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Bent functions (Boolean functions with extreme nonlinearity properties) are actively
studied for their numerous applications in cryptography, coding theory, and other fields.
New statements of problems lead to a large number of generalizations of the bent
functions many of which remain little known to the experts in Boolean functions. In
this article, we offer a systematic survey of them.
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Introduction

The term a generalized bent function is used quite often, but almost every time
it means something new. Bent functions are actively studied for their numerous
applications in information theory, cryptography, coding theory, and other fields.
New statements of problems lead to many generalizations of bent functions, and
it becomes more and more difficult to clear it up.

In this article we offer a systematic survey of the existing generalizations of
bent functions and try whenever possible to establish relations between various
generalizations. This article can be regarded as a continuation of the survey [17].
We assume that the reader is familiar with the main results concerning bent
functions.

We divide the generalizations of bent functions into several groups. Note
right away that the division is somewhat vague, but it seems convenient for the
presentation. While describing each generalization, we pay attention if possible
to who, when, and why introduced this generalization; what is the form of the
functions and the Walsh–Hadamard (or Fourier) transform occurring as a rule
in each case; what are the available results; how this generalization is related to
others, and so forth. For every generalization, we include appropriate references.

Let us present the structure of the article.
Section 1: Algebraic generalizations of bent functions (q-valued bent func-

tions; bent functions over a finite field; generalized Boolean bent functions; bent
functions on a finite abelian group with values in the set of complex numbers on
the unit circle; bent functions on a finite abelian group with values in another
finite abelian group; vector G-bent functions; multidimensional bent functions on
a finite abelian group).

1This is an English translation of the paper published in Russian Journal Discrete Analysis
and Operation Research [Diskretn. Anal. Issled. Oper.] 2010. V. 17. N 1. P. 34-64.
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Section 2: Combinatorial generalizations of bent functions (partially defined
bent functions; plateaued functions; Z-bent functions; homogeneous bent func-
tions).

Section 3: Cryptographic generalizations of bent functions (balanced bent
functions; partial bent functions; hyper-bent functions; near-bent functions; or-
der r bent functions; k-bent functions).

Section 4: Quantum generalizations of bent functions (negabent functions;
bent4-functions; I-bent functions).

Let us list the notation and definitions:
q and n are positive integers;
+ stands for the addition modulo q;
x = (x1, . . . , xn) is a q-valued vector;
Zn

q is the set of all q-valued vectors of length n;
Fqn is the Galois field of order qn;
〈x, y〉 = x1y1 + · · ·+ xnyn is the inner product of vectors;
f : Zn

2 → Z2 is a Boolean function of n variables;
Wf (y) =

∑
x∈Zn

2
(−1)〈x,y〉+f(x) is the Walsh–Hadamard transform of a Boolean

function f ;
Nf is the nonlinearity of a Boolean function f ; i.e., the Hamming distance

from f to the set of all affine functions;
a bent function (for even n) is a Boolean function all of whose Walsh–Hadamard

coefficients are equal to ±2n/2;
Bn is the class of bent functions of n variables.

1. Algebraic generalizations of bent functions

In this section we collect the generalizations in which the functions considered are
not Boolean functions. As a rule, these are the mappings between some algebraic
systems.

1.1. The q-Valued Bent Functions

In 1985, P. V. Kumar, R. A. Scholtz, and L. R. Welch proposed [37] this natural
generalization of bent functions, aiming to construct q-valued bent sequences
applicable in CDMA systems (see more details below).

Take integer q > 2, the imaginary unit i =
√
−1, and a primitive complex

root of unity ω = e2πi/q of degree q. Consider the q-valued function f : Zn
q → Zq.

The Walsh–Hadamard transform of a function f is the complex function

Wf (y) =
∑
x∈Zn

q

ω〈x,y〉+f(x) for every y ∈ Zn
q , (1)

where the inner product and addition + are taken modulo q.
Denote the absolute value of a complex number c by |c|.

Definition 1 (Kumar, Scholtz and Welch, 1985). Given positive integer q,
a function f : Zn

q → Zq is called a q-valued bent function if |Wf (y)| = qn/2 for
every y ∈ Zn

q .
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For q = 2, this concept coincides with the concept of a Boolean bent function.
Denote the set of all q-valued bent functions of n variables by Bn,q. The following
is obtained in [37]:

Theorem 1. The class Bn,q is closed under
(i) every nondegenerate affine transformation of the variables;
(ii) addition of arbitrary q-valued affine functions.

A square n×n-matrix A consisting of integer powers of ω is called a generalized

Hadamard matrix whenever AA
T

= nE, where E is the identity matrix.

Theorem 2. The following are equivalent:
(i) a q-valued function f is a bent function;
(ii) the matrix A = (ax,y) with ax,y = ωf(x+y) is a generalized Hadamard

matrix.

Note that, for q = 2, Theorems 1 and 2 amount to well-known facts on Boolean
bent functions (for instance, see [17]). The specific features of the q-valued case
include the fact [37] that f remains a bent function when we replace ω in the
definition of Wf (y) by another primitive root of unity γ of degree q. Note also
that q-valued bent functions exist both for even and odd n.

Theorem 3. Take arbitrary positive integers m, n, and q. For arbitrary
functions g ∈ Bm,q and h ∈ Bn,q, the function f(x′, x′′) = g(x′) + h(x′′) is a q-
valued bent function.

An analog of Maiorana–McFarland theorem [40] holds:

Theorem 4. If n is even and q is arbitrary then

f(x′, x′′) = 〈x′, h(x′′)〉+ g(x′′)

is a q-valued bent function, where g is an arbitrary q-valued function of n/2

variables, and h is an arbitrary permutation on the set Zn/2
q .

Suppose that n is odd, q = 2 mod 4 and q > 2. It is shown in [37] that if there
exists an integer b such that 2b +1 is divisible by q/2 then there exists no q-valued
bent function of n variables.

Bent functions exist for every q with q 6= 2 mod 4 and every n. They can be
constructed using Theorem 3, for instance, from the following one-dimensional
functions (n = 1):

Theorem 5. The following q-valued functions of one variable are bent func-
tions:

(i) f(x) = x2 + cx, where c ∈ Zq is an arbitrary constant (if q is odd);
(ii) f(x) = rx′h(x′′) + g(x′′), where x = rx′ + x′′ ∈ Zq, 0 6 x′, x′′ 6 r − 1,

h is an arbitrary permutation on Zr, and g is an arbitrary function of the form
Zr → Zq (if q = r2 for some r).

See [37] for more details. X. D. Hou proposed [35] some constructions of
q-valued bent functions obtained using chain rings:

Regular q-valued bent functions retain the properties of Boolean bent functions
most completely. A bent function f : Zn

q → Zq is called regular if each of its
Walsh–Hadamard coefficients can be expressed as

Wf (y) = qn/2ωg(y)
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for some q-valued function g. It can be shown [37] that g is also a regular bent
function and is called the dual to f .

Let us give several examples:
• For n = 1 and q = 4, f(x) = x3 + 3x2 is a regular bent function. Its

Walsh–Hadamard spectrum (the tuple of coefficients in the increasing order of
arguments) is

(2, 2i, 2,−2i) = (2ω0, 2ω1, 2ω0, 2ω3),

where ω = eπi/2; the dual function g(x) is equal to x3.
• For n = 1 and q = 3, the bent function f(x) = x2 is not regular; its spectrum

is equal to {√
3i,

3

2
−
√

3

2
i,

3

2
−
√

3

2
i

}
or, using the powers of a primitive root of unity,{√

3ω3/4,
√

3ω11/4,
√

3ω11/4
}
,

where ω = e2πi/3. Here all exponents in the powers of ω are fractional.
It is not difficult to observe that a Boolean bent function (q = 2) is always

regular. The bent functions constructed in Theorems 4 and 5 (for q = 1 mod 4
in claim (i)) are regular. For odd n and q = 2, 3 mod 4, no regular bent function
exists [37]. S. V. Agievich showed [19] that regular q-valued bent functions can
be described using bent rectangles; in the binary case, this description appears
in [17].

The q-valued bent functions for q = 4 are studied in [56]. We can express
an arbitrary quaternary function f of n variables as f(x+2y) = a(x, y)+2b(x, y)
with suitable Boolean functions a and b of 2n variables, where x, y ∈ Zn

2 .
Boolean functions c and d of 2n variables are called bent correlating (for a given

subdivision of the set of variables into two equal parts) if, for every x, y ∈ Zn
2 ,

the following conditions are fulfilled:
(i) W 2

c (x, y) + W 2
c (x + y, y) + W 2

d (x, y) + W 2
d (x + y, y) = 4n+1;

(ii) Wc(x, y) = Wd(x + y, y) = ±2n ⇐⇒ Wc(x + y, y) = Wd(x, y) = ±2n.

If c and d are bent functions then (i) is always fulfilled. Condition (ii) deter-
mines a certain agreement of signs of the Walsh–Hadamard coefficients of these
functions. Note that the bent correlating functions either are or are not bent
functions simultaneously. The next theorem is proved in [56].

Theorem 6. A function f : Zn
4 → Z4 is a bent function in the sense of

Definition 1 if and only if b and a + b are bent correlating functions.

For more on q-valued bent functions, see [34, 36]; and on bent-sequences, [44].

1.2. Bent Functions over a Finite Field

In 1994, A. C. Ambrosimov proposed [2] another, probabilistic definition of q-
valued bent functions. In contrast to the previous case, here we consider only the
q-valued functions over the finite field Fqn .

Suppose that q = p`, where p is prime and ` is positive integer. Take the
primitive complex root of unity ω = e2πi/p of degree p.
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Take a q-valued function f : Fqn → Fq. Assume that a vector x ∈ Fqn is chosen
randomly and with equal probabilities. For the random variable ξ = f(x), define
the characteristic function

ϕξ(z) = E ω〈ξ,z〉, z ∈ Fq,

regarding ξ and z as vectors of length ` over the prime field Fp and taking the
inner product 〈ξ, z〉 modulo p. For fixed z ∈ Fq, the Walsh–Hadamard transform
of f is defined as

Wf,z(y) = qn ϕ〈x,y〉+f(x)(z),

or, which is the same,

Wf,z(y) = qn E ω〈〈x,y〉+f(x),z〉 for every y ∈ Fqn ,

where we take the inner product 〈x, y〉 modulo q. Expanding the expectation, we
obtain

Wf,z(y) =
∑

x∈Fqn

ω〈〈x,y〉+f(x),z〉 for y ∈ Fqn . (2)

Note that in (1) and (2) we use the primitive roots of unity of different degrees
q and p respectively. The parameter z in (2) determines the projection of 〈x, y〉+
f(x) from Fq to the prime field Fp.

We can propose an equivalent definition

W ′
f,z(y) =

∑
x∈Fqn

ωTr(〈x,y〉+zf(x))

replacing the inner product by the trace function Tr : Fq → Fp. With this
definition, Wf,z(y) and W ′

f,z(y) differ only up to a permutation on the components
of z and y.

According to [2], every function f and every nonzero z satisfy Parseval’s equal-
ity ∑

y∈Fqn

|Wf, z(y)|2 = q2n,

which implies
max
y∈Fqn

|Wf,z(y)| > qn/2.

Definition 2 (Ambrosimov, 1994). Take q = p` with prime p. A function
f : Fqn → Fq is called a bent function if, for all vectors z ∈ Fq\{0} and y ∈ Fqn ,

|Wf, z(y)| = qn/2.

Let us make some remarks:
• For q = p and ` = 1, Definition 2 of q-valued bent functions coincides with

Definition 1 of Kumar, Scholtz and Welch.
• In Definition 2, the Walsh–Hadamard coefficients must be equal in absolute

value for every nonzero projection of the exponent of the power of the primitive
element in (2) from Fq to the field Fp. Then, as in Definition 1, they are equal
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in absolute value without considering the projections (moreover, Zq need not be
a field).

Let us present several examples. Every q-valued function f(x) = a2x
2 +a1x+

a0 of one variable, where a2 6= 0 and p 6= 2, is a bent function in the sense of
Ambrosimov. Every function f(x1, x2) = x1x2 + a2x

2
1 + b2x

2
2 + a1x1 + b1x2 + c of

two variables over a field of characteristic 2 is a bent function.
For bent functions over a field, we have Rothaus’ criterion [2]:

Theorem 7. A function f : Fqn → Fq is a bent function if and only if, for
every fixed y ∈ Fqn, the function f(x + y) − f(x) is uniformly distributed on Fq

whenever the argument x is uniformly distributed on Fqn.

A description of all quadratic q-valued bent functions of n variables appears
in [2], where their number is also calculated, which we denote by Mq(n).

Theorem 8. Take q = p`. The following hold:
(i) if p = 2 and ` > 2 then

Mq(n) =

q

n

2

+2n+1
n/2∏
j=1

(1− q−2j+1), for even n,

0, for odd n;

(ii) if p 6= 2 then

Mq(n) = (q − 1)qnMq(n− 1) + qn+1(qn−1 − 1)Mq(n− 2) for n > 3.

Unfortunately, [2] fails to trace explicitly the relationships between the Am-
brosimov’s bent functions and those of Kumar, Scholtz, and Welch. For q = p`, it
is not clear, for instance, whether a bent function in one sense is a bent function
in the other.

1.3. Generalized Boolean Bent Functions of Schmidt

In 2006, K.-U. Schmidt considered [55] another generalization of bent functions
in connection with a construction of quaternary constant-amplitude codes for
multicode CDMA systems. Let us dwell on this in more detail.

The CDMA (Code Division Multiple Access) technology for digital mobile
service was standardized in 1993 by the US Telecommunication Industry Asso-
ciation (US TIA) as the standard IS–95 (Mobile Station–Base Station Compat-
ibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System).
Presently the technology is actively used by the majority of mobile equipment
providers throughout the world in accordance with the third generation mobile
service standard IMT–2000 (in Russia, the standard IMT–MC 450 or CDMA–
450). Note that the first article [1] devoted to this technology was published
in USSR already in 1935 by D. V. Ageev. The CDMA systems use broadband
signals, and many clients simultaneously use the whole band of frequencies of the
channel. Since every client is assigned a unique code, it is easy to isolate this

6



code from the “noise.” The CDMA systems substantially increase the bandwidth
of the channel and are quite efficient.

In 2000, T. Wada established [57] a connection between bent functions and
codes for CDMA (see also the articles by K. G. Paterson [47]).

Consider the simplest model of information transmission in a multicode CDMA
system. For a power of two N = 2n, take a size N × N Hadamard matrix
AN = (ajt) of Sylvester’s type. There are N parallel data flows. We can repre-
sent the transmitted information as a binary vector c of length N (one bit from
each flow). The signal in MC-CDMA is modelled as

Sc(t) =
N−1∑
j=0

(−1)cjajt,

where t = 0, 1, . . . , N − 1 is a discrete time parameter; i.e., the jth row of the
matrix A is multiplied by (−1)cj , and the transmitted signal Sc is the sum of these
new rows. At every moment of time, one bit of the sequence Sc is transmitted.
An important parameter is the peak-to-average power ratio of the signal, which
is defined as

PAPR(c) =
1

N
max

t
|Sc(t)|2.

Note that 1 6 PAPR(c) 6 N . The quantity |Sc(t)|2 is proportional to the power
necessary to transmit this signal; thus, the vectors c with minimal PAPR(c) are
most suitable for transmission. We may assume that the vectors c are chosen
from some binary code C of length N . Put

PAPR(C) = max
c∈C

PAPR(c).

If PAPR(C) = 1 then C is called a constant amplitude code. Currently it is a
problem to construct a code of this type with large size and large code distance.
We have [47, 57]

Theorem 9. A code C of length 2n is a constant amplitude code if and only
if every code word is a vector of values of some bent function of n variables.

Indeed, given the vector c of values of a Boolean function f of n variables,

PAPR(c) =
1

2n
max
x∈Zn

2

|Wf (x)|2.

Therefore, bent functions play a substantial role in constructing codes for CDMA
systems.

The generalization [55] due to K.-U. Schmidt goes as follows:
For an integer q > 2, take a primitive complex root of unity ω = e2πi/q of

degree q. A function f : Zn
2 → Zq is called a generalized Boolean function. Refer

as its Walsh–Hadamard transform to the complex function

Wf (y) =
∑
x∈Zn

2

(−1)〈x,y〉ωf(x) for every y ∈ Zn
2 .

Definition 3 (Schmidt, 2006). For positive integer q, a function f : Zn
2 → Zq

is called a generalized bent function if |Wf (y)| = 2n/2 for every y ∈ Zn
2 .
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These functions are used for constructing the constant amplitude codes for
the q-valued version of MC–CDMA, which models a binary vector c of length N
as

Sc,q(t) =
N−1∑
j=0

ωcjajt.

Note also that, for some problems concerning cyclic codes, Schmidt’s definition
seems more natural than the definition of q-valued bent functions by Kumar,
Scholtz, and Welch.

Schmidt deals in detail [55] with the case q = 4, studies the relations between
generalized bent functions, constant amplitude codes, and the available Z4-linear
codes.

An interesting question remains: how related to each other are the bent func-
tions of Schmidt, the q-valued, and the Boolean bent functions? This question is
answered in [56] in one particular case. Suppose that a generalized Boolean func-
tion f : Zn

2 → Z4 (q = 4) can be presented as f(x) = a(x)+2b(x), where a and b
are Boolean functions of n variables. It is shown in [56] that f is a generalized
bent function if and only if b and a + b are ordinary bent functions.

Note that the real-valued bent functions of the form Zn
2 → {0, 1/2, 1, 3/2}

considered in [41] coincide with the generalized bent functions for q = 4.

1.4. Bent Functions from a Finite Abelian Group
into the Set of Complex Numbers on the Unit Circle

In 1997, O. A. Logachev, A. A. Sal’nikov, and V. V. Yashchenko introduced [10]
the concept of bent functions on an arbitrary finite abelian group. In the case of
an elementary abelian 2-group, this concept coincides with the concept of Boolean
bent functions.

Take a finite abelian group (A, +) of order n the maximal order of whose
elements (the exponent of the group) is equal to q. Denote the group of degree q
roots of unity by

Tq = {e2πik/q | k = 0, 1, . . . , q − 1},

and the group of homomorphisms χ : A → Tq, by Â, which is called the character

group of A (or its dual group). It is known that A and Â are isomorphic. Fix
some isomorphism y ∈ A, y → χy.

Instead of the Walsh–Hadamard transform it is convenient to introduce the
Fourier transform of a complex valued function f : A → C as

f̂(y) =
∑
x∈A

f(x)χy(x).

Henceforth, we consider only the functions from A into C all of whose values
lie on the unit circle S1(C) centered at the origin.

Definition 4 (Logachev, Sal’nikov, and Yashchenko, 1997). Take a finite
abelian group A of order n. A function f : A → S1(C) is called a bent function if

|f̂(y)|2 = n for every y ∈ A.

Let us make the following remarks:
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• If A is an elementary abelian 2-group, i.e., q = 2 and n = 2m for some
positive integer m, then this concept coincides with the concept of ordinary bent
functions of m variables.

• Take two integers q and m. Then the q-valued bent functions of m variables
of Kumar, Scholtz, and Welch (see Definition 1) constitute a particular case of the
bent functions of Definition 4 with A = Zm

q and n = qm, but a little modification
is necessary: from the functions of the form f : Zm

q → Zq we have to pass to the

functions f ′ : Zm
q → Tq ⊂ C, where f ′(x) = ωf(x). As an isomorphism between A

and its character group Â choose the correspondence y → χy(x) = ω〈x,y〉, where
ω = e2πi/q.

A function f : A → S1(C) is called balanced whenever∑
x∈A

f(x) = 0.

The following is the Rothaus criterion for bent functions on a group [10]:

Theorem 10. A function f is a bent function on the group A if and only if
f(x)f(x + y) is balanced for every y ∈ A, y 6= 0.

Some other criteria can be found in [10].
As in the case of a Boolean function, for a bent function f on a group A, we

can define the dual function f̃ : A → S1(C) by

f̃(x) =
1√
n

f̂(x),

and f̃ is a bent function as well.
If, for a decomposition of A into the direct product of some groups A1 and

A2, we can express a function f : A → S1(C) as

f(x′, x′′) = f1(x
′)f2(x

′′),

where f1 : A1 → S1(C) and f2 : A2 → S1(C), then f is called a decomposable
function. We have [10]

Theorem 11. A decomposable function f is a bent function on the group A if
and only if f1 and f2 are the bent functions on the groups A1 and A2 respectively.

1.5. Bent Functions from a Finite Abelian Group into An-
other Finite Abelian Group

In 2002, V. I. Solodovnikov proposed [13] the most general approach to algebraic
generalizations of bent functions. While presenting his results, we use both the
original notation and that of [24] which sometimes seems more convenient. In
2004, C. Carlet and C. Ding repeated [24] the results of Solodovnikov, unfortu-
nately, without a reference to his work.

Take two finite abelian groups (A, +) and (B, +) of orders n and m respec-

tively, with the maximal orders a and b of their elements. Let Â and B̂ denote
the character groups of A and B. Fix two isomorphisms y → χy and z → ηz
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between A and Â, as well as B and B̂, where χy : A → Ta and ηz : B → Tb

are characters. Take an arbitrary function f : A → B. We present the following
definition of [13] in a slightly different form by introducing normalization factors,
but this preserves their meaning.

Refer as the Fourier transform of the character of a function f for fixed z ∈ B
to the function

f̂z(y) =
∑
x∈A

ηz(f(x))χy(x), y ∈ A. (3)

Parseval’s equality
∑
y∈A

|f̂z(y)|2 = n2 holds for every z.

Definition 5 (Solodovnikov, 2002). A function f : A → B is called a bent

function if |f̂z(y)|2 = n for every z ∈ B, z 6= 0, and arbitrary y ∈ A.

Fixing an element z ∈ B, we can pass from f to the complex valued function
ηz ◦ f : A → Tb. We can say that (3) is a decomposition of this function1 with

respect to the character group Â. The functions of the form A → S1(C) were
already considered by Logachev, Sal’nikov, and Yashchenko (see Definition 4).
We have [13, 24]

Theorem 12. A function f : A → B is a bent function if and only if ηz◦f for
every z 6= 0 is a bent function in sense of Logachev, Sal’nikov and Yashchenko.

Refer as the derivative of a function f in direction y ∈ A to the function

Dyf(x) = f(x + y)− f(x).

We have [13, 24]

Theorem 13. A function f : A → B is a bent function if and only if Dyf(x)
is a balanced function for every nonzero y ∈ A; i.e., the cardinalities of all its
preimages are equal.

Suppose that f is a bent function. Then, for every linear or affine permuta-
tion π on A, the function f ◦ π : A → B is a bent function. If ` : B → C is
a surjective linear function (where C is a finite abelian group) then `◦ f : A → C
is a bent function as well.

Solodovnikov defined [13] the proximity function of two functions f, g : A → B
as

δ(f, g) =

(
1

m

∑
y∈B

(
|{x : f(x)− g(x) = y}|

n
− 1

m

)2
)1/2

. (4)

The intention is to use it to estimate the quality (or efficiency) of the replacement
of one function with the other. The smaller the value of δ(f, g), the less close to
each other f and g are. The definition of proximity implies that δ(f, g) = 0 if
and only if f and g differ by a balanced function.

Let Hom(A, B) denote the set of all group homomorphisms from A to B. By
definition, for every homomorphism h, the derivative Dyh(x) in every nonzero
direction y ∈ A is a constant function. Then it is natural to call [13] f : A → B

1Here and below the expression g ◦ f(x) stands for the function g(f(x)).
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such that Dyf(x) is balanced for every nonzero y ∈ A an absolutely nonhomo-
morphic function. By Theorem 13, absolutely nonhomomorphic functions and
bent functions coincide.

Theorem 14. Given a bent function f and a homomorphism h, we have

δ(f, h) =

√
m− 1

m
√

n
.

In other words, a bent function is equally close to all homomorphisms. It is
interesting to consider minimal functions, which are the least close to homomor-
phisms, i.e., have the minimal value of δf = δ(f, Hom(A, B)). For A = Z`

q and
B = Zr

q, it is shown in [13] that f is a minimal function if

δf =
√

m− 1
/
(m
√

n).

A function is called absolutely minimal if its minimality is invariant under all
epimorphisms of the group B.

Theorem 15. For prime q, take A = Z`
q and B = Zr

q and suppose that bent
functions from A to B exist. Then

(i) every bent function is absolutely minimal;
(ii) for q = 2, the class of all bent functions coincides with the class of all

absolutely minimal functions.

For more on this topic, see [25]. It seems that soon some articles may appear
dealing with the bent functions on finite nonabelian groups [49].

1.6. Vector G-Bent Functions

Solodovnikov suggested [13] the idea of this generalization of the functions f :
A → B. In 2004, L. Poinsot and S. Harari [50] considered it in detail for the
case A =

(
Zk

2, +
)

and B =
(
Zr

2, +
)
; i.e., for the Boolean vector functions. The

generalization rests on the possibility of defining the derivative of a function
f : A → B in a different fashion.

Let S(A) denote the symmetric group on A in the multiplicative notation.
A permutation σ ∈ S(A) is called an involution whenever σσ = e, where e is
the identically permutation. A permutation σ has no fixed points if σ(x) 6= x for
every x ∈ A. Denote the set of all involutions σ without fixed points by Inv(A).
A subgroup G of S(A) with G ⊆ Inv(A) ∪ {e} is called a group of involutions
of A.

Suppose now that A = Zk
2 and B = Zr

2. Observe that

∣∣Inv
(
Zk

2

)∣∣ =
2k!

2k−1!22k−1 .

It is shown in [50] that every group of involutions G of Zk
2 is abelian and |G| 6 2k.

We consider only a group G of the maximal order 2k. A simple example of this
group is the translation group T

(
Zk

2

)
consisting of all permutations σy, y ∈ Zk

2,
such that σy(x) = x+y. However, other maximal groups of involutions exist [50].
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Take f : Zk
2 → Zr

2 and a maximal group G of involutions of Zk
2. Refer as the

generalized derivative of f in direction σ ∈ G to the function

Dσf(x) = f(σ(x))− f(x).

Note that if G is the translation group T (Zk
2) then the generalized derivative

coincides with the ordinary derivative Dyf(x) = f(x + y)− f(x).

Definition 6 (Poinsot, Harari, 2004). Take A =
(
Zk

2, +
)
, B =

(
Zr

2, +
)
, and

a maximal group G of involutions of A. A function f : A → B is called a G-bent
function if the generalized derivatives Dσf(x) in every direction σ ∈ G, σ 6= e,
are balanced.

In the interpretation of Solodovnikov, a G-bent function is a function f that
can be changed by every permutation σ ∈ G, σ 6= e, as strongly as possible:
δ(f, f ◦ σ) = 0.

A translation of the definition of G-bent functions into the language of gen-
eralized Fourier coefficients is proposed in [50], but so far it fails to appear thor-
oughly worked out and includes inaccuracies. Also it is unclear to what extent
the approach of [50] applies if A and B are arbitrary abelian groups.

1.7. Multidimensional Bent Functions on a Finite Abelian
Group

In 2005, L. Poinsot proposed [48] this direct generalization of the bent functions
of Logachev, Sal’nikov, and Yashchenko [10].

Take the m-dimensional hermitian space Cm with the standard inner product

〈x, y〉 =
m∑

j=1

xjyj,

the norm ‖x‖2 = 〈x, x〉, and the metric d(x, y) = ‖y − x‖. Suppose that S1(Cm)
is the set of all points lying on the sphere of radius 1 centered at the origin.

As above, take a finite abelian group A of order n and its character group
Â = {χy|y ∈ A}.

Refer as the Fourier transform of a function f : A → Cm to the function

f̂(y) =
∑
x∈A

f(x)χy(x), f̂ : A → Cm.

Definition 7 (Poinsot, 2005). Take a finite abelian group A of order n.

A function f : A → S1(Cm) is called a multidimensional bent function if ‖f̂(y)‖2 =
n for every y ∈ A.

For m = 1, this definition is identical to Definition 4. Similarly, for multi-
dimensional bent functions, we have Rothaus’ criterion, define the dual multidi-
mensional bent function, and so on [48]. However, so far it is unclear whether
multidimensional bent functions can be of independent interest or are just a for-
mal generalization of the bent functions of Definition 4.
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2. Combinatorial generalizations of bent func-

tions

In this section, we consider quite natural generalizations. We can say that each
of them rests on a simple combinatorial idea.

2.1. Partially Defined Bent Functions

Given an arbitrary set S ⊆ Zn
2 , take a partially defined Boolean function f : S →

Z2. Its partial Walsh–Hadamard transform is the mapping

Wf,S(y) =
∑
x∈S

(−1)〈x,y〉+f(x) for every y ∈ Zn
2 .

This transformation satisfies the analog of Parseval’s equality:∑
y∈Zn

2

W 2
f,S(y) = 2n|S|.

Definition 8. A Boolean function f is called a partially defined bent function
if

Wf,S(y) = ±
√
|S| for every y ∈ Zn

2 .

These functions are discussed in more detail in [12, Chap. 6]. Here we note
only that so far it is unknown under what conditions on S partially defined bent
functions exist.

2.2. Plateaued Functions

This generalization of bent functions is well-known, and we are very brief here.

Definition 9. A Boolean function is called plateaued if all its nonzero Walsh–
Hadamard coefficients are equal in absolute value.

Parseval’s equality implies that the nonzero coefficients must be of the form
±2n−h for some integer h with 0 6 h 6 n. The number of nonzero coefficients
must be equal to 22h. The exponent 2h and the quantity 2n−h are called respec-
tively the order and amplitude of a plateaued function. The bent functions and
the affine functions are the marginal particular cases of the plateaued functions
(of orders n and 0 respectively).

For results on these functions, see the surveys [12, 23], as well as [27, 62, 63].

2.3. Z-Bent Functions

In 2005, H. Dobbertin suggested [32] to study bent functions in the context of
a more general approach which we can call recursive. We do not distinguish
between an ordinary Boolean function f(x) of x ∈ Zn

2 and the integer function
F (x) = (−1)f(x). The Fourier transform of a function F : Zn

2 → Z is defined as

F̂ (y) =
1

2n/2

∑
x∈Zn

2

(−1)〈x,y〉F (x).

13



Then a (±1)-valued function F is a bent function if and only if F̂ is (±1)-valued
as well. The generalization goes as follows:

Definition 10 (Dobbertin, 2005). Given T ⊆ Z, a function F : Zn
2 → T is

called a T -bent function if all values of F̂ belong to T .

Dobbertin chose the natural nested chain

T0 = {−1, +1};
Tr = {w ∈ Z| − 2r−1 6 w 6 2r−1}, r > 0.

A Tr-bent function is called a Z-bent function of level r, and all these bent func-
tions (for r ∈ Z) constitute the class of Z-bent functions. The possibilities of
a recursive construction (decomposition) of Z-bent functions by raising or lower-
ing their level and the number of variables are studied in [32].

2.4. Homogeneous Bent Functions

This subclass of bent functions is isolated in [52] as consisting of the functions
with relatively simple algebraic normal forms.

Definition 11 (C. Qu, J. Seberri, J. Pieprzyk, 2000). A bent function is
called homogeneous if all monomials of its algebraic normal form are of the same
degree.

Qu, Seberri, and Pieprzyk enumerated [52] all homogeneous bent functions of
degree 3 of 6 variables (it turns out that there are exactly 30 of them) and posed
the question of classifying the bent functions of this type with more variables.
C. Charnes, M. Rotteler, and T. Beth proved [28] that there exist homogeneous
bent functions of degree 3 of each number of variables n > 2.

T. Xia, J. Seberry, J. Pieprzyk, and C. Charnes established [59] that, for
n > 3, there exist no homogeneous bent functions of n variables of the maximally
possible degree n/2. Q. Meng, H. Zhang, M. C. Yang, and J. Cui showed [42, 43]
that there exists no homogeneous bent functions of degree (n/2) − 1 for n > 4.
But what is the sharp upper bound on the nonlinearity degree of a homogeneous
bent function? Presently there is no answer to this question. There is only
a conjecture [42] that, for every k > 1, there is N > 2 such that homogeneous
bent functions of degree k of n variables exist for every n > N .

3. Cryptographic generalizations of bent func-

tions

It is known that high nonlinearity alone is insufficient for good cryptographic
functions. In this section, we consider some generalizations which arose from
imposing additional restrictions on the set of Boolean functions.

3.1. Balanced Bent Functions

From the viewpoint of cryptography, the important criteria a Boolean function f
of n variables must satisfy are as follows [11, 23]:

14



• balancedness, which means that f takes the values 0 and 1 equally often;
• order k propagation criterion PC(k), which means that, for every nonzero

vector y ∈ Zn
2 of weight at most k, where 1 6 k 6 n, the function f(x+ y)+ f(x)

is balanced [51];
• maximal nonlinearity, which means that f is such that the value of its

nonlinearity Nf is maximal;
• uniform correlation with linear functions; the correlation between two func-

tions f and g is defined as

c(f, g) = 1− dist(f, g)

2n−1
;

for a function f the uniform correlation means that the value of |c(f, g)| is con-
stant for every linear function g.

However, these criteria contradict each other. Bent functions are maximally
nonlinear, satisfy the criterion PC(n), possess uniform correlation with linear
functions (the value is equal to ±2−n/2), but are not balanced. The following
arises naturally:

Definition 12. A Boolean function f of n variables is called a balanced bent
function if f is balanced and has the maximal possible nonlinearity.

It is established in [18] that if n is odd and f is a balanced function then

Nf 6 2n−1 − 2(n−1)/2.

In 1994, S. Chee, S. Lee, and K. Kim proposed [29] a method for constructing
the balanced bent functions of odd numbers of variables possessing almost uni-
form correlation with the linear functions and satisfying the criterion PC(k) for
sufficiently large k. Let us present this method.

Given some odd n, take a nondegenerate binary (n − 1) × (n − 1) matrix A
and a binary vector b of length n− 1.

Theorem 16. If f0 is a bent function of n−1 variables and f1 is the equivalent
bent function

f1(x) = f0(Ax + b) + 1

then the function g(x, z) = fz(x) of n variables, where x ∈ Zn−1
2 and z ∈ Z2:

(i) is a balanced bent function;
(ii) is an almost bent function (see the definition below);
(iii) has the only possible values 0 and ±2−(n−1)/2 of correlation with a linear

function;
(iv) satisfies the criterion PC for every nonzero vector (y, 0), where y ∈ Zn−1

2 ;
(v) satisfies the criterion PC(n− 1) if A = E and b is a vector of all ones.

3.2. Partially Bent Functions

As we have already noted, bent functions are neither balanced nor correlation
immune. C. Carlet proposed [20] a new method to extend the class Bn of func-
tions enjoying these properties and having sufficiently high nonlinearity. These
partially bent functions are defined using the following extremal property:
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Denote the autocorrelation of a Boolean function f in direction y by

∆f (y) =
∑
x∈Zn

2

(−1)f(x)+f(x+y).

Let NWf and N∆f denote the numbers of nonzero Walsh–Hadamard coefficients
and autocorrelation coefficients of f respectively. Then [20] every Boolean func-
tion satisfies

NWf ·N∆f > 2n.

Definition 13 (Carlet, 1993). A Boolean function f with NWf ·N∆f = 2n

is called a partially bent function.

Theorem 17. The following claims are equivalent:
(i) f is a partially bent function;
(ii) there exists a vector z such that, for every x, the value of the autocorre-

lation ∆f (x) is equal to either 0 or (−1)〈x,z〉2n;
(iii) there exist a vector z and a decomposition of Zn

2 into the direct sum of
subspaces L and L′ such that f |L′ is a partially defined bent function (in the sense
of Definition 8), and f(x + y) = 〈x, z〉+ f(y) for every x ∈ L and y ∈ L′.

Henceforth, z stands for the vector defined in Theorem 17. The subspace L for
a partially bent function f is defined as the set of vectors x such that ∆f (x) 6= 0.
We can equivalently define L as the space of linear structures of f ; i.e., the space
consisting of all vectors y with f(x + y) + f(x) = const. For a decomposition
of Zn

2 into direct sum, the subspace L′ is chosen arbitrarily. Observe that the
dimension of L′ must be even and denote it by 2h. According to [20], we have
the following results (for the necessary definitions see [12]):

Theorem 18. A partially bent function f is
(i) balanced if and only if f |L 6= const;
(ii) unbalanced of weight w if and only if f |L is a constant and w = 2n−1 ±

2n−h−1, where dim L = n− 2h;
(iii) a plateaued function of order 2h;
(iv) a correlation immune function of order k if and only if there is no vector

of weight w, 1 6 w 6 k, in the dual class z + L⊥;
(v) a balanced correlation immune function of order k if and only if there is

no vector of weight at most k in the class z + L⊥;
(vi) a function that satisfies the Propagation Criterion PC(k) if and only if

L does not include any vector of weight w, 1 6 w 6 k.

Note that all affine, quadratic, and bent functions are partially bent functions.
The following is true [20]:

Theorem 19. Let f be a partially bent function, dim L = n− 2h. Then

Nf = 2n−1 − 2n−h−1, Wf (x) =

{
±2n−h, for x ∈ z + L⊥,

0, otherwise.

Obviously, the less the dimension of the space L, the higher is the nonlinearity
of a partially bent function.

See further on this topic [23, 58].

16



3.3. Hyper-Bent Functions

In 2001, A. Youssef and G. Gong introduced [60] the concept of hyper-bent func-
tions.1 Previously, G. Gong and S. W. Golomb in 1999 considered [33] the DES
ciphering algorithm as a nonlinear feedback shift register, and analyzed its S-
blocks. For this approach the authors of [33] proposed to use proper monomial
functions instead of linear Boolean functions for approximating the coordinate
functions of the S-blocks. This idea was developed in [60].

We can regard a Boolean function of n variables as a function from F2n into
F2, assigning to every vector x a corresponding element of the field F2n . It is
known that every linear function 〈x, y〉 can be expressed as Tr(axy) for suitable
ax ∈ F2n , where Tr : F2n → F2 is the trace function. Then the Walsh–Hadamard
transform assumes the equivalent form

Wf (y) =
∑

x∈F2n

(−1)Tr(yx)+f(x).

A function of the form Tr(axy
s), where the integer s satisfies 1 6 s 6 2n − 1 and

gcd(s, 2n − 1) = 1, is called a proper monomial function.
The extended Walsh–Hadamard transform of a Boolean function f is

Wf,s(y) =
∑

x∈F2n

(−1)Tr(yxs)+f(x).

Definition 14 (Youssef, Gong, 2001). A Boolean function f is called a
hyper-bent function if |Wf,s(y)| = 2n/2 for every y ∈ F2n and every integer s
with gcd(s, 2n − 1) = 1. In other words, a hyper-bent function is equally badly
approximated by all proper monomial functions; its generalized nonlinearity

NLG(f) = 2n−1 − 1

2
max

y,s∈{y,s|gcd(s,2n−1)=1}
|Wf,s(y)|

is maximal: it is equal to 2n−1 − 2(n/2)−1.

For every even n, the authors of [60] proved the existence of hyper-bent func-
tions, proposed their vector version, and considered balanced hyper-bent func-
tions for small numbers of variables. In 2006, C. Carlet and P. Gaborit [26] and in-
dependently A. S. Kuz’min, V. T. Markov, A. A. Nechaev, and A. B. Shishkov [6]
showed that the nonlinearity degree of every hyper-bent function of n variables
is equal to n/2.

A. S. Kuz’min et al. [7, 8] generalize the concept of a hyper-bent function:
from Boolean functions they pass to functions over an arbitrary finite field of
characteristic 2:

Take q = 2`. The problem of approximating arbitrary function from Fn
q to

Fq (as above, it is identified with a function f : Fqn → Fq) by functions of
some bounded class A is considered in [8]. In order to estimate the efficiency of

1Prior to that the term hyper-bent function was used once in [21] for another class of func-
tions, but that sense is not used anymore.

17



approximation of f by a function g ∈ A, the agreement parameter ∇(f, g) was
related to the proximity function of Solodovnikov (4) as

∇(f, g) =
q√

q − 1
δ(f, g)

if we choose the finite groups A = (Fqn , +) and B = (Fq, +). This parameter
appears more natural since 0 6 ∇(f, g) 6 1; and, for the marginal values 0 and 1,
the functions f and g differ by a balanced function and a constant respectively.
For q = 2, we have ∣∣∣∣P(f = g)− 1

2

∣∣∣∣ =
∇(f, g)

2
;

thus, the less agreement there is between two functions, the lower the efficiency
of replacing one with the other.

Let
∇(f,A) = max

g∈A
∇(f, g)

denote the efficiency of approximation of f by functions in A.
• If A = Hom(A, B) is the class of all homomorphisms from A to B then every

function f : Fqn → Fq such that∇(f, Hom(A, B)) takes its minimal possible value
q−n/2 is a bent function in the sense of Definition 1.

• Suppose that A = M is the class of all proper generalized monomial func-
tions, i.e., the functions of the form g(x) = h(xs), where h ∈ Hom(A, B) and the
integer s satisfies gcd(s, qn − 1) = 1.

Definition 15 (A. S. Kuz’min et al., 2007). A function f : Fqn → Fq is called
a hyper-bent function if the parameter ∇(f,M) takes its minimal possible value
q−n/2.

For q = 2, Definitions 14 and 15 coincide.
A detailed study of these generalized hyper-bent functions appears in [7]. Let

us present here only one construction of them. The multiplicative group of the
field Fqn is the direct product of (Fqn/2 , ·) and the cyclic group V of order qn/2 +1.
Suppose that za,d is equal to one (zero) for a, d ∈ Fq whenever a and d are equal
(distinct).

Theorem 20. Take a function g : V → Fq such that there is d ∈ Fq for which
the number of solutions to g(x) = a in V is equal to q(n/2)−1 + za,d, where a ∈ Fq.
Then

f : Fqn → Fq, f(0) = d, f(x) = g(xqn/2−1) for x 6= 0

is a hyper-bent function.

For more on this topic, see [9, 61].
A. V. Ivanov also studied [3, 4] the monomial approximations of Boolean func-

tions. For instance, he showed [5] that the property of a bent function to be
hyper-bent in general depends on the choice of a basis for expressing it.
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3.4. Near-Bent Functions

The bent functions exist only for even numbers of variables. For odd n, one of
their analogs are the near-bent functions, which possess sufficiently high nonlin-
earity.

Definition 16. A Boolean function f of n variables is called a near-bent func-
tion if every Walsh–Hadamard coefficient of it is equal to either zero or ±2(n+1)/2.

Near-bent functions are nothing but the plateaued functions of maximal order
n − 1 of odd number of variables, see Definition 9. We will not consider them
in detail. Note only that the Boolean functions with three distinct values in the
Walsh–Hadamard spectrum are interesting for defending against the so-called
soft output joint attack on PN-generators [39] which are used in the standard
IS–95 of CDMA technology. Near-bent functions are also used for constructing
the cryptographically robust S-blocks [30].

For the near-bent functions, see [31, 38].

3.5. Bent Functions of Higher Nonlinearity Order

This is a quite natural direction closely related to nonlinear generalizations of
various methods of cryptoanalysis.

It is known that the efficiency of approximating a bent function by linear
functions is the lowest. Extending the class of linear functions, it is natural to
consider for approximations the Boolean functions of degree at most r, where
2 6 r 6 n − 1. This leads to the concept of order r nonlinearity Nr(f) of
a Boolean function f as the Hamming distance from f to all functions of this
type.

Definition 17. A Boolean function at the maximal distance from all functions
of degree at most r is called a bent function of order r.

The difficulty consists in determining this maximal possible value of Nr(f).
For r > 2, it is an open problem, better known in coding theory as the determi-
nation of the covering radius of the order r Reed–Muller code. Some estimates
for Nr(f) are known presently, as well as its asymptotic value, connections to
other cryptographic parameters, and so on. For more details on this topic, see
the 2008 survey by C. Carlet [22].

3.6. k-Bent Functions

In 2007, the author introduced [14] the following concept whose main idea is
to consider approximating functions distinct from linear, but analogous to some
extent.

Take binary vectors x and y of length n and an arbitrary integer k satisfying
1 6 k 6 n/2. Define the binary operation

〈x, y〉k =

(
k∑

i=1

k∑
j=i

(x2i−1 + x2i)(x2j−1 + x2j)(y2i−1 + y2i)(y2j−1 + y2j)

)
+ 〈x, y〉,
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which serves as a nonlinear analog of the inner product. Observe that in this
operation the components of the vectors are inequivalent: the first 2k components
of each of them appear in both quadratic and linear terms, while the rest, only
in the linear terms.

The function
W

(k)
f (y) =

∑
x∈Zn

2

(−1)〈x,y〉k+f(x)

is called the k-Walsh–Hadamard transform of a Boolean function f . For k = 1,
we have an expression equivalent to the ordinary Walsh–Hadamard transform.
Parseval’s equality ∑

y∈Zn
2

(
W

(k)
f (y)

)2
= 22n

holds. A function f is called a k-bent function with a fixed order of variables
if all its coefficients W

(j)
f (y), j = 1, . . . , k, are equal to ±2n/2. These functions

are considered in [14]. However, their drawback is the dependence on the order
of variables. Let us present a more general definition, which is free from this
drawback:

Definition 18. A Boolean function f of n variables is called a k-bent function
if

W
(j)
f◦π(y) = ±2n/2.

for an arbitrary permutation π ∈ Sn, every j = 1, . . . , k, and every vector y.

Let us explain this definition. Consider the set of functions

Ak
n(π) =

{
〈π(x), y〉k + a | y ∈ Zn

2 , a ∈ Z2

}
of n variables. The vectors of values of the functions of every class Ak

n(π) consti-
tute a binary Hadamard code. This code is nonlinear (for k > 1), but in the space
Zn

4 there exists a linear preimage of it under a simple mapping, see [14] for more
detail. Thus, we may regard the functions in Ak

n(π) as analogs of affine functions.
Observe that they are quadratic. Refer as the k-nonlinearity of a Boolean func-
tion f to the minimal Hamming distance N

(k)
f from it to the set of all functions

of the form 〈π(x), y〉k + a, where π is an arbitrary permutation. We have

N
(k)
f = 2n−1 − 1

2
max
π∈Sn

max
y∈Zn

2

∣∣W (k)
f◦π(y)

∣∣.
Therefore, a k-bent function is a function with maximal N

(j)
f ; i.e., N

(j)
f = 2n−1 −

2(n/2)−1, j = 1, . . . , k. Thus, it is simultaneously maximally distant from all classes
of functions Aj

n(π), π ∈ Sn and j = 1, . . . , k. Observe that 1-bent functions coin-
cide with ordinary bent functions. With the growth of k, the nonlinear properties
of functions strengthen; thus, the most interesting problem apparently is to de-
scribe the class of all (n/2)-bent functions. As [14] implies, this class is nonempty.
For every even n, it contains, for instance, all symmetric bent functions:

f(x) =
n∑

i=1

n∑
j=i+1

xixj,
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and f(x) + 1, f(x) +
n∑

i=1

xi, f(x) +
n∑

i=1

xi + 1, which are characterized in [54].

For n = 4, all (n/2)-bent functions are described in [16]. There are 128
quadratic functions with the quadratic part of one of four types:

x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3,

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

and arbitrary linear part. See also [15] on this topic.

4. Quantum generalizations of bent functions

4.1. Negabent Functions, Bent4 Functions, I-Bent Func-
tions

A bent function is often defined as a function with a flat spectrum of the Walsh–
Hadamard transform. Flatness means that the absolute values of all Walsh–
Hadamard coefficients are equal. In 2006, C. Riera and M. G. Parker began to
study [53] Boolean functions with flat spectra of a set of unitary transformations
of a particular form. Recall that the transformation of the space Cn given by
a square matrix A is unitary if AĀT = E, where E is the identity matrix. These
transformations are used in [53] for analyzing the stabilizers of quantum states.
Put

H =
1√
2

(
1 1
1 −1

)
, I =

(
1 0
0 1

)
, N =

1√
2

(
1 i
1 −i

)
.

For every 2× 2 matrix A, let Aj = I ⊗ · · ·⊗ I ⊗A⊗ I ⊗ · · ·⊗ I denote the tensor
(Kronecker) product of n matrices, where A appears in position j. Consider the
following sets of transformations:

• {H}n consisting of the transformations

U =
n−1∏
j=0

Hj.

If F = (−1)f is the sign function of a Boolean function f of n variables then
the vector of spectral values of f with respect to the transformation U is defined
as F̂ = UF . Then f is a bent function (in the usual sense) if its spectrum with

respect to U is flat; i.e., every component of F̂ is equal to ±1.
• {N}n consisting of the transformations

U =
n−1∏
j=0

Nj.

Definition 19 (C. Riera and M. G. Parker, 2006). A Boolean function having
flat spectrum with respect to U is called a negabent function.

Note that since U is a complex matrix, the definition of spectrum here involves
certain specific features [46]. Every affine Boolean function is a negabent function.
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M. G. Parker (2000, 2007) and A. Pott (2007) studied negabent functions in [45,
46]. The intersection of the classes of bent and negabent functions is under
consideration in [46]; it is completely understood for quadratic functions.

• {H, N}n consisting of 2n transformations of the form∏
j∈RH

Hj

∏
j∈RN

Nj,

where RH and RN partition the set {0, 1, . . . , n− 1}. A Boolean function f of n
variables is a bent4-function if there exists at least one partition RH , RN for which
the spectrum of f is flat.

• {I,H}n consisting of 2n transformations of the form∏
j∈RI

Ij

∏
j∈RH

Hj,

where RI and RH partition the set {0, 1, . . . , n− 1}. By analogy to the previous
case, a function f is an I-bent function if there exists at least one partition RI , RH

with |RI | < n for which the spectrum of f is flat.
• {I,H, N}n consisting of 3n transformations∏

j∈RI

Ij

∏
j∈RH

Hj

∏
j∈RN

Nj,

where RI , RH , and RN partition {0, 1, . . . , n − 1}. In this case we may define
the so-called I-bent4 functions which however are of little interest since this class
includes all Boolean functions.

Riera and Parker [53] develop the quantum direction of their research, study
the properties of the bent functions of the new type, and their connections to
graphs.
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[56] P. Solé and N. Tokareva, “Connections Between Quaternary and Bi-
nary Bent Functions,” Cryptology ePrint Archive, Report 2009/544
(http://eprint.iacr.org).

26



[57] T. Wada, “Characteristic of Bit Sequences Applicable to Constant Am-
plitude Orthogonal Multicode systems,” IEICE Trans. Fundamentals E83-
A (11), 2160–2164 (2000).

[58] X. Wang and J. Zhou, “Generalized Partially Bent Functions,” in Future
Generation Communication and Networking (Jeju-Island, Korea. December
6–9, 2007). Proceedings (2007), pp. 16–21.

[59] T. Xia, J. Seberry, J. Pieprzyk, and C. Charnes, “Homogeneous Bent Func-
tions of Degree n in 2n Variables Do Not Exist for n > 3,” Discrete Appl.
Math. 142 (1–3), 127–132 (2004).

[60] A. Youssef and G. Gong, ”Hyper-Bent Functions,” in Advanced Cryptology—
EUROCRYPT′2001: International Conference on the Theory and Applica-
tion of Cryptographic Techniques (Innsbruk, Austria, May 6–10, 2001). Pro-
ceedings (Berlin, Springer, 2001), pp. 406–419 [Lecture Notes in Computer
Science, Vol. 2045].

[61] A. M. Youssef, “Generalized Hyper-Bent Functions over GF (p),” Discrete
Appl. Math. 155 (8), 1066–1070 (2007).

[62] Y. Zheng and X.-M. Zhang, “Relationships Between Bent Functions and
Complementary Plateaued Functions,” in International Conference on In-
formation Security and Cryptology ICISC′99 (Seoul, Korea, December 9−10,
1999). Proceedings (Berlin, Springer, 2000), pp. 60–75 [Lecture Notes in Com-
puter Science, Vol. 1787].

[63] Y. Zheng and X.-M. Zhang, “On Plateaued Functions,” IEEE Trans. Inform.
Theory 47 (3), 1215–1223 (2001).

27


