC

X
A

 !"#$%&'

X
B

XOR

BSC
()*

Y
A Y

B

Fig. 4. A TWDMC example.

Using (13), which is obtained from (10), we derive a “zero” lower bound on the CR capacity. However, this

lower bound is not tight since Alice and Bob can share one random bit (YA = YB) each time they use the

channel. The key observation is that the common randomness is a function of channel noise and the parties’

inputs, and it does not need to be selected a priori by the parties. Since RMT and CRG in TWDMC are viewed

respectively as special cases of SMT and SKE in TWDMWC, the above example also lets us conclude that the

SM capacity region of a TWDMWC does not necessarily give a tight lower bound on the SK capacity in general.

3.2 Common randomness capacity

We provide lower and upper bounds on the CR capacity in the TWDMC setup, present give our informal inter-

pretation of the expressions. Let the RVs XA, YA, XB, and YB correspond to the channel probability distribution

PYA,YB |XA,XB
. Let UA and UB be random variables from arbitrary sets UA and UB such that

UA ↔ (XA, YA) ↔ (XB, YB) ↔ UB

forms a Markov chain.



Theorem 1. The CR capacity in the TWDMC setup is lower bounded as

CTWDMC
cr ≥ maxn1,n2,PUA,XA

PUB,XB
[n1[I(UA;XB,YB)+I(UB;XA,YA|UA)]+n2[I(XA;YB ,XB)+I(XB ;YA,XA)]

n1+n2

, (15)

s.t. PXA,XB = PXA .PXB , (16)

n1I(UA;XA, YA|XB , YB) < n2I(XA;XB , YB), (17)

n1I(UB;XB , YB|XA, YA) < n2I(XB ;XA, YA)]. (18)

Proof. See Appendix A.

Remark 2. Since XA and XB are independent, the second term can also be written as n2[I(XB;YA|XA) +

I(XA;YB|XB)]; hence, when n1 = 0 the argument equals that of (13). This shows that the new lower bound is

greater than or equal to the trivial lower bound in (13).

Remark 3. The above lower bound is achieved using a two-round coding construction (as in Appendix A).

The terms in (15) can be interpreted as follows. The first term n1[I(UA;XB, YB) + I(UB;XA, YA|UA)] shows

the amount of raw (uncoded) correlated information that is provided in the first communication round with

n1 channel uses. This information is obtained based on the inputs and the outputs of the channel. The second

term n2[I(XB ;YA, XA)+I(XA;YB, XB)] indicates the amount of correlated information, provided in the second

communication round, following the coding construction. This information equals the sum of the RM rates of

the channel in both directions (i.e., the bounds on RAB and RBA in (10)). The conditions (17) and (18) mean

that the amount of confusion (uncertainty) about the transmitted information in the first round can not be

more than the capability of the channel for reliable transmission in the second round.

The next theorem determines an upper bound on the CR capacity in the TWDMC setup, i.e., the highest

CR rate that all CRG protocols can achieve.

Theorem 2. The CR capacity in the TWDMC setup is upper bounded as

CTWDMC
cr ≤ max

PXA,XB

[I(XB;YA|XA) + I(XA;YB|XB) + I(YA;YB|XA, XB)] . (19)

Proof. See Appendix B.

Remark 4. The first two terms of (19) are the same as those of (11) for the RM capacity region. The third

term, however, is due to the exclusive property of CRG that the common randomness may be obtained from

the correlated information between the outputs. This again articulates the essential difference between the two

problems in the TWDMC setup.

Theorems 1 and 2 are proved as special cases of Theorems 4 and 5 (in the sequel) in Appendices A and

B, respectively. The proof for the lower bound (in Appendix A) is based on a two-round SKE protocol that

uses a two-level coding construction. Although the proposed construction is convenient for the lower bound

proof, it will be of practical significance to construct a simpler protocol that achieves the same lower bound.

This motivated us to propose a new CRG protocol that achieves the lower bound given by (15). The protocol

uses Interactive Channel Coding (ICC) [6] that is an extension of systematic channel coding to a two-round

protocol. The messages in the two-round ICC are essentially parts of a codeword from a systematic channel

code, split into two parts: one obtained in the first round and one sent in the second round. In a systematic

code, each codeword consists of a message (information sequence), followed by a parity-check sequence. Bipartite

systematic codes generalize this definition by allowing the two (information and parity-check) parts to come

from (possibly) different alphabets.



Definition 6. A (bipartite) systematic channel code, with encoding alphabets (T ,U) and decoding alphabets

(V ,W), is a pair of encoding/decoding functions (Enc/Dec), where

– Enc : T n1 × Un2,i → Vn1 × Wn2 deterministically maps (tn1 ||un2,i) (as the information sequence) to a

sequence (tn1 ||un2), such that (un2 = un2,i ||un2,p) and n2 = n2,i + n2,p; we call un2,p the parity check

sequence.

– Dec : Vn1 ×Wn2 → T n1 × Un2,i assigns a guess sequence (t̂n1 ||ûn2,i) to each input (vn1 ||wn2).

The ICC method has been proposed in [6] and was shown to be useful in achieving the lower bound on the

SK capacity of a 2DMWC under certain conditions [6].

Theorem 3. The lower bound (15) on the CR capacity can be achieved using the one-level interactive channel

coding method.

Proof. See Section 4.2 and Appendix C.

In the following, we consider the 2DMC setup as described in Section 2.4, and show that the lower and

the upper bounds on the CR capacity coincide for this class of TWDMCs. We note that the CR capacity (20)

matches the result in [26], on CRG over 2DMCs, when there is no limit on the available independent randomness.

Proposition 1. When the TWDMC consists of two independent DMCs in the two directions (called a 2DMC),

the two bounds coincide and the CR capacity equals

C2DMC
cr = max

PXA
,PXB

{I(XA;YB) + I(XB;YA)}. (20)

Proof. See Appendix D.

Proposition 1 implies that, in the 2DMC setup, the RM capacity region, e.g., obtained from the results of [25]

(see (10)), can be used to obtain the CR capacity (i.e., a tight lower bound), by solving the sum maximization

problem.

3.3 Secret key capacity

We provide lower and upper bounds on the SK capacity in the TWDMWC setup. These bounds are gener-

alizations of the bounds, given in Section 3.2, to the cases when the communication is eavesdropped by Eve.

Let the RVs XA, YA, XB, YB, and Z correspond to the channel probability distribution PYA,YB ,Z|XA,XB
and let

UA,W1A,W2A, UB,W1B , and W2B be random variables from arbitrary sets UA,W1A,W2A,UB,W1B, and W2B,

respectively, such that the following Markov chains hold,

UA ↔ (XA, YA) ↔ (XB, YB) ↔ UB, (21)

W2A ↔ W1A ↔ XA ↔ (XB, YA, YB, Z), (22)

W2B ↔ W1B ↔ XB ↔ (XA, YA, YB, Z). (23)

Theorem 4. The SK capacity in the TWDMWC setup is lower bounded as

CTWDMWC
sk ≥ max

n1,n2,PW
2A,W

1A,UA,XA
PW

2B,W
1B,UB,XB

[
1

n1 + n2
(n1[I(UA;XB , YB) + I(UB;XA, YA|UA)− I(UA, UB ;Z)]

+n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)− I(W1A,W1B;Z|W2A,W2B)]+), (24)

s.t. PXA,XB = PXA .PXB (25)

n1I(UA;XA, YA|XB , YB) < n2I(W1A;XB , YB), (26)

n1I(UB;XB , YB |XA, YA) < n2I(W1B;XA, YA)]. (27)



Proof. See Section 4.1 and Appendix A.

The terms in (24) can be interpreted in analogy to the argument following (15), adding that the shared

information is required to remain secure from Eve and, hence, a privacy amplification is needed. Informally, the

terms n1I(UA, UB;Z) and n2I(W1A,W1B;Z|W2A,W2B) show the amount of leakage of shared randomness in

the first and the second rounds, respectively.

The upper bound on the SK capacity is provided in the following. Let Q be a random variable from an

arbitrary set Q such that

Q ↔ (XA, XB) ↔ (YA, YB , Z)

forms a Markov chain.

Theorem 5. The SK capacity in the TWDMWC setup, CTWDMWC
sk , is upper bounded by

max
PQ,XA,XB

[I(XA;YB |XB , Z) + I(XB ;YA|XA, Z) + I(YA;YB |XA, XB , Z) + I(XA;XB |Z,Q)− I(XA;XB |Q)] . (28)

Proof. See Appendix B.

The following proposition states that if the TWDMWC consists of two independent DMWCs with degraded

channels (see Section 2.4), then the lower and the upper bounds coincide and the SK capacity is achieved by

a one-round protocol. In [5], SKE over 2DMWCs has been considered in the half-duplex communication model

where the two forward and backward channels could be used for different number of times. The following special

case of TWDMWC, however, complies a full-duplex communication model where the channels are used together

and the number of channel uses must be the same for the two channels. The results in [5] are consistent to those

in Proposition 2, assuming the full-duplex communication model.

Proposition 2. When the 2DMWC consists of degraded DMWCs XA ↔ YB ↔ Z1 and XB ↔ YA ↔ Z2 (as in

Definition 5), the lower bound coincides with the upper bound, and the SK capacity equals

C2DMWC
sk = max

PXA
,PXB

{I(XA;YB|Z1) + I(XB;YA|Z2)}. (29)

Furthermore, the SK capacity is achieved by a one-round protocol.

Proof. See Appendix D.

4 CRG/SKE Protocol Outline

The complete structure of the protocols are described in the lower bound proofs in the appendix. In this section,

we present a brief explanation to give the intuition behind these constructions.

4.1 The two-round CRG/SKE protocol (Theorems 1 and 4)

For simplicity, we give an outline of the SKE protocol in the following special case: W1A = XA, W1B = XB,

W2A = W2B = 0, and the two conditions in (26) and (27) hold with almost equality. Let n1, n2, PUA,XA
, and

PUB ,XB
be those that maximize the right side of (24), which is written as

Rsk = 1
n1+n2

( n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)− I(UA, UB;Z)]

+n2[I(XA;XB , YB) + I(XB ;XA, YA)− I(XA, XB ;Z)]+). (30)

Define

ηa,f ≈ n1I(UA;XA, YA), ηa,t ≈ n2I(XA;XB, YB) (31)

ηb,f ≈ n1I(UB;XB, YB), ηb,t ≈ n2I(XB;XA, YA), (32)

η ≈ n1I(UA, UB;XA, YA, XB, YB), κ = (n1 + n2)Rsk, γ = η − κ. (33)



– Let Un1

A,ǫ (resp. Un1

B,ǫ) be obtained by randomly and independently choosing 2ηa,f (resp. 2ηb,f ) typical se-

quences from Un1

A (resp. Un1

B ).

– Let {Un1

A,ǫ,i}
2ηa,t

i=1 be a partition of Un1

A,ǫ into 2ηa,t equal-sized parts. Define the function tA : Un1

A,ǫ → TA =

{1, 2, . . . , 2ηa,t} such that, for any input in Un1

A,ǫ,i, it outputs i. Similarly define the partition {Un1

i,B,ǫ}
2ηb,t
i=1

and the function tB.

– Let {Ks}
2κ

s=1 be a partition of Un1

A,ǫ×Un1

B,ǫ into equal-sized parts of size 2γ . Define the key derivation function

φ : Un1

A,ǫ × Un1

B,ǫ → {1, 2, . . . , 2κ} such that, for any input in Ks, it outputs s.

The protocol proceeds in two rounds. In round 1, Alice and Bob send i.i.d. n1-sequencesX
:1
A andX:1

B according

to PXA
and PXB

, and receive the n1-sequences Y
:1
A and Y:1

B , respectively, while Eve receives Z:1. Alice searches

in Un1

A,ǫ to find a sequence Un1

A that is jointly typical to (X:1
A,Y

:1
A) w.r.t. P(XA,YA),UA

. Similarly, Bob searches for

a sequence Un1

B that is jointly typical to (X:1
B,Y

:1
B) w.r.t. P(XB ,YB),UB

. Now, (Un1

A , Un1

B ) represents the common

randomness that needs to be made reliable in the second round.

In round 2, Alice computes TA = tA(U
n1

A ), which can help Bob decode his (X:1
B ,Y

:1
B) to Un1

A . Bob also

computes TB = tB(U
n1

B ). Alice and Bob encode TA and TB to n2-sequences X
:2
A = Enc(TA) and X:2

B = Enc(TB)

and send them over the channel. The parties and Eve receive Y:2
A , Y

:2
B , and Z:2, respectively. Alice first decodes

(X:2
A ,Y

:2
A) to T̂B ≈ TB, and uses this for decoding (X:1

A,Y
:1
A) to Ûn1

B ≈ Un1

B . The decoding function relies on the

jointly-typical decoding technique for long sequences (see, e.g., [9, Chapter 8]). Similarly Bob finds T̂A ≈ TA and

then Ûn1

A ≈ Un1

A . Now, the parties have a reliable common randomness, but it is not perfectly secure against

Eve. To derive a secret key, the parties compute φ(Un1

A , Un1

B ). The rest of the proof is to show that there exist

encoding/decoding functions and a key derivation function for the above construction with parameters (31)-(33),

such that the protocol achieves the lower bound (24) and satisfies reliability and secrecy requirements (7) and

(8) for an arbitrarily small δ > 0.

4.2 The CRG construction using the ICC method (Theorem 3)

Again for simplicity, let the two conditions in (17) and (18) hold with almost equality. Also let n1, n2, PXA
, and

PXB
be those that maximize the right side of (15). The protocol has two rounds. The first round is the same

as that in Section 4.1, and so the common randomness is defined to be (Un1

A , Un1

B ). However, the second round

differs as follows.

Alice and Bob use their systematic coding functions to encode (Un1

A ,X:2
A) = Enc(Un1

A ) and (Un1

B ,X:2
B) =

Enc(Un1

B ), respectively. Next, they send the parity-check sequences X:2
A and X:2

B , and receive Y:2
A and Y:2

B . Using

the bipartite jointly typical decoding method (see Appendix C), Alice decodes (X:1
A ,Y

:1
A ,X

:2
A ,Y

:2
A) to Û

n1

B ≈ Un1

B ,

and Bob decodes (X:1
B,Y

:1
B ,X

:2
B,Y

:2
B) to Ûn1

A ≈ Un1

A . Overall, the common randomness is S = (Un1

A , Un1

B ): Alice

obtains SA = (Un1

A , Ûn1

B ), and Bob obtains SB = (Ûn1

A , Un1

B ). Appendix C shows that the rate achieved by this

construction matches the lower bound in (15) and the protocol satisfies the reliability requirement (4) for an

arbitrarily small δ > 0.

5 Achievable Rates over Two-Way Binary Wiretap Channels

Consider the Two-Way Binary Wiretap Channel (TWBWC) setup as in Fig. 5, where the inputs and the outputs

are binary variables. In this model, the two input bits XA and XB to the channel are XORed (added modulo

two). Alice and Bob receive noisy versions of the XOR bit through independent BSCs, with noises NrA and

NrB, respectively, where Pr(NrA = 1) = pra and Pr(NrB = 1) = prb ; Eve also receives a noisy version through

an eavesdropping channel with noise NE , where Pr(NE = 1) = pe. One can relate the channel output bits to



the input bits as

YA = XA +XB +NrA, (34)

YB = XA +XB +NrB, (35)

Z = XA +XB +NE , (36)

where + indicates modulo-two addition.

XA

BobAlice

XB

Bob
YA YB

N NNE

Z
Eve

NrA
NrB

NE

Fig. 5. Two-way binary wiretap channel.

In this section, we study the behavior of the lower bounds, proved in Section 3, for the case of binary

channels and compare them to the trivial lower bounds that are obtained based on the previous work on

message transmission. Since the CRG problem can be viewed as a spacial case of SKE, where Eve receives

no information about the transmitted sequences (i.e., when pe = 0.5), we only focus on the SKE problem.

Throughout, for two real values 0 ≤ x, y ≤ 1, we use x ⋆ y to denote the error probability in the cascade of two

BSCs with error probabilities x and y, i.e.,

x ⋆ y = x+ y − 2xy.

The following lemma indicates the the cascade of any two BSCs is noisier, compared to each of them.

Lemma 1. For any real values 0 ≤ x, y ≤ 1, we have

|x ⋆ y − 0.5| ≤ min{|x− 0.5|, |y − 0.5|}, (37)

and

h(x ⋆ y) ≥ max{h(x), h(y)}. (38)

Proof. See Appendix E.

We use Theorem 4 to obtain a lower bound, LboundN , on the SK capacity in the above model.

Lemma 2. The SK capacity in the TWBWC setup is lower bounded as

CTWBWC
sk ≥ LboundN

△
= max

0≤p1,p2≤1
[µL1 + (1− µ)[L2]+] , (39)

where

L1 = 1 + h(p1 ⋆ p2 ⋆ pra ⋆ prb ⋆ pe)− h(p1 ⋆ pra)− h(p2 ⋆ prb), (40)

L2 = 1 + h(p1 ⋆ p2 ⋆ pe)− h(p1 ⋆ pra)− h(p2 ⋆ prb), (41)

µ = min{
1− h(p1 ⋆ pra)

1− h(p1 ⋆ pra) + h(p2 ⋆ prb)
,

1− h(p2 ⋆ prb)

1− h(p2 ⋆ prb) + h(p1 ⋆ pra)
}; (42)



furthermore,

LboundN ≥ max
0≤p1,p2≤1

[L2]+. (43)

Proof. See Appendix F.

Remark 5. Lemma 2 provides a lower bound on the SK capacity that dominates the trivial lower bound, achieved

from the previous work. This is shown in the sequel. Nevertheless, the lower bound (39) is not the highest rate

one can obtain from the results of Theorem 4; in other words, one may use the result of Theorem 4 to derive a

tighter lower bound in the TWBWC model. This is left as future work.

Secure message transmission in the above TWBWC model has been considered in [14, 28]. We choose to

study the results in [14], which provide a strictly larger achievable rate region for secure message transmission.

The achievable rate region in [14] is given as follows:

Gs,I = convex hull of {(Rs,AB , Rs,BA), s.t. ∃0 ≤ p1, p2 ≤ 1 : Rs,AB ≤ 1− h(p2 ⋆ prb), Rs,BA ≤ 1− h(p1 ⋆ pra),

Rs,AB +Rs,BA ≤ [1 + h(p1 ⋆ p2 ⋆ pe)− h(p1 ⋆ pra)− h(p2 ⋆ prb)]+}. (44)

This implies the following lower bound on the SK capacity.

LboundT = max
(Rs,AB,Rs,BA)∈Gs,I

[Rs,AB +Rs,BA]

= max
0≤p1,p2≤1

[1 + h(p1 ⋆ p2 ⋆ pe)− h(p1 ⋆ prb)− h(p2 ⋆ pra)]+

= max
0≤p1,p2≤1

[L2]+, (45)

where the last equality follows from (41). Comparing (43) and (45) leads to the following corollary.

Corollary 1. The lower bound (39), proved in this paper, on the SK capacity in the TWBWC setup is always

greater than or equal to the trivial lower bound (45), i.e.,

LboundN ≥ LboundT . (46)
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Fig. 6. Comparison of the lower bound values with respect to the error probabilities.

To better understand the gap between the trivial lower bound LboundT and the newly proved lower bound

LboundN , we evaluate these two quantities with respect to different choices of channel error probabilities in Fig.

6, where the two bounds are indicated by dashed and solid lines, respectively. For simplicity, we assume that



the receiving channel noise for Alice and Bob is the same, i.e., pra = prb = pr. Fig. 6(a) compares the two lower

bound values with respect to pr when pe = 0.1. Observe the non-zero gap between LboundN and LboundT for

receiving channel noise pr < 0.15. This confirms that the lower bounds proved in this paper strictly dominate

those which can be obtained using the previous results on secure message transmission. Fig. 6(b) compares the

bound values as functions of pe when pr = 0.1. It shows the gap between the two bounds expect for much small

or much large values of the eavesdropping channel error probability pe.

6 Conclusion

We considered the two-way channel setup and studied the problems of common randomness generation and

secret key establishment for the first time in this setup. We discussed the relation between the above problems

and reliable/secure message transmission over two-way channels, which are previously studied in the literature.

We defined the common randomness and the secret key capacities and derived trivial lower bounds on these

capacities based on the previously known results. Next, we showed that these trivial lower bounds can be

improved by proposing two-round protocols that can achieve higher rates of common randomness/secret key.

We applied the results to the case of two-way binary channels, where we showed the gap between the trivial

lower bounds and those derived in this paper. We also proved upper bounds on the capacities and discussed the

cases that the lower and the upper bounds coincide. It has not been shown whether any of the bounds are tight

in general, or more specifically, whether one can improve the bounds by allowing more rounds of interaction.

These open questions proffer directions to future work.
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A Proving Theorems 1 and 4

We prove Theorem 4 and the proof of Theorem 1 follows as a special case where there is no adversary, i.e.,

Z = 0, and when we choose W1A = XA, W1B = XB, and W2A = W2B = 0.

Let Rsk be the expression to be maximized on the right side of (24), i.e.,

Rsk = 1
n1+n2

( n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)− I(UA, UB ;Z)]

+n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)− I(W1A,W1B ;Z|W2A,W2B)]+). (47)



Also let (26) and (27) be respectively rephrased as

n1[I(UA;XA, YA|XB, YB) + 3α] ≤ n2I(W1A;XB, YB), (48)

n1[I(UB ;XB, YB|XA, YA) + 3α] ≤ n2I(W1B ;XA, YA), (49)

where α > 0 is a sufficiently small constant to be determined from the arbitrarily small δ. Given n2, let

n2,a1 + n2,a2 = n2,b1 + n2,b2 = n2, where n2,a2 and n2,b2 are chosen respectively to satisfy

n2,a2I(W1A;XB, YB) = n1[I(UA;XA, YA|XB, YB) + 3α], (50)

n2,b2I(W1B ;XA, YA) = n1[I(UB ;XB, YB |XA, YA) + 3α]. (51)

Let n = n1 + n2; also let ǫ and β be small constants such that 3nǫ < n2β = n1α. Define

ηa,f = n1[I(UA;XA, YA) + α] (52)

ηa,g = n2,a1[I(W1A;XB , YB)− β], ηa,g,2 = n2,a1I(W2A;XB , YB), ηa,g,1 = ηa,g − ηa,g,2, (53)

ηa,t = n2,a2[I(W1A;XB , YB)− β], ηa,t,2 = n2,a2I(W2A;XB , YB), ηa,t,1 = ηa,t − ηa,t,2, (54)

ηb,f = n1[I(UB;XB , YB) + α], (55)

ηb,g = n2,b1[I(W1B;XA, YA)− β], ηb,g,2 = n2,b1I(W2B;XA, YA), ηb,g,1 = ηb,g − ηb,g,2, (56)

ηb,t = n2,b2[I(W1B;XA, YA)− β], ηb,t,2 = n2,b2I(W2B;XA, YA), ηb,t,1 = ηb,t − ηb,t,2, (57)

ηab,f = n1[I(UA, UB ;XA, YA, XB , YB) + 2α], η = ηa,g + ηb,g + ηab,f , (58)

κ = (n1 + n2)Rsk, γ = η − κ. (59)

Quantities in (52)-(54) (resp. (55)-(57)) are used in the calculation of what Alice (resp. Bob) needs to send

during the communication. Although the quantities obtained in (50)-(52) are real values, for sufficiently small

β and sufficiently large n1 and n2, we can assume they are non-negative integers. Furthermore, we shall show

that ηa,f ≥ ηa,t, ηb,f ≥ ηb,t, and η ≥ κ. The former is shown below.

ηa,f = n1[I(UA;XA, YA) + α]
(a)
= n1[I(UA;XA, YA, XB, YB) + α]

= n1[I(UA;XB, YB) + I(UA;XA, YA|XB, YB) + α]

(b)
= n1I(UA;XB, YB) + n2,a2I(W1A;XB, YB)− 2n1α

≥ n2,a2[I(W1A;XB, YB)− β]− 2n1α

(c)
= ηa,t − 2n1α.

Equality (a) is due to the Markov chain (21), and equalities (b) and (c) follow from (50) and (54), respectively.

For sufficiently small α, we have ηa,f ≥ ηa,t. Similarly, one can show ηb,f ≥ ηb,t. To show η ≥ κ, we calculate η

as follows.

η = ηa,g + ηb,g + ηab,f

(a)
= n2,a1[I(W1A;XB , YB)− β] + n2,b1[I(W1B ;XA, YA)− β] + n1[I(UA, UB ;XA, YA, XB , YB) + 2α]

= n2,a1[I(W1A;XB , YB)− β] + n2,b1[I(W1B;XA, YA)− β] + n1I(UA;XA, YA, XB , YB)

+ n1I(UB;XA, YA, XB , YB |UA) + 2n1α

(b)
= n2,a1[I(W1A;XB , YB)− β] + n2,b1[I(W1B;XA, YA)− β] + n1I(UA;XB , YB) + n1I(UA;XA, YA|XB , YB)

+ n1I(UB;XA, YA|UA) + n1I(UB ;XB , YB|XA, YA) + 2n1α

(c)
= n2,a1[I(W1A;XB , YB)− β] + n2,b1[I(W1B;XA, YA)− β] + n1I(UA;XB , YB) + n2,a2I(W1A;XB , YB)



+ n1I(UB;XA, YA|UA) + n2,b2I(W1B;XA, YA)− 4n1α

= n2[I(W1A;XB , YB) + I(W1B;XA, YA)]

+ n1[I(UA;XB , YB) + I(UB;XA, YA|UA)]− (n2,a1 + n2,b1)β − 4n1α. (60)

Inequality (a) follows from (52), equality (b) relies on the Markov chain (21), and equality (c) follows from (50)

and (51). Comparing (60) with (47), for sufficiently small α and β, reveals η ≥ κ.

The following is a list of sets, variables, and functions that are used in the SKE construction.

(i) Let Un1

A,ǫ (resp. Un1

B,ǫ) be obtained by randomly and independently choosing 2ηa,f (resp. 2ηb,f ) ǫ-typical

sequences from Un1

A (resp. Un1

B ).

(ii) Let fA : Un1

A,ǫ → FA = {1, 2, . . . , 2ηa,f } and fB : Un1

B,ǫ → FB = {1, 2, . . . , 2ηb,f } be arbitrary bijective

mappings.

(iii) Let {Un1

A,ǫ,i}
2ηa,t

i=1 be a partition of Un1

A,ǫ into 2ηa,t equal-sized parts. Define the function tA : Un1

A,ǫ → TA =

{1, 2, . . . , 2ηa,t} such that, for any input in Un1

A,ǫ,i, it outputs i. Similarly define the partition {Un1

i,B,ǫ}
2ηb,t
i=1

and the function tB.

(iv) Let {TA,i}
2ηa,t,2

i=1 be a partition of TA into 2ηa,t,2 equal-sized parts; each of size 2ηa,t,1 . Label elements of

TA,i by TA,i = {tA,i,j}
ηa,t,1

j=1 . Define the index function tA,indx : TA → {1, . . . , 2ηa,t,2} × {1, . . . , 2ηa,t,1} such

that tA,indx(t) = (i, j), if t is labeled by tA,i,j . Similarly define the partition {TB,i}
2ηb,t,2
i=1 and the function

tB,indx.

(v) Let GA = {1, 2, . . . , 2ηa,g}. In analogy to TA, let {GA,i}
2ηa,g,2

i=1 be a partition of GA, where GA,i = {gA,i,j}
2ηa,g,1

j=1 .

Define the index function gA,indx : GA → {1, . . . , 2ηa,g,2} × {1, . . . , 2ηa,g,1} such that gA,indx(g) = (i, j), if

g is labeled by gA,i,j . Similarly, define GB = {1, 2, . . . , 2ηb,g}, the partition {GB,i}
2ηb,g,2
i=1 , and the function

gB,indx.

(vi) Define the code book C2A as the collection of 2ηa,g,2+ηa,t,2 codewords {wn2

2A,i,i′ : i = 1, 2, . . . , 2ηa,g,2 , i′ =

1, 2, . . . , 2ηa,t,2}, where each codeword wn2

2A,i,i′ is of length n2 and is independently generated according to

the distribution
n2
∏

l=1

p(W2A = w2A,i,i′ (l)).

Similarly, define the code book C2B = {wn2

2B,i,i′ : i = 1, 2, . . . , 2ηb,g,2 , i′ = 1, 2, . . . , 2ηb,t,2}.

(vii) For each codeword wn2

2A,i,i′ , define the code book C1A(w
n2

2A,i,i′) as the collection of 2ηa,g,1+ηa,t,1 words

{wn2

1A,i,i′,j,j′ : j = 1, 2, . . . , 2ηa,g,1 , j′ = 1, 2, . . . , 2ηa,t,1}, where each codeword wn2

1A,i,i′,j,j′ is of length n2

and is independently generated according to the distribution

n2
∏

l=1

p(W1A = w1A,i,i′,j,j′(l)|W2A = w2A,i,i′ (l)).

The code book C1A is the set of all code books C1A(w
n2

2A,i,j) and hence includes 2ηa,g+ηa,t codewords.

Similarly, define the code books C1B(w
n2

2B,i,i′ ) = {wn2

1B,i,i′,j,j′ : j = 1, 2, . . . , 2ηb,g,1 , j′ = 1, 2, . . . , 2ηb,t,1}

and the code book C1B of size 2ηb,g+ηb,t .

(viii) Let EncA : GA × TA → Wn2

1A be an encoding function such that Enc(g, t) = wn2

1A,i,i′,j,j′ , using the above

code books, where (i, j) = gindx(g) and (i′, j′) = tA,indx(t). Similarly, define the encoding function EncB :

GB × TB → Wn2

1B.

(ix) Let DMCWA
and DMCWB

be DMCs, representing W1A → XA and W1B → XB, which are specified by

PXA|W1A
and PXB |W1B

, respectively.

(x) Let {Ks}
2κ

s=1 be a partition of FA×GA×FB×GB into equal-sized parts of size 2γ . Define the key derivation

function φ : FA × GA ×FB × GB → {1, 2, . . . , 2κ} such that, for any input in Ks, it outputs s.



Encoding. Alice and Bob generate i.i.d. n1-sequences X:1
A and X:1

B according to the distributions PXA
and

PXB
, respectively, and send them in the first communication round. They receive the n1-sequences Y

:1
A and Y:1

B ,

respectively, while Eve receives Z:1. Alice searches in Un1

A,ǫ to find a (not necessarily unique) sequence Un1

A such

that (X:1
A,Y

:1
A) and Un1

A are ǫ-jointly typical w.r.t. P(XA,YA),UA
. Similarly, Bob searches for a sequence Un1

B such

that (X:1
B,Y

:1
B) and Un1

B are ǫ-jointly typical w.r.t. P(XB ,YB),UB
. A party that fails in finding such a sequence

returns a NULL.

Assuming no NULL is returned, Alice computes TA = tA(U
n1

A ) and selects uniformly at random GA ∈

GA. She calculates (TA,2, TA,1) = tA,indx(TA) and (GA,2, GA,1) = gA,indx(GA), and uses them to calculate

Wn2

1A = Enc(GA, TA). Similarly Bob computes TB = tB(U
n1

B ), selects uniformly at random GB ∈ GB , calculates

(TB,2, TB,1) = tB,indx(TB), (GB,2, GB,1) = gB,indx(GB), and then Wn2

1B = Enc(GB, TB). Alice and Bob input

Wn2

1A and Wn2

1B to the DMCs DMCWA
and DMCWB

to obtain and send the n2 sequences X:2
A and X:2

B in the

second communication round, respectively. Alice, Bob, and Eve receive the n2-sequences Y:2
A , Y

:2
B , and Z:2,

respectively.

Decoding.Alice searches for a “unique” codeword Ŵn2

1B ∈ C1B such that (X:2
A,Y

:2
A) and Ŵn2

1B are ǫ-jointly typical

w.r.t. P(XA,YA),W1B
. Alice returns a NULL if no such a sequence is found; otherwise, she obtains (ĜB, T̂B) such

that EncB(ĜB , T̂B) = Ŵn2

1B , and then searches for a “unique” codeword Ûn1

B ∈ Un1

T̂B ,ǫ
such that (X:1

A,Y
:1
A) and

Ûn1

B are ǫ-jointly typical w.r.t. P(XA,YA),UB
; she returns a NULL if no such a sequence is found. Bob follows a

similar approach to obtain Ŵn2

1A , (ĜA, T̂A), and Ûn1

A .

Key derivation. The secret key is S = φ(FA, GA, FB , GB). Alice computes SA = φ(FA, GA, F̂B , ĜB), where

FA = fA(U
n1

A ) and F̂B = fB(Û
n1

B ). Similarly, Bob computes SA = φ(F̂A, ĜA, FB, GB), where F̂A = fA(Û
n1

A ) and

FB = fB(U
n1

A ). Note that ĜA and ĜB have been obtained in the decoding phase.

A.1 Randomness analysis, proving (6)

First we calculate the quantity H(Un1

A , Un1

B ) to be used in the sequel. From AEP for UA, for every u ∈ Un1

A,ǫ, we

have

Pr{Un1

A = u} ≤
∑

((x,y),u): ǫ−jointly-typical

Pr{(Xn1

A , Y n1

A ) = (x,y)}

≤ 2n1[H(XA,YA|UA)+2ǫ]2−n1[H(XA,YA)−ǫ] = 2−n1[I(UA;XA,YA)−3ǫ]. (61)

Note that Un1

A and Un1

B are chosen to be ǫ-jointly-typical to (X:1
A,Y

:1
A) and (X:1

B,Y
:1
B), respectively. On the

other hand, due to AEP, for large enough n1, (X
:1
A ,Y

:1
A) and (X:1

B,Y
:1
B) are ǫ-jointly-typical with probability

arbitrarily close to 1. This implies that (X:1
B ,Y

:1
B) and Un1

A are ǫ-jointly-typical with probability arbitrarily close

to 1. So, for every u ∈ Un1

A,ǫ and u′ ∈ Un1

B,ǫ, we can write

Pr{Un1

B = u′|Un1

A = u} ≤
∑

((x,y),u′,u′): ǫ−jointly-typical

Pr{(Xn1

B , Y n1

B ) = (x,y)|Un1

A = u)}

≤ 2n1[H(XB ,YB |UB ,UA)+2ǫ]2−n1[H(XB ,YB |UA)−ǫ] = 2−n1[I(UB ;XB ,YB |UA)−3ǫ]. (62)

From (61) and (62), we have for all u and u′

Pr{Un1

A = u ∧ Un1

B = u′} ≤ 2−n1[I(UA;XA,YA)+I(UB ;XB ,YB|UA)−6ǫ]

(a)
= 2−n1[I(UA,UB ;XA,YA,XB ,YB)−6ǫ]

(b)
= 2−ηab,f+2n1α+6n1ǫ

< 2−ηab,f+4n1α (63)

⇒ H(Un1

A , Un1

B ) > ηab,f − 4n1α. (64)



Equality (a) is due to the Markov chain (21), and equality (b) follows from (58). Furthermore, for large enough

n1, with probability arbitrarily close to 1 the following happens. Un1

A and Un1

B become jointly typical and since

the sets Un1

A,ǫ and Un1

B,ǫ are obtained independently according to distributions PUA
and PUB

, respectively, at most

2ηa,f+ηb,f−n1[I(UA;UB)−3ǫ] ǫ-jointly typical sequences exist in Un1

A,ǫ × Un1

B,ǫ, and this implies that

H(Un1

A , Un1

B ) ≤ ηa,f + ηb,f − n1[I(UA;UB)− 3ǫ]

(a)
= n1[I(UA;XA, YA) + α] + n1[I(UB;XB, YB) + α]− n1[I(UA;UB)− 3ǫ]

(b)
= n1[I(UA, UB;XA, YA, XB, YB) + 2α+ 3ǫ]

(c)
= ηab,f + 3n1ǫ. (65)

Inequality (a) and equality (c) follow from (52), and equality (b) is due to the Markov chain (21). Since FA and

FB are bijective functions of Un1

A and Un1

B (see (ii) and the encoding phase), we can write for all fA and fB

Pr{FA = fA ∧ FB = fB} < 2−ηab,f+4n1α, (66)

ηab,f − 4n1α ≤ H(FA, FB) ≤ ηab,f − 3n1ǫ. (67)

In addition, GA and GB are selected uniformly at random from the sets GA and GB, respectively. Hence,

∀gA ∈ GA : Pr{GA = gA} = 2−ηa,g ⇒ H(GA) = ηa,g, (68)

∀gB ∈ GB : Pr{GB = gB} = 2−ηb,g ⇒ H(GB) = ηb,g. (69)

There are 2κ choices for the key S (see (x) and the key derivation phase) and, for every s ∈ {1, 2, . . . , 2κ},

the probability that S = s equals to the probability that (FA, GA, FB , GB) ∈ Ks, i.e.,

Pr(S = s) =
∑

(fA,gA,fB ,gB)∈Ks

Pr{FA = fA ∧ FB = fB ∧GA = gA ∧GB = gB}

(a)
=

∑

(fA,gA,fB ,gB)∈Ks

Pr{GA = gA}Pr{GB = gB}Pr{FA = fA ∧ FB = fB}

≤ 2γ .2−ηa,g .2−ηb,g .2−ηab,f+4n1α

= 2γ−η+4n1α

⇒ H(S) ≥ η − γ − 4n1α = κ− 4n1α.

Equality (a) follows from the fact that GA and GB are chosen independently by Alice and Bob, respectively,

and the rest follows from (52). We conclude that

H(S)

n
=

H(S)

n1 + n2
≥

κ− 4n1α

n1 + n2
≥ Rsk − 4α > Rsk − δ.

by selecting α < δ/4.

A.2 Reliability analysis, proving (7)

To prove reliability means to prove that Alice and Bob will calculate the same valid shared key with probability

arbitrarily close to 1. This happens if both encoding and decoding phases are successful without any party

returning a NULL. We discuss each phase separately as follows.

Since log |UA,ǫ| = ηa,f = n1[I(UA;XA, YA) + α], for ǫ > 0 and large enough n1, by choosing α to be

small but sufficiently larger than ǫ, from AEP both (X:1
A ,Y

:1
A) and Un1

A are ǫ-jointly-typical with probability



arbitrarily close to 1; similarly (X:1
B ,Y

:1
B) and Un1

B are ǫ-jointly-typical, and so the encoding phase is successful.

The decoding phase includes two levels of decoding. In the first level, Alice decodes (X:2
A ,Y

:2
A) to Ŵn2

1B ∈ C1B

and Bob decodes (X:2
B ,Y

:2
B) to Ŵn2

1A ∈ C1A. If log |C1B| (resp. log |C1A|) is less than n2I(W1B ;XA, YA) (resp.

n2I(W1A;XB, YB)) then, from joint-AEP, the decoding error probabilities are arbitrarily close to zero. The two

inequalities are shown below (see (vii) and (52)).

log |C1B| = ηb,g + ηb,t = n2,b1[I(W1B ;XA, YA)− β] + n2,b2[I(W1B ;XA, YA)− β]

= n2[I(W1B ;XA, YA)− β] < n2[I(W1B ;XA, YA)− 3ǫ],

log |C1A| = ηa,g + ηa,t = n2,a1[I(W1A;XB, YB)− β] + n2,a2[I(W1A;XB, YB)− β]

= n2[I(W1A;XB, YB)− β] < n2[I(W1A;XB, YB)− 3ǫ].

In the second level of decoding, Alice decodes (X:1
A ,Y

:1
A) to Ûn1

B ∈ Un1

T̂B ,ǫ
and Bob decodes (X:1

B ,Y
:1
B) to

Ûn1

A ∈ Un1

T̂A,ǫ
. Given that the first level of decoding is successful, if log |Un1

T̂B ,ǫ
| (resp. log |Un1

T̂A,ǫ
|) is less than

n1I(UB;XA, YA) (resp. n2I(UA;XB, YB)) then, again from joint-AEP, the decoding error probabilities are ar-

bitrarily close to zero. We have (see (iv) and (52))

log |Un1

T̂A,ǫ
| = ηa,f − ηa,t = n1[I(UA;XA, YA) + α]− n2,a2[I(W1A;XB, YB)− β]

(a)
= n1[I(UA;XB, YB) + I(UA;XA, YA|XB, YB) + α]− n2,a2[I(W1A;XB, YB)− β]

(b)
= n1I(UA;XB, YB) + n2,a2I(W1A;XB, YB)− n2,a2I(W1A;XB, YB)− 2n1α+ n2,a2β

= n1I(UA;XB, YB)− 2n1α+ n2,a2β

≤ n1I(UA;XB, YB)− n1α

< n1[I(UA;XB, YB)− 3ǫ].

Equality (a) is due to the Markov chain (21), and equality (b) follows from (50). Similarly, we can show that

log |Un1

T̂B ,ǫ
| < n1[I(UB;XA, YA)− 3ǫ].

Hence, for sufficiently small ǫ we conclude that

Pr(SA = SB = S) ≥ Pr
(

F̂A = FA ∧ ĜA = GA ∧ F̂B = FB ∧ ĜB = GB

)

> 1− δ. (70)

A.3 Secrecy analysis, proving (8)

We shall show that H(S|Z:1,Z:2)/H(S) is arbitrarily close to 1. First, we discuss the quantities H(TA, TB),

H(TA,2, TB,2),H(GA,2) andH(GB,2) that are used in the proof. From the encoding phase, for all (t, t′) ∈ TA×TB

(see (iv) and (52)),

Pr{TA = t ∧ TB = t′} =
∑

u∈U
n1

t,A,ǫ
, u′∈U

n1

t′,B,ǫ

Pr(Un1

A = u ∧ Un1

B = u′)

(a)

≤ 2ηa,f−ηa,t2ηb,f−ηb,t2−ηab,f+4n1α

= 2ηa,f+ηb,f−ηab,f .2−ηa,t−ηb,t+4n1α

= 2n1[I(UA;XA,YA)+α]+n1[I(UB ;XB ,YB)+α]−n1[I(UA,UB ;XA,YA,XB ,XB)+2α].2−ηa,t−ηb,t+4n1α

(b)
= 2n1[I(UA;XA,YA)+I(UB ;XB ,YB)−I(UA;XA,YA)−I(UB ;XB ,XB |UA)].2−ηa,t−ηb,t+4n1α

= 2−ηa,t−ηb,t+n1I(UA;UB)+4n1α (71)

⇒ ηa,t + ηb,t − n1I(UA;UB)− 4n1α ≤ H(TA, TB)
(d)

≤ ηa,t + ηb,t − n1I(UA;UB) + 3n1ǫ, (72)



Inequality (a) is obtained from (63), equality (c) is due to the Markov chain (21), and inequality (d) holds

since, following the argument before (65), there are at most 2ηa,t+ηb,t−n1I(UA;UB)+3n1ǫ sequences in TA×TB that

correspond to the ǫ-jointly typical sequences in Un1

A,ǫ × Un1

B,ǫ.

Similarly, for all (i, i′) ∈ {1, . . . , 2ηa,t,2} × {1, . . . , 2ηb,t,2} (see (v) and (52)),

Pr{TA,2 = i ∧ TB,2 = i′} = Pr{TA ∈ TA,i ∧ TB ∈ TB,i′} (73)

=

ηa,t,1
∑

j=1

ηb,t,1
∑

j′=1

Pr{TA = tA,i,j ∧ TB = tB,i′,j′}

≤ 2ηa,t,1+ηb,t,12−ηa,t−ηb,t+n1I(UA;UB)+4n1α

= 2−ηa,t,2−ηb,t,2+n1I(UA;UB)+4n1α

⇒ H(TA,2, TB,2) ≥ ηa,t,2 + ηb,t,2 − n1I(UA;UB)− 4n1α (74)

SinceGA andGB have uniform distributions,GA,2 andGB,2 are uniformly distributed in the sets {1, 2, . . . , 2ηa,g,2}

and {1, 2, . . . , 2ηb,g,2}, respectively, and we can write

H(GA,2) = ηa,g,2, H(GB,2) = ηb,g,2. (75)

In the following, we prove that H(S|Z:1,Z:2) is close to H(S). We calculate a lower bound on H(S|Z:1,Z:2)

and next we use this to find a lower bound on H(S|Z:1,Z:2)/H(S) that is arbitrarily close to 1.

H(S|Z:1,Z:2) ≥ H(S|TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2)

= H(S, FA, GA, FB , GB |TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2)

−H(FA, GA, FB , GB |S, TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2)

= H(FA, GA, FB , GB |TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2)

−H(FA, GA, FB , GB |S, TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2)

= H(FA, GA, FB , GB |TA,2, GA,2, TB,2, GB,2)− I(FA, GA, FB, GB ;Z:1
,Z

:2|TA,2, GA,2, TB,2, GB,2)

−H(FA, GA, FB , GB |S, TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2). (76)

We calculate each of the above three terms separately in the following. The first term in (76) is written as

H(FA, GA, FB, GB |TA,2, GA,2, TB,2, GB,2)
(a)
= H(FA, FB |TA,2, TB,2) +H(GA|GA,2) +H(GB|GB,2)

(b)
= H(FA, FB) +H(GA) +H(GB)−H(TA,2, TB,2)−H(GA,2)−H(GB,2) (77)

(c)

≥ ηab,f − 4n1α+ ηa,g + ηb,g − [ηa,t,2 + ηb,t,2]− ηa,g,2 − ηb,g,2

(d)

≥ n1I(UA, UB ;XA, YA, XB , YB)− 2n1α+ n2,a1[I(W1A;XB , YB)− β] + n2,b1[I(W1B;XA, YA)− β]

− [n2,a2I(W2A;XB , YB) + n2,b2I(W2B;XA, YA)]− n2,a1I(W2A;XB , YB)− n2,b1I(W2B;XA, YA)

= n1I(UA, UB ;XA, YA, XB , YB) + n2,a1I(W1A;XB , YB) + n2,b1I(W1B;XA, YA)

− n2I(W2A;XB , YB)− n2I(W2B;XA, YA)− 2n1α− 2n2β

(e)
= n1[I(UA;XB , YB) + I(UA;XA, YA|XB , YB) + I(UB;XA, YA|UA) + I(UB;XB , YB |XA, YA)]

+ n2,a1I(W1A;XB , YB) + n2,b1I(W1B;XA, YA)− n2I(W2A;XB , YB)− n2I(W2B;XA, YA)− 4n1α

(f)
= n1I(UA;XB , YB) + n2,a2I(W1A;XB , YB) + n1I(UB;XA, YA|UA) + n2,b2I(W1B;XA, YA)− 6n1α

+ n2,a1I(W1A;XB , YB) + n2,b1I(W1B;XA, YA)− n2I(W2A;XB , YB)− n2I(W2B;XA, YA)− 4n1α

= n1I(UA;XB , YB) + n1I(UB;XA, YA|UA) + n2I(W1A;XB , YB) + n2I(W1B;XA, YA)

−n2I(W2A;XB , YB)− n2I(W2B;XA, YA)− 10n1α

(g)
= n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)] + n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)]− 10n1α. (78)



Equality (a) holds since (FA, FB, TA,2, TB,2), (GA, GA,2), and (GB , GB,2) are independent of each other, and

equality (b) is due to the fact that TA,2, TB,2, GA,2, GB,2 are deterministic functions of FA, FB , GA, GB,

respectively (see the encoding phase). Inequality (c) follows from (67), (68), (69), (74), and (75). Inequality

(d) follows from (52), equality (e) relies on the Markov chain (21), equality (f) follows from (50) and (51), and

equality (g) is due to the Markov chains (22) and (23). The second term in (76) can be written as

I(FA, GA, FB , GB ;Z:1
,Z

:2|TA,2, GA,2, TB,2, GB,2)

= I(FA, GA, FB , GB ;Z:1|TA,2, GA,2, TB,2, GB,2) + I(FA, GA, FB , GB ;Z:2|Z:1
, TA,2, GA,2, TB,2, GB,2)

(a)
= I(Un1

A , GA, U
n1

B , GB;Z
:1|TA,2, GA,2, TB,2, GB,2) + I(Un1

A , TA, GA, U
n1

B , TB, GB ;Z:2|Z:1
, TA,2, GA,2, TB,2, GB,2)

(b)
= I(Un1

A , GA, U
n1

B , GB ;Z:1|TA,2, GA,2, TB,2, GB,2) + I(TA, GA, TB, GB ;Z:2|Z:1
, TA,2, GA,2, TB,2, GB,2)

(c)

≤ I(Un1

A , GA, U
n1

B , GB ;Z:1|TA,2, GA,2, TB,2, GB,2) + I(TA, GA, TB , GB ;Z:2|TA,2, GA,2, TB,2, GB,2)

(d)

≤ I(Un1

A , U
n1

B ;Z:1) + I(TA, GA, TB , GB ;Z:2|TA,2, GA,2, TB,2, GB,2)

= I(Un1

A , U
n1

B ;Z:1) + min{H(TA, GA, TB , GB |TA,2, GA,2,

TB,2, GB,2), I(TA, GA, TB, GB ;Z:2|TA,2, GA,2, TB,2, GB,2)}

(e)
= I(Un1

A , U
n1

B ;Z:1) + min{[H(TA, TB|TA,2, TB,2) +H(GA|GA,2) +H(GB|GB,2)]

, [H(Z:2|TA,2, GA,2, TB,2, GB,2)−H(Z:2|TA, GA, TB , GB , TA,2, GA,2, TB,2, GB,2)]}

(f)
= I(Un1

A , U
n1

B ;Z:1) + min{[H(TA, TB)−H(TA,2, TB,2) +H(GA)−H(GA,2) +H(GB)−H(GB,2)]

, [H(Z:2|TA,2, GA,2, TB,2, GB,2)−H(Z:2|TA, GA, TB , GB)]}

(g)

≤ I(Un1

A , U
n1

B ;Z:1) + min{

[(ηa,t + ηb,t − n1I(UA;UB) + 3n1ǫ)− (ηa,t,2 + ηb,t,2 − n1I(UA;UB)− 4n1α) + ηa,g − ηa,g,2 + ηb,g − ηb,g,2]

, [H(Z:2|TA,2, GA,2, TB,2, GB,2)−H(Z:2|TA, GA, TB , GB)]}

(79)

(h)
= I(Un1

A , U
n1

B ;Z:1) + min{

[n2 (I(W1A;XB , YB) + I(W1B;XA, YA)− 2β) − n2 (I(W2A;XB , YB) + I(W2B;XA, YA)) + 5n1α]

, [H(Z:2|TA,2, GA,2, TB,2, GB,2)−H(Z:2|TA, GA, TB , GB)]}

(i)

≤ n1I(UA, UB;Z) + min{[n2(I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)) + 3n1α]

, [n2H(Z|W2A,W2B)− n2H(Z|W1A,W1B)]}

(j)

≤ n1I(UA, UB ;Z) + min{[n2(I(W1A;XB , YB |W2A) + I(W1B;XA, YA|W2B)) + 3n1α]

, [n2I(W1A,W1B ;Z|W2A,W2B)]}. (80)

Equality (a) holds since FA and FB (resp. TA and TB) are bijective (resp. deterministic) functions of Un1

A

and Un1

B , respectively. Equality (b) and inequality (c) are due to (Z:1, Un1

A , Un1

B ) ↔ (TA, GA, TB, GB) ↔ Z:2,

and inequality (d) is due to (TA,2, GA,2, TB,2, GB,2, GA, GB) ↔ (Un1

A , Un1

B ) ↔ Z:1. Equality (e) holds since

(TA, TB, TA,2, TB,2), (GA, GA,2), and (GB, GB,2) are independent of each other, and equality (b) holds since

TA,2, TB,2, GA,2, GB,2 are deterministic functions of TA, TB, GA, GB, respectively. Inequality (g) follows from

(68), (69), (72), (74), and (75), and equality (h) follows from (52). Inequality (i) follows from AEP and the

Markov chains (22) and (23), and inequality (j) is due to (W2A,W2B) ↔ (W1A,W1B) ↔ Z.

We discuss the third term in (76), i.e., H(FA, GA, FB, GB |S, TA,2, GA,2, TB,2, GB,2,Z
:1,Z:2) as follows. The

knowledge of S = s determinesKs where (FA, GA, FB , GB) is located. Furthermore, the knowledge of (TA,2, GA,2) =

(i, i′) and (TB,2, GB,2) = (j, j′) gives respectively the codewords wn2

2A,i,i′ ∈ C2A and wn2

2B,j,j′ ∈ C2B that are used

in the encoding phase. Define the code book

Ce
s = {(un1

A , u
n1

B , w
n2

1A, w
n2

1B) : (fA(u
n1

A ), gA, fB(un1

B ), gB) ∈ Ks,



w
n2

1A = EncA(tA(u
n1

A ), gA), w
n2

1B = EncB(tB(un1

B ), gB), tA,2 = i, gA,2 = i
′
, tB,2 = j, gB,2 = j

′}.

Given (Z:1,Z:2), one can search in Ce
s for a unique codeword (Ǔn1

A , Ǔn1

B , W̌n2

1A , W̌
n2

1B) that is (ǫ, n1)-bipartite

jointly typical [5, Definition 8] to (Z:1,Z:2) w.r.t. (P(UA,UB),Z , P(W1A,W1B),Z); and return a NULL if no such a

codeword is found. We have

|Ce
s | =

|Ks|

2ηa,g,2+ηa,t,2+ηb,g,2+ηb,t,2
= 2γ−η2 ,

where η2 = ηa,g,2 + ηa,t,2 + ηb,g,2 + ηb,t,2. If γ − η2 is less than n1I(UA, UB;Z) + n2I(W1A,W1B;Z), then

from bipartite joint-AEP [5, Theorem 4], the error probability in the above jointly-typical decoding becomes

arbitrarily small. We use the expression for η in (60) to calculate η − η2 as follows.

η − η2 = η − ηa,g,2 − ηa,t,2 − ηb,g,2 − ηb,t,2

(a)

≤ n2[I(W1A;XB , YB) + I(W1B;XA, YA)] + n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)]− 4n1α

− n2,a1I(W2A;XB , YB)− n2,a2I(W2A;XB , YB)− n2,b1I(W2B;XA, YA)− n2,b2I(W2B;XA, YA)

= n2[I(W1A;XB , YB) + I(W1B;XA, YA)] + n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)]− 4n1α

− n2I(W2A;XB , YB)− n2I(W2B;XA, YA)

(b)
= n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)] + n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)]− 4n1α. (81)

Inequality (a) follows from (52) and (60), and equality (b) is due to the Markov chains (22) and (23). We use

(81) to calculate γ − η2 as follows.

γ − η2 = η − κ− η2 = [η − η2]− (n1 + n2)Rsk

(a)
= n2[I(W1A;XB , YB |W2A) + I(W1B;XA, YA|W2B)] + n1[I(UA;XB , YB) + I(UB;XA, YA|UA)]− 4n1α

− n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)− I(UA, UB ;Z)]

− n2[I(W1B;XA, YA|W2B) + I(W1A;XB , YB |W2A)− I(W1A,W1B ;Z|W2A,W2B)]+

≤ n1I(UA, UB ;Z) + n2I(W1A,W1B ;Z|W2A,W2B)− 4n1α

(b)
< n1I(UA, UB ;Z) + n2I(W1A,W1B ;Z) − 12nǫ. (82)

The second and the third lines in equality (a) come from (47), and inequality (b) is due to (W2A,W2B) ↔

(W1A,W1B) ↔ Z. Let F̌A = fA(Ǔ
n1

A ), F̌B = fB(Ǔ
n1

B ), and ǦA and ǦB be chosen such that

W̌n2

1A = EncA(tA(Ǔ
n1

A ), ǦA), and W̌n2

1B = EncB(tB(Ǔ
n1

B ), ǦB).

From (82), we conclude that given (S, TA,2, GA,2, TB,2, GB,2,Z
:1,Z:2),

Pr{(F̌A, F̌B , ǦA, ǦB) 6= (FA, GA, FB , GB)} ≤ 2ǫ,

and Fano’s inequality gives

H(FA, GA, FB , GB |S, TA,2, GA,2, TB,2, GB,2,Z
:1
,Z

:2) ≤ H(FA, GA, FB , GB |F̌A, F̌B , ǦA, ǦB)

≤ h(2ǫ) + 2ǫη = h(2ǫ) + 2ǫη, (83)

where h(ǫ) = −ǫ log(ǫ)− (1− ǫ) log(1− ǫ) is the binary entropy function.

Combining (76), (78), (80), and (83), one can write

H(S|Z:1
,Z

:2)

≥ n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)] + n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)]− 8n1α



− n1I(UA, UB ;Z)

−min{[n2(I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)) + 3n1α], [n2I(W1A,W1B ;Z|W2A,W2B)]}

− h(2ǫ) − 2ǫη

≥ n1[I(UA;XB , YB) + I(UB ;XA, YA|UA)− I(UA, UB ;Z)]

+ n2[I(W1A;XB , YB |W2A) + I(W1B;XA, YA|W2B)− I(W1A,W1B;Z|W2A,W2B)]+ − 11n1α

− h(2ǫ) − 2ǫη

(a)
= (n1 + n2)Rsk − 11n1α− h(2ǫ) − 2ǫη

(b)
= κ− 11n1α− h(2ǫ) − 2ǫη

≥ H(S)− 11n1α− h(2ǫ) − 2ǫη

⇒
H(S|Z:1,Z:2)

H(S)
> 1− δ,

by appropriately selecting the small constants α and ǫ. Equalities (a) and (b) are due to (47) and (59),

respectively. �

B Proving Theorems 2 and 5

We prove Theorem 5 in the TWDMWC setup. The proof of Theorem 2 is followed as a special case when there

is no adversary, i.e., Z = 0, and hence there is no secrecy condition like (8).

The idea is to give an upper bound on the SK rate that any possible SKE protocol can achieve. Let Π be

a t-round protocol that achieves the SK rate Rsk. According to Definition 3, the three conditions (6)-(8) are

satisfied. Using Fano’s inequality for (7), we have

H(S|SA) ≤ h(δ) + δH(S), H(S|SB) ≤ h(δ) + δH(S) (84)

Furthermore, the secrecy condition in (8) can be written as

I(S;V :t
E ) = H(S)−H(S|V :t

E ) ≤ δH(S). (85)

Considering (84) and (85), we write the entropy of S as

H(S) = I(S;SB) +H(S|SB) + I(S;V :t
E )− I(S;V :t

E )

≤ I(S;SB|V
:t
E ) +H(S|SB) + I(S;V :t

E )

≤ I(S, SA;SB|V
:t
E ) +H(S|SB) + I(S;V :t

E )

= I(SA;SB|V
:t
E ) + I(S;SB|SA, V

:t
E ) +H(S|SB) + I(S;V :t

E )

≤ I(SA;SB|V
:t
E ) +H(S|SA) +H(S|SB) + I(S;V :t

E )

≤ I(V :t
A ;V :t

B |V :t
E ) + 2h(δ) + 3δH(S). (86)

The first term above is written as follows (see (1) and (5) and Fig. 2(b)).

I(V :t
A ;V :t

B |V :t
E ) = I(X:t

A,Y
:t
A, V

:t−1
A ;X:t

B ,Y
:t
B, V

:t−1
B |V :t

E )

= I(X:t
A, V

:t−1
A ;X:t

B ,Y
:t
B, V

:t−1
B |V :t

E ) + I(Y:t
A;X

:t
B,Y

:t
B , V

:t−1
B |X:t

A, V
:t−1
A , V

:t
E )

(a)

≤ I(X:t
A, V

:t−1
A ;X:t

B ,Y
:t
B, V

:t−1
B |V :t

E ) + I(Y:t
A;X

:t
B,Y

:t
B|X

:t
A,Z

:t)

= I(X:t
A, V

:t−1
A ;X:t

B , V
:t−1
B |V :t

E ) + I(X:t
A, V

:t−1
A ;Y:t

B|X
:t
B , V

:t−1
B , V

:t
E ) + I(Y:t

A;X
:t
B ,Y

:t
B|X

:t
A,Z

:t)

(b)

≤ I(X:t
A, V

:t−1
A ;X:t

B, V
:t−1
B |V :t

E ) + I(X:t
A;Y

:t
B|X

:t
B ,Z

:t) + I(Y:t
A;X

:t
B ,Y

:t
B|X

:t
A,Z

:t)

= I(X:t
A, V

:t−1
A ;X:t

B , V
:t−1
B |V :t

E ) + I(X:t
A;Y

:t
B |X:t

B,Z
:t) + I(Y:t

A;X
:t
B|X

:t
A,Z

:t) + I(Y:t
A;Y

:t
B |X:t

A,X
:t
B,Z

:t). (87)



Inequalities (a) and (b) are respectively due to the Markov chains

(V :t−1
A , V :t−1

B , V :t−1
E ) ↔ (X:t

A,X
:t
B,Y

:t
B,Z

:t) ↔ Y:t
A,

(V :t−1
A , V :t−1

B , V :t−1
E ) ↔ (X:t

A,X
:t
B,Z

:t) ↔ Y:t
B.

The first term in (87) can be rephrased as the following three terms

I(X:t
A, V

:t−1
A ;X:t

B, V
:t−1
B |V :t

E ) = I(X:t
A, V

:t−1
A ;X:t

B, V
:t−1
B |V :t−1

E ,Z
:t)

= I(X:t
A, V

:t−1
A ;X:t

B, V
:t−1
B ,Z

:t|V :t−1
E )− I(X:t

A, V
:t−1
A ;Z:t|V :t−1

E )

= I(X:t
A, V

:t−1
A ;X:t

B, V
:t−1
B |V :t−1

E ) + I(X:t
A, V

:t−1
A ;Z:t|X:t

B , V
:t−1
B , V

:t−1
E )− I(X:t

A, V
:t−1
A ;Z:t|V :t−1

E )

(a)
= I(V :t−1

A ;V :t−1
B |V :t−1

E ) + I(X:t
A, V

:t−1
A ;Z:t|X:t

B, V
:t−1
B , V

:t−1
E )− I(X:t

A, V
:t−1
A ;Z:t|V :t−1

E )

(b)

≤ I(V :t−1
A ;V :t−1

B |V :t−1
E ) + I(X:t

A;Z
:t|X:t

B, V
:t−1
E )− I(X:t

A, V
:t−1
A ;Z:t|V :t−1

E )

≤ I(V :t−1
A ;V :t−1

B |V :t−1
E ) + I(X:t

A;Z
:t|X:t

B , V
:t−1
E )− I(X:t

A;Z
:t|V :t−1

E ) (88)

Equality (a) is due to the Markov chains X:t
A ↔ V :t−1

A ↔ V :t−1
B and X:t

B ↔ V :t−1
B ↔ V :t−1

A , and inequality (b)

is due to (V :t−1
A , V :t−1

B ) ↔ (X:t
A,X

:t
B) ↔ Z:t. By recursively continuing the above steps in (87) and (88) t times,

we reach

I(V :t
A ;V :t

B |V :t
E ) ≤

t∑

r=1

I(X:r
A;Y

:r
B |X:r

B ,Z
:r) + I(X:r

B;Y
:r
A |X:r

A,Z
:r) + I(Y:r

A ;Y:r
B |X:r

A,X
:r
B ,Z

:r)

+ I(X:r
A;Z

:r|X:r
B , V

:r−1
E )− I(X:r

A;Z
:r|V :r−1

E )

≤

t∑

r=1

nr∑

i=1

I(X :r
A,i;Y

:r
B,i|X

:r
B,i, Z

:r
i ) + I(X :r

B,i;Y
:r
B,i|X

:r
A,i, Z

:r
i ) + I(Y :r

A,i;Y
:r
B,i|X

:r
A,i, X

:r
B,i, Z

:r
i )

+I(X :r
A,i;Z

:r
i |X :r

B,i, V
:r−1
E , Z

i−1:r
1 )− I(X :r

A,i;Z
:r
i |V :r−1

E , Z
i−1:r
1 ), (89)

where the last inequality holds since the channel is memoryless. Let Q:r
i = (V :r−1

E , Zi−1:r
1 ). We choose the RVs

XA = X :r̃
A,̃i

, XB = X :r̃
B,̃i

, YA = Y :r̃
A,̃i

, YB = Y :r̃
B,̃i

, Z = Z :r̃
ĩ

and Q = Q:r̃
ĩ
, where ĩ and j̃ are chosen such that

I(XA; YB|XB , Z) + I(XB;YA|XA, Z) + I(YA;YB |XA, XB , Z) + I(XA;Z|XB , Q)− I(XA;Z|Q) = max
1≤r≤t, 1≤i≤n

[

I(X :r
A,i;Y

:r
B,i|X

:r
B,i, Z

:r
i ) + I(X :r

B,i;Y
:r
B,i|X

:r
A,i, Z

:r
i ) + I(Y :r

A,i;Y
:r
B,i|X

:r
A,i, X

:r
B,i, Z

:r
i ) + I(X :r

A,i;Z
:r
i |X :r

B,i, Q
:r
i )− I(X :r

A,i;Z
:r
i |Q:r

i )].

It is easy to see that XA, XB, YA, YB, and Z correspond to the TWDMC distribution (PYA,YB ,Z|XA,XB
), and

the Markov chain

Q ↔ (XA, XB) ↔ (YA, YB , Z)

holds. We continue (89) as

I(V :t
A ;V :t

B |V :t
E )

≤ n[I(XA;YB|XB , Z) + I(XB; YA|XA, Z) + I(YA;YB|XA, XB , Z) + I(XA;Z|XB , Q)− I(XA;Z|Q)]

= n[I(XA;YB|XB , Z) + I(XB; YA|XA, Z) + I(YA;YB|XA, XB , Z)

+H(XA|XB , Q)−H(XA|XB , Q,Z) −H(XA|Q) +H(XA|Q,Z)]

= n[I(XA;YB|XB , Z) + I(XB; YA|XA, Z) + I(YA;YB|XA, XB , Z) + I(XA;XB |Z,Q)− I(XA;XB |Q)]. (90)

Using (6), (86) and (90), we have the following upper bound on Rsk

Rsk <
1

n
H(S) + δ

<
n[I(XA;YB|XB , Z) + I(XB;YA|XA, Z) + I(YA;YB|XA, XB , Z) + I(XA;XB |Z,Q)− I(XA;XB |Q)] + h(δ)

n(1− δ)
+ δ

≤ I(XA;YB|XB , Z) + I(XB ;YA|XA, Z) + I(YA;YB|XA, XB , Z) + I(XA;XB |Z,Q)− I(XA;XB |Q),

where the last inequality follows from the fact that δ is arbitrarily small. This proves the upper bound in (28).

�



C Proving Theorem 3

The proof is similar to that in Appendix A, but we replace the two-level coding construction by the one-level

ICC method. Let Rcr be the argument to be maximized in (15), i.e.,

Rcr =
n1[I(UA;XB, YB) + I(UB;XA, YA|UA)] + n2[I(XA;YB|XB) + I(XB;YA|XA)]

n1 + n2
.

We rephrase (17) and (18) respectively as

n1[I(UA;XA, YA|XB, YB) + 3α] ≤ n2I(XA;XB, YB), (91)

n1[I(UB;XB, YB|XA, YA) + 3α] ≤ n2I(XB;XA, YA), (92)

where α > 0 is a sufficiently small constant to be determined from δ. Let n2,a1 + n2,a2 = n2,b1 + n2,b2 = n2,

where n2,a1 and n2,b1 are chosen to satisfy

n2,a1H(XA) = n2I(XA;XB, YB)− n1[I(UA;XA, YA|XB, YB) + 3α], (93)

n2,b1H(XB) = n2I(XB;XA, YA)− n1[I(UB;XB, YB|XA, YA) + 3α], (94)

respectively.

(i) Let n = n1 + n2 and ǫ be a small constant such that 3nǫ < n1α.

(ii) Let X
n2,a1

A,ǫ and X
n2,b1

B,ǫ be the sets of all ǫ-typical sequences in X
n2,a1

A and X
n2,b1

B w.r.t. the distributions

PXA
, and PXB

, respectively.

(iii) Define

ηa,f = n1[I(UA;XA, YA) + α], ηa,g = log |X
n2,a1

A,ǫ |, ηa = ηa,g + ηa,f , (95)

ηb,f = n1[I(UB ;XB, YB) + α], ηb,g = log |X
n2,b1

B,ǫ |, ηb = ηb,g + ηb,f , (96)

ηab,f = n1[I(UA, UB;XA, YA, XB , YB) + 2α]. (97)

(iv) Let Un1

A,ǫ (resp. Un1

B,ǫ) be obtained by randomly and independently choosing 2ηa,f (resp. 2ηb,f ) ǫ-typical

sequences from Un1

A (resp. Un1

B ).

(v) Let φA : Un1

A,ǫ × X
n2,a1

A,ǫ → {1, 2, . . . , 2ηa} and φB : Un1

B,ǫ × X
n2,b1

B,ǫ → {1, 2, . . . , 2ηb} be arbitrary bijective

mappings.

(vi) Define the parity-check book PA as the collection of 2ηa words {x
n2,a2

A,i : i = 1, 2, . . . , 2ηa}, where each

parity-check word x
n2,a2

A,i is of length n2,a2 and is independently generated according to the distribution

n2,a2
∏

l=1

p(XA = xA,i(l)).

Similarly, define the parity-check book PB = {x
n2,b2

B,i : i = 1, 2, . . . , 2ηb}.

(vii) Let EncA : Un1

A,ǫ ×X
n2,a1

A,ǫ → Un1

A,ǫ ×Xn2

A,ǫ be a (bipartite) systematic encoding function such that

Enc(un1

A , x
n2,a1

A ) = (un1

A , xn2

A ), using the parity-check book PA where xn2

A = (x
n2,a1

A , x
n2,a2

A,ϕ ) and ϕ =

φA(u
n1

A , x
n2,a1

A ). Similarly, define the encoding function EncB : Un1

B,ǫ ×X
n2,b1

B,ǫ → Un1

B,ǫ ×Xn2

B,ǫ.

Encoding. Alice and Bob generate i.i.d. n1-sequences X:1
A and X:1

B according to the distributions PXA
and

PXB
, respectively, and send them in the first communication round. They receive the n1-sequences Y

:1
A and Y:1

B ,

respectively. Alice searches in Un1

A,ǫ to find a sequence Un1

A such that (X:1
A,Y

:1
A) and Un1

A are ǫ-jointly typical



w.r.t. P(XA,YA),UA
. Similarly, Bob searches for a sequence Un1

A such that (X:1
B,Y

:1
B) and Un1

B are ǫ-jointly typical

w.r.t. P(XB ,YB),UB
.

If any of the parties fail in finding such a sequence, they return a NULL; otherwise, Alice chooses uni-

formly at random an n2,a1-sequence X
n2,a1

A from X
n2,a1

A,ǫ , calculates ΦA = φA(U
n1

A , X
n2,a1

A ), and uses it to ob-

tain (Un1

A ,X:2
A) = EncA(U

n1

A , X
n2,a1

A ). Similarly, Bob chooses an n2,b1-sequence X
n2,b1

B , and calculates ΦB =

φB(U
n1

B , X
n2,b1

B ) and then (Un1

B ,X:2
B) = EncB(U

n1

B , X
n2,b1

B ). Alice and Bob send the n2-sequences X
:2
A and X:2

B

in the second round, and receive Y:2
A and Y:2

B , respectively.

Decoding. Alice decodes (Ûn1

B , X̂
n2,b1

B ) = Dec
(

(X:1
A ,Y

:1
A), (X

:2
A ,Y

:2
A)

)

using bipartite jointly typical decoding:

she searches through the 2ηb words in Un1

B,ǫ × X
n2,b1

B,ǫ to find a unique (Ûn1

B , X̂
n2,b1

B ) such that Enc(Ûn1

B , X̂
n2,b1

B )

and
(

(X:1
A ,Y

:1
A), (X

:2
A ,Y

:2
A)

)

are (n1, ǫ)-bipartite jointly typical (see [6, Definition 8]) w.r.t. the distribution pair

(PUB ,UA
, PXB ,(XAYA)); otherwise returns a NULL. Similarly, Bob decodes (Ûn1

A , X̂
n2,a1

A ) = Dec(Un1

B ,X:2
B,Y

:2
B)

using bipartite jointly typical decoding.

Common Randomness. The common randomness is S = (ΦA, ΦB). Alice computes SA = (ΦA, Φ̂B), where

Φ̂B = φB(Û
n1

B , X̂
n2,b1

B ). Bob computes SB = (Φ̂A, ΦB), where Φ̂A = φA(Û
n1

A , X̂
n2,a1

B ).

C.1 Randomness analysis, proving (3)

Following the proof in Appendix A, the quantity H(UA, UB) is lower bounded as in (64), i.e.,

H(UA, UB) > ηab,f − 4n1α = n1I(UA, UB;XA, YA, XB, YB)− 2n1α. (98)

We use this to calculate H(S) as follows.

H(S) = H(ΦA, ΦB)
(a)
= H(Un1

A , X
n2,a1

A , U
n1

B , X
n2,b1

B )

(b)
= H(X

n2,a1

A ) +H(X
n2,b1

B ) +H(Un1

A , U
n1

B )

(c)

≥ n2,a1[H(XA)− ǫ] + n2,b1[H(XB)− ǫ] + n1I(UA, UB ;XA, YA, XB , YB)− 2n1α

(d)
= n2,a1H(XA) + n2,b1H(XB)

+ n1[I(UA;XB , YB) + I(UA;XA, YA|XB , YB) + I(UB ;YA, XA|UA) + I(UB;YB, XB |XA, YA)]− 2n1α− 2n2ǫ

(e)
= n2I(XA;XB , YB) + n2I(XB;XA, YA) + n1I(UA;YB, XB) + n1I(UB; YA, XA|UA)− 8n1α− 6nǫ

> n1[I(UA;XB , YB) + I(UB;XA, YA|UA)] + n2[I(XA;XB , YB) + I(XB ;XA; YA)]− 9nα.

Equality (a) holds since φA and φB are bijective functions, equality (b) holds since X
n2,a1

A and X
n2,b1

B are

chosen independently by the parties. Inequality (c) follows from AEP, for sufficiently large n2,a1, n2,b1, and (98),

equality (d) is due to the Markov chain (21), and equality (e) follows from (93) and (94). This gives

H(S)

n
=

H(S)

n1 + n2
>

n1[I(UA;XB , YB) + I(UB;XA, YA|UA)] + n2[I(XA;XB , YB) + I(XB;XA;YA)]

n1 + n2
− 9α > Rcr − δ,

by selecting α < δ/9.

C.2 Reliability analysis, proving (4)

Likewise to the reliability Analysis in Appendix A, since log |UA,ǫ| = ηa,f > n1I(UA;XA, YA) and log |UB,ǫ| =

ηb,f > n1I(UB;XB, YB), the encoding phase is successful. For the decoding phase, Alice and Bob use the jointly

typical decoding method. From joint-AEP for bipartite sequences [5, Appendix D], if ηa and ηb are less than



n1I(UA;XB, YB) + n2I(XA;XB, YB) and n1I(UB;XA, YA) + n2I(XB;XA, YA), respectively, then the decoding

error probability becomes arbitrarily close to zero. We calculate ηa as follows.

ηa = ηa,g + ηa,f = log |X
n2,a1

A,ǫ |+ n1[I(UA;XA, YA) + α]

(a)

≤ n2,a1(H(XA) + ǫ) + n1[I(UA;XA, YA) + α]

(b)
= n2,a1(H(XA) + ǫ) + n1[I(UA;XA, YA|XB, YB) + I(UA;XB, YB) + α]

(c)
= n1I(UA;XB, YB) + n2I(XA;XB, YB) + nǫ− 2n1α

< n1I(UA;XB, YB) + n2I(XA;XB, YB)− 5nǫ. (99)

Inequality (a) follows from AEP, for large enough n2,a1, equality (b) is due to the Markov chain (21), and

equality (c) follows from (93). In a similar way, one can show that

ηb < n1I(UB ;XA, YA) + n2I(XB ;XA, YA)− 5nǫ. (100)

This proves that, by appropriately selecting α and ǫ,

Pr(SA = SB = S) = Pr
(

Φ̂A = ΦA ∧ Φ̂B = ΦB

)

> 1− δ. (101)

�

D Proving Propositions 1 and 2

We prove Proposition 2 and the proof of Proposition 1 follows as a special case when no adversary exists, i.e.,

Z1 = 0 and Z2 = 0.

For the 2DMWC (XA, XB) → (YA, YB , Z) with Z = (Z1, Z2) and degraded one-way DMWCsXA → (YB , Z1)

and XB → (YA, Z2), the following Markov chain holds.

Z1 ↔ YB ↔ XA ↔ XB ↔ YA ↔ Z2, (102)

Recalling (24), we have the SK capacity is lower bounded by the maximum of the rates

1
n1+n2

( n1[I(UA;XB , YB) + I(UB;XA, YA|UA)− I(UA, UB ;Z)]

+n2[I(W1A;XB , YB|W2A) + I(W1B;XA, YA|W2B)− I(W1A,W1B ;Z|W2A,W2B)]+),

provided that XA and XB are independent and the conditions (26) and (27) are satisfied. By selecting UA = 0

and UB = 0, we ensure that the two conditions (26) and (27) hold. Further, by choosing n1 = 0,W2A = W2B = 0,

W1A = XA, and W1B = XB, we continue lower bounding the SK capacity as

C2DMWC
sk ≥ max

PXA
,PXB

[I(XA;XB , YB) + I(XB;XA, YA)− I(XA, XB ;Z)]+

(a)
= max

PXA
,PXB

[I(XA;YB) + I(XB ;YA)− I(XA, XB ;Z1, Z2)]+

(b)
= max

PXA
,PXB

[I(XA;YB) + I(XB ;YA)− I(XA;Z1)− I(XB;Z2)]+

(c)
= max

PXA
,PXB

[I(XA;YB|Z1) + I(XB;YA|Z2)] (103)

Equalities (a) and (b) hold since when XA and XB are independent, from (102) (XA, YB , Z1) and (XB, YA, Z2)

become independent. Equality (c) is due to the Markov chain (102).



We continue the upper bound (28) on the SK capacity as

C2DMWC
sk ≤ max

PXA
,PXB

[I(XA;YB |XB , Z1, Z2) + I(XB;YA|XA, Z1, Z2) + I(YA;YB|XA, XB , Z1, Z2)

+I(XA;XB |Z1, Z2, Q)− I(XA;XB |Q)]

(a)

≤ max
PXA

,PXB

[I(XA;YB |Z1) + I(XB ;YA|Z2) + I(YA;YB|XA, XB , Z1, Z2)

+I(XA;XB |Z1, Z2, Q)− I(XA;XB |Q)]

(b)
= max

PXA
,PXB

[I(XA;YB|Z1) + I(XB ;YA|Z2) + I(XA;XB |Z1, Z2, Q)− I(XA;XB |Q)]

(c)

≤ max
PXA

,PXB

[I(XA; YB|Z1) + I(XB;YA|Z2) + I(XA;XB |Q)− I(XA;XB |Q)]

= max
PXA

,PXB

[I(XA;YB |Z1) + I(XB;YA|Z2)]. (104)

Inequality (a) is due to (Z2, XB) ↔ XA ↔ YB and (Z1, XA) ↔ XB ↔ YA, and equality (b) us due to

YB ↔ (XA, XB) ↔ YA (see the Markov chain (102)). Inequality (c) is due to Q ↔ (XA, XB) ↔ (YA, YB, Z1, Z2)

(see Theorem 5 in Section 3.3, where Z = (Z1, Z2)). Combining (103) and (104) proves the theorem. Note that

since n1 = 0, the protocol contains only one round of communication with n2 channel uses. �

E Proof of Lemma 1

We shall prove the two inequalities (37) and (38). Depending on the values of x and y, we consider the following

four cases, and prove these two inequalities in each case separately.

Case 1: x ≤ 0.5, y ≤ 0.5.

In this case, x ⋆ y ≤ 0.5 also holds. This is shown below.

x ⋆ y = x+ y − 2xy = x+ 2y(0.5− x) ≤ x+ (0.5− x) ≤ 0.5, (105)

where the first inequality holds since y ≤ 0.5. This allows us to rewrite the claimed inequality (37) as

0.5− x ⋆ y ≤ min{0.5− x, 0.5− y}. (106)

To prove this, we shall show that x ⋆ y is greater then or equal to both x and y. We show the former as

x ⋆ y = x+ y − 2xy = x+ y(1− 2x) ≥ x, (107)

where the inequality holds since x ≤ 0.5. Similarly, one can show

x ⋆ y = x+ y − 2xy = y + x(1 − 2y) ≥ y. (108)

This completes the proof of (37) for Case 1. Since the binary entropy function h(p) is increasing for 0 ≤ p ≤ 0.5,

we have from (107)-(108) that

h(x ⋆ y) ≥ max{h(x), h(y)}. (109)

Case 2: x ≤ 0.5, y ≥ 0.5.

In this case, we show x ⋆ y ≥ 0.5 as follows.

x ⋆ y = x+ y − 2xy = x+ 2y(0.5− x) ≥ x+ (0.5− x) ≥ 0.5, (110)



where the first inequality holds since y ≥ 0.5. Therefore, we write (37) as

x ⋆ y − 0.5 ≤ min{0.5− x, y − 0.5}, (111)

which is equivalent to proving x ⋆ y + x ≤ 1 and x ⋆ y ≤ y. The former is shown as

x ⋆ y + x = x+ y − 2xy + x = 2x+ y(1− 2x) ≤ 2x+ (1 − 2x) ≤ 1, (112)

where the first inequality holds since y ≤ 1. The latter is shown as

x ⋆ y = x+ y − 2xy = y + x(1 − 2y) ≤ y, (113)

where the inequality holds since y ≥ 0.5. This completes the proof of (37) in Case 2. We prove (38) as follows.

The binary entropy function h(p) is decreasing for 0.5 ≤ p ≤ 1. This gives that, using (113),

h(x ⋆ y) ≥ h(y). (114)

Similarly, since 1− x ≥ 0.5, we use (112) to write x ⋆ y ≤ 1− x; hence,

h(x ⋆ y) ≥ h(1− x) = h(x), (115)

since h(p) = h(1− p) holds for all 0 ≤ p ≤ 1.

Case 3: x ≥ 0.5, y ≤ 0.5.

Proving inequalities (37) and (38) in this case follows from that in Case 2, by symmetry.

Case 4: x ≥ 0.5, y ≥ 0.5.

We can always write x ⋆ y as

x ⋆ y = x+ y − 2xy = (1− x) + (1 − y)− 2(1− x)(1 − y) = x′ + y′ − 2x′y′ = x′ ⋆ y′, (116)

where x′ = 1 − x and y′ = 1 − y. Observe that x′ and y′ are both less than or equal to 0.5. Thus, we can use

the lemma results proved for Case 1 (above), and write

|0.5− x′ ⋆ y′| ≤ min{|0.5− x′|, |0.5− y′|}. (117)

The fact that x′ ⋆ y′ = x ⋆ y, |0.5− x′| = |0.5− x|, and |0.5− y′| = |0.5− y| proves (37) as

|0.5− x ⋆ y| ≤ min{|0.5− x|, |0.5− y|}. (118)

To prove (38),

h(x ⋆ y) = h(x′ ⋆ y′)
(a)

≥ max{h(x′), h(y′)}
(b)
= max{h(x), h(y)}. (119)

Inequality (a) follows from (109), and equality (b) holds since, for any 0 ≤ p ≤ 1, we have that h(p) = h(1− p).

�

F Proof of Lemma 2

For the TWBWC setup, we follow the lower bound (24) by letting W2A = W2B = 0 and XA and XB be

independent, uniformly-distributed bits; hence, to write the lower bound as

C
TWBWC
sk ≥ max

n1,n2,PW
1A,UA

,PW
1B,UB

[
n1L1 + n2[L2]+

n1 + n2
, s.t. (120)

n1I(UA;XA, YA|XB , YB) < n2I(W1A;XB , YB), (121)

n1I(UB;XB , YB|XA, YA) < n2I(W1B;XA, YA)], (122)



where

L1 = I(UA;XB , YB) + I(UB;XA, YA|UA)− I(UA, UB ;Z), (123)

L2 = I(W1A;XB , YB) + I(W1B;XA, YA)− I(W1A,W1B ;Z). (124)

The two terms, L1 and L2, in the lower bound argument depend on the distributions of (UA, UB) and

(W1A,W1B), respectively. In the following, we continue the lower bound only for the following case among

all possible distributions for [(UA, UB), (W1A,W1B)] (see (21)-(23)):

[(UA, UB), (W1A,W1B)] ∈ {[(XA + YA +N ′
sA, XB + YB +N ′

sB), (XA +NsA, XB +NsB)] : 0 ≤ p1, p2 ≤ 1},

where NsA, NsB, N
′
sA, and N ′

sB are independent BSC noises with error probabilities

Pr(N ′
sA = 1) = Pr(NsB = 1) = p1, Pr(N ′

sB = 1) = Pr(NsA = 1) = p2.

In this case, we calculate the first term L1, given noise variables N ′
sA and N ′

sB as follows.

L1
△
= L

∗
1 = I(XA + YA +N

′
sA;XB , YB) + I(XB + YB +N

′
sB ;XA, YA)− I(XA + YA +N

′
sA, XB + YB +N

′
sB ;Z)

(a)
= 1−H(XA + YA +N

′
sA|XB , YB) + 1−H(XB + YB +N

′
sB |XA, YA)

−(1−H(Z|XA + YA +N
′
sA, XB + YB +N

′
sB))

(b)
= 1−H(XB +NrA +N

′
sA|XB , YB)−H(XA +NrB +N

′
sB |XA, YA)

+H(XA +XB +NE |XB +NrA +N
′
sA, XA +NrB +N

′
sB)

(c)
= 1−H(XB +NrA +N

′
sA|XB)−H(XA +NrB +N

′
sB |XA)

+H(XA +XB +NE |XA +XB +NrA +NrB +N
′
sA +N

′
sB)

(d)
= 1− h(p1 ⋆ pra)− h(p2 ⋆ prb) + h(p1 ⋆ p2 ⋆ pra ⋆ prb ⋆ pe). (125)

Equalities (a)-(d) hold due to the following: (a) holds since XA, XB, and Z have uniform distributions, (b)

follows from (34)-(36), (c) holds because YB is independent of (XB, XB +NrA + N ′
sA) and YA is independent

of (XA, XA +NrB +N ′
sB), and (d) is due to the BSC property. Similarly, we obtain the second term L2 given

noise variables NsA, and NsB as

L2
△
= L

∗
2 = I(XA +NsA;XB , YB) + I(XB +NsB ;XA, YA)− I(XA +NsA, XB +NsB ;Z)

= 1−H(XA +NsA|XB , YB) + 1−H(XB +NsB |XA, YA)− (1−H(Z|XA +NsA, XB +NsB))

= 1−H(XA +NsA|XB , XB + YB) + 1−H(XB +NsB |XA, XA + YA)− (1−H(Z|XA +NsA, XB +NsB))

= 1−H(XA +NsA|XB , XA +NrB)−H(XB +NsB |XA, XB +NrA)

+H(XA +XB +NE |XA +NsA, XB +NsB)

= 1−H(XA +NsA|XA +NrB)−H(XB +NsB |XB +NrA)

+H(XA +XB +NE |XA +XB +NsA +NsB)

= 1− h(p2 ⋆ prb)− h(p1 ⋆ pra) + h(p1 ⋆ p2 ⋆ pe). (126)

We write the conditions (121) and (122), respectively, as

n1 < n
′
1

△
= n2

I(XA +NsA;XB , YB)

I(XA + YA +N ′
sA;XA, YA|XB , YB)

= n2
1−H(XA +NsA|XB , YB)

H(XA + YA +N ′
sA|XB , YB)

= n2
1−H(XA +NsA|XA +NrB)

H(XB +NrA +N ′
sA|XB , YB)

= n2
1− h(p2 ⋆ prb)

h(p1 ⋆ pra)
, (127)

and

n1 < n
′′
1

△
= n2

I(XB +NsB ;XA, YA)

I(XB + YB +N ′
sB ;XB , YB|XA, YA)

= n2
1−H(XB +NsB |XA, YA)

H(XB + YB +N ′
sB |XA, YA)

= n2
1−H(XB +NsB |XB +NrA)

H(XA +NrB +N ′
sB |XA, YA)

= n2
1− h(p1 ⋆ pra)

h(p2 ⋆ prb)
. (128)



By letting n∗
1 = min{n′

1, n
′′
1} and following the lower bound (120) for this case, we arrive at

max
n1,n2,p1,p2

[
n1L

∗
1 + n2[L

∗
2 ]+

n1 + n2
, s.t. n1 ≤ n

∗
1]. (129)

Using the result of Lemma 1 for (125), we have that L∗
1 ≥ 0 holds for any 0 ≤ p1, p2 ≤ 1. On the other hand,

comparing (125) and (126) reveals that L∗
1 ≥ L∗

2. These together imply L∗
1 ≥ [L∗

2]+. Thus, the maximum in

(129) is achieved by selecting n1 = n∗
1, i.e.,

CTWBWC
sk ≥ LboundN

△
= max

p1,p2

[
n∗
1L

∗
1 + n2[L

∗
2]+

n∗
1 + n2

] = max
p1,p2

[µL∗
1 + (1− µ)[L∗

2]+], (130)

where

µ =
n∗
1

n∗
1 + n2

= min{
1− h(p1 ⋆ pra)

1− h(p1 ⋆ pra) + h(p2 ⋆ prb)
,

1− h(p2 ⋆ prb)

1− h(p2 ⋆ prb) + h(p1 ⋆ pra)
}. (131)

Furthermore, (130) clearly shows that

LboundN ≥ max
p1,p2

[L∗
2]+,

since L1 ≥ [L2]+ holds for any 0 ≤ p1, p2 ≤ 1. �


