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Abstract

Cryptographic solutions to privacy-preserving multiparty linear pro-
gramming are slow. This makes them unsuitable for many economi-
cally important applications, such as supply chain optimization, whose
size exceeds their practically feasible input range. In this paper we
present a privacy-preserving transformation that allows secure out-
sourcing of the linear program computation in an efficient manner. We
evaluate security by quantifying the leakage about the input after the
transformation and present implementation results. Using this trans-
formation, we can mostly replace the costly cryptographic operations
and securely solve problems several orders of magnitude larger.

1 Introduction

Linear Programming (LP) can be used to solve many practical optimization
problems, e.g. supply chain master planning [22]. Many practical problems
are distributed and require protection of the input data. For example, in
supply chain master planning, the participating companies need to exchange
information about production costs and capacities. This is very sensitive
data, since it directly impacts the negotiation position. Consequently no
master planning solution will be adopted in practice that reveals this data
[17].
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Figure 1: Privacy-Preserving Linear Programming in the Cloud

Secure multi-party computation (SMC) [4, 10, 18, 26] offers a crypto-
graphic solution to the problem. Several parties can jointly compute a func-
tion, e.g. LP, without disclosing anything except what can be inferred by
a party’s input and output. In theory this offers an ideal solution to the
conflict posed by these problems. There even exist a number of specialised
protocols for secure LP [7, 14, 23].

Nevertheless these solutions suffer from a prohibitively bad computa-
tional performance. We estimate that our prototypical implementation of
Toft’s protocol [23] requires 7 years in order to solve our use case LP problem
with 282 variables. Supply chain planning problems can easily reach 4 mil-
lion variables [6] and these are only single company planning problems while
we consider cross-organizational optimization. These size of problems are
currently solved every day by non-secure LP solvers. Assuming an average
computation complexity of O(n3) for LP and that Moore’s Law continues
to hold for the time being, it would still take roughly 80 years until these
problems could be solved securely as fast as they can be solved non-securely
today. Clearly, if we want to solve these problems today, we need a different
approach.

In [24] Vaidya presents a different approach to the problem. Instead of
implementing a LP solver using SMC the problem is randomly transformed
and then the problem is solved using a non-secure LP solver. Unfortunately
as Bednarz already points out in [3] Vaidya’s transformation is incorrect and
may lead to solutions which are not admitted in the original problem. In
this paper we present a new, correct transformation. Furthermore we do
not settle for an informal assessment of its security, but instead evaluate it
in the framework of leakage quantification. Finally, we present performance
results from our implementation.

Let L be an instance of a LP problem where parties Xi have input xi, e.g.
variables, constraints or costs. The approach of [7, 14, 23] is to implement a
LP solver for L using SMC where xi is the input of each party. Let g be our
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privacy-preserving transformation, then L′ = g(L) is another instance of a
LP problem, but L′ reveals little information about L. We can outsource
the solution of L′ to an untrusted service provider, e.g. the cloud. Either a
single party computes g on its data, e.g. a single company instance of supply
chain planning, or we can securely compute g using SMC for multiple parties.
We show that computing g is much more efficient than implementing a LP
solver and even present an optimized secure computation protocol for it.
The solution computed by the cloud on L′ then needs to be transformed by
g′ to the solution of L. Figure 1 depicts our approach to privacy-preserving
linear programming in the cloud.

In summary this paper contributes

• a novel privacy-preserving transformation for linear programs regard-
less of their partitioning.

• a proof that differently from previous work the transformation is cor-
rect, i.e. an optimal solution to the transformed problem always cor-
responds to an optimal solution of the original problem.

• an analysis that the transformation is secure in the framework of leak-
age quantification. In our use case example the chances of guessing
e.g. the optimal values x are less than 2.30 · 10−1409.

• a secure computation protocol to efficiently compute the transformation
in a multiparty case.

• a theoretical analysis and performance results of our implementation
that show that the transformation is efficient. In our use case example
the solution only required 25 minutes (compared to 7 years for Toft’s
protocol).

The remainder of this paper is structured as follows. In the next Sec-
tion we will review related work. In Section 3 we present our main result,
the privacy-preserving transformation. We will prove the correctness of
the transformation in Section 4 and analyze its performance in Section 5.
In Section 6 we summarize our results from leakage quantification of this
transformation. We show the protocol for securely computing the transfor-
mation in Section 7. The results from our use case example are described
in Section 8. We conclude the paper in Section 9.
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2 Related Work

Our work is related to secure multi-party LP solvers [7, 14, 23], secure out-
sourcing [1, 2, 3, 9, 15, 16, 24] and leakage quantification [5, 21, 25].

2.1 Secure Multi-Party LP Solvers

As mentioned above, different distributed LP solvers based on secure multi-
party computation have been developed. Toft [23] used a distributed secure
Simplex algorithm based on secret sharing. This is usable for any number of
participants and provides information-theoretic security, but turned out to
be too slow in practice for realistically sized problems in many applications
such as Supply Chain Management.

Li and Atallah [14] also used a distributed Simplex algorithm. In con-
trary to Toft [23] they concentrated on the case where the data is shared
among only two parties. It is unclear if their algorithm can be efficiently
extended to the multi-party case.

Catrina and de Hoogh [7] developed a more efficient version of the dis-
tributed Simplex algorithm using fixed-point arithmetics. However, their
solution still is only suitable for relatively small inputs as it suffers from a
higher asymptotic and worst-case complexity than our transformation.

2.2 Secure Outsourcing

Vaidya [24] used a transformation approach which is the basis for our trans-
formation. He supposed a scenario where one party holds the objective
function and the other party the constraints. As a consequence his transfor-
mation does not protect the entire Linear Program, which is not appropriate
for most applications. Additionally, he did not provide a formal security
analysis and his work suffers from correctness problems [3].

Mangasarian [15, 16] proposed similar transformations for special input
distributions (horizontal or vertical partitioning). Supply chain optimiza-
tion problems have a more complex distribution which combines both cases.
Additionally, his approach for horizontal partitioning is limited to equality
constraints. This is not sufficient for supply chain optimization either, as we
have to deal with capacity constraints expressed as inequality constraints.
Our transformation addresses both shortcomings and is suitable for more
general data distributions. Moreover he does not provide a formal security
analysis.
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Furthermore there is work on related problems such as matrix multipli-
cation and linear systems of equations [1, 2, 9].

2.3 Leakage Quantification

To give a formal security assessment of our transformation, we use methods
of Leakage Quantification which measure how much information about the
secret input is revealed to an attacker. In particular, we concentrate on
the metric of “Multiplicative Advantage” which was first developed (but
not called so) by Smith [21] based on entropy loss using a special type
of min-entropy. Later on this was analyzed more closely by Braun et al.
[5] who proposed another, simpler definition - the one we use in this paper.
Compared to other metrics such as entropy loss or channel capacity using the
standard Shannon-entropy, it is particularly expressive for one-try attacks
as it gives a worst-case evaluation. To assess complex operations we make
use of some theorems by Wibmer et al. [25] on the leakage of combined
channels (see Appendix A).

3 The Transformation

Linear Programming is a standard tool in business optimization. A Lin-
ear Program (LP) consists of a set of unknown variables x, a linear target
function c(x) representing the costs which shall be minimized (or equiva-
lently the gain which has to be maximized) and a set of constraints (linear
equalities or inequalities). The standard form is

min cTx
s.t. Mx ≤ B

x ≥ 0
(1)

As we will eventually transform all inequalities into equalities and as in
our use case many of the input constraints are actually equalities, we will
treat them separately. This reduces the size of the problem as we need less
slack-variables1 and thus increases performance as well as security. So let

1A slack-variable is used to express inequality constraints as equality constraints. The
idea is to introduce an additional variable for each constraint which takes up the “re-
mainder” or “slack”. For example, instead of 3x1 ≤ 10 we can write 3x1 + s1 = 10 for
s1 ≥ 0.
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the input problem - without loss of generality - be

min cTx
s.t. M1x = b1

M2x ≤ b2
x ≥ 0

(2)

We use a positive monomial matrix2 Q to hide c (as proposed by [24, 3]):

min cTQQ−1x
M1QQ

−1x = b1
M2QQ

−1x ≤ b2
Q−1x ≥ 0

(3)

and a positive vector r to hide x

min cTQ(Q−1x+ r)
M1Q(Q−1x+ r) = b1 +M1Qr
M2Q(Q−1x+ r) ≤ b2 +M2Qr

(Q−1x+ r) ≥ r

(4)

For z = Q−1x+ r and a strictly positive diagonal matrix S3 we have

min cTQz
M1Qz = b1 +M1Qr
M2Qz ≤ b2 +M2Qr

Sz ≥ Sr

(5)

Then we define c′T = cTQ,

M ′ =

 M1Q 0
M2Q A−S

 , b′ =

 b1 +M1Qr
b2 +M2Qr
−Sr

 (6)

where A is a permutation matrix4 representing slack-variables. This allows
us to rewrite the program as follows:

min c′Ts zs
s.t. M ′zs = b′

zs ≥ 0
(7)

2A monomial matrix contains exactly one non-zero entry per row and column.
3A diagonal matrix where the entries on the main diagonal Ai,i are strictly positive.
4A permutation matrix is a monomial matrix where the non-zero entries are “1”.
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where c′s is c′ with added zeros for the slack-variables and zs is the variable
vector (z with added slack-variables). To hide the contents of M ′ and b′ we
use a nonsingular matrix5 P and with M ′′ = P ∗M ′ and b′′ = P ′ ∗ b′ we
have

min c′Ts z
s.t. M ′′zs = b′′

zs ≥ 0
(8)

As z = Q−1x + r, the resulting x can be obtained from z by calculating
x = Q(z − r).

4 Correctness

For the transformation to be useful in practice, we have to ensure that the
transformed program can still be used to find a solution to the original
problem. We will prove that any optimal (i.e. with minimal cost) and
feasible (with respect to the constraints) solution to the transformed problem
corresponds to an optimal and feasible solution of the original problem using
the following two lemmas. More precisely, Lemma 1 gives the equivalence
of the solution space of the original and the transformed problem, i.e. the
fact that each feasible solution in the original problem corresponds to a
feasible solution in the transformed problem and vice versa. Lemma 2 states
that back-transforming an optimal solution of the transformed LP yields an
optimal solution to the original LP.

Lemma 1. A solution x is feasible in the original problem if and only if
z = Q−1x+ r is a feasible solution to the transformed problem.

Proof. This is true by construction. The multiplication by P does not
change the solution set as P is invertible. Q is monomial (which gives
correctness for this part of the transformation as shown by Bednarz et al.
[3]) and r is positive to not interfere with z ≥ 0. As S is a strictly positive
diagonal matrix, the multiplication by S is actually a multiplication of each
row with a positive scalar which leaves the inequalities untouched.

Lemma 2. Let z be the solution that minimizes c′T z in the transformed LP.
Then x = Q(z − r) minimizes cTx in the original problem.

5A (n× n)-matrix A is called nonsingular if there exists another (n× n)-matrix B so
that AB = BA = I where I is the identity matrix of dimension (n× n).
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Proof. We will use a proof by contradiction. Suppose that there is a solution
x′ with cTx′ < cTx. Then

cTx′ < cTQ(z − r)
⇔ cTx′ < cTQz − cTQr
⇔ cTQQ−1x′ + cTQr < cTQz
⇔ c′T (Q−1x′ + r) < c′T z

(9)

Apparently z′ = Q−1x′+r is a valid solution for transformed LP with strictly
lower cost than z. Hence z is not optimal.  

5 Performance

Performance is a key aspect: The transformation has to be significantly less
complex than solving the problem itself, otherwise outsourcing would not
represent an efficiency gain to the clients.

From a theoretical viewpoint this is easy to see, as the most expensive
operation during the transformation is the multiplication by P . Let m1 and
m2 denote the number of rows of M1 and M2 respectively, and n the number
of variables. Then the multiplication using a naive algorithm is in O((m1 +
m2 +n)2× (2n+m2)). This is more efficient than the simplex algorithm (on
which the secure LP solvers [7, 14, 23] are built on) with exponential worst
case complexity [13]. Even in the average case or compared to interior point
methods performance will be better due to smaller constants.

We will discuss practical performance in more detail our use case example
in Section 8.

6 Security

We will now analyze the security of our transformation in the following
setting: An attacker wants to obtain the input data (the original LP). He
knows the transformed LP and some abstract facts about the input, for
example that the input values are within a certain range (this is described
more precisely later on).

Ideally we would like to give a classical security proof. However, as
our transformation is based on disguising using random noise, the classi-
cal cryptological security definitions are unsuitable as our transformation
will probably leak some information since the transformed LP is somewhat
linked to the input and thus not entirely random. Nevertheless this can be
acceptable for many applications as long as the leakage is small and bounded,
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in particular as we get dramatic performance improvements in return. To
formally evaluate this leakage and to show that it is “small and bounded”,
we use Leakage Quantification methods based on information theory.

We start by defining the metric “Multiplicative Advantage”. Then we
analyze the leakage of several elementary operations such as permutations
and scalar as well as matrix multiplication. By combining these results we
establish bounds on the leakage of different parts of the transformation. In
the last part we discuss possible attacks.

6.1 Multiplicative Advantage

The disguising transformation is modeled as a communication channel as
known from information theory (for an introduction to information theory
see e.g. Cover and Thomas [8]).

Definition 1 (Channel). A discrete, noisy and memoryless channel C is
given by

• A finite set X = x1, ..., xn called the input alphabet,

• a finite set Y = y1, ..., yn called the output alphabet,

• for each x ∈ X a random variable C|x that takes values in Y.

The input x ∈ X represents the data to hide, the output y ∈ Y is the
”encrypted” or ”disguised” data that is passed into the cloud. The definition
of the input alphabet X is important as it reflects the attackers “abstract
knowledge” about the input, for example that the input is a value within a
certain range.

Braun et al. [5] defined the notion of “advantage” based on a similar no-
tion (“vulnerability”) by Smith [21]. For a random variable X characterizing
the input distribution let

PRpriori(X) = max
i
p(X = xi) (10)

denote the a priori probability of a right guess (i.e. the probability of an
attacker correctly guessing the input if it has not yet seen the output of the
channel). Similarly let

PRposteriori(X) = ∑
j

max
i

(p(yj |xi)p(X = xi)) (11)
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denote the a posteriori probability of a right guess (i.e. the probability of
an attacker correctly guessing the input after having seen the output of the
channel). Then we define

L′(X) =
PRposteriori(X)
PRpriori(X)

(12)

the factor by which the knowledge of the output of the channel increases the
chances of a right guess for a given X6.

Definition 2 (Multiplicative Advantage). The Multiplicative Advantage or
Multiplicative Leakage of a channel C is defined as

L(C) = max
X

L′(X) (13)

L(C) is independent of the input distribution, which is convenient if this
distribution is not known. Additionally L′(X) has the advantage of attaining
its maximum for a uniform input distribution [5, 25] which yields

L(C) =
∑

j

max
i
p(yj |xi) (14)

This result is very useful in practice as p(yj |xi) are the entries of the channel
matrix. Furthermore Wibmer et al. [25] showed that multiplicative leakage
can be used to easily bound the leakage of compositions of independent
channels which simplifies the analysis of complex protocols. A list of different
channel compositions and their leakage can be found in Appendix A.

6.2 Building Blocks

We will now analyze the three main building blocks of our transformation:
Permutations, scalar multiplications and matrix multiplications.

6.2.1 Permutation

To determine the leakage of a permutation, we model the “permutation
channel” Pn

k as follows: The channel input and output are vectors with k
elements from 0 to n each. More formally, let X = Y = {x|x = (x1, ..., xk)}
where xi ∈ 0, ..., n.7

6Braun et al. [5] call this value the Multiplicative Leakage. The interesting point is
the maximum of this value over all X, which we will call Multiplicative Leakage.

7Here we assume only positive values, but the result remains correct for negative values
too. In fact, it works for any n + 1 distinguishable symbols.
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Theorem 1 (Leakage of a Permutation). The multiplicative leakage of a
uniformly distributed permutation of a vector with k elements ranging from
0 to n is given by

L(Pn
k ) =

(n+ k)!
k! ∗ n!

(15)

Proof. Idea: Partition all possible output vectors Y into classes of vectors
Yi that are permutations of each other. If each permutation is equally likely,
the channel matrix contains - for each class - |Yi| columns with a maximum
of 1
|Yi| each. Hence the multiplicative leakage of a permutation is equal to the

number of different classes. Each class can be characterized by the number
of occurrences of each value in vector y. Counting these possibilities yields
the result.

An intuitive interpretation of this result is that a permutation leaks the
“class” to which a vector belongs, but nothing more since each vector inside
this class is equally likely.

6.2.2 Scalar Multiplication

We use the following model: The channel inputs are values x ∈ {0, ..., n},
the output is a value y ∈ {0, ..., nk+1} where k is the number of factors of
f (i.e. y = x ∗ f = x ∗

∏k
i=1 fi where fi ∈ {1, ..., n}). Let f (not the fi-s)

be uniformly distributed among all the possible values8 andMk
n denote the

channel for parameters n and k.

Theorem 2 (Leakage of a Multiplication). The leakage of a Multiplication
channel Mk

n is bounded by

L(Mk
n) ≤ n+ k

k + 1
+ 1 (16)

Proof. Idea: Let A(n, k) denote the number of different values of f =
∏k

i=1 fi

with fi ∈ 1..n. Bearing in mind that input value 0 is always completely
leaked (which adds 1 to the leakage) we have

L(Mk
n) =

A(n, k + 1)
A(n, k)

+ 1 (17)

8This strangely looking choice reduces the leakage and allows us to give a simple closed-
form bound. It can be difficult to implement in practice; a simpler alternative would be
to choose the fi-s uniformly which slightly increases the leakage.
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A(n, k) is bounded by the number of different combinations of the fi when
only distinguishing number of occurrences of each value in 1, .., n (and ig-
noring their order):

A(n, k) ≤
(
n− 1 + k

k

)
=

(n+ k − 1)!
k! ∗ (n− 1)!

(18)

Although this is only an upper bound, the quotient

(n+ (k + 1)− 1)!
(k + 1)! ∗ (n− 1)!

/
(n+ k − 1)!
k! ∗ (n− 1)!

=
n+ k

k + 1

is still a valid bound for A(n,k+1)
A(n,k) as the “errors” in the denominator cancel

out with the “errors” in the nominator.

6.2.3 Matrix Multiplication

We define a matrix multiplication channel Mk,n,l as follows. Channel inputs
are k × l-matrices (k ≤ l) X with rank k and elements from 0 to n, the
output Y = P ∗ X is the result of a multiplication by a randomly chosen
invertible square matrix P of dimension k × k with elements from 0 to n.

Similarly we define another matrix multiplication channel M ′
k,n,l as fol-

lows. Channel inputs are regular square k × k-matrices X with elements
from 0 to n, the output Y = X ∗ M is the result of a multiplication by
a randomly chosen matrix M of dimension k × l (k ≤ l) with rank k and
elements from 0 to n.9

To minimize the leakage, we choose P (and M respectively) uniformly
among all possible matrices of the correct size and values. Figures 2 and 3
show the resulting multiplicative leakage for different values of k, n and l.

The leakage grows with n and l for a fixed k. To obtain more meaningful
values we calculated the resulting a-posteriori probability of a right guess
for a uniform input distribution using the following equation

PRposteriori(X) ≤ L(M k
n ) ∗ PRpriori(X) (19)

Note that these values coincide for Mk,n,l and M ′
k,n,l. Results are shown

in Figure 4. The a-posteriori probability appears to converge to a constant
value for each k but drops very quickly for growing k.

9This corresponds to Mk,n,l with inverted roles: P is now the input to hide and M the
randomness. We use this channel in the security analysis of P later on.
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6.3 The Complete Protocol

After having analyzed the leakage of the basic operations, we will now es-
tablish bounds on the leakage of the three main parts of the transformation.

6.3.1 Leakage of the cost function c

In our transformation c is hidden by a monomial matrix Q, i.e. a permu-
tation and a multiplication of each entry with a scalar value. Supposing
independent channels and applying Theorems 4 and 5 from Appendix A
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channel

[25] we can conclude that

L(cl
n,k) ≤ min

((
L(Ml

n)
)k
, L(PA(n,l)

k )
)

≤ min
((

n+l
l+1 + 1

)k
, (A(n,l)+k)!

k!∗(A(n,l))!

) (20)

where cl
n,k denotes the channel for a k-dimensional input vector c hidden by

a multiplication by a monomial matrix and A(n, l) as defined above. Note
that this is the leakage quantification of c only, although Q appears in other
places in the transformation as well (in the constraint matrix, on the right
hand side and in z). However, this simplification is realistic as the other
occurrences are well-hidden (cf. Section 6.4.2).

6.3.2 Leakage of the variables x

The variable vector zs consists of two parts: The non-slack variables z and
the slack-variables. The non-slack variables contain values z = Q−1x+ r.

Wibmer et al. [25] showed that for a channel y = rx+r′ with r′ < r ≤ rm
and x ≤ xm the leakage is bounded between

(rm − 1) log(xm + 2)
rm + 1

≤ L(”y = rx+ r′”)

≤
2
(
xm + 1 + (rm − 1) log

(
rm∗(xm+2)−1

rm−1

))
rm + 1

(21)
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or for rm → +∞

log(xm + 2) ≤ L(”y = rx+ r′”) ≤ 2 log(xm + 2) (22)

The channel ”z = Q−1x+ r” can be modeled as a permutation followed
by the ”y = rx+ r′”-channel as Q resp. Q−1 is a monomial matrix and thus
we have

L(”z = Q−1x+ r”)

≤ min
(

2 log(xm + 2),
(xm + k)!
k! ∗ xm!

)
(23)

As mentioned before, the matrix Q is also used in the hiding of c. This
is not a problem, since the vector r prevents the search for common factors
(cf. Section 6.4.2).

The slack variables contain potentially correlated values as well (S ∗
Q−1x), but since they are permuted it is hidden which variable belongs to
which constraint (cf. Section 6.4.2). This further complicates exploiting
correlation by common factors.

6.3.3 Leakage of the Constraints (M1, M2, b1 and b2)

The leakage of M1, M2, b1 and b2 is difficult to estimate due to the number
and complexity of related transformation steps.

On the one hand, the following analysis shows that breaking the hiding
with P almost completely reveals all other hiding operations: If P is known
or can be guessed by the attacker, he can undo nearly the whole transfor-
mation (cf. Figure 5). First of all he can obtain S, which allows him to
calculate r. This gives access to b1 and b2. As Q is a monomial matrix, each
row of M{1,2}Q is multiplied with the same factor which he can guess with
very high probability when searching for common factors (see Section 6.4.2
for details). This then leaks a permutation of M1, M2 and c, which may
be a complete break if the attacker knows something about the structure
of M1 or M2 which allows him to undo the permutation. This shows that
the security of P is crucial for the security of the whole protocol. We will
analyze attacks on P in more detail in Section 6.4.1. Thus we can say that
the constraints are at most as safe as P .

On the other hand they are unlikely less safe than P , since conversely
the knowledge of the constraints noticeably increases the chances of guessing
P .
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P M1Q, M2Q

S r b1, b2

w.h.p. M1, M2, c (permuted)

Figure 5: An overview of a possible attack

We will now give an estimation of the leakage of P . To simplify the
analysis, we use the following channel model: The input alphabet X are
invertible square matrices of dimension (m1 + m2 + k) × (m1 + m2 + k)
(where m1 and m2 are the number of rows of M1 and M2; k is the number
of variables). The channel output is

P ∗B = P ∗
(

B’
0
A

)
(24)

where A is a permutation matrix of dimension (m2 + k)× (m2 + k) and B′

a random matrix of dimension (m1 + m2 + k) × (k + 1). B′ represents the
parts of M ′ which contain M1Q, M2Q and −S as well as b′ (which can be
seen as just another column of the matrix). The general idea is that A is
responsible for most of the leaked information about P and that attackers
have very limited knowledge about the other parts of the matrix, so that
modeling them as random appears plausible.

This model allows us to benefit from Definition 6 and Theorem 6 form
Appendix A. We split the channel CP into a first channel CP,1 which calcu-
lates

P ∗B′ (25)

and a second channel CP,2 which calculates

P ∗
(

0
A

)
(26)

Then Theorem 6 from Appendix A (by Wibmer et al. [25]) gives that

max {L(CP,1), L(CP,2)} ≤ L(CP )
≤ L(CP,1)L(CP,2) (27)

CP,1 corresponds to the matrix multiplication channel M ′
k,n,l analyzed above.

The leakage of CP,2 can be bounded using the following theorem.

Theorem 3 (Leakage of Slack-Variables). Let An,k,l denote the channel with
invertible square matrices of dimension (k+ l)× (k+ l) with values between
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0 and n as input X and a matrix Y of dimensions (k + l)× k as output so
that

Y = X ∗
(

0
A

)
(28)

where A is a permutation matrix of dimensions k × k and 0 a l × k matrix
containing zeros (0 ≤ l ≤ k). Then∏k−1

i=0 ((n+ 1)k+l − (n+ 1)i)
k!

≤ L(An,k,l)

≤
∏k

i=1((n+ 1)k+l − i)
k!

(29)

Proof. Idea: The resulting matrix Y contains k vectors with k + l entries
each. By following the same reasoning as in Theorem 1 we can show that
the leakage is equal to the number of permutation classes. In this case each
permutation class corresponds to a set of k linearly independent vectors of
dimension k + l as X is invertible. Counting the number of possible sets
yields the bounds.

6.4 Cryptanalysis

In this Section we will discuss several attacks on P and Q, the most impor-
tant parts of the transformation.

6.4.1 Attacks on P

Attacks on P will probably be based on the structure of the matrices as this
is the most promising approach. The biggest issue are the slack-variables as
the following example illustrates.

Consider these constraints:

M ∗ x ≤ b
x ≥ 0

(30)

When adding slack-variables we obtain (I is the identity matrix)(
M I

)
∗ x′ = b
x′ ≥ 0

(31)

If we multiply by P the result is(
P ∗M P

)
∗ x′ = P ∗ b
x′ ≥ 0

(32)
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This means that the slack-variables completely reveal P . Unfortunately the
most general type of matrix we can use instead of the identity matrix I is a
monomial matrix A as A and A−1 have to be positive [11]. Yet this is only
partly helpful as the knowledge of P ∗A allows an attacker to calculate

M ′ = (P ∗A)−1 ∗ (P ∗M)
= A−1 ∗ P−1 ∗ P ∗M
= A−1 ∗M

(33)

As A is a monomial matrix, A−1 ∗M is a permutation of M where each
column is multiplied with the same value - which can be obtained with very
high probability when searching for common factors.

Not transforming the inequalities into equalities is not an option, as this
would reduce our choice of P to monomial matrices for correctness reasons.
This would turn P ∗M into an easy target for factorization attacks and thus
not provide enough security.

To solve the problem, we treat equality constraints separately. This
reduces the size of A, as we need less slack-variables. If A is smaller than P ,
it only leaks a permutation of some columns of P and not the entire matrix.
However, this requires that in the input problem some of the constraints
are equations, which is not always the case. Yet in our target application
Supply Chain Management most of the constraints are actually equations,
which turns this into a very well-suited solution.

If the input problem contains only inequality constraints, we can still im-
prove security by assigning non-zero costs to slack-variables and permuting
the variables to hide them among the real variables. A possible way to do
this without changing the optimal solution is by analyzing the dual problem
[19].

6.4.2 Attacks on Q

Q is a positive monomial matrix, i.e. it can be written as Q = D ∗E where
D is a diagonal matrix and E a permutation matrix (i.e. a matrix with
exactly one entry equal to 1 per row and column). Thus Q−1 = (D∗E)−1 =
E−1 ∗D−1 = ET ∗D−1 where

D =

D1 · · · 0
...

. . .
...

0 · · · Dn

 , D−1 =


1

D1
· · · 0

...
. . .

...
0 · · · 1

Dn


Q appears in several places in the transformation. This can be an issue

if the resulting products of Q and Q−1 with M1, M2, c etc. allow the
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search for common factors. Since two random numbers have an asymptotic
probability 6/π2 ≈ 61% of being coprime [12] and this rapidly increases
for three or more numbers, this search is very likely to be successful if we
have access to several numbers containing the same factor. Thus we have to
ensure that there are no two or more values which contain the same factor.

We will now analyze all occurrences of Q inside the transformation.

• The cost function

c′ = cT ∗Q = cT ∗ (D ∗ E)
=

(
c1 ∗D1 c2 ∗D2 · · · cn ∗Dn

)
∗ E

contains all the factors of D, but each factor appears only once inside
one of the entries.

• M{1,2}Q has the following structure

M1 ∗Q = M1 ∗ (D ∗ E)

=

 M1,1 ∗D1 · · · M1,n ∗Dn
...

...
Mm1,1 ∗D1 · · · Mm1,n ∗Dn

 ∗ E
This is open for attack as there are lots of values containing the same
factor. However, since inside M ′ there is −S below (cf. Eq. 6),
M ′′ = P ∗M ′ has a different structure. For example

M ′′1,1 =
m1∑
i=1

P1,i ∗ (M1Q)i,1

+
m2∑
i=1

P1,i+m1 ∗ (M2Q)i,1

− P1,m1+m2+1 ∗ S1

contains a common factor Dj in all summands except for the last. This
is enough to make the values unusable for factorization attacks.

• M{1,2}Qr is secure against factorization attacks since

(M1Qr)1 =
n∑

i=1

(M1Q)1,i ∗ ri

where each (M1Q)1,i contains a different Dj .
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• z = Q−1x+ r is protected against factorization attacks by r.

• The slack-variables could also leak the factors inside Q as the i-th
constraint concerning S has the form −Si ∗ zi + Zsi = −Si ∗ ri which
gives

Zsi = Si ∗ (zi − ri)
= Si ∗ ((Q−1x)i + ri − ri)
= Si ∗ (Q−1x)i

This would allow the search for common factors. However, the slack-
variables are permuted independently of Q so that it is unknown which
variable belongs to which constraint. To find possible matches an
attacker could search for pairs of variable whose difference is smaller
than the maximum of r. However, this is made harder by S as Zsi −
zi = Si ∗ zi−Si ∗ ri− zi = (Si− 1)zi−Si ∗ ri (and not −ri as it would
be the case if Si = 1 for all i).

Overall only in c′ the factors inside Q are easily accessible. Thus the
search for common factors is difficult, if possible at all, which is of great
importance for the security of c.

7 Going Multi-Party

To be able use the transformation in a multi-party scenario we have to find a
way to apply the transformation on the distributed data without exchanging
it in clear. We propose to use secure computations based on Shamir-shared
values as developed by Ben-Or et al. [4].

In short, this allow us to share values among the p parties in a way that
the knowledge of less than k < p/2 of the p shares does not reveal any
information about the secret value. Yet these shares can be used to make
computations (additions, multiplications etc.) on the secret values. After
finishing the computations, we can put the shares of the result together and
reconstruct it - whereas all input and intermediate values remain secret.

Thus - once we have shares of all necessary data (M{1,2}, b{1,2}, c, P , Q,
S, A, r) - we can use secure computations to perform the transformation.
We still have to find a way to assembly the data (M{1,2}, b{1,2}, c) and a
way to jointly choose the random values (P , Q, S, A, r).

The assembly of the data depends on the initial partitioning in the prob-
lem. However - as long as each value is clearly “owned” by one party (which
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is usually the case) - the assembly is not a problem: Each party shares its
values and the matrices and vectors are filled with the shares10.

The choice of the random matrices and vectors is more complicated.
We have to guarantee the randomness and the correct form of the result,
i.e. we have to make sure that Q is a monomial matrix, A a permutation
matrix and that P is invertible. Moreover we need to ensure that no party
knows the resulting values, because they would allow the parties to undo
the transformation and access the secret data.

The basic idea is that each party randomly chooses its random values
(i.e. party i chooses matrices Pi, Qi, Si, Ai and a vector ri) and we combine
them to have jointly and fairly chosen random values. Ideally, even the
knowledge of p− 1 of these p input values should not leak any information
about the result.

To achieve this we rely on secure computations again. After each party
has chosen its input, we calculate P =

∏p−1
i=0 Pi, Q =

∏p−1
i=0 Qi, S =

∑p−1
i=0 Si,

A =
∏p−1

i=0 Ai and r =
∑p−1

i=0 ri. As these computations take place in a finite
field, the result is random, and even knowing p − 1 of the p input values
does not reveal anything about the output.

An overview of the complete protocol:

1. Each party i chooses a random invertible matrix Pi, a random positive
monomial matrix Qi, a random positive diagonal Matrix Si, a random
permutation Matrix Ai and a random positive vector ri.

2. Each party i securely shares its parts of M1, M2, b1, b2 and c as well
as Pi, Qi, Si, Ai and ri.

3. Secure computation of P , Q, S, A and r as described above. Assembly
of M1, M2, b1, b2 and c.
Transformation:

Calculation of M ′′ = P ∗

 M1Q 0
M2Q A−S

,

b′′ = P ∗

 b1 +M1Qr
b2 +M2Qr
−Sr

 and

c′Ts =
(
cT ∗Q 0 . . . 0

)
.

10Another option is that each party shares - e.g. for the cost vector c - a vector ci

where all values that are not owned by itself are set to zero. Then all parties calculate
c =

∑p−1
i=0 ci using secure computations which merges the data.
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4. c′Ts , M ′′ and b′′ are reconstructed from the shares and passed into the
cloud.

5. The Cloud solves the Linear Program

min c′Ts zs
s.t. M ′′zs = b′′

zs ≥ 0

6. Secure sharing of the solutions z

7. Secure distributed computing of x = Q(z − r)

8. Output of values of x to their respective owner.

7.1 Optimization: Fast Matrix Multiplication

Matrix multiplication is the key operation of our transformation as it is used
in many places. When using secure computations on Shamir-shared values
multiplications are expensive due to the overhead caused by the degree-
reducing step on the secret shares. Therefore we want to reduce this over-
head as much as possible.

A naive implementation (see Algorithm 7.1) of the multiplication of a
shared (m × k) matrix A and a (k × n) matrix B will result in a time
complexity of O(mkn), a round complexity (i.e. the number of points in
time when communication is necessary) of O(mkn) and a communications
complexity (i.e. the number of messages exchanged) of O(mknp2) as each
degree-reducing step requires one round and O(p2) messages [4]. We will
now describe how to reduce this to one round and O(mnp2) messages.

The idea is to postpone the degree-reducing step as much as possible.
If Ax,y and By,z are shares of a polynomial with degree k, then temp is of
degree 2k, but, as adding two shares does not increase the degree of the
polynomial, we can calculate Cx,z =

∑k−1
y=0 Ax,y ∗ By,z without exceeding

a degree of 2k. Thus we can postpone the degree-reducing step until the
end of all calculations and execute it in parallel on the whole matrix to
reduce round complexity to 1 and communication complexity to O(mnp2)
(see Algorithm 7.211).

11This algorithm is somewhat similar to the inner product algorithm of Catrina and de
Hoogh [7], but generalized to a complete matrix multiplication.
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Algorithm 7.1 Matrix Multiplication C = A ∗B, naive
1: for x = 0 to m− 1 do
2: for z = 0 to n− 1 do
3: sum← 0
4: for y = 0 to k − 1 do
5: temp← Ax,y ∗By,z

6: execute degree-reducing step on temp
7: sum← sum+ temp
8: end for
9: Cx,z ← sum

10: end for
11: end for

Algorithm 7.2 Matrix Multiplication C = A∗B, optimized communication
1: for x = 0 to m− 1 do
2: for z = 0 to n− 1 do
3: sum← 0
4: for y = 0 to k − 1 do
5: sum← sum+Ax,y ∗By,z

6: end for
7: Cx,z ← sum
8: end for
9: end for

10: execute degree-reducing step on all m ∗ n entries of C in parallel
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8 Use Case: Supply Chain Optimization

Supply Chain Optimization problems can easily be expressed as linear prob-
lems [22]. Each variable corresponds either to the number of units to pro-
duce at a certain factory at a certain time, to the inventory (per factory
and time) or to transported units (between two factories). The constraints
are flow constraints (e.g. ”all produced units are either shipped to the next
stage in the chain or remain in the inventory”), capacity constraints (e.g.
”factory X can produce at most n units of product Y in period i”) and
demand constraints (e.g. ”in period i exactly k units of product Z are sold
to customers”). The cost function is composed of production costs (per pro-
duced unit), shipping costs (price of shipping one unit from factory X to
factory Y ) and inventory costs (the price of stocking products or intermedi-
ate components at a factory).

This means that variable is “owned” either by one company (for pro-
duction an inventory variables) or by two companies (for transport vari-
ables). Hence we have a simple structure which allows us to easily set up
the distributed linear program as discussed above. Furthermore, most of the
constraints (the flow and demand constraints) are expressed as equations,
which is convenient for our transformation.

8.1 Experimental Results

To analyze the practical performance of our approach in Supply Chain Man-
agement, we implemented a prototype. Each party is simulated by a separate
Java thread which communicates using the network interface. The exper-
iments were conducted on an 8 core AMD Opteron 1800 machine with 16
GB RAM running under Linux (SuSE Enterprise Server 11 64 bit). This
setup is reasonably realistic as each thread runs on a separate core and has
roughly as much computational power available as if it was running alone
on a standard office PC.

The test data we used is a sample supply chain structure with five com-
panies. To scale the size of the problem, this optimization was done for
different numbers of planning periods which increases the number of vari-
ables and constraints. The measured timings include sharing of the values,
performing the transformation, reconstructing the transformed LP, solving
it using a standard LP solver12 and back-transforming the solution using
secure computation again.

12We used LP Solve which is licensed under LGPL and available at
http://lpsolve.sourceforge.net/
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Figure 6: Performance in Distributed Supply Chain Management Case

The results (see Figure 8.1) are promising: The standard test case (six
periods: 180 constraints, 282 variables) is solved in approximately 25 min-
utes (which are nearly entirely due to the secure computation for applying
the transformation, solving the transformed LP in clear takes just a few sec-
onds) and even the bigger test cases are completed within two hours. This
is sufficiently fast for practical usage and much quicker than the distributed
Simplex algorithms.

We also calculated the numerical values for the a-posteriori probabilities
of a right guess in the six-period case for a uniform input distribution based
on the bounds established in Section 6 and Eq. 19:

• cost function c: PRposteriori ≤ 3.76 · 10−220

• values x: PRposteriori ≤ 2.30 · 10−1409

As explained above, there is no easily calculable bound on the leakage of
the constraints, but the chances of guessing P only based on A are less than
2.34 · 10−746370.

9 Conclusion

In this paper we proposed a disguising transformation for linear programs.
We proved correctness and analyzed security in the framework of leakage
quantification by estimating the leakage of building blocks (permutation,
scalar and matrix multiplication) and combining these results to establish
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bounds on the entire transformation. Subsequently we developed a secure
multi-party protocol to make the transformation usable in a distributed case.

Based on this protocol we implemented a prototype for secure supply
chain optimization. We conducted experiments which show significant per-
formance gains compared to entirely distributed secure simplex algorithms.

Overall the proposed algorithm seems to be well-suited for the initial
supply chain optimization problem as well as general outsourcing purposes.
It is correct, fast and sufficiently secure for many applications.

Additionally, the basic ideas of the transformation can easily be extended
and generalized to fit other problems as e.g. systems of linear equations.
This underlines the power of disguising approaches.

9.1 Future Work

We have thought of several extensions to the transformations which can
enhance security. Possibilities include splitting variables or creating fake
variables in order to protect c. These measures have to be checked for their
security as well as their impact on performance.

Furthermore the numerical stability of the transformation should be ex-
amined. During our experiments a standard LP-Solver was always able to
find the correct solution, however rounding errors and performance dete-
rioration could be observed from time to time. This also is of interest as
numerical effects could lead to attacks.

We conducted the performance measurements under ideal network con-
ditions and ignored common problems such as latencies, failures or packet
loss. For a comprehensive performance analysis they should be re-run under
more realistic networks conditions. Nevertheless we stress that the com-
peting approaches based on secure LP solvers were benchmarked under the
same ideal conditions. Furthermore, our transformation has a quasi-constant
(only depending on the number of parties) round and small communication
complexity compared to these approaches. Therefore it can be expected
that our relative performance advantage will even further increase.

The security analysis should also be refined in some parts. In particular
the interconnections between the different parts of the transformation should
be examined more precisely as this is one of the most probable entrance point
for attacks. Additionally it would be desirable to refine the bounds on the
leakage of combined channels (i.e. to show that for example the combination
of a multiplication and a permutation is strictly better than the best of them
alone) and give - if possible - a closed-form bound on the leakage of a matrix
multiplication.
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As our security analysis currently supposes a Honest-but-Curious-Scenario,
it could also be extended to analyze the possible influence of malicious par-
ticipants with byzantine behavior (i.e. participants that give wrong input
data or do not follow the protocol) on the results, in particular in the case
of distributed supply chain management.
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A Leakage of Combined Channels

We use the following definitions and theorems by Wibmer et al. [25]:

Definition 3 (Independent Channels). Two channels X C−→ Y and X ′ C
′
−→

Y ′ are independent if C|x is independent from C ′|x′ for every x ∈ X and
x′ ∈ X ′.

Definition 4 (Composition of Channels). Let X C1−→ Y and Y C2−→ Z be two
channels. Then we can define the composition channel X C2◦C1−−−→ Z by

(C2 ◦ C1|x)(ω) = (C2|(C1|x)(ω))(ω)

for every x ∈ X and ω ∈ Ω (the event space).

Theorem 4 (Leakage of a Composition). Let X C1−→ Y and Y C2−→ Z be two
independent channels. Then

L×(C2 ◦ C1) ≤ min{L×(C1), L×(C2)}

Definition 5 (Direct Product of Channels). Let X C−→ Y and X ′ C
′
−→ Y ′ be

two channels. Then we can define the direct product channel X × X ′ C×C
′

−−−→
Y × Y ′ by

(C × C ′)(x, x′) = (C|x,C ′|x′)

for x ∈ X and x′ ∈ X ′.
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Theorem 5 (Leakage of a Direct Product). Let X C−→ Y and X ′ C
′
−→ Y ′ be

two independent channels. Then

L×(C × C ′) = L×(C) · L×(C ′)

Definition 6 (Product of Channels). Let X C−→ Y and X C′−→ Y ′ be two

channels. Then we can define the direct product channel X C·C′−−→ Y × Y ′ by

(C · C ′)|x = (C|x,C ′|x)

for x ∈ X .

Theorem 6 (Leakage of a Product). Let X C−→ Y and X C′−→ Y ′ be two
independent channels. Then

max
{
L×(C), L×(C ′)

}
≤ L×(C · C ′) ≤ L×(C)L×(C ′)
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