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Abstract

In this work we construct public key encryption schemes that admit a protocol for blindly decrypting
ciphertexts. In a blind decryption protocol, a user with a ciphertext interacts with a secret keyholder
such that the user obtains the decryption of the ciphertext and the keyholder learns nothing about
what it decrypted. While we are not the first to consider this problem, previous works provided only
weak security guarantees against malicious users. We provide, to our knowledge, the first practical blind
decryption schemes that are secure under a strong CCA security definition. We prove our construction
secure in the standard model under simple, well-studied assumptions in bilinear groups. To motivate the
usefulness of this primitive we discuss several applications including privacy-preserving distributed file
systems and Oblivious Transfer schemes that admit public contribution.
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1 Introduction

The past several years have seen a trend towards outsourcing data storage to remote data stores and cloud-
based services. While much attention has been paid to securing the data on these services, less has been given
to protecting the privacy of users who access it. This is already an acknowledged problem for corporations
whose employees access public resources such as patent databases, since their access patterns can leak valuable
information about corporate strategy. However, privacy concerns are hardly restricted to these specialized
applications. For example, the internal data access patterns (i.e., list of files accessed) of a corporation’s
executives could be worth millions of dollars to the right person, particularly in advance of a merger or IPO.

To address these concerns, some recent works have proposed tools that allow allow users to transact online
without sacrificing their privacy. These tools include (but are not limited to) efficient adaptive oblivious
transfer protocols [16, 29, 30, 47], anonymous credential schemes [14, 4], and group signature schemes [17, 7].
One recent application for these tools is to the construction of oblivious databases that provide strong
access control while preventing the operator from learning which records its users access [21, 13]. Despite
this progress, there are still many primitives that we do not know how to implement efficiently using the
techniques available to us.

Blind Decryption. In this work we consider one such primitive. A blind decryption scheme is a public-key
encryption (PKE) scheme that admits an efficient protocol for obliviously decrypting ciphertexts. In this
protocol a User who possesses a ciphertext interacts with a Decryptor who holds the necessary secret key. At
the conclusion of the protocol, the User obtains the plaintext while the Decryptor learns nothing about what
it decrypted. Furthermore, the User should gain no information about any other ciphertext.1 To formalize

1Without this restriction, such a protocol can be achieved trivially, e.g., by having the Decryptor simply give the secret key
to the User.
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the latter guarantee, we will restrict our investigation to secure blind decryption schemes that retain their
security under adaptive chosen ciphertext attack.

Blind decryption has many applications to privacy-preserving protocols and systems. For example, blind
decryption implies k-out-of-N oblivious transfer [12], which is important theoretically as well as practically
for its applications to the construction of oblivious databases [16, 21, 13]. Moreover, blind decryption has
practical applications to distributed cryptographic filesystems and for supporting rapid deletion [46].

We are not the first to consider the problem of constructing blind decryption schemes. The primitive was
originally formalized by Sakurai and Yamane [48] in the mid-1990s, but folklore solutions are thought to have
predated that work by more than a decade. Despite an abundance of research in this area, most proposed
constructions are insecure under adaptive chosen ciphertext attack [25, 52, 43, 24, 50, 45]. Several protocols
have recently been proposed containing “blind decryption-like” techniques (see e.g., the simulatable oblivious
transfer protocols of [16, 30, 47, 31, 35]). However, these protocols use symmetric (or at least, non-public)
encryption procedures, and it does not seem easy to adapt them to the public-key model.

Of course, blind decryption is an instance of secure multi-party computation (MPC) and can be achieved
by applying general techniques (e.g., [53, 28, 36]) to the decryption algorithm of a CCA-secure PKE scheme.
However, the protocols yielded by this approach are likely to be quite inefficient, making them impractical
for real-world applications.

Our Contributions. In this paper we present what is, to our knowledge, the first practical blind decryption
scheme that is IND-CCA2-secure in the standard model. We prove our scheme secure under reasonable
assumptions in bilinear groups. At the cost of introducing an optional Common Reference String, the
protocol can be conducted in a single communication round.

To motivate the usefulness of this new primitive we consider several applications. Chief among these
is the construction of privacy-preserving encrypted filesystems (and databases), where a central authority
manages the decryption of many ciphertexts without learning users’ access patterns. This is important in
situations where the access pattern might leak critical information about the information being accessed.
Unlike previous attempts to solve this problem [16, 21, 13], our encryption algorithm is public, i.e., users can
encrypt new messages offline without assistance from a trusted party. By combining blind decryption with
the new oblivious access control techiques of [21, 13] (which use anonymous credentials to enforce complex
access control policies) we can achieve strong proactive access control without sacrificing privacy.

Of potential theoretical interest, blind decryption can be used as a building block in constructing adaptive
k-out-of-N Oblivious Transfer protocols [16, 30, 47, 31, 35, 39]. In fact, it is possible to achieve a multi-party
primitive that is more flexible than traditional OT, in that any party can commit messages to the message
database (rather than just the Sender). We refer to this enhanced primitive as Oblivious Transfer with
Public Contribution (OTPC). We discuss these applications in Section 5.

1.1 Related Work

The first blind decryption protocol is generally attributed Chaum [20], who proposed a technique for blinding
an RSA ciphertext in order to obtain its decryption cd mod N . Since traditional RSA ciphertexts are
malleable and hence vulnerable to chosen ciphertext attack, this approach does not lead to a secure blind
decryption scheme. Furthermore, standard encryption padding techniques [5] do not seem helpful.

Subsequent works [48, 25, 52] adapted Chaum’s approach to other CPA-secure cryptosystems such as
Elgamal. These constructions were employed within various protocols, including a 1-out-of-N Oblivious
Transfer scheme due to Dodis et al. [25]. Unfortunately, since the cryptosystems underlying these protocols
are not CCA-secure, security analyses were frequently conducted in weak security models with honest-but-
curious adversaries.2 Mambo, Sakurai and Okamoto [43] proposed to address chosen ciphertext attacks by
signing the ciphertexts to prevent an adversary from mauling them. Their transformable signature could be

2For example, Dodis et al. [25] analyzed their 1-out-of-N oblivious transfer construction in the honest-but-curious model.
However, the authors informally proposed to deal with malicious adversaries by having the OT Receiver prove in zero-knowledge
that each ciphertext to be decrypted belongs to an honestly-generated set published by the Sender. Such proofs are not efficient:
using traditional techniques, this requires O(N) effort [49, 22]. More fundamentally, this approach does not extend to more
complex protocols, since it assumes that there is only one (trusted) party performing all encryption.
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blinded in tandem with the ciphertext. The trouble with this approach and other related approaches [16,
30, 31, 35, 47] is that the encryption scheme is no longer a PKE, since encryption now requires a knowledge
of a secret signing key (furthermore, these transformable signatures were successfully cryptanalyzed [24]).
Schnorr and Jakobsson [50] proposed a scheme secure under the weaker one-more decryption attack and used
this to construct a PIR protocol. Unfortunately, their protocol is secure only for random messages, and
furthermore cannot be extended to construct stronger primitives such as simulatable OT [16].

Recently, Green and Hohenberger [29] proposed a technique for blindly extracting decryption keys in
an Identity-Based Encryption scheme. Ogata and Le Trieu [45] subsequently used this tool to implement a
weak blind decryption scheme (by encrypting ciphertexts under a random identity, then blindly extracting
the appropriate secret key). This approach is efficient, however the ciphertexts are malleable and thus
vulnerable to adaptive chosen ciphertext attack.

1.2 Intuition

To develop a blind decryption scheme we would ideally begin with an existing CCA-secure public-key encryp-
tion scheme, then add to it an efficient two-party protocol for computing the decryption algorithm. Indeed,
the literature provides us with many candidate PKE constructions that can be so adapted if we are willing
to accept the costs associated with general multi-party computation techniques [53, 28, 36].

However, in this work we are interested in protocols that are both secure and practical. This rules out
inefficient gate-by-gate decryption protocols, limiting us to a relatively small collection of techniques that
can be used to build efficient protocols. This toolbox includes primitives such as homomorphic commitment
schemes, which we might combine with zero knowledge proofs for statements involving algebraic relations
among cyclic group elements, e.g., [49, 32]. While these techniques have been deployed successfully to
construct other privacy-preserving protocols, there are strict limitations on what they can accomplish.

To illustrate this point, let us review several of the most popular encryption techniques in the literature.
Random oracle paradigms such as OAEP [5] and Fujisaki-Okamoto [27] seem fundamentally difficult to adapt,
since these approaches require the decryptor to evaluate an ideal hash function on a partially-decrypted value
prior to outputting a result. Even the more efficient standard-model CCA-secure paradigms such as Cramer-
Shoup [23] and recent bilinear constructions (e.g., [8, 10, 37]) require components that we cannot efficiently
adapt. For example, when implemented in a group G of order p, the Cramer-Shoup scheme assumes a
collision-resistant mapping H : G×G×G→ Zp. We know of no efficient two-party technique for evaluating
such a function.3

Our approach. Rather than adapt an existing scheme, we set out to design a new one. Our approach is based
on the TBE-to-PKE paradigm proposed independently by Canetti, Halevi and Katz [19] and MacKenzie,
Reiter and Yang [42]. This technique converts a Tag-Based Encryption (TBE) scheme into a CCA-secure
PKE with the assistance of a strongly unforgeable one-time signature (OTS). In this generic transform,
encryption is conducted by first generating a keypair (vk , sk) for the OTS, encrypting the message using
the TBE with vk as the tag, then signing the resulting ciphertext with sk . Intuitively the presence of the
signature (which is verified at decryption time) prevents an adversary from mauling the ciphertext.

To blindly decrypt such a ciphertext, we propose the following approach: the User first commits to
the ciphertext and vk using a homomorphic commitment or encryption scheme. She then efficiently proves
knowledge of the associated signature for these committed values. If this proof verifies, the Decryptor may
then apply the TBE decryption algorithm to the (homomorphically) committed ciphertext, secure in the
knowledge that the commitment contains an appropriately-distributed value. Finally, the result can be
opened by the User.

For this protocol to be efficient, we must choose our underlying primitives with care. Specifically, we
must ensure that (1) the OTS verification key maps to the tag-space of the TBE, (2) and the TBE ciphertext
maps to the message space of the OTS. Of course, the easiest way to achieve these goals is to use an OTS
that directly signs the TBE ciphertext space, with a TBE whose tag-space includes the OTS verification

3Conceivably it might be possible to develop such hash functions for various popular constructions of G, and we consider
this an interesting open question. However this approach might be quite inflexible.
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keyspace. These primitives must admit efficient protocols for the operations we will conduct with them.
Finally, we would like to avoid relying on complex or novel complexity assumptions in order to achieve these
goals.

Our proposed construction is based on a variant of Cramer-Shoup that was adapted by Shacham [51] for
security in bilinear groups. We first modify Shacham’s construction into a TBE with the following ciphertext
structure. Let α ∈ Z∗p be an arbitrary ciphertext tag and m ∈ G a message to be encrypted. Given a public
key g, g1, g2, g3, h1, h2, c1, c2, d1, d2 ∈ G an encryptor selects random elements r1, r2 ∈ Z∗p and outputs the
ciphertext:

(u1, u2, u3, e, v, vk) = (gr11 , g
r2
2 , g

r1+r2
3 ,m · hr11 h

r2
2 , (c1d

α
1 )r1 · (c2dα2 )r2 , gα)

An important feature of this construction is that the decryptor does not need to know the tag value α.4

Therefore, in constructing our PKE we can “dual-purpose” α as both the ciphertext tag and as the secret key
of a one-time signature (OTS) scheme. Specifically, our encryption process will select a random α, encrypt
the message using the TBE with α as the tag, and finally sign the ciphertext elements (u1, u2, u3, e, v) with
α. The resulting ciphertext consists of (u1, u2, u3, e, v, vk) along with the signature.

The remaining challenge is therefore to construct an efficient OTS that can sign multiple bilinear group
elements, yet admits an efficient proof-of-knowledge for a signature on committed elements. To address
this we propose a new multi-block one-time “F -signature” that we believe may be of independent interest.5

Interestingly, our signing algorithm does not actually operate on elements of G, but rather signs message
vectors of the form (m1, . . . ,mn) ∈ Z∗np (for some arbitrary vector length n). Once a message is signed,
however, the signature can be verified given the tuple (gm1

1 , . . . , gmn
n ) ∈ Gn for some g1, . . . , gn, rather

than the original message vector. Strictly speaking, this construction does not meet our requirements—an
encryptor may not be able to calculate the discrete logarithm of the ciphertext elements (u1, u2, u3, e, v),
especially when the message m is adversarially-chosen. Our key insight is to show that encryptors can
produce an identically distributed “workalike” signature even when these discrete logarithms are not known.
We prove that, in the context of our encryption scheme, no adversary can forge these workalike signatures.
Our signature construction is presented in Section 2.4.

2 Technical Preliminaries

2.1 Bilinear Groups and Cryptographic Assumptions

Let λ be a security parameter. We define BMsetup as an algorithm that, on input 1λ, outputs the parameters
for a bilinear mapping as γ = (p,G,GT , e, g ∈ G), where g generates G, the groups G,GT each have prime
order p, and e : G × G → GT . For 〈g〉 = 〈h〉 = G the efficiently-computable mapping e must be both
non-degenerate (〈e(g, h)〉 = GT ) and bilinear (for a, b ∈ Z∗p, e(ga, hb) = e(g, h)ab).

The Decision Linear Assumption (DLIN) [7]. Let G be a group of prime order p ∈ Θ(2λ). For all
p.p.t. adversaries A, the following probability is 1/2 plus an amount negligible in λ:

Pr[f, g, h, z0
R← G; a, b R← Z∗p; z1 ← ha+b; d R← {0, 1};

d′ ← A(f, g, h, fa, gb, zd) : d = d′].

The Flexible Diffie-Hellman Assumption (FDH) [38, 31]. Let G be a group of prime order p ∈ Θ(2λ).
For all p.p.t. adversaries A, the following probability is negligible in λ:

Pr[g, ga, gb; a, b R← Z∗p; (w,w′)← A(g, ga, gb) : w 6= 1 ∧ w′ = wab].
4This differs from many other candidate TBE and IBE schemes, e.g., Boneh and Boyen’s IBE [6] and Kiltz’s TBE [37] where

the tag/identity is an element of Z∗p and must be provided at decryption time (or in the case of IBE, when a secret key is
extracted). This requirement stems from the nature of those schemes’ security proofs.

5F -signature is a contraction of F -unforgeable signature, which is a concept proposed by Belinkiy et al. [4], and later
developed by Green and Hohenberger [31]. In this paradigm, the signing algorithm operates on a message m, but there exists
a signature verification algorithm that can operate given only F (m) for some one-way function F .
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This assumption was previously described as the 2-out-of-3 CDH assumption by Kunz-Jacques and
Pointcheval [38]. We adopt the name Flexible Diffie-Hellman for consistency with recent work [41, 26, 31]. To
instill confidence in this assumption, Green and Hohenberger [31] showed that a solver for the Flexible Diffie-
Hellman problem implies a solver for a related decisional problem, the Decisional 3-Party Diffie-Hellman
assumption (3DDH) which has been used several times in the literature [40, 9, 33, 31]. An adversary solves
the 3DDH problem if, given (g, ga, gb, gc, z) for some random a, b, c ∈ Z∗p, it outputs 1 if z = gabc and 0
otherwise.

2.2 Proofs of Knowledge

We use several standard results for proving statements about the satisfiability of one or more pairing-product
equations. For variables {X}1...n ∈ G and constants {A}1...n ∈ G, ai,j ∈ Z∗p, and tT ∈ GT , these equations
have the form:

n∏
i=1

e(Ai,Xi)
n∏
i=1

n∏
j=1

e(Xi,Xj)ai,j = tT

The proof-of-knowledge protocols in this work can be instantiated using one of two approaches. The
first approach is to use the interactive zero-knowledge proof technique of Schnorr [49], with extensions due
to e.g., [22, 15, 18, 11, 2, 16]. Note that this may require that the proofs be executed sequentially (indeed,
this requirement is explicit in our security definitions). For details, see the work of Adida et al. [2], which
provides a taxonomy of interactive proof techniques for pairing-based statements.

Alternatively, the proofs can be instantiated using the Groth-Sahai proof system [32] which permits
efficient non-interactive proofs of the satisfiability of multiple pairing product equations. In the general case
these proofs are witness indistinguishable. However a subset of special cases (including where tT = 1) may
be conducted in zero-knowledge.6 The Groth-Sahai system can be instantiated under the Decision Linear
assumption in the Common Reference String model. An important limitation of the Groth-Sahai proof
system has to do with the knowledge extractor used to show proof soundness: specifically, the extractor can
only extract elements of the bilinear image group G (not Z∗p or GT ). We have designed our constructions
with this restriction in mind. We refer the reader to [32] for further details.

We refer the reader to the cited works for formal security definitions of ZK and WI proof systems.
In our security analysis we will assume some generic instantiation ΠZK that is secure under the Decision
Linear assumption in G. Either of the techniques mentioned above can satisfy this requirement. When
referring to WI and ZK proofs we will use the notation of Camenisch and Stadler [17]. For instance,
WIPoK{(g, h) : e(g, h) = T ∧ e(g, v) = 1} denotes a witness indistinguishable proof of knowledge of elements
g and h that satisfy both e(g, h) = T and e(g, v) = 1. All values not in enclosed in ()’s are assumed to be
known to the verifier.

2.3 Linear Encryption

Our blind decryption protocol employs a multiplicatively homomorphic scheme that encrypts elements of G.
We instantiate this scheme with the Linear Encryption scheme of Boneh, Boyen and Shacham [7] which is
semantically secure under the Decision Linear assumption. The scheme consists of the following algorithms:

LE.KG. On input a group description γ, pick h R← G, x, y R← Z∗p, f = h1/x, g = h1/y and output pk = (f, g, h),
sk = (x, y).

LE.Enc. On input pk and a message m ∈ G, select a, b R← Z∗p and output (c1, c2, c3) = (fa, gb,mha+b).
LE.Dec. On input sk , (c1, c2, c3), output m′ = c3/(cx1c

y
2).

6In many cases it is easy to re-write pairing products equation as a composition of multiple distinct equations having tT = 1
(see [32]). Although we do not explicitly perform this translation in our protocols, we note that it can be applied to all of the
ZKPoKs used in our constructions.
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The homomorphic operation is simple pairwise multiplication, and exponentiation by a scalar z can be
performed as cz1, c

z
2, c

z
3. To re-randomize a ciphertext one multiplies it by LE.Enc(pk , 1).

Our protocols require an efficient ZK proof-of-knowledge of the plaintext m underlying a ciphertext C,
which we denote by ZKPoK{(m) : C ∈ LE.Enc(pk ,m)}. This can be expressed via the following pairing
product equation:

ZKPoK{(ha, hb) : e(ha, f) = e(c1, h) ∧ e(hb, g) = e(c2, h)}

Knowledge of m is implicit in this proof, since m = c3/(hahb) = c3/(cx1c
y
2).7

2.4 A One-Time F -Signature on Multiblock Messages

Our constructions require a strongly unforgeable one-time F -signature scheme that signs messages of the
form (m1, . . . ,mN ) ∈ Z∗np (for arbitrary values of n), but can verify signatures given only a function of
the messages, specifically, (gm1

1 , . . . , gmn
n ) ∈ Gn for fixed g1, . . . , gn ∈ G. Note that g1, . . . , gn need not be

distinct.
To construct FS, we adapt a weakly-unforgeable signature due to Green and Hohenberger [31] to admit

multi-block messages, while simplifying the scheme into a one-time signature. The latter modification has
the incidental effect of strengthening the signature to be strongly unforgeable. Let us now describe FS:

FS.KG. On input group parameters γ, a vector length n, select g, g1, . . . , gn, v, d, u1, . . . , un
R← G and

a
R← Z∗p. Output vk = (γ, g, ga, v, d, g1, . . . , gn, u1, . . . , un, n) and sk = (vk , a).

FS.Sign. Given sk and a message vector (m1, . . . ,mn) ∈ Z∗np , first select r R← Z∗p and output the signature
σ = ((

∏n
i=1 u

mi
i · vr d)a, gam1

1 , . . . , gamn
n , um1

1 , . . . , umn
n , r).

FS.Verify. Given pk, (gm1
1 , . . . , gmn

n ), parse σ = (σ1, e1, . . . , en, f1, . . . , fn, r), output 1 if the following holds:

e(σ1, g) = e(
n∏
i=1

fi · vrd, ga) ∧ {e(gmi
i , ga) = e(ei, g) ∧ e(gmi

i , ui) = e(gi, fi)}i∈[1,n]

Note that verification is a pairing product equation. Thus we can efficiently prove knowledge of a sig-
nature using the techniques described in Section 2.2.8 We denote such a proof by e.g., WIPoK{(σ) :
Verify(vk , (gm1 , . . . , gmn), σ) = 1}. Note that vk or the messages may reside within a commitment.

In Appendix A we provide definitions of security, and prove that the scheme (FS.KG,FS.Sign,FS.Verify)
is strongly unforgeable under the Flexible Diffie-Hellman assumption.

Workalike signatures. Our blind decryption constructions make use of the “workalike” algorithms
(WAKG,WASign). While the outputs of these algorithms are identically distributed those of KG and
Sign, the WASign algorithm operates on messages of the form (h1, . . . , hn) ∈ Gn. We stress that
(WAKG,WASign,Verify) is not a secure signature scheme on arbitrary group elements, but can be used
securely under the special conditions of our constructions..

FS.WAKG. Select x1, . . . , xn
R← Z∗p and set (u1, . . . , un) = (gx1

1 , . . . , gxn
n ), with the remaining elements as in

KG. Set sk = (vk , a, x1, . . . , xn).
FS.WASign. Given a message vector (h1, . . . , hn) ∈ Gn, first select r R← Z∗p and output the signature

σ = ((
∏n
i=1 h

xi
i · vrd)a, ha1 , . . . , h

a
n, h

x1
1 , . . . , hxn

n , r).

7If using the Groth-Sahai proof system, this proof must be expanded to e.g., ZKPoK{(ha, hb, h′) : e(ha, f)e(c−1
1 , h′) =

1 ∧ e(hb, g)e(c−1
2 , h′) = 1 ∧ e(h′, h) = e(h, h)}.

8This proof can be conducted natively using Schnorr-type techniques. Unfortunately, the equivalent proof in the Groth-
Sahai system may be more complicated, since that system’s knowledge extractor cannot extract the element r ∈ Z∗p on
which the signature’s security depends. Fortunately, the prover can instead prove knowledge of (h1, h2) = (gar, gr) de-
rived from r, and use the following revised verification check: e(σ1, g) = e(

Qn
i=1 fi · d, ga)e(h1, v) ∧ e(h1, g) = e(h2, ga)

∧ {e(gmi , ga) = e(ei, g) ∧ e(gmi , ui) = e(fi, g)}i∈[1,n].
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3 Definitions

Notation: Let M be the message space and C be the ciphertext space. We write P (A(a),B(b))→ (c, d) to
indicate the protocol P is between parties A and B, where a is A’s input, c is A’s output, b is B’s input and
d is B’s output. We will define ν(·) as a negligible function.

Definition 3.1 (Blind Decryption Scheme) A public-key blind decryption scheme consists of a tuple of
algorithms (KG,Enc,Dec) and a protocol BlindDec.

KG(1λ). On input a security parameter λ, the key generation algorithm KG outputs a public key pk and a
secret key sk .

Enc(pk ,m). On input a public key pk and a message m, Enc outputs a ciphertext C.

Dec(pk , sk , C). On input pk , sk and a ciphertext C, Dec outputs a message m or the error symbol ⊥.

The two-party protocol BlindDec is conducted between a user U and a decryptor D:

BlindDec({U(pk , C)}, {D(pk , sk)}) → (m, nothing). On input pk and a ciphertext C, an honest user U
outputs the decryption m or the error symbol ⊥. The decryptor D outputs nothing or an error
message.

We now present the standard definition of adaptive chosen ciphertext security for public key encryption.

Definition 3.2 (IND-CCA2) A public key encryption scheme Π = (KG,Enc,Dec) is IND-CCA2 secure if
every p.p.t. adversary A = (A1,A2) has advantage ≤ ν(λ) in the following experiment.

IND-CCA2(Π,A, λ)
(pk , sk)← KG(1λ)
(m0,m1, z)← AOdec(pk ,sk ,·)

1 (pk) s.t. m0,m1 ∈M
b← {0, 1}; c∗ ← Enc(pk ,mb)
b′ ← AO

′
dec(pk ,sk ,·)

2 (c∗, z)
Output b′

Where Odec is an oracle that, on input a ciphertext c, returns Dec(pk , sk , c) and O′dec operates identically
but returns ⊥ whenever c = c∗. We define A’s advantage in the above game by:

|Pr [ b = b′ ]− 1/2|

Additional security properties. A secure blind decryption scheme must possess the additional properties
of leak-freeness and blindness. Intuitively, leak-freeness [29] ensures that an adversarial User gains no more
information from the blind decryption protocol than she would from access to a standard decryption oracle.
Blindness prevents a malicious Decryptor from learning which ciphertext a User is attempting to decrypt,
even when the Decryptor can induce failures in the protocol. Let us now formally state these properties.

Definition 3.3 (Leak-Freeness [29]) A protocol BlindDec associated with a PKE scheme Π =
(KG,Enc,Dec) is leak free if for all p.p.t. adversaries A, there exists an efficient simulator S such
that for every value λ, no p.p.t. distinguisher D can distinguish the output of Game Real from Game Ideal
with non-negligible advantage:

Game Real: Run (pk , sk) ← KG(1λ) and publish pk . As many times as D wants, A chooses a ciphertext
C and atomically executes the BlindDec protocol with D:
BlindDec({U(pk , C)}, {D(pk , sk)}). A’s output (which is the output of the game) includes the list of
ciphertexts and decrypted plaintexts.
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Game Ideal: A trusted party runs (pk , sk) ← KG(1λ) and publishes pk . As many times as D wants, S
chooses a ciphertext C and queries the trusted party to obtain the output of Dec(pk , sk , C), if C ∈ C
and ⊥ otherwise. S’s output (which is the output of the game) includes the list of ciphertexts and
decrypted plaintexts.

In the games above, BlindDec and Dec are treated as atomic operations. Hence D and A (or S) may
communicate at any time except during the execution of those protocols. Additionally, while we do not
explicitly specify that auxiliary information is given to the parties, this information must be provided in
order to achieve a sequential composition property.

Definition 3.4 (Ciphertext Blindness) Let OU (pk , C) be an oracle that, on input a public key and
ciphertext, initiates the User’s portion of the BlindDec protocol, interacting with an adversary. A protocol
BlindDec(U(·, ·) A(·, ·)) is Blind secure if every p.p.t. adversary A = (A1,A2,A3) has advantage ≤ ν(λ) in
the following game.

Blind(BlindDec,A, λ)
(pk , C0, C1, z)← A1(1λ)
b← {0, 1}; b′ ← AOU (pk ,Cb),OU (pk ,Cb−1)

2 (z)

We define A’s advantage in the above game as: |Pr [b′ = b]− 1/2|. Note that a stronger notion of blindness
is selective-failure blindness, which was proposed by Camenisch et al. [16]. While our constructions do not
natively achieve this definition, in section 4.2 we discuss techniques for achieving this stronger definition.

We thus arrive at the following definition.

Definition 3.5 (CCA2-secure Blind Decryption) A blind decryption scheme Π = (KG, Enc, Dec,
BlindDec) is IND-CCA2-secure if and only if: (1) (KG, Enc, Dec) is IND-CCA2-secure, (2) BlindDec is leak
free, and (3) BlindDec posses the property of ciphertext blindness.

4 Constructions

In this section we present a new blind decryption scheme that is secure under the Decision Linear and
Flexible Diffie-Hellman assumptions in bilinear groups.

4.1 An Efficient Blind Decryption Scheme

We now present our blind decryption scheme BCS, and prove its security under the Decision Linear and
Flexible Diffie-Hellman assumptions. BCS is based on a variant of Cramer-Shoup that was proposed by
Shacham [51], with significant extensions to permit blind decryption.

The core algorithms. Figure 4.1 details the algorithms (KG,Enc,Dec), which are responsible for key
generation, encryption and decryption respectively. BCS encrypts elements of G, which may necessitate an
encoding scheme from other message spaces (see e.g., [3]). Ciphertexts consist of 24 elements of G plus
two element of Z∗p. While at first glance these ciphertexts may seem large, note that the scheme can be
instantiated in asymmetric bilinear settings such as the MNT group of elliptic curves [44], where group
elements can be represented in as little as 170 bits at the 80-bit security level. In this setting we are able
to achieve a relatively ciphertext size of approximately 5100 bits. While this is large compared to RSA, a
640-byte per file overhead is quite reasonable for many practical applications.

Also note that in our description the KG algorithm samples a unique set of bilinear group parameters γ
for each key; however, it is perfectly acceptable for many keyholders to share the same group parameters.

Correctness. By substitution it is relatively easy to show that the public key encryption scheme (KG,Enc,Dec)
is correct, i.e., that Dec(pk , sk ,Enc(pk ,m)) = m with probability 1 for valid inputs pk ,m. We leave the
details for Appendix B.
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BCS.KG(1λ)

1. Sample γ = (p,G,GT , ê, g ∈ G)← BMsetup(1λ).

2. Choose g, g1, g2, g3, v′, d′, u′1, . . . , u
′
5
R← G, and x1, x2, x3, y1, y2, y3, z1, z2, z3

R← Z∗p.
3. Compute:

c1 ← gx1
1 gx3

3 d1 ← gy1
1 gy3

3 h1 ← gz11 gz33

c2 ← gx2
2 gx3

3 d2 ← gy2
2 gy3

3 h2 ← gz22 gz33

4. Output pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v′, d′, u′1, . . . , u′5), sk = (x1, x2, x3,
y1, y2, y3, z1, z2, z3).

BCS.Enc(pk ,m ∈ G).

1. Select α, r1, r2, c, ψ
R← Z∗p. Construct a FS keypair (vk1, sk1) and a second “workalike”

keypair (vk2, sk2) as follows:

vk1 ← (γ, g, gα, v′, d′, g1, g2, g3, g, g, u
′
1, . . . , u

′
5, 5) vk2 = (γ, g, gψ , v′, d′, g, gc, 1)

sk1 ← (vk1, α) sk2 = (vk2, ψ, c)

Next, compute the ciphertext as:

u1 ← gr11 u2 ← gr22 u3 ← gr1+r2
3 e← m · hr11 hr22 v ← (c1d

α
1 )r1 · (c2dα2 )r2

vk ← gα e1 ← uα1 e2 ← uα2 e3 ← uα3 f1 ← gc f2 ← gψ

σ1 ← FS.Sign (sk1, (r1, r2, r1 + r2, c, ψ)) σ2 ← FS.WASign (sk2, e)

2. Output C = (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2).

BCS.Dec(pk , sk , C).

1. Parse sk and C as above. Assemble vk1 ← (γ, g, vk , v′, d′, g1, g2, g3, g, g, u′1, . . . , u
′
5, 5)

and vk2 ← (γ, g, f2, v′, d′, g, f1, 1). Now, verify the relations:

{ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧

FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}
(1)

2. If this check fails, output ⊥. Otherwise, parse sk = (x1, x2, x3, y1, y2, y3, z1, z2, z3) and

select z
R← Z∗p. Compute the decryption m′ as:

m′ = e ·
(ux1

1 ey1
1 · u

x2
2 ey2

2 · u
x3
3 ey3

3 )z

uz11 uz22 uz33 · vz
(2)

Figure 1: Key generation, encryption and decryption algorithms for the BCS scheme.

The Blind Decryption Protocol. The blind decryption protocol BlindDec with respect to BCS is shown in
Figure 2. The protocol requires a multiplicatively homomorphic IND-CPA-secure encryption scheme, which
we instantiate using the Linear Encryption scheme (LE) of Boneh et al. [7].9

The protocol employs the homomorphic property of LE to construct a a two-party implementation of the
Dec algorithm, with ZKPoKs used to ensure that both the User and Decryptor’s contributions are correctly
formed. Note that for security reasons it is critical that the Decryptor re-randomize the ciphertext that
it sends back to the User in its portion of the protocol. In the LE scheme this can be accomplished by
multiplying a ciphertext with a fresh encryption of the identity element.

4.1.1 Security

Let ΠZK be a zero-knowledge (and, implicitly, witness indistinguishable) proof system secure under the
Decision Linear assumption (possibly in the Common Reference String model). In the following theo-
rems we will show that if the Decision Linear and Flexible Diffie-Hellman assumptions hold in G then

9In asymmetric bilinear groups where the Decisional Diffie-Hellman problem is hard, this can easily be replaced with Elgamal
encryption, resulting in a significant efficiency improvement.
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U(pk , C) D(pk , sk)

1. Parse C as (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2),
and parse pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v′, d′, u′1, . . . , u′5).
Verify that C satisfies equation (1) of the Dec algorithm. If not, abort and output ⊥.

2. Generate (pkU , skU )← LE.KG(γ) and select z̄
R← Z∗p. Compute:

c1 ← LE.Enc(pkU , u
z̄
1), c2 ← LE.Enc(pkU , u

z̄
2), c3 ← LE.Enc(pkU , u

z̄
3),

c4 ← LE.Enc(pkU , e
z̄
1), c5 ← LE.Enc(pkU , e

z̄
2), c6 ← LE.Enc(pkU , e

z̄
3),

c7 ← LE.Enc(pkU , v
z̄) and set vk1 ← (γ, g, vk , v′, d′, g1, g2, g3, g, g, u′1, . . . , u

′
5, 5),

vk2 ← (γ, g, f2, v′, d′, g, f1, 1)
3. Send pkU , c1, . . . , c7 to D and conduct the following proof of knowledge with D:

WIPoK{(u1, u2, u3, v, vk , e1, e2, e3, f1, f2, σ1, σ2, vk1, vk2, z̄):
c1 = LE.Enc(pkU , u

z̄
1) ∧ c2 = LE.Enc(pkU , u

z̄
2) ∧ c3 = LE.Enc(pkU , u

z̄
3) ∧

c4 = LE.Enc(pkU , e
z̄
1) ∧ c5 = LE.Enc(pkU , e

z̄
2) ∧ c6 = LE.Enc(pkU , e

z̄
3) ∧

c7 = LE.Enc(pkU , v
z̄) ∧ ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧

FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}
4. If the proof does not verify, abort.

5. Compute c′ = LE.Enc(pkU , 1) and z̄′
R← Z∗p.

6. Using the homomorphic property of LE, compute:

c′′ ← (c
x1
1 c

y1
4 ·c

x2
2 c

y2
5 ·c

x3
3 c

y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·c

z̄′
7

· c′.

7. Return c′′ and conduct the following proof:
ZKPoK{(x1, x2, x3, y1, y2, y3, z1, z2, z3, z̄′, c′) :

c′ = LE.Enc(pk , 1) ∧

c′′ =
(c

x1
1 c

y1
4 ·c

x2
2 c

y2
5 ·c

x3
3 c

y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·c

z̄′
7

· c′}

8. If the proof does not verify, abort and return ⊥.

9. Compute m′ = e · (LE.Dec(sk , c′′))1/z̄ .

Output m′. Output nothing.

Figure 2: The Blind Decryption protocol BlindDec(U(pk , C),D(pk , sk))→ (m′, nothing). For compactness of
notation we represent the homomorphic operation on two LE ciphertexts c1, c2 using simple multiplicative
notation (c1c2), and exponentiation by a scalar z as cz1.

BCS = (KG,Enc,Dec,BlindDec) implemented with ΠZK is a secure blind decryption scheme in the sense of
Definition 3.5. This requires three separate arguments: (1) that the algorithms (KG,Enc,Dec) comprise an
IND-CCA2-secure encryption scheme, (2) that the BlindDec protocol is leak-free, and (3) that BlindDec is
selective-failure blind.

Theorem 4.1 If the Decision Linear and Flexible Diffie-Hellman assumptions hold in G and ΠZK is secure
under the Decision Linear assumption in the standard model (resp. CRS model), then (BCS.KG, BCS.Enc,
BCS.Dec) comprise an IND-CCA2-secure public-key encryption scheme secure in the standard model (resp.
CRS model).

We present a proof of Theorem 4.1 in Appendix C.1. Here we will summarize the intuition behind the
proof, which employs techniques from the Cramer-Shoup variant due to Shacham [51]. Our simulator knows
the scheme’s secret key, and can use it to answer decryption queries. The exceptions to this rule are
certain queries related to the challenge ciphertext. Specifically, we must be careful with queries that are (a)
“malformed”, i.e., the queried value v 6= ux1

1 ey1
1 · u

x2
2 ey2

2 · u
x3
3 ey3

3 , or that (b) embed the value vk∗ from the
challenge ciphertext.

Note that equation (2) of the Dec algorithm ensures that malformed ciphertexts decrypt to a random
element of G, so the first case is easily dealt with in our simulation. The adversary cannot maul the ciphertext
due to the presence of the checksum v. Thus it remains to consider well-formed ciphertexts with vk = vk∗.
We argue that the challenge ciphertext itself is the only ciphertext that will pass all of our checks.

Intuitively our simulation accomplishes this by setting vk = gα
∗

as the public key of a strongly unforgeable
OTS which is secure under the Flexible Diffie-Hellman assumption. In principle we use this key to sign the
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challenge ciphertext components (u∗1, u
∗
2, u
∗
3, e
∗), which produces all of the remaining components of the

ciphertext. When the adversary submits a decryption query with vk = vk∗ we can be assured that the query
is identical to the challenge ciphertext, as any other result would require the adversary to forge the OTS.

It remains to argue that our OTS is indeed unforgeable. This is non-trivial, since the OTS is based on
an F -signature where signing operates on messages of the form m1, . . . ,mn ∈ Z∗p, but verification can be
conducted given gm1

1 , . . . , gmn
n ∈ G. In principle our simulation can select the elements u∗1, u

∗
2, u
∗
3 such the

simulator knows their discrete logarithm base g. Unfortunately, even this is not sufficient, since our simulator
does not always know the discrete logarithm of the value e∗ which is based on a message value chosen by the
adversary. The core intuition of our proof is to give two separate simulations: in one the signing key α∗ is
known and we can simulate the signature, producing a correctly-distributed (but not unforgeable) signature
over arbitrary group elements. In the second simulation the signing key is unknown: the simulator chooses
(u∗1, u

∗
2, u
∗
3, e
∗) at random such that it knows the relevant discrete logarithm of each value. Although the

resulting ciphertext does not encrypt either m0 or m1, we are able to show that under the Decision Linear
assumption no adversary will be able to detect this condition.

Theorem 4.2 If the Decision Linear assumption holds in G and ΠZK is secure under the Decision Linear
assumption, then the BCS protocol BlindDec is leak-free.

We present a proof sketch of Theorem 4.2 in Appendix C.2. Intuitively this proof is quite simple: we
show that for any real-world adversary A we can construct an ideal-world adversary S that, whenever A
initiates the BlindDec protocol, operates as follows: (1) S uses the extractor for the PoK system to obtain A’s
requested ciphertext, (2) queries this result to the trusted decryption oracle, (3) re-blinds and returns the
correctly formulated result to the adversary, simulating the necessary ZK proofs. We show that under the
Decision Linear assumption no p.p.t. distinguisher can differentiate the output of S playing the Ideal-World
game from the output of A in the Real-World game except with negligible probability.

Theorem 4.3 If the Decision Linear assumption holds in G and ΠZK is secure under the Decision Linear
assumption, then the BCS protocol BlindDec satisfies the property of ciphertext blindness.

We sketch a proof of Theorem 4.3 in Appendix C.3.

4.2 Extensions

Tag-Based Encryption. Tag-Based Encryption (TBE) allows encryptors to apply a tag (label) to each
ciphertext. This tag is used during the decryption process. The BCS construction is in fact natively based
on a TBE scheme, but this functionality is lost in the final construction. We now show that with some
minor extensions to the KG,Enc,Dec algorithms (and BlindDec) it is possible to retain the scheme’s TBE
functionality.

Our modified KG algorithm selects additional sk elements x′1, x
′
2, x

′
3, y

′
1, y

′
2, y

′
3 and computes new pk

elements c′1 = g
x′1
1 g

x′3
3 , c′2 = g

x′2
2 g

x′3
3 , d′1 = g

y′1
1 g

y′3
3 , d′2 = g

y′2
2 g

y′3
3 . When an encryptor calls the tag-based

encryption algorithm Enc(pk ,m, t̄) with t̄ ∈ Z∗p as the tag value, Enc computes an additional check value
v̄ = (c′1d

′ t̄
1 )r1 · (c′2d

′ t̄
2 )r2 and adds v̄, t̄ to the existing BCS ciphertext. To compute Dec(pk , sk , C, t̄′), the

modified decryption algorithm selects z′ R← Z∗p and computes m′ as:

e · (ux1
1 ey1

1 · u
x2
2 ey2

2 · u
x3
3 ey3

3 )z(ux
′
1+t̄′y′1

1 · ux
′
2+t̄′y′2

2 · ux
′
3+t̄′y′3

3 )z
′

uz11 u
z2
2 u

z3
3 · vzv

′z′

We omit the revised BlindDec protocol and security proofs, but simply observe that an adversary’s probability
of “forging” a correct tag v̄ is roughly the same as their probability of forging the original check v. By the
arguments presented in the proof of Theorem 4.1 this probability is negligible. We refer the reader to the
work of MacKenzie et al. [42] for additional intuition and formal TBE security definitions.
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Selective-failure blindness. Camenisch et al. [16] propose a stronger definition of blindness (for signature
schemes) that they refer to as “selective-failure” blindness. Intuitively, this definition captures the notion
that an adversarial Decryptor might attempt to induce failures in the protocol (e.g., by generating malformed
ciphertexts) in order to deprive the User of privacy. Unfortunately our protocols do not natively achieve
this definition because the Decryptor can create ciphertexts with an improperly formed check value v.
Unfortunately, due to the nature of our scheme this check cannot be verified independently by the user. One
potential solution to this problem is to add to each ciphertext a non-interactive proof that v is correctly
formed. Such a proof could be constructed using the Fiat-Shamir heuristic in the random oracle model, or
using the Groth-Sahai system in the Common Reference String model. Note that this approach would not
require any changes to the blind decryption protocol.

5 Applications

Blind decryption has applications to a number of privacy-preserving protocols. Several applications have
already been proposed in the literature, e.g., [46, 25]. Below we will propose two specific applications
motivated by our construction.

Privacy-preserving Distributed Filesystems. Many organizations are responding to the difficulty of
securing data in a distributed network, where storage locations can include semi-trusted file servers, desktop
computers and mobile devices. An increasingly popular approach is to employ cryptographic access control
to restrict and monitor file access in these environments. In this approach (e.g., [1]), access control is
performed by encrypting files at rest; authorized users contact a centralized server in order to decrypt them
when necessary.

Once concern when centralizing access control is the high value of the query pattern. Specifically, knowing
which content a user is accessing may by itself leak confidential information. For example, the pattern of
file accesses by executives during a corporate merger can have enormous financial value if placed in the
right hands. While it is desirable to centralize access control, it can therefore be important to restrict this
centralized party from learning which information is being managed. While these goals seems contradictory,
Coull et al. [21] and Camenisch et al. [13] recently showed how to construct sophisticated access control
mechanisms using anonymous credentials. In these protocols a server provides strong, and even history-
dependent access control without ever learning user’s access pattern.

Our blind decryption protocols are amenable to integration with these access control techniques. In
particular, by extending BCS to include encryption tags as in Section 4.2, data can be explicitly categorized
and policies can be defined around these categories.

Oblivious Transfer with Public Contribution. In an adaptively-secure k-out-of-N Oblivious Transfer
protocol (OTNk×1) a Receiver obtains up to k items from a Sender’s N -item database, without revealing to
the Sender which messages were transferred. There has been much recent interest in OTNk×1 [16, 29, 30, 35,
47, 21, 13], as it is particularly well suited for constructing privacy-preserving databases in which the user’s
query pattern is cryptographically protected (this is critical in e.g., patent and medical databases).

For practical reasons, there are situations in which it is desirable to distribute the authorship of records,
particularly when database updates are performed offline. Unfortunately, existing OTNk×1 protocols seem fun-
damentally incapable of supporting message contributions by third parties without the explicit cooperation
of the Sender.

Our blind decryption constructions admit new OTNk×1 protocols. While this is interesting in and of itself,
these protocols can be extended to permit public contribution. Intuitively, the contributors achieve this
by simply encrypting their messages using the Enc algorithm under the Sender’s public key and sending
the resulting ciphertexts directly to the Receiver. The Receiver can then obtain up to k decryptions by
running BlindDec with the Sender. Proving this intuitive protocol secure under a strong simulation-based
definition [16, 29] requires some additional components that are easily achieved using the techniques available
to us. We leave such a construction for the full version of this work.
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A Security of our Multi-Block F -signature

In this section we address the security of our one-time F -signature, which was presented in Section 2.4. We
will first informally describe the security game. Let γ be a set of bilinear group parameters, and n a fixed
message-length that is polynomial in |γ|. An adversary is given pk and allowed to request one signature
σ on an n-block message (m1, . . . ,mn) of the adversary’s choosing. We say that the scheme is strongly
F -unforgeable if no p.p.t. adversary has more than a negligible probability of outputting (gm

′
1

1 , . . . , g
m′n
n , σ′)

where Verify(pk , gm
′
1

1 , . . . , g
m′n
n , σ′) = 1 and (gm

′
1

1 , . . . , g
m′n
n ) 6= (gm1

1 , . . . , gmn
n ) or σ′ 6= σ.
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Theorem A.1 Let n = poly(|γ|) for some polynomial function poly(·). The scheme FS = (KG,Sign,Verify)
is F -unforgeable if the Flexible Diffie-Hellman assumption holds in G.

Proof. The proof is similar to the Type II case of the proof presented by Hohenberger and Waters in [34].
Given an adversary A that forges FS with non-negligible probability, we construct a solver B for Flexible
Diffie-Hellman that also succeeds with non-negligible probability.

Simulation Setup. B takes as input a Flexible-Diffie Hellman tuple (γ, g, ga, gb) and selects a message
index i∗ R← [1, n]. It next chooses yv, yd, xv, xd

R← Z∗p and sets v = gbxvgyv and d = g−bxdgyd . It sets ui∗ = gb

and for all i 6= i∗, selects xui

R← Z∗p and sets ui = gxui . For i = 1 to n it selects xgi

R← Z∗p and sets gi ← gxgi .
Finally, B outputs pk = (g, ga, v, d, g1, . . . , gn, u1, . . . , un, n) to A. When A queries on m1, . . . ,mn, B sets
r = (xd −mi∗)/xv. It outputs the signature σ as:

σ1 =
n∏

i=1,i6=i∗
gaxuimi · (ga)yvr+yd , gaxg1m1 , . . . , gaxgnmn , um1

1 , . . . , umn
n , r

Note that the signature above is correctly distributed.

Forgery. When A outputs a valid forgery (gm
′
1

1 , . . . , g
m′n
n , σ′), B parses σ′ as (σ′1, e

′
1, . . . , e

′
n, f
′
1, . . . , f

′
n, r
′)

and computes gm
′
i∗ = (gm

′
i∗

i∗ )1/xgi∗ . If either of the following conditions are true, B aborts: (1) gm
′
i∗

i∗ is equal
to gmi∗

i∗ and simultaneously r = r′ or (2) gm
′
i∗ (gr

′
)xvg−xd = 1.

Abort probability. Note that since i∗ is random and independent of the adversary’s view, the probability of
abort case (1) is at most n−1

n since the forgery’s message vector must be different in at least one position
from the adversary’s query, or alternatively the value r′ must be different than the r provided in σ. Note
that e1, . . . , en, f1, . . . , fn are uniquely determined by m′1, . . . ,m

′
n (and their structure is checked by Verify),

thus the only way σ′ can differ from σ is when (m1, . . . ,mn) 6= (m′1, . . . ,m
′
n) or when r 6= r′.

We claim that condition (2) occurs with probability at most 1/p. To show this (as in [34]) we observe that
the values xv and xd are hidden by blinding factors yv and yd, respectively. The adversary could hypothesize
that mi∗ + xvr − xd = 0, however, there are p possible (xv, xd) pairs that satisfy this equation and each
of them are equally likely. Information-theoretically, the adversary can output a pair (gm

′
i∗ , r′) satisfying

gm
′
i∗ (gr

′
)xvg−xd = 1 with probability at most 1/p.

Solution. Thus, if A forges with probability ε then with probability at least εp
n(p−1) B will output a solution

to the Flexible Diffie-Hellman problem (w,wab) as:

w = gm
′
i∗ (gr

′
)xvg−xd , wab =

σ′1∏n
i=1,i6=i∗ e

′xui
i · gar′yv (ga)yd

Note that this works, since if σ′ passes the verification checks then we can re-write σ1 as:

σ′1 =

(
n∏
i=1

u
m′i
i · v

r′d

)a
=

 n∏
i=1,i6=i∗

gxui
m′i · (gb)m

′
i∗ (gbxbgyv )r

′
(g−bxdgyd)

a

=
n∏

i=1,i6=i∗
gaxui

m′i · ga(yvr
′+yd) · gab(m

′
i∗+xvr

′−xd)

We conclude by addressing three issues that were raised earlier in this work:
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1. Compatiblilty with the Groth-Sahai proof system. The security proofs for our blind decryption protocol
use a knowledge extractor to obtain σ from WIPoK{(σ) : Verify(pk ,m, σ) = 1}. Unfortunately, the
Groth-Sahai proof system does not permit the extraction of elements of Z∗p and thus cannot obtain the
component r. To work around this issue, we can have the prover first translate r into a pair of values
(h1, h2) = (gar, gr) and commit to these, while adding the additional condition ê(h1, g) = ê(h2, g

a) to
the verification equation. By observation it is easy to see that a pair (gar

′
, gr
′
) can stand in for r′ in

the reduction above, and this modified signature is also unforgeable under the Flexible Diffie-Hellman
assumption.

2. Simplification for single-block messages. For the special case of single-block messages (where n = 1)
we will completely omit the value e1 from the signature, since this value is not required in signature
verification or in the proof.

3. Non-distinct gi values. The KG algorithm selects g1, . . . , gn randomly from G. In fact, one or more of
these values can be the same, provided that they have a random distribution. The modifications to the
security proof above are straightforward, as long as the reduction knows any (possibly non-distinct)
values xg1 , . . . , xgn such that (g1, . . . , gn) = (gxg1 , . . . , gxgn ).

4. Security of “workalike” signatures. In section 2.4 we presented workalike algorithms that can “sign”
messages of the form (g1, . . . , gn) ∈ Gn. It does not seem easy to adapt the security proof above to
admit this type of signing. Where these algorithms are used in our blind decryption schemes we address
their security explicitly in the corresponding proofs.

B Correctness of BCS

To show that the scheme is correct, we will first describe the following alternative decryption procedure.

1. First, verify the relations described in equation (1) of the Dec algorithm, outputting ⊥ if the relations
are not satisfied.

2. Next, verify that ux1
1 ey1 · ux2

2 ey2 · ux3
3 ey3 = v.

3. If this comparison is satisfied, output m′ = e
u

z1
1 u

z2
2 u

z3
3

. Otherwise, output a random element of G.

To demonstrate why this alternative decryption is equivalent to the Dec algorithm, observe that we can
re-write equation (2) of the Dec algorithm as follows:

m′ =
e

uz11 u
z2
2 u

z3
3

·
(
ux1

1 ey1
1 · u

x2
2 ey2

2 · u
x3
3 ey3

3

v

)z
When ux1

1 ey1
1 ·u

x2
2 ey2

2 ·u
x3
3 ey3

3 6= v then for z ∈R Z∗p the equation (u
x1
1 ey1 ·ux2

2 ey2 ·ux3
3 ey3

v )z evaluates to a random
element of G, and thus m′ is also random. When the equality holds, we obtain m′ = e

(u
z1
1 u

z2
2 u

z3
3 )

.
It remains to show that this alternative decryption is correct. By substitution we can see that an honestly-

generated ciphertext will always satisfy the check of equation (1). Similarly, it will satisfy ux1
1 ey1

1 · u
x2
2 σy2

2 ·
ux3

3 σy3
3

?= v:

ux1
1 ey1

1 · u
x2
2 ey2

2 · u
x3
3 ey3

3

= (gr1x1
1 gr1αy1

1 ) · (gr2x2
2 gr2αy2

2 ) · (g(r1+r2)x3
3 g

(r1+r2)αy3
3 )

= gr1x1
1 gr1x3

3 gr1αy1
1 gr1αy3

3 · gr2x2
2 gr2x3

3 gr2αy2
2 gr2αy3

3

= (c1dα1 )r1 · (c2dα2 )r2) = v

Finally, when all of the previous checks succeed, the output m is correctly distributed:

e

(uz11 u
z2
2 u

z3
3 )

=
m · hr11 h

r2
2

(uz11 u
z2
2 u

z3
3 )

=
m · (gz11 g

z3
3 )r1 (gz22 g

z3
3 )r2

gr1z11 gr2z22 g
(r1+r2)z3
3

= m
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C Proofs of Security

C.1 Proof of Theorem 4.1

Proof. The BCS scheme is based on the scheme of Shacham [51], and the first twelve paragraphs of this
proof directly quote that proof [51, §3]. To avoid unnecessary detail we will refer the reader to the above
proof for some of the analysis of abort probabilities. Let A be an adversary with non-negligible advantage
in the IND-CCA2 security game. We show how to construct a solver for the Decision Linear or Flexible
Diffie-Hellman problem using A.

In the first case, let B be an algorithm that, given a Decision Linear instance (γ, g1, g2, g3, u1, u2, u3),
outputs 1 if logg3u3 = logg1u1 + logg2u2 and 0 otherwise. As in the real KG algorithm, B chooses se-
crets x1, x2, x3, y1, y2, y3, z1, z2, z3, xu1 , . . . , xu5 , sets (u1, . . . , u5) = (gxu1 , . . . , gxu5 ) and using γ, g1, g2, g3

constructs the remainder of pk normally.

B answers A’s decryption queries as in BCS.Dec using its knowledge of the secret key. When A submits
the messages m0,m1 on which it wishes to be challenged, B chooses b R← {0, 1} and selects α, c, ψ R← Z∗p. It
constructs the following workalike signing keypairs:

vk1 ← (γ, g, gα, v′, d′, g1, g2, g3, g, g, u
′
1, . . . , u

′
5, 5) vk2 = (γ, g, gψ, v′, d′, g, gc, 1)

sk1 ← (vk1, α, xu1 , . . . , xu5) sk2 = (vk2, ψ, c)

And calculates the remaining ciphertext elements as:

e← mb · uz11 u
z2
2 u

z3
3 v ← ux1+αy1

1 · ux2+αy2
2 · ux3+αy3

3 vk ← gα

e1 ← uα1 e2 ← uα2 e3 ← uα3 f1 ← gc f2 ← gψ

σ1 ← FS.WASign(sk1, (u1, u2, u3, g
c, gψ)) σ2 ← FS.WASign(sk2, (e))

B supplies to A the challenge ciphertext ciphertext C∗ = (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2), and
responds to A’s further decryption queries as before. Finally, A outputs its guess b′. If b = b′, B outputs 1,
otherwise it outputs 0.

If A has a different advantage in guessing the bit b when B is run with a Linear tuple (g1, g2, g3, g
r1
1 ,

gr22 , g
r1+r2
3 ) and when B is run with a random tuple (g1, g2, g3, g

r1
1 , g

r2
2 , η ∈R G), we obtain a distinguisher

for the Linear problem. In the remainder of this sketch, we establish that in the first case A’s advantage is
nonnegligible, whereas in the second case A’s advantage is negligible.

Note that in both cases, the public key and decryption queries are distributed as in the real protocol.
However, when B is run with a Linear tuple, we can show that challenge ciphertext is correctly distributed.
Specifically, u1, u2, u3 are correctly formed, and all remaining elements are formed as in the real proto-
col. Though they are computed using alternative formulae, it is easy to verify that e, v are also correctly
distributed.

When B is run with a random tuple, the bit b remains independent of A’s view except with negligible
probability. Let “log(·)” stand for “logg1(·)” and define t2 = log(g2) and t3 = log(g3). Consider the three
elements (z1, z2, z3) of the secret key. The public key values h1 and h2 constrain these to line on the line at
the intersection of the planes defined by log(h1) = z1 + t2z3 and log(h2) = t2z2 + t3z3. A decryption query
for a valid ciphertext whose first three components form a valid Linear tuple (u′1, u

′
2, u
′
3) = (gr

′
1

1 , g
r′2
2 , g

r′1+r′2
3 )

will allow the adversary to obtain ((u′1)z1(u′2)z2(u′3)z3), but in this case we have

log ((u′1)z1(u′2)z2(u′3)z3) = (r′1)(z1 + t3z3) + (r′2)(t2z2 + t3z3),

which is linearly dependent on values already known to the adversary. This analysis does not hold if the
decryption oracle accepts a ciphertext whose first three elements do not form a linear tuple. Below we show
that the decryption oracle accepts such invalid ciphertexts only with negligible probability.
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Now consider the challenge ciphertext C∗ = (u1, u2, u3, e, v, vk , . . . ). Let u1 = gr11 , u2 = gr22 and
u3 = gr33 , with r3 6= r1 + r2 (except with negligible probability). The message in e is blinded by uz11 u

z2
2 u

z3
3 ,

which has the discrete logarithm:

log(uz11 u
z2
2 u

z3
3 ) = r1z1 + r2t2z2 + r3t3z3 = (r1)(z1 + t3z3) + (∆r)(t3z3),

where ∆r = r3−r1−r2 6= 0. To an adversary who has received decryption queries only for valid ciphertexts,
this value is independent of its view. This means that Mb is independent of the adversary’s view even given
e.

It remains only to show that, given that through query i the decryption oracle has not accepted an
invalid ciphertext, the probability that it accepts an invalid one at query i+ 1 is negligible. We restrict our
consideration to decryption queries made by A after it has seen the challenge ciphertext, since the challenge
ciphertext gives the adversary strictly more information about the values (x1, x2, x3, y1, y2, y3) by which
BCS.Dec checks ciphertext validity. Let C ′i = (u′1, u

′
2, u

′
3, e
′, v′, vk ′, e′1, e

′
2, e
′
3, f

′
1, f

′
2, σ

′
1, σ

′
2) be the ith

query, which satisfied the pairing-based checks of the Dec algorithm. We consider the following three cases:

1. (u1, u2, u3, e, vk) = (u′1, u
′
1, u
′
3, e
′, vk ′), but v 6= v′. In this case B can simply return a random element

of G, since v as calculated in generating C∗ is the only correct checksum value for (u1, u2, u3, e). The
Dec algorithm will always return a random element when v 6= v′ since equation (2) embeds the term(
u

x1
1 e

y1
1 ·u

x2
2 e

y2
2 ·u

x3
3 e

y3
3

v′

)z
= ( vv′ )

z for z ∈R Z∗p.

2. (u1, u2, u3, e) 6= (u′1, u
′
1, u
′
3, e
′) and vk 6= vk ′. In this case B will also return a random element of G,

since the correct checksum value (u′x1
1 e′y1

1 ·u
′x2
2 e′y2

2 ·u
′x3
3 e′y3

3 ) is independent of A’s view, and thus with
all but negligible probability the submitted value v′ will not pass the decryption check. We omit the
full argument here, but refer the reader to [51, §3] for the details.

3. C ′i 6= C∗ and vk = vk ′. We refer to this case as Event Forge. Proving that this event occurs with at
most negligible probability represents a new component of the proof. In Lemma C.1 below we show
that an adversary who presents such a ciphertext implies a forger for the FS signature scheme presented
in Section 2.4. Thus, if the Flexible Diffie-Hellman assumption holds in G this condition must occur
with at most negligible probability.

Based on the above, A has only a negligible probability of obtaining the decryption of an invalid ciphertext
(or detecting an invalid response) after a polynomial number of decryption queries. This concludes our main
proof. We now turn our attention to the following Lemma.

Lemma C.1 If the Flexible Diffie-Hellman and Decision Linear assumptions hold in G, then for all p.p.t.
adversaries A, Event Forge will occur with probability negligible in λ.

Proof. Let A be a CCA adversary who, having received a challenge ciphertext of the form C∗ =
(u1, u2, u3, e, vk, . . . ), where u1, u2, u3 ∈R G, issues a decryption query on C ′ = (u′1, u

′
2, u
′
3, e
′, vk ′, . . . ) where

vk ′ = vk and yet C ′ 6= C∗.10 If A makes such a decryption query with non-negligible probability, we show
how to construct an algorithm that uses A to solve the Flexible Diffie-Hellman problem or Decision Linear
problem with non-negligible advantage.

Our primary strategy in this proof is to show that A can be used to construct a forger for the strongly
unforgeable multi-block F -signature FS described in Section 2.4. By Theorem A.1 a forger for this scheme
implies a solver for the Flexible Diffie-Hellman problem with related advantage. We refer the reader to the
proof of Theorem A.1 for complete details.

A wrinkle in our simulation is that the values it gives to the adversary A will not necessarily be identically
distributed to the real protocol. To complete our proof we show via a separate Lemma, below, that under

10Note that it does not matter if A makes this query before or after receiving C∗, both cases are acceptable for this proof.
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the Decision Linear assumption, all p.p.t. adversaries have at most a negligible advantage in distinguishing
the simulation from the real protocol.

We will now describe the forger B′, which runs A internally and interacts with a challenger playing the
strong F -unforgeability game (see Section 2.4) instantiated with the one-time signature FS.

Simulation Setup. B′ flips a coin and with probability 1/2 chooses one of two strategies below. In
each strategy B′ will play the IND-CCA2-game with A, and will query the FS signing oracle to obtain the
component σ1 or σ2 for the challenge ciphertext. In both strategies, B′ will select group parameters γ,
derive the BCS secret key sk = (x1, x2, x3, y1, y2, y3, z1, z2, z3) and compute the public parameters for the
encryption scheme.

Strategy 1. B′ fixes signature parameters γ, n = 5 and requests a FS verification key of the form vk1 =
(g, gα, v′, d′, g1, g2, g3, g, g, u

′
1, . . . , u

′
5, 5). Note that the use of the non-distinct base elements (g1, g2, g3, g, g)

is a deviation from the scheme as it was defined in Section 2.4. However, in Appendix A we noted that the
signature retains its security when using parameters of this form. B′ computes (c1, c2, d1, d2, h1, h2) as in the
normal key generation algorithm and outputs pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v

′, d′, u′1, . . . , u′5).
B′ can now answer decryption queries using its knowledge of the secret key. When A eventually submits

challenge messages m0,m1, B′ selects b R← {0, 1}, r1, r2, r3, c, ψ
R← Z∗p, computes (u1, u2, u3) = (gr11 , g

r2
2 , g

r3
3 )

and uses its knowledge of the secret key to compute (e, v) = (mbg
r1z1
1 gr2z22 gr3z33 , ux1

1 ey1
1 u

x2
2 ey2

2 u
x3
3 ey3

3 ). It next
queries the FS challenger on the message vector (r1, r2, r3, c, ψ) to obtain the signature σ1, and parses σ1

to obtain (e1, e2, e3). Finally it constructs the workalike signing keypair vk2 = (γ, g, gψ, v′, d′, g1, g
c, 1) and

sk2 = (vk2, ψ, c) and calculates σ2 ←WASign(sk2, (e)). It outputs the challenge ciphertext as:

C∗ = (u1, u2, u3, e, v, vk = gα, e1, e2, e3, g
c, gψ, σ1, σ2)

Note that the ciphertext above is correctly distributed, and embeds the FS signature σ1 that was produced
by the FS signing oracle. With overwhelming probability (g1, g2, g3, u1, u2, u3) do not form a Linear tuple,
but this is expected and in line with the conditions of Event Forge. Ultimately A submits a valid query
C ′ 6= C∗ that embeds both v and vk as specified by the conditions of Event Forge:

C ′ = (u′1, u
′
2, u
′
3, e
′, v, vk , e′1, e

′
2, e
′
3, f
′
1, f
′
2, σ
′
1, σ
′
2)

If C ′ differs from C∗ in any of the components (u′1, u
′
2, u
′
3, e
′
1, e
′
2, e
′
3, f
′
1, f
′
2, σ
′
1) then B′ will output a forgery

consisting of the message vector (u′1, u
′
2, u
′
3, f
′
1, f
′
2) and signature σ′1. Otherwise (if C ′ differs only in the

components e′ or σ′2) it will abort. To see why the above forgery is valid, first observe that when equation 1
of the Dec algorithm is satisfied, then (e′1, e

′
2, e
′
3) = (u′α1 , u

′α
2 , u

′α
3 ), for α = logg(vk). Thus if (e′1, e

′
2, e
′
3) differ

from their counterparts in C∗, then (u′1, u
′
2, u
′
3) must differ as well. Similarly vk and v are identical in both

ciphertexts. Thus whenever C ′ 6= C∗ and B′ does not abort, at least one of the values (u′1, u
′
2, u
′
3, f
′
1, f
′
2, σ
′
1)

must differ from its counterpart in C∗. This satisfies the conditions for a forgery.

Strategy 2. B′ fixes signature parameters γ, n = 1 and obtains a FS verification key which it parses as vk2 =
(g, f2, v

′, d′, g, f1, 1) (as above, this key uses a variant of the normal FS key generation algorithm). It selects
ρ1, ρ2, ρ3, xu1 , . . . , xu5

R← Z∗p, sets (g1, g2, g3) = (gρ1 , gρ2 , gρ3), (u′1, . . . , u
′
5) = (gxu1

1 , g
xu2
2 , g

xu3
3 , gxu4 , gxu5 ),

and calculates the rest of the public and secret keys as in BCS.KG. Next it hands A the public key pk = (γ,
g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v

′, d′, u′1, . . . , u′5).
B′ answers decryption queries using the secret key. When A eventually submits challenge messages

m0,m1, B′ selects b R← {0, 1}, α, x, r1, r2, r3
R← Z∗p and queries the FS challenger on the single-message vector

(x + (ρ1r1z1) + (ρ2r2z2) + (ρ3r3z3)) to obtain the signature σ2. It computes (u1, u2, u3) = (gr11 , g
r2
2 , g

r3
3 ),

(e1, e2, e3) = (uα1 , u
α
2 , u

α
3 ), e = gxgr1z1gr2z2gr3z3 and v = ux1

1 ey1
1 u

x2
2 ey2

2 u
x3
3 ey3

3 . Finally it assembles a “worka-
like” signature key vk1 ← (γ, g, gα, v′, d′, g1, g2, g3, g, g, u

′
1, . . . , u

′
5, 5) and sk1 = (vk1, α, xu1 , . . . , xu5) which

it uses to compute σ1 ←WASign(sk1, (u1, u2, u3, f1, f2)). It outputs the challenge ciphertext:

C∗ = (u1, u2, u3, e, v, vk = gα, e1, e2, e3, f1, f2, σ1, σ2)
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Note that the ciphertext above will pass the verification checks of Dec equation (1) but is incorrectly dis-
tributed, since e encrypts a random message gx rather than m0 or m1. With the exception of this difference,
and its reflection in the structure of the signature σ2, the ciphertext is otherwise formulated correctly.
Ultimately A submits a valid query C ′ of the form:

C ′ = (u′1, u
′
2, u
′
3, e
′, v, vk , e′1, e

′
2, e
′
3, f
′
1, f
′
2, σ
′
1, σ
′
2)

where v and vk are as in the challenge ciphertext and yet C ′ 6= C∗. If C ′ differs from C∗ in the elements
(e′, σ′2) then B′ will output the message e′ and signature σ′2 as a forgery for the FS signature scheme.
Otherwise it will abort.

Abort probabilities. Whenever A satisfies the conditions of Event Forge (specifically, C ′ 6= C∗ and both
ciphertexts embed vk , v) then at least one of the strategies above is capable of producing a forgery for FS.
Unfortunately, there is no guarantee that B′ will have chosen the right strategy, and thus the reduction may
have to abort. Clearly if the distribution of Strategy 1 and Strategy 2 were identical from A’s point of view
(they are not), then we could still ensure that B′ would output a forgery for FS with probability at least
Pr [ Event Forge ]/2, since the choice of strategy would be independent of A’s view. By Theorem A.1 we
could use this fact to show that under the Flexible Diffie-Hellman assumption Pr [ Event Forge ] ≤ ν(λ).

Unfortunately our analysis is not complete, since the distributions of Strategy 1 and 2 are not identical,
specifically, they differ in the structure of the challenge ciphertext C∗. Thus it is possible that A might
distinguish the two strategies and thus construct its output C ′ to induce abort with probabilities non-
negligibly higher than 1/2. In the following Lemma C.2 we claim that under the Decision Linear assumption,
A cannot succeed at inducing abort with probability greater than 1/2 + ν′(λ). This gives us the bound
Pr [ Event Forge ]/(2 + ν′(λ)) ≤ ν(λ) and thus concludes the proof of Lemma C.1.

Lemma C.2 (Indistinguishability of Simulations) If the Decisional Linear assumption holds in G,
then all p.p.t. adversaries A induce B′ to abort with probability at most 1/2 + ν′(λ), for some negligible
function ν′(·).

Proof sketch. Let us assume that some p.p.t. A induces our simulation B′ to abort with probability 1/2 + ε.
We will first argue that under the Decision Linear assumption, no p.p.t. adversary can distinguish the
distributions of Strategy 1 from Strategy 2 (from A’s point of view) with greater than negligible advantage,
provided that the adversary does not receive the decryption of any ciphertext that would satisfy the conditions
of Event Forge. Having shown this, we will then bound ε to be at most negligible in the security parameter
λ, concluding our proof.

(Note that the above restriction on A’s decryption queries is entirely consistent with the operation of
B′. Recall that B′ terminates immediately after receiving the first decryption query C ′ that satisfies the
conditions of Event Forge. Thus A will never receive the decryption of such a query.)

Observe that from A’s point of view, the only difference between the distribution of Strategy 1 and
Strategy 2 is in the structure of C∗. In both cases (g1, g2, g3, u1, u2, u3) do not form a Linear tuple, except
with negligible probability. However, in each Strategy the value e is constructed differently, as is σ2 which is
based on e. To show that these Strategies are indistinguishable we must describe the following intermediate
hybrid games. In every case, the adversary plays the IND-CCA2 game with the challenger:

Game 0. The interaction of Strategy 1. (u1, u2, u3) are random, and e = mb · uz11 u
z2
2 u

z3
3 .

Game 1. An interaction with the real protocol, where e = mb · uz11 u
z2
2 u

z3
3 .

Game 2. An interaction with the real protocol, where e = h · uz11 u
z2
2 u

z3
3 for some h ∈R G.

Game 3. The interaction of Strategy 2. (u1, u2, u3) are random, and e = h · uz11 u
z2
2 u

z3
3 for some h ∈R G.

We have already addressed the indistinguishability of Game 0 and Game 1 in the IND-CCA2 reduction
at the top of this section: Game 0 is the distribution produced by the reduction when run with a random
tuple, while Game 1 is the distribution when the reduction is run with a Linear tuple. Since the adversary
does not obtain the decryption of any ciphertext satisfying Event Forge, we can fix Pr [ Event Forge ] = 0 (i.e.,
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we do not need to consider Lemma C.1) and thus under the Decision Linear assumption these distributions
are distinguishable with at most negligible advantage. Although we do will provide it explicitly, a very
similar argument can be made for the case of Game 2 and Game 3, i.e., a distinguisher that differentiates
these distributions can be used to construct a solver for Decision Linear.

Finally, imagine that A differentiates Game 1 and Game 2 with non-negligible advantage. Clearly we
can use A to construct an IND-CCA2 adversary against the scheme as follows. At the challenge phase, this
adversary would select b R← {0, 1}, h R← G and challenge on the values (mb, h), returning C∗ to A. Clearly if
the IND-CCA2 challenger encrypts mb the distribution is identical to Game 1, and otherwise it is identical
to Game 2. Thus if A distinguishes the two distributions with non-negligible advantage (as evidenced by
its final query C ′) we obtain a distinguisher for the IND-CCA2 security of the scheme, and hence a solver for
Decision Linear. By summation over all hybrids, we see that all p.p.t. adversaries must distinguish Strategy
1 from Strategy 2 with at most negligible advantage.

It remains to show that if no p.p.t. adversary can distinguish Strategy 1 from Strategy 2, then ε must be
negligible. As we noted above, were the distributions of Strategy 1 and Strategy 2 identical, then B′ would
abort with probability at most 1/2, i.e., ε = 0. However, if A induces abort with some non-negligible ε, we
will obtain a distinguisher that differentiates Strategy 1 and Strategy 2 with non-negligible advantage, which
is clearly a contribution. This distinguisher would simply present A with one of the chosen distributions;
when A submits a query C ′ that would induce an abort in Strategy 1, it outputs 0; if the query would
induce an abort in Strategy 2, it outputs 1, and in all other cases it outputs a random guess. Clearly if ε
is non-negligible then the output of our distinguisher will equal 1 with non-negligibly different probability
depending on which Strategy it is provided with, and hence we obtain a distinguisher. Thus under the
Decision Linear problem in G, we can bound the value ε to be at most ν′(λ) for some negligible function ν′.
This completes the proof of Lemma C.2.

C.2 Proof of Theorem 4.2

Proof sketch. For all real-world adversaries A we show how to construct an ideal-world adversary S such
that under the Decision Linear assumption no p.p.t. D can distinguish the output of the Ideal and Real
experiments except with negligible probability.
S runs A internally, handing it pk output by the trusted party. Whenever A initiates the User’s portion

of the BlindDec protocol, S employs the knowledge extractor for A’s WIPoK to obtain the components of the
ciphertext being decrypted.11 Assuming A’s PoK is valid, S submits this ciphertext to the trusted party and
receives a decryption m′ in response. It returns c′′ = LE.Enc(pkU ,m′) to A and simulates the Decryptor’s
ZKPoK. If ΠZK is secure under the Decision Linear assumption, then we can bound the combined probability
that the extractor fails and that A distinguishes the simulated proof to at most a negligible value ν(λ).
Thus it remains only to observe that when A’s WIPoK validates, then distribution of c′ is computationally
indistinguishable from the distribution expected from a correct run of the BlindDec protocol.

C.3 Proof of Theorem 4.3

Proof sketch. Let A be an adversary that wins the Blind game with non-negligible advantage ε. We show that
A implies a solver B for the Decision Linear problem. B operates as follows. First, A outputs (pk , C0, C1).
B selects b ∈R {0, 1} and interacts with B by running U(pk , Cb) and U(pk , Cb−1). Note that LE is IND-CPA-
secure under the Decision Linear assumption and we assume that WIPoK is WI under the same. Clearly the
two transcripts received by A thus far are computationally indistinguishable, and if not we can construct a
distinguisher for the Decision Linear problem.

11Observe that the entire ciphertext consists of elements of the group G. This is particularly important when using Groth-
Sahai NIZKs, as that proof system does not possess a knowledge extractor for Z∗p.
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