
Threshold Encryption into Multiple Ciphertexts

Martin Stanek

Department of Computer Science
Comenius University

Mlynská dolina, 842 48 Bratislava, Slovak Republic
stanek@dcs.fmph.uniba.sk

Abstract. We propose (T,N) multi-ciphertext scheme for symmetric
encryption. The scheme encrypts a message into N distinct ciphertexts.
The knowledge of the symmetric key allows decryption of the original
message from any ciphertext. Moreover, knowing T + 1 ciphertexts al-
lows efficient recovery of the original message without the key, and with-
out revealing the key as well. We define the security property of the
scheme, and prove the security of the proposed scheme. We discuss sev-
eral variants of the basic scheme that provides additional authenticity
and efficiency.

1 Introduction

Imagine a situation where a secure backup of data has to be stored on multiple
locations. It is easy to achieve this using an encryption – we encrypt the data and
store them on as many locations as we want. In order to recover the data again,
we need a decryption key and a backup from at least one location. We can
reduce the need for “full” key-management by distributing the key via secret
sharing scheme and storing particular shares on specified locations. Then one
can recover the data from a single backup, provided (s)he knows the key, or
recover the data having backups from multiple locations, provided the key can
be reconstructed from the shares. However this approach has a drawback – the
key is revealed/compromised by this reconstruction, so it cannot be used for
other data/purposes.

Imagine another situation where data are written to multiple systems (disks)
for redundancy reasons. Because of confidentiality requirements, each copy of
the data must be encrypted. In order to allow fast read operation, we want a
recovery algorithm that computes data from encrypted copies much faster than
regular decryption. The recovery should be possible as long as we have access to
at least some pre-defined number of copies.

Our contribution. We propose (T,N) multi-ciphertext scheme for symmetric
encryption (where 1 ≤ T ≤ N). The scheme encrypts a message into N distinct
ciphertexts. The knowledge of the symmetric key allows decryption of the orig-
inal message from any ciphertext. Moreover, knowing T + 1 ciphertexts allows

efficient recovery the original message without the key, and without revealing the
key as well. A (1, 2) multi-ciphertext scheme called “double ciphertext mode”
was proposed in [3]. Our work solves an open problem formulated there and can
be viewed as a generalization of their scheme.

We define the security property of the scheme that differs from the definition
provided in [3], which is based on indistinguishability of ciphertexts and random
binary strings. We follow an approach of distinguishing encryptions of real-or-
random plaintexts, introduced by Bellare et al. [1].

We prove the security of a concrete implementation of multi-ciphertext scheme,
called multiple ciphertext mode, using a proof techniques similar to [1]. We dis-
cuss several variants of the basic scheme that provides additional efficiency and
authenticity.

The paper is organized as follows. Section 2 introduces basic notions. A multi-
ciphertext scheme and its security are defined in Sect. 3. Multiple ciphertext
mode is proposed in Sect. 4, together with proofs of its security. Section 5 con-
tains variants of multiple ciphertext mode that address some efficiency issues
and authenticity requirements.

2 Preliminaries

We denote [l] = {1, 2, . . . , l} for a positive integer l. Let k and n be positive
integers. A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n, where for
each key K ∈ {0, 1}k, the function EK(·) = E(K, ·) is a permutation on {0, 1}n.
Let Bloc(k, n) be the set of all block ciphers with k-bit keys and n-bit blocks.
The inverse of block cipher E is denoted by E−1.

The construction will use the arithmetic in finite field GF(2n), i.e. n-bit
blocks are sometimes treated as elements in GF(2n). For this purpose we assume
some representation of GF(2n) is fixed and known. We denote the addition in
GF(2n), i.e. the bitwise XOR operation of two binary vectors as ⊕. Let bin(a)
be an element of GF(2n) corresponding to the n-bit binary representation of
integer a ∈ {0, . . . , 2n − 1}, e.g. bin(3) = x + 1, bin(6) = x2 + x etc. A scalar
product of vectors α = (a1, . . . , al), β = (b1, . . . , bl), where all ai, bi ∈ GF(2n),
is denoted as 〈α, β〉, i.e. 〈α, β〉 = a1b1 ⊕ . . .⊕ albl.

The experiment of choosing a random element x from the finite set S will

be denoted by x
$←− S. Let Func(n, n′) be the set of all functions from {0, 1}n to

{0, 1}n′ .
An adversary (or sometimes a distinguisher) is a probabilistic algorithm that

interacts with one or more oracles, written as superscripts, and outputs 0 or 1.
Let F : {0, 1}k × {0, 1}n → {0, 1}n′ be a function with key space {0, 1}k,

domain {0, 1}n and range {0, 1}n′ . A distinguisher D tries to distinguish F from
a random function, having oracle access to one of them. We define its advantage
as follows:

Advprf
F (D) = Pr[K

$←− {0, 1}k : DFK(·) ⇒ 1]−Pr[f
$←− Func(n, n′) : Df(·) ⇒ 1].

A function F is called (t, q, ε)-secure pseudo-random function if for any proba-

bilistic distinguisher D that runs in time t and makes q queries Advprf
F (D) ≤ ε.

Similarly, we can define (t, q, ε)-secure pseudo-random permutation; the only
distinctions are requirements for n = n′, FK being a permutation on {0, 1}n
for all K ∈ {0, 1}k, and the distinguisher tries to distinguish F from a random
permutation. Secure pseudo-random permutation is sufficiently secure pseudo-
random function, see [1, 4], the difference is negligible and related to the birthday
bound of finding a collision. Therefore, similarly to [1], we use pseudo-random
function instead of pseudo-random permutation to model a block cipher in the
analysis of our scheme.

3 A Multi-ciphertext Scheme

Let T,N,m, l be positive integers. LetM = {0, 1}nm be the message space, and
C = {0, 1}nm be the ciphertext space. A (T,N) multi-ciphertext scheme is a
quadruple of algorithms (K, E ,D,Recover):

– K – the key generation algorithm (we also denote the key space as K)
– E : K ×M → CN × {0, 1}l – the encryption algorithm. It takes a key and

a message to produce N ciphertexts and an l-bit tag τ . For an M ∈ M,
K ∈ K we denote E(K,M) = EK(M) = (C1, . . . , CN , τ). The tag τ is used
to randomize the encryption and will be generated as a random bit-string in
our construction. Moreover, in order to allow a distributed computation of
individual ciphertexts, we require that knowing the key and τ allows compu-
tation of any Ci. We denote the partial encryption functions as E1, . . . , EN ,
i.e. Ci = E iK(M, τ) for all i = 1, . . . , N .

– D : K×C × [N]× {0, 1}l →M – the decryption algorithm. It takes a key, a
ciphertext, its index and a tag to produce the original message. We require
the correctness of the scheme, i.e.

∀K ∈ K ∀M ∈M ∀τ ∈ {0, 1}l ∀i ∈ [N] : DK(E iK(M, τ), i, τ) = M.

– Recover – the algorithm for message recovery without using the key. It takes
at least T+1 ciphertexts and the tag τ ; the set of indices of these ciphertexts
is denoted by I. The algorithm outputs the original message. More formally:

∀K ∈ K ∀M ∈M ∀τ ∈ {0, 1}l ∀I ⊆ [N] (|I| > T) :

Recover({(i, E iK(M, τ)) | i ∈ I}, τ) = M.

Remark 1. Whether the tag is generated randomly by the scheme or randomly
generated and supplied by application is an unimportant technical detail. In
practice we can choose both approaches (however, for our definition we prefer the
tag to be generated internally). For other modifications, the tag can be generated
by suitable pseudorandom function and serve for authentication purposes (see
Sect. 5.3 or [3]).

Security. The security definition of a multi-ciphertext scheme is modeled ac-
cording real-or-random property proposed by Bellare et al. [1]. An adversary is
any probabilistic polynomial time machine with access to an oracle. In the first
(“real”) scenario the oracle returns encryption of given plaintext. In the second
(“random”) scenario the oracle returns encryption of randomly chosen string of
equal length. The adversary tries to distinguish between these two scenarios.

The multi-ciphertext scheme allows recovery of the original message from T+
1 or more ciphertexts. Therefore, we have to restrict the number of ciphertexts
the adversary can obtain from the encryption oracle to at most T . The tag is
also available to the adversary. On the other hand, we allow the adversary to
choose which T ciphertexts it receives for each query. We denote the selection
EK(·) � (I), where I = {i1, . . . , iT } ⊆ [N] and |I| = T , i.e. EK(·) � (I) =
(Ci1 , . . . , CiT , τ).

More formally, let A be an adversary, and we denote the (privacy) advantage
of A for a multi-ciphertext scheme Γ :

Advpriv
Γ (A) = Pr

[
K

$←− K : AEK(·)�(.) ⇒ 1
]
− Pr

[
K

$←− K : AEK($|·|)�(.) ⇒ 1
]
,

where $|·| on input M generates M ′
$←− {0, 1}|M |.

A multi-ciphertext scheme is (t, q, ε)-secure if Advpriv
Γ (A) ≤ ε, for any prob-

abilistic adversary A that runs in time t and asks at most q queries.

4 Multiple Ciphertext Mode (MCM)

We propose a Multiple Ciphertext Mode (MCM) as a concrete instantiation of
multi-ciphertext scheme. First, we describe so called basic MCM, with simple
structure suitable for explanation and analysis of its properties. Then we discuss
a more practical modification of the basic MCM. All constructions are based on
counter mode (CTR) of block cipher and use ideas of secret sharing schemes.

4.1 Basic MCM

The key generation algorithm is trivial, we simply choose a random k-bit key K
(it will be used for underlying block cipher). For basic MCM encryption we set
l = nT . The tag is generated randomly and divided into n-bit vectors τ1, . . . , τT .
These vectors are used as starting points for T independent streams of CTR
blocks. Finally, we combine the CTR streams and message blocks to produce N
ciphertexts. Let M = (P1, . . . , Pm) be the input message consisting of m blocks.
We denote by MCM(E) the basic MCM with an underlying transformation E.

Let us define N vectors α1, . . . , αN ∈ GF(2n)T+1 in the following way:
αi = (bin(1),bin(i),bin(i)2, . . . ,bin(i)T), where all computations are performed
in GF(2n).

Function EK(P1, . . . , Pm):

τ = (τ1, . . . , τT)
$←− ({0, 1}n)T

for i = 1, . . . ,m:
(Ri,1, . . . , Ri,T)← (EK(τ1 ⊕ bin(i)), . . . , EK(τT ⊕ bin(i)))
β = (Pi, Ri,1, . . . , Ri,T)
(C1,i, . . . , CN,i)← (〈α1, β〉, . . . , 〈αN , β〉)

return ((C1,1, . . . , C1,m︸ ︷︷ ︸
C1

), . . . , (CN,1, . . . , CN,m︸ ︷︷ ︸
CN

), τ)

Let us denote by α′i the vector obtained from αi by deleting the first element,
i.e. α′i = (bin(i),bin(i)2, . . . ,bin(i)T). Decryption algorithm is straightforward:

Function DK(Cj , j, τ):
(τ1, . . . , τT)← τ
for i = 1, . . . ,m:

(Ri,1, . . . , Ri,T)← (EK(τ1 ⊕ bin(i)), . . . , EK(τT ⊕ bin(i)))
β′ = (Ri,1, . . . , Ri,T)
Pi = Cj,i ⊕ 〈α′j , β′〉

return (P1, . . . , Pm︸ ︷︷ ︸
M

)

Knowing at least T + 1 ciphertexts (say Cj1 , Cj2 , . . . , CjT+1
) allows recovery

of the original message M without knowing the key. We show that each plain-
text block Pi (for i = 1, . . . ,m) can be recovered from corresponding blocks of
ciphertexts: Cj1,i, . . . , CjT+1,i. From encryption equations we have (as always,
the computations are in GF(2n)):

Cj1,i = Pi ⊕ bin(j1)Ri,1 ⊕ bin(j1)2Ri,2 ⊕ . . .⊕ bin(j1)TRi,T

Cj2,i = Pi ⊕ bin(j2)Ri,1 ⊕ bin(j2)2Ri,2 ⊕ . . .⊕ bin(j2)TRi,T

. . .

CjT+1,i = Pi ⊕ bin(jT+1)Ri,1 ⊕ bin(jT+1)2Ri,2 ⊕ . . .⊕ bin(jT+1)TRi,T

Thus, we have a system of T+1 linear equations with T+1 variables Pi, Ri,1 . . . , Ri,T .
The matrix of the system (let us denote it AJ where J = {j1, . . . , jT+1}) is Van-
dermonde matrix with distinct bin(j1), . . . ,bin(jT+1), and therefore the system
has a unique solution. The algorithm Recover solves the system for each message
block and computes the values of P1, . . . , Pm. The efficiency of Recover algorithm
depends on how fast we can find an unknown Pi for particular system. The sys-
tem of linear equations with Vandermonde matrix can be solved in time O(T 2)
(e.g. see [2]), so the overall complexity of recovery is O(mT 2).

However, we can do even better. We compute the inverse matrix A−1J . Then

A−1J ·AJ︸ ︷︷ ︸
IT+1

·


Pi
Ri,1

...
Ri,T

 = A−1J ·


Cj1,i
Cj2,i

...
CjT+1,i



and Pi can be easily computed in O(T) time: Pi = 〈γ, (Cj1,i, . . . , CjT+1,i)〉, where

γ is the first row of A−1J . We can compute A−1J in advance or at the beginning
of the algorithm Recover (it does not depend on ciphertexts) in O(T 2) time [7].
Therefore the overall complexity of recovery is O(T 2 +mT). In practice, we can
usually expect m� T , so the term T 2 is not an issue.

Remark 2. The lower bound for time complexity of Recover in general is Ω(mT)
(use every block of every ciphertext). Otherwise the security properties of the
scheme are violated.

4.2 Security of basic MCM

We start with analyzing the security of basic MCM in an ideal world, where the

underlying block cipher EK(·) is modeled as a random function f
$←− Func(n, n).

Certainly, a random permutation (instead of function) would be more precise for
ideal model of EK(·). However, the difference between random permutation and
random function on {0, 1}n is negligible (a hypothetical distinguisher has to find
a collision). Therefore, for our ideal world analysis it suffices to take random f .

Theorem 1. Let MCM(f) be a basic MCM where the underlying block cipher

EK is instantiated as f
$←− Func(n, n). Let A be an adversary which asks at most

q queries. Then Advpriv
MCM(f)(A) ≤ (q2T 2m)/2n.

Proof. Let (M (1), I(1)), . . . , (M (q), I(q)) be the queries that A asks its oracle. We
will add a superscript “(s)” to variables in MCM to denote their value for partic-
ular query (M (s), I(s)). Recall, A gets a subset I(s) of ciphertexts corresponding
to the encryption of M (s) in the first scenario, and the same subset of ciphertexts
corresponding to a randomly chosen plaintext in the second scenario.

We define an event Over as follows: Over occurs if there exists an arbitrary
overlap of any CTR streams generated by MCM when computing the answers
to A’s queries. More precisely, Over happens if and only if there exist s, s′ ∈
{1, . . . , q}, j, j′ ∈ {1, . . . , T}, i, i′ ∈ {1, . . . ,m} such that (s, j, i) 6= (s′, j′, i′) and

τ
(s)
j ⊕bin(i) = τ

(s′)
j′ ⊕bin(i′). Since τ (s) values are generated randomly, the prob-

ability of Over is the same in both scenarios. Let us estimate the upper bound
of the probability Pr[Over]. We can think of all q · T CTR streams as indepen-
dent streams (τ (s) are random). The probability of overlap when generating i-th
stream is upper bounded (when previous streams do not overlap) as follows:

pi ≤
(i− 1)(m− 1) + (i− 1)m

2n
≤ 2m(i− 1)

2n

Then the upper bound of Pr[Over] ≤
∑qT
i=1 pi can be computed:

Pr[Over] ≤
qT∑
i=1

2m(i− 1)

2n
≤ q2T 2m

2n
(1)

Let Win1 (Win2) be the event that A outputs 1 in the first (second) scenario.

We need to estimate (upper bound) Advpriv
MCM(f)(A):

Advpriv
MCM(f)(A) = Pr[Win1]− Pr[Win2]

= (Pr[Win1 | Over] · Pr[Over] + Pr[Win1 | ¬Over] · Pr[¬Over])
− (Pr[Win2 | Over] · Pr[Over] + Pr[Win2 | ¬Over] · Pr[¬Over])

If there is no overlap in the CTR streams, for each ciphertext block C
(s)
j,i (for j ∈

I(s), i ∈ {0, . . . ,m}) which A receives as an oracle’s answer the following holds:

each value R
(s)
i,· used for encryption is random and independent of other values.

Since A gets T ciphertexts, this yields the system of T linear equations with T+1

unknowns P
(s)
i , R

(s)
i,1 , . . . , R

(s)
i,T (T × (T + 1) Vandermonde coefficient matrix) –

thus the corresponding plaintext block P
(s)
i can be arbitrary. Therefore, A cannot

distinguish the scenarios when there is no overlap, i.e.

Pr[Win1 | ¬Over] = Pr[Win2 | ¬Over] .

Let us continue with estimation of Advpriv
MCM(f)(A):

Advpriv
MCM(f)(A) = Pr[Win1 | Over] · Pr[Over]− Pr[Win2 | Over] · Pr[Over]

= (Pr[Win1 | Over]− Pr[Win2 | Over]) · Pr[Over]

≤ Pr[Over]

The proof is finished by combining this bound with (1). ut

Remark 3. We use fixed-length messages (having m blocks) in the proofs of The-
orem 1 and Theorem 2. This simplifies the presentation of the proofs. However,
the proofs can be easily generalized for messages with variable number of blocks.

We move from the ideal world to more concrete security. We prove that the
MCM(E) scheme is secure, assuming the block cipher is secure pseudo-random
function.

Theorem 2. Let F be a (t′, q′, ε′)-secure pseudo-random function. Then the
MCM(F) is (t, q, ε)-secure multi-ciphertext scheme, where t = t′− cq′(1+N/T),
q = q′/(mT) and ε = 2ε′ + q2T 2m/2n for some constant c > 0.

Proof. LetA be an adversary that breaks MCM(F) scheme, i.e. Advpriv
MCM(F)(A) >

ε. We build a distinguisher D that attacks the pseudo-randomness of F :

Distinguisher DO(·):

b
$←− {0, 1}

run A and answer its oracle queries (M, I):
simulate the encryption of M using O(·) to simulate the EK calls
return T ciphertexts according I

if (b = b′) return 1 else return 0

Distinguisher D has access to oracle O(·), instantiated as FK(·) (for random

key K) or a random function f
$←− Func(n, n). If A makes q queries then D

asks q′ = qmT queries. Moreover, if A runs in time t then D runs in time
t′ = t + cqm(T + N) = t + cq′(1 + N/T) for some constant c > 0, were the
additional term is due to encryptions that D performs.

Let us estimate Advprf
F (D). To shorten the length of probabilistic expressions

we omit the random selections of K or f (they are known from the context). We
have

Advprf
F (D) = Pr[DFK(·) ⇒ 1]− Pr[Df(·) ⇒ 1]

We evaluate the first probability. Let us define the following shortcuts: A(FK) =

AE
FK
K (·)�(.), A(FK$) = AE

FK
K ($|·|)�(.)). Then

Pr[DFK(·) ⇒ 1] = Pr[A(FK)⇒ 1 ∧ b = 1]− Pr[A(FK$)⇒ 0 ∧ b = 0]

=
1

2
· Pr[A(FK)⇒ 1 | b = 1]− 1

2
· Pr[A(FK$)⇒ 0 | b = 0]

=
1

2
· (Pr[A(FK)⇒ 1]− Pr[A(FK$)⇒ 0])

=
1

2
+

1

2
·Advpriv

MCM(F)(A)

Similarly

Pr[Df(·) ⇒ 1] =
1

2
+

1

2
·Advpriv

MCM(f)(A) .

Putting this together we have

Advprf
F (D) =

1

2
·Advpriv

MCM(F)(A)− 1

2
·Advpriv

MCM(f)(A) .

Using the fact that Advpriv
MCM(F)(A) > ε and Theorem 1 we get

Advprf
F (D) >

ε

2
− q2T 2m

2n+1
= ε′,

a contradiction with assumption that F is (t′, q′, ε′)-secure pseudo-random func-
tion. ut

5 MCM Variants

There are several directions how the basic MCM can be improved. We discuss
some possibilities in this section.

5.1 Efficiency of Encryption and Recovery

The encryption algorithm requires computation of T CTR streams that are
combined with the message blocks to obtain N ciphertexts. Notice that knowing

the key and tag τ allows a distributed computation of particular ciphertexts. This
can be useful for an application, where a distant backup location computes just
“its own” ciphertext Ci = E iK(M) (and forgets the key afterwards, for example).

The need to compute T CTR streams makes the encryption approximately T
times slower than simple symmetric encryption with the same block cipher. Here
we assume that the linear combinations of CTR streams can be computed much
faster than performing the block cipher transformation. Otherwise, the slow-
down would be even worse. In situations where a more efficient computation
of particular ciphertext is required, we can choose a different set linear combi-
nations. More importantly, different set of linear combinations can increase the
performance of Recover algorithm.

To be more precise, let A be an N × (T +1) matrix over GF(2n) that defines
the linear combinations for producing ciphertexts. For the basic MCM scheme
we have (i ∈ {1, . . . ,m}):C1,i

...
CN,i

 = A ·


Pi
Ri,1

...
Ri,T

 =


α1

α2

...
αN

 ·


Pi
Ri,1

...
Ri,T

 .

However, we can choose a different matrix as long as it guarantees the properties
of the scheme. An zero element in j-th row of a matrix means that particular
CTR stream is not needed to compute Cj .

Example 1. Let us illustrate this with T = 2 and N = 3 (one can expect that N
will not be very large in practical scenarios). Then, for example, the following
matrix A defines an alternative computation of ciphertexts:

A =

1 1 0
1 0 1
1 1 1

 ⇒


C1,i = Pi ⊕Ri,1
C2,i = Pi ⊕Ri,2
C3,i = Pi ⊕Ri,1 ⊕Ri,2

It is easy to verify that knowing any pair of ciphertexts does not help in comput-
ing the plaintext. On the other hand, three ciphertexts allow very fast recovery
of plaintext without knowing the key: Pi = C1,i ⊕ C2,i ⊕ Ci,3. Moreover, the
ciphertext C1 and C2 can be computed as fast as standard encryption in CTR
mode.

5.2 Shorter Tags

The basic MCM scheme generates the tag τ randomly as nT -bit string. We
can shorten the tag to n bits by employing a pseudo-random function. Let F :
{0, 1}k×{0, 1}n → {0, 1}n be a pseudo-random function (in practice we can use
the underlying block cipher E). We modify the basic MCM scheme as follows:

– The key generation algorithm chooses two independent random k-bit keys
K, K ′. The key K is used in computation of CTR stream as before, and K ′

will be used for expansion of shortened tag τ .

– The encryption algorithm starts with the following code to produce τ and
τ1, . . . , τT :

τ
$←− {0, 1}n

(τ1, . . . , τT)← (FK′(τ ⊕ bin(1)), . . . , FK′(τ ⊕ bin(T)))

The rest of the algorithm (computation of ciphertexts) remains intact.

– The decryption algorithm must be adjusted accordingly, i.e. τ1, . . . , τT are
computed from τ as shown above.

This modification has no impact on Recover algorithm.

It can be easily verified that Theorem 1 holds for this modification, and

Theorem 2 holds with insignificant adjustments: t′ = t − cq′
(

1 + mN
(m+1)T

)
and

q′ = q
(m+1)T .

5.3 Authentication

In many practical situation some form of authenticity is often required in ad-
dition to confidentiality provided by encryption. The multiple ciphertext mode
can be extended to provide authentication. We can use a two-pass construction
similar to those used for computation of authentication tag in double ciphertext
mode [3] or synthetic initialization vector mode [5].

The construction uses a pseudo-random functions G : {0, 1}k × {0, 1}nm →
{0, 1}n and F : {0, 1}k × {0, 1}nm → {0, 1}n. We extend the key generation
algorithm to produce three k-bit random keys KG, KF and K. The first key
KG is used for computing authentication tag τG used in place of the original
tag τ . The second key KF is used for producing tags for CTR streams (taking
a construction from Sect. 5.2). The key K is used as in basic MCM. Therefore
the encryption algorithm is modified as follows:

Function EKG,KF ,K(P1, . . . , Pm):
τG = GKG

(P1 . . . Pm)
(τ1, . . . , τT)← (FKF

(τG ⊕ bin(1)), . . . , FKF
(τG ⊕ bin(T)))

for i = 1, . . . ,m:
(Ri,1, . . . , Ri,T)← (EK(τ1 ⊕ bin(i)), . . . , EK(τT ⊕ bin(i)))
β = (Pi, Ri,1, . . . , Ri,T)
(C1,i, . . . , CN,i)← (〈α1, β〉, . . . , 〈αN , β〉)

return (C1, . . . , CN , τG)

The decryption algorithm checks for validity of authentication tag τG (beside
decrypting the message). In case the authenticity cannot be verified the decryp-
tion returns nothing, except the information that the ciphertext is not authentic.
We denote this by the symbol ⊥. Analogous verification of the authentication
tag τG must be added into Recover algorithm.

Function DKG,KF ,K(Cj , j, τG):
(τ1, . . . , τT)← (FKF

(τG ⊕ bin(1)), . . . , FKF
(τG ⊕ bin(T)))

for i = 1, . . . ,m:
(Ri,1, . . . , Ri,T)← (EK(τ1 ⊕ bin(i)), . . . , EK(τT ⊕ bin(i)))
β′ = (Ri,1, . . . , Ri,T)
Pi = Cj,i ⊕ 〈α′j , β′〉

M ← (P1, . . . , Pm)
if (GkG(M) = τG) return M
return ⊥

6 Conclusion

We presented and proved the properties of basic multiple ciphertext mode. We
discussed some extensions of the basic construction. Interesting open problems
for further research are: generalization of variant described in Sect. 5.1; design of
one-pass mode that is (T,N) multi-ciphertext scheme and simultaneously guar-
antees the authenticity of the ciphertexts; and exploring possible efficiency gains
by using BRW polynomials [6] in multiple-ciphertext scheme with authentica-
tion, similar to the ideas employed in [3].

Acknowledgement. This work was supported by VEGA 1/0266/09.

References

1. M. Bellare, A. Desai, E. Jokipi, P. Rogaway: A Concrete Security Treatment of
Symmetric Encryption, Proceedings of the 38th Symposium on Foundations of
Computer Science, IEEE, pp. 394–403, 1997.

2. Å. Björck, V. Pereyra: Solution of Vandermonde Systems of Equations, Mathe-
matics of Computation, Vol. 24, No. 112, pp. 893–903, American Mathematical
Society, 1970.

3. D. Chakraborty, C. Mancillas-López: Double Ciphertext Mode: A Proposal for Se-
cure Backup, Cryptology ePrint Archive, Report No. 2010/369, 2010.

4. J. Katz, Y. Lindell: Introduction to Modern Cryptography, Chapman & Hall/CRC,
2008.

5. P. Rogaway, T. Shrimpton: A Provable-Security Treatment of the Key-Wrap Prob-
lem, Advances in Cryptology – EUROCRYPT 2006, Lecture Notes in Computer
Science, vol. 4004, Springer, pp. 373–390, 2006.

6. P. Sakar: Efficient Tweakable Enciphering Schemes from (Block-Wise) Universal
Hash Functions, IEEE Transactions on Information Theory, 55(10): 4749-4760,
2009.

7. J. Traub: Associated Polynomials and Uniform Methods for the Solution of Linear
Problems, SIAM Review, Vol. 8, No. 3, pp. 277–301, Society for Industrial and
Applied Mathematics, 1966.

