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Abstract: In this paper, we first introduce a new concept of approximate lattice problem 
(ALP), which is an extension of learning with errors (LWE). Next, we propose two 
ALP-based public key encryption schemes. Then, we construct two new fully homomorphic 
encryption scheme (FHE) based on respectively approximate principal ideal lattice problem 
with related modulus (APIP-RM) and approximate lattice problem with related modulus 
(ALP-RM). Moreover, we also extend our ALP-RM-based FHE to the ALP problem with 
unrelated modulus (ALP-UM). 
Our work is different from previous works in three aspects: 
(1) We extend the LWE problem to the ALP problem. This ALP problem is similar to the 

closest vector problem in lattice. We believe that this problem is independent of interest. 
(2) We construct a new FHE by using a re-randomizing method, which is different from the 

squashing decryption in previous works. 
(3) The expansion rate is merely O(k) with k a security parameter in Our FHE, which can be 

improved to O(logk) by using dimension reduction [BV11], whereas all previous schemes 
are at least O(k*logk) [BV11, Gen11, LNV11]. Our method can also decrease a factor k of 
the expansion rate in their schemes. 

Keywords: Fully Homomorphic Encryption, Approximate Lattice Problem, Approximate 
Principal Ideal Lattice Problem, LWE, Approximate GCD, Integer Factoring 
 

1. Introduction 

We present two new fully homomorphic encryption schemes, which are based on the trapdoor 
function of a principal ideal lattice polynomial over the integers. In the first scheme, we 

assume that  is an odd integer,  a parameter of security, and ( )2O np = n R  a polynomial 

ring. The public key is a list of approximate multiples  for a hidden 

polynomial 

{ } 0
, (i i

b R O nτ τ
=

∈ = )

f R∈ ， which is computed as 2i ib a f ei= + , where ,  is the uniformly 

random elements over 

ia ie

R  such that 2 ie
∞

n≤ . The secret key is a polynomial  with s
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‘small’ coefficient such that . To encrypt a message bit , the ciphertext 

is evaluated as 

( ) modf s p× 0=

mod p

m

, {0,..., }
( 2 )ii T T

c b e m
τ∈ ⊆

= + +∑ , where 2e
∞

n≤ . To obtain addition 

or multiplication of the messages in the ciphertexts, we simply add/multiply the ciphertexts as 
the addition/multiplication over R . To decrypt a ciphertext , we compute the message bit c

[ ] mod mod 2
p

m c s x= × . Recall that [ ]p
z  is an integer in ( / 2, / 2p p )−  throughout 

this paper. 
Our second fully homomorphic encryption scheme is based on approximate lattice problem 
over related modulus, and similar to the first scheme except with different assumption. 

1.1 Our Contribution 

The main difference between our schemes and previous work is the efficiency and the 

underlying hardness assumption. The size of public key is  bits, and the expansion 

factor of ciphertext  in our scheme, which can be improved to . The security of 

our first scheme relies on the hardness assumption of the decision version of finding an 
approximate principle ideal lattice problem over related modulus (APIP-RM), given a list of 

approximate multiples of a hidden polynomial 

3( )O n

2( )O n ( )O n

f . The security of the second scheme is 

based on the hardness of solving approximate lattice problem over related modulus 
(ALP-RM).  
In high level, our schemes are similar to the fully encryption scheme over the integers 

[vDGHV10]. But the secret key in their scheme is a big odd integer, whereas f  (resp. A) in 

our scheme is a principal ideal generator (resp. general lattice) and not the secret key. Suppose 
the determinant p of the circulant matrix of the secret key  is a product of distinct 
(smoothing) primes, we reduce the LWE/Ring-LWE problem to its corresponding decisional 
ALP/APIP.  

s

As far as we know, the approximate lattice problem does not appear among previous works, 
except the approximate GCD problem [vDGHV10]. Our work extends AGCD to approximate 
lattice problem, namely, we extend this problem from one dimension to multiple dimensions. 
We think that this problem is independent of interest. 

1.2 Related work 

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which 
now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08, 
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed 
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key 
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is approximately  bits, the computation per gate costs  operations. Smart and 

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively 

small key  bits , ciphertext size  bits and computation per gate at least 

 operations, which is in some sense a specialization and optimization of Gentry’s 

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully 
homomorphic encryption scheme over the integers, whose security depends on the hardness 
of finding an approximate integer gcd. Stehle and Steinfeld [SS10] improved Gentry's fully 

homomorphic scheme and obtained to a faster fully homomorphic scheme, with   

bits complexity per elementary binary addition/multiplication gate, but the hardness 
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].  

7n 6( )O n

3( )O n 1.5(O n )

3( )O n

3.5( )O n

1.3 Outline 

Section 2 recalls the notations, and the definitions of lattice, learning with error and 
approximate lattice problem. Section 3 gives new trapdoor functions and public key 
encryption schemes based on the ALP problem. Section 4 gives a somewhat homomorphic 
encryption based on APIP related modulus. Section 5 transforms the somewhat homomorphic 
encryption into a fully homomorphic encryption. Section 6 presents the security analysis of 
our scheme and discusses two possible attacks. Section 7 proposes another new fully 
homomorphic encryption based on ALP related modulus, and discuss how to construct an 
FHE based on the general ALP. Section 8 concludes this paper and gives some open 
problems. 

2. Preliminaries 

2.1 Notations  

Let λ  be a security parameter. ( )k k λ=  is a power of 2, and  a set of integers 

. Let 

[ ]k

{0,1,..., }k p  be an integer. Let [ ] / ( 1)kR x x= +] , /pR R pR= . For , u R∈

u
∞

 denotes the infinity norm of its coefficient vector. Let R kγ =  be the expansion factor 

of R , that is, u v k u v
∞ ∞

× ≤ ⋅ ⋅
∞

, where ×  is multiplication in R . 

Let  denote to choose an element  in according to the distribution r ψ← S r S ψ . For the 

distributions ,A B ,  is computationally indistinguishing by arbitrary probabilistic cA B≡
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polynomial time algorithm. 

2.2 Lattice and Learning with Error (LWE) 

Given  linearly independent vectors , the lattice is equal to the set n 1 2, ,..., n
mb b b ∈\

1 2 1
( , ,..., ) { , }m

m i i ii
L b b b x b x

=
= ∈∑ ]  of all integer linear combinations of the ’s. We also 

denote by matrix 

ib

B  the ’s. In this paper, we only consider the lattice over the integers, 

i.e., .  

ib

n
ib ∈]

For the coefficient vector  of u0 1 1( , ,..., )T
nu u u u −=K R∈ , we define the cyclic rotation 

, and the corresponding circulant matrix 1 0 2( ) ( , ,..., )T
n nrot u u u u−= −K

−

1( ) ( , ( ),..., ( ))n TRot u u rot u rot u−= K K K . ( )Rot u  is called the rotation basis of the ideal lattice 

.  An ideal ( )u I R⊆  is a principal if it only has a single generator. 

Definition 2.1. (Learning With Error (LWE) [Reg05]). Let  be integers related to 

security parameter 

,n p

λ , and χ  a distribution over . Given a list samples p] ( , )i is b  of the 

distribution , ,n pD χ  over  such that , , 1n
p
+] n

pa ← ] n
i ps ← ] ie χ←  and 

, the LWE problem , moi i ib s a e=< > + d p , ,n pLWE χ  is to distinguish the distribution 

, ,n pD χ  from the uniform distribution over 1n
p
+] . 

Definition 2.2. (Learning with Errors in a Ring of Integers [LPR10]). Let  be 

integers related to security parameter 

,k p

λ , and χ  a distribution over pR . Given a list 

samples  of the distribution ( , )i ia b , ,k pD χ  over p pR R×  such that , , pa R← i ps R←

ie χ←  and , the RLWE problem i ib s a e= × + i , ,k pRLWE χ  is to distinguish the 

distribution , ,k pD χ  from the uniform distribution over p pR R× . 

2.3 Approximate Lattice Problem 

In the following, we introduce a new concept, called approximate lattice problem (ALP). The 
starting point of our definition is from the approximate GCD problem [vDGHV10]. On the 
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other hand, in some sense, the ALP generalizes the LWE problem [Reg05]. Indeed, the ALP 
problem is mainly to adapt from the AGCD over the ring of integers to other rings. 
Definition 2.3. (Approximate-GCD over the Integers (AGCD)). Given a list of 

approximate multiples 1{ : , , n
i i i i i ib s a e s e e −

+= + ∈ ∈ <] ] 2 } of an odd integer , find 

. 

a

a
Definition 2.4. (Approximate Lattice Problem (ALP)). Let  be integers related to 

security parameter 

, ,n m p

λ , and χ  a distribution over . Given a list samples  of the 

distribution 

m
p] ib

, , ,n m pD χ  over  such that m
p]

n m
pA ×← ] , , n

i ps ← ] ie χ←  and 

, the ALP i ib s A e= + i , , ,n m pALP χ  is to distinguish the distribution , , ,n m pD χ  from the 

uniform distribution over . m
p]

Definition 2.5. (Approximate Principal Ideal Lattice Problem (APIP)). Let  be 

integers related to security parameter 

,k p

λ , and χ  a distribution over pR . Given a list 

samples  of the distribution ib , ,k pD χ  over pR  such that pa R← , , i ps R← ie χ←  

and , the APIP problem i ib s a e= × + i , ,k pAPIP χ  is to distinguish the distribution , ,n pD χ  

from the uniform distribution over pR . 

Definition 2.6. (General Approximate Lattice Problem (GALP)). Let  be 

integers related to security parameter 

, , ,n k m p

λ , and χ  a distribution over m
pR . Given a list 

samples  of the distribution ib , , , ,n k m pD χ  over m
pR  such that n m

pA R ×← , , n
i ps R←

ie χ←  and , the GALP problem i ib s A e= + i , , , ,n k m pGALP χ  is to distinguish the 

distribution , , , ,n k m pD χ  from the uniform distribution over m
pR . 

For the GALP problem, we get the concrete ALP problem if we set ; we get APIP 

problem if we set 

2k =

1, 1n m= = . 

In fact, we can directly define the general approximate lattice problem over the integers 
without modulus. But in this paper, we mainly consider the GALP with modulus. 

Definition 2.6. (General Approximate Lattice Problem (GALP-I)). Let  be 

integers related to security parameter 

, ,n k m

λ , and χ  a distribution over mR . Given a list 
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samples  of the distribution ib , , ,n k mD χ  over mR  such that n mA R ×← , , n
is R←

ie χ←  and , the GALP problem i ib s A e= + i , , ,n k mGALP χ  is to distinguish the 

distribution , , ,n k mD χ  from the uniform distribution over mR . 

3. Public Key Schemes Based on ALP 

In this section, we first present several new trapdoor functions. Then, we construct two public key 
schemes based on the ALP problem by using our trapdoor functions. 

3.1 Trapdoor Functions 

For the ALP problem, the first trapdoor function we require is a trapdoor sampling algorithm 

constructed by Alwen and Peikert [AP09]. For an almost uniformly random matrix n m
pA ×∈] , 

the trapdoor m m
pT ×∈]  generated by this trapdoor algorithm can be used to solve the ALP 

problem. That is, given , it can be used to find . b sA e= + s
Lemma 3.1. (AP09, Theorem 3.1 and 3.2). There is a probabilistic polynomial-time 
algorithm that, on input a positive integer n, positive integer p , and a poly(n)-bounded 

positive integer , outputs a pair of matries 8 logm n≥ p n m
pA ×∈] , m mT ×∈]  such that  

is statistically close to uniform over 

A

n m
p
×] , 0modAT p= , and ( log )T O n p= . 

To construct the trapdoor algorithm for the APIP problem, we first fix ( )k k λ=  and choose 

a small coefficient principal ideal t R∈ , then evaluate the orthogonal principal ideal  of 

 over 

a

t pR , where | det( ( ))p Rot t  is an appropriate integer. 

Lemma 3.2. Given an arbitrary , there is a polynomial time algorithm that generate the 

orthogonal principal ideal  of  over 

t R∈

a t pR  with | det( ( ))p Rot t , that is, 

. 0moda t p× =

Proof: We construct a linear equation system according to the relationship  

as follows: 

0moda t p× =
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0 1 1 0 0

1 0 2 1 2

1 2 0 1 1

k

k k k k

t t t a qv
t t t a qv

t t t a qv

−

− − − −

− −⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜−⎜ ⎟⎜ ⎟ ⎜=
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝

"
"

# # # # # #
"

i qv

⎞
⎟
⎟
⎟
⎟
⎠

, where ∈]

)

. 

Since | det( ( )p q Rot= t , we choose an uniformly random vector  and solve the 

integer coefficients  for  modulo q  by using Cramer rule. By 

n
qv∈]

'
ia 'a | det( ( ))p Rot t , we 

get . ■ 'moda a p=

The goal we introduce the ALP problem is to construct a new fully homomorphic encryption. 
But in the Lemma 3.1, the entries of the trapdoor  is too large and its dimension  
depends on the modulus 

T m
p . So, we also apply the above method to generate the short basis 

for general lattice. Our construction differs from one of [AP09, Ajt99]. Here we first fix  

and , choose a random basis 

,n m

n m≤ m mT ×∈]  with small entries, then evaluate the random 

orthogonal basis  for T  by applying Cramer rule such that , 

where 

' m m
pA ×∈] ' 0modA T p=

| det( )p T , and finally set A  to be equal to  random different rows of n 'A . 

Whereas the algorithms in [AP09, Ajt99] first fix , and then generate the matries 

 such that  and 

, ,m n p

,A T 0modAT p= ( log )T O n p≤ . 

Lemma 3.3. There is a probabilistic polynomial time algorithm that, on input positive 

integers , outputs a pair of matries n m≤ n m
pA ×∈] , m mT ×∈]  such that 0modAT p= , 

(1)T O= , and | det( )p T . 

In Lemma 3.3, we assume that  is statistically close to uniform over . Whether this 

can be proved remains an open problem. Of course, if one can prove that the instantiation of 

ALP generated by  is almost uniform over , then it is also feasible for our uses.  

A n m
p
×]

A m
p]

Since there is a dependent relationship among the columns of  (resp. ) over the 

modulus 

A a

p  in Lemma 3.1-3.3, they can not be uniform over n m
p
×]  (resp. pR ). So, we 

give a new trapdoor in the following Lemma. 
Lemma 3.4. There is a probabilistic polynomial-time algorithm that, on input positive 

integers , outputs a pair of matries ,m p m m
pA ×∈] , m mT ×∈]  such that A  is statistically 

close to uniform over , m m
p
×] modAT I p= , (1)T O= , and , where gcd( ,det( )) 1p T =

I  is an identity matrix of . m m
p
×]
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Proof: Given , one first chooses at random ,m p m mT ×∈]  with (1)T O=  and 

, and decides whether det( )q = T gcd( , ) 1p q = . If gcd( , ) 1p q = , it is easy to evaluate that 

'A  and the inverse  of  over modulus 'q q p  such that 'A T q I= i  and 

. Now, we set ' 1modq q p=i ( ' ') modA q A p= i  and get modAT I p= .■ 

It is obvious that the Lemma 3.4 also works over the ring pR  since the principal ideal lattice 

is a special case of general lattice. 

3.2 Public Key Scheme Based on ALP 

To describe simplicity, we only give ALP-based public key encryption schemes in this section. We 
first present two public key encryption schemes, then design a new fully homomorphic encryption 
based on APIP (resp. ALP) in the following section. The first public key encryption scheme is 
based on the ALP problem related modulus p , called ALP-RM, whereas the second scheme 
is based on the ALP problem unrelated modulus p , called ALP-UM. 

3.2.1 Construction of PKE-1 

Key Generating Algorithm (PKE-1.KeyGen): 

(1) Let  be integers related to security parameter , ,n m p λ , and p  an odd integer. By 

using Lemma 3.1 (resp. 3.3), one generates a pair of matries n m
pA ×∈] ,  such 

that 

m mT ×∈]

A  is statistically close to uniform over n m
p
×] , 0modAT p= ,  is an odd 

integer, and 

det( )T

( log )T O n p=  (resp. (1)T O= ). 

(2) Let χ  be a distribution over . Choose a list m
p] ( )Oτ λ=  elements  

over  such that , 

2i ib s A e= + i

m
p] n

i ps ← ] ie χ←  with / 2ie β
∞
≤ . 

(3) Output the public key ( , , , [ ])ipk m p b i τ= ∈  and the secret key ( )sk T= . 

Encryption Algorithm (PKE-1.Enc). Given the public key pk  and a message , 

choose a random subset 

2
mx∈]

[ ]S τ⊆  and an independent ‘small’ error term e χ←  with 

/ 2e β
∞
≤ . Evaluate a ciphertext 2ii S p

c b e
∈

x⎡ ⎤= + +⎣ ⎦∑ . 
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Decryption Algorithm (PKE-1.Dec). Given the secret key , and the ciphertext c , 

decipher . 

sk

[ ] [ ] 1
22 2

( )
p

x c T T −⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
i

Correctness: When 2 ( 2 )ii S
p x e T

∈ ∞
> +∑ i , Dec works correctly because 

[ ] [ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ] [ ] [ ]

1
22 2

1
2

2 2

1
2

2 2

1
22 2

1
2 2 2

1
2 2 2 2

( )

( 2 ) (

( 2 ) ( )

( 2 ) ( )

( )

( )

p

i ii S p

ii S p

ii S

c T T

x s A e T T

x e T T

x e T T

x T T

x T T

)

x

−

−
∈

−
∈

−
∈

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= + +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= +⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
=

∑

∑

∑

i

i

i

i

i

i

. 

3.2.2 Construction of PKE-2 

Key Generating Algorithm (PKE-2.KeyGen): 

(1) Let  be integers related to security parameter , ,n m p λ , and p  an odd integer. By 

using Lemma 3.4, one generates a pair of matries m m
pA ×∈] ,  with m mT ×∈]

(1)T O=  such that A  is statistically close to uniform over m m
p
×] , modAT I p= , 

where I  is an identity matrix of m m
p
×] . 

(2) Let χ , ϕ  respectively be the distributions over  and . Choose a list m] n]

( )Oτ λ=  elements  over  such that (2 2 ) modi i ib s A e= + p m
p] is ϕ←  with 

/ 2is β
∞
≤ , ie χ←  with / 2ie β

∞
≤ . 

(3) Output the public key ( , , , [ ], )ipk m p b i τ χ= ∈  and the secret key . ( )sk T=

Encryption Algorithm (PKE-2.Enc). Given the public key pk  and a message bit , 

choose a random subset 

2
mx∈]

[ ]S τ⊆  and an independent ‘small’ error term e χ←  with 

/ 2e β
∞
≤ . Evaluate a ciphertext 2ii S p

c b e
∈

x⎡ ⎤= + +⎣ ⎦∑ . 

Decryption Algorithm (PKE-2.Dec). Given the secret key , and the ciphertext c , sk
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decipher . [ ] [ ] 1
22 2

( )
p

x c T T −⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
i i

Correctness: Dec works correctly because 

[ ] [ ]

[ ] [

[ ] [ ]
[ ] [ ]

1
22 2

1
22 2

1
2 2 2

1
2 2 2

( )

( 2 ) ( )

(2 ) ( )

( )

p

p

c T T

sA e x T T

s e x T T

x T T

x

−

−

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= + +⎣ ⎦

⎡ ⎤= ⎣ ⎦
=

i i

i

i

i

]

. 

In the above, we use  and 0 mod 2s = 2 ( 2 )p s x e T
∞

> + + i  because  all have 

small entries. 

, ,s e T

4. Somewhat Homomorphic Encryption (SHE-1) 

In Section 4, we present a somewhat homomorphic encryption based on the APIP related 
modulus p , call APIP-RM. In Section 5, we transform the SHE-1 scheme into a new fully 
homomorphic encryption. In Section 6, we analyze the security of the FHE-1 and two known 
attack methods and corresponding strategy for the FHE-1. 

4.1 Construction 

To construct fully homomorphic encryption, the SHE requires to evaluate an arbitrary circuit 

with depth . Moreover, the depth of its decryption circuit is less than . Thus, 

we first choose special secret key to implement FHE, and then extend it to general parameters 
setting. 

(log )d O n= d

Key Generating Algorithm (SHE-1.KeyGen): 

(1) Select a random polynomial 
1

0

n i
ii

s s−

=
= x∑  such that 0 2s θ 1= +  with [ ] \ 0θ η∈ , 

 and , [ 1] \ 0is S i n∈ ∈ −
1

0
( ) (log )n

ii
l w s ω−

=
= = n∑ , and evaluate det( ( ))p Rot s=  

such that 2 np η≥  is an odd integer, where 1{0,1,2 ,..., 2 }S η= , η  in general is a 

constant integer,  is the hamming weight of . ( )iw s is

(2) By Lemma 3.2, one compute a random f  over R , 
1

0

n i
ii

f f x−

=
= ∑  subject to 

. 0mods f p× =

(3) Pick ( )O nτ =  uniformly random elements , [ia R i ]τ∈ = , and perturbed error terms 
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ie R∈  such that ||2 , and then compute ||ie ∞ ≤ n d p( 2 ) moi i ib a f e= × + . 

(4) Output the public key ( , , , [ ])ipk n p b i τ= ∈  and the secret key ( )sk s= . 

Encryption Algorithm (SHE-1.Enc). Given the public key pk  and a message bit 

, choose a random subset {0,1}m∈ [ ]T τ⊆  with 2T n≤ −  and an independent ‘small’ 

error term  with ||2 . Evaluate a ciphertext e ||ie ∞ ≤ n d p( 2 ) moii T
c b e m

∈
= + +∑ . 

Add Operation (SHE-1.Add). Given the public key pk , and the ciphertexts , 

evaluate the ciphertext . 

1 2,c c

1 2( ) modc c c p= +

Multiplication Operation (SHE-1.Mul). Given the public key pk , and the ciphertexts 

, evaluate the ciphertext . 1 2,c c 1 2( ) modc c c p= ×

Decryption Algorithm (SHE-1.Dec). Given the secret key , and the ciphertext c , 

decipher 

sk

[ ]( ) mod mo
p

m c s x= × d 2 . 

Remark 4.1: We can replace ( , , , [ ])ipk n p b i τ= ∈  with ( , , )pk n p b=  such that 

 with ||2( 2 ) modb a f e p= × + ||e ∞ n≤ . When encrypting a message bit , we 

select at random  with 

{0,1}m∈

1 2,u u R∈ ||2 ||iu ∞ n≤ , and output a ciphertext 

. 1 2( 2 ) moc b u u m p= × + + d

4.2 Correctness 

Lemma 4.1. The above SHE-1.Dec algorithm is correct, if the infinity norm of the error term 

in the ciphertext is less than 2/ (4 2 )p n η×  when decrypted. 

Proof. Given the ciphertext  and the secret key , it is not difficult to verify that  has 

general form . To decrypt , we evaluate 

c sk c

( 2 ) modc a f e m p= × + + c

[ ] [ ] [ ]( 2 ) 2s p p
c c s a f e m s e s m s

p
= × = × + + × = × + × . 

Since 22 / (4 2e p n )η
∞
< × 2

1
(2 ) / (4 2 ) / (4 )sc e m s s p n p nη

∞ ∞
= + × ≤ × × ≤, . By 

, we get the message bit 0 1mod 2s = 0mod mod 2 ( ) mod 2sm c x m s= = × .■ 
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Remark 4.2: The reason we set the error term / (4 )p n  is to implement the Recrypt 

algorithm in the following fully homomorphic encryption. 
Lemma 4.2. The above scheme is correct for arbitrary arithmetic circuit  with addition 

and multiplication gates, and circuit depth 

C

log( 2) log log 2d n nη η≤ − − − − . 

Proof. Assume  are the ciphertext generated by 

Enc. To correctly decrypt, the error term of the ciphertext output by arithmetic circuit can not 
be too large. The error term in addition gate is linearly rising, whereas the error term in 
multiplication gate is exponentially increasing. So, the multiplication operation dominates the 
depth of arithmetic circuit. Now, we estimate the bound of the error term in the ciphertext 
generated by one multiplication operation. 

( 2 ) mod ,
j

j i j ji T
c b e m p j

∈
= + + =∑ 1, 2

d p

p

p

1 2

1 2

1 1 2 2

1 2

mod
 ( 2 ) ( 2 ) mo

 ( 2 ) mod
i ii T i T

c c c p
b e m b e m

a f e m m p
∈ ∈

= ×

= + + × + +

= × + +

∑ ∑ . 

where , 
1 2 2

1 1 2 2(( 2 ) ( ) 2 2 ) modi i ii T i T i T
a b e m a e e m

∈ ∈ ∈
= + + × + + +∑ ∑ ∑

1 2 2
1 2 2 1 2(( ) ( 2 2 ) ( ) modi i ii T i T i T

e e e e e m m e e
∈ ∈ ∈

= + × + + + × +∑ ∑ ∑ .  

So,  

1 2 2

1 2 2

1 2 2 1

1 2 2

5

2 (( 2 2 ) ( 2 2 ) ( 2 2 )

(( 2 2 ) 2 2 2 2

(( 2) )(( 2) 1) ( 2)

i i ii T i T i T

i i ii T i T i T

e e e e e m m e

n e e e e m e e

n n n n n n n n n n
n

∞ ∈ ∈ ∈ ∞

∈ ∈ ∈∞ ∞

= + × + + + × +

≤ + + + + +

≤ − + − + + + − +

<

∑ ∑ ∑

∑ ∑ ∑

2

2

e

∞ . 

In the other hand, the error terms in the ciphertexts  are at most . So, the error term 

for one multiplication is less than 

1 2,c c 2n

1 12 2 2 2 1( ) ( )n n n
+ −< . To correctly decrypt, the depth  of 

arithmetic circuit must be satisfied inequality 

d

12 2 1 2( ) / (4 2 )
d

n p n η+ − < × , namely, 

log( 2) log log 2d n nη η≤ − − − − .■ 

4.3 Performance 

The size of public key ( , , , [ ])ipk n p b i τ= ∈  is 3(O n )η , the size of secret key  

is 

( )sk s=

( )O nη . The expansion factor of ciphertext is 2(O n )η . The running times of Enc, Dec, 
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Add, Mul algorithms are respectively 3( )O n η , , 2( logO n nη ) )2(O n η , and 

. 3( logO n nη )

5. Fully Homomorphic Encryption (FHE-1) 

5.1 Self-loop FHE-1 

We design an FHE-1 from the above SHE-1 by using self-loop bootstrappable technique. We 
give a new algorithm Recrypt, which refreshes a ‘dirty’ ciphertext  to a new ciphertext 

 with ‘smaller’ error term and the same plaintext of . To do this, we add the ciphertexts 

of encrypted the secret key to the public key. So, we assume that our scheme is KDM-secure. 
We now modify the SHE-1 as follows: 

c

newc c

FHE-1.KeyGen Algorithm: 

(1) Generate ( , , , [ ])ipk n p b i τ= ∈  and ( )sk s=  as previous KeyGen algorithm. 

(2) Select at random ( 1n )η +  pair elements , , [ 1], [i ja R i n j ]η∈ ∈ − ∈ , and perturbed 

error terms ,i je R∈  such that ,||2 ||i je ∞ n≤ , and encrypt the j-th bit  of  as 

. We denote 

,i js is

, , , ,( 2 ) moi j i j i j i js a f e s= × + +K d p j,0
2 j

i ij
s sη

=
= ∑K K  and . 

1

0

n i
ii

s s−

=
=∑K K x

(3) Output the public key 0( , ,{ } , )i ipk n p b sτ
== K  and the secret key ( )sk s= . 

FHE-1.Recrypt Algorithm: 

(1) Set ,  for 0 0c c=K ic p c= −K
i [ 1] \ 0i n∈ − , and , 2 /j

i j ih c p= ×
K K  for 

[ 1], [i n j ]η∈ − ∈ , keeping only logk n=  bits of precision after the binary point for 

each , where ,i jh
K

, 2 /j
i j ih c p= ×
K K  is satisfied to , 2 / 1/ (2 )j

i j ih c p n− × <
K K . 

(2) Evaluate , ,
2

i i jj r
h h sη

= t j
⎡ ⎤= ×⎣ ⎦∑

K K K  for 0 modi t n+ = , [ 1i n ]∈ − , where  if 

, otherwise , and 

1r =

0i = 0r = 1
0,00

0.5 mod 2n
ii

g h h−

=
⎢ ⎥= + +⎣ ⎦∑

K KK . 

(3) Evaluate [ ] ,020mod 0mod
( ) mod 2 ( ) mod 2i t i ti t n i t n

u c s c s
+ = + =

= × = ×∑ ∑K K K K K . 

(4) Output a new ciphertext newc u= ⊕ gK K . 

Theorem 5.1. The FHE-1.Recrypt correctly generates a ‘fresh’ ciphertext  with the newc
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same message of , and two homomorphic decrypted ciphertexts support one multiplication 

when 

c
6 3 4 1 22 / (4n nn p n 2 )ηη− − ≤ . 

Proof: First, we have 

0 0 1 1 2 2 1 1

0 0 1 1 2 2 1 1

0mod

( ) mod( 1) mod

( ) ( ) ( )

n

n n n

n n

i ti t n

c s x x
c s c s c s c s
c s p c s p c s p c s

c s

− − −

− −

+ =

× +
= − − − −
= + − + − + + −

=∑

"
"

K
n−

               (5-1). 

So, the decryption algorithm computes as follows 

0mod 0mod

,0mod 0

,0mod 0

, ,0

mod( 1) mod mod 2

( ) mod 2) ( ( / ) 0.5 mod 2)

( / 2 0.5 mod 2)

( ( 2 ) / 0.5 mod 2)

(

n

p

i t i ti t n i t n

j
i t ji t n j

j
t j ii t n j

i j t jj

c s x x

c s c p s

u c p s

u s c p

u h s

η

η

η

+ = + =

+ = =

+ = =

=

⎡ ⎤× +⎣ ⎦

⎢ ⎥= × ⊕ × +⎣ ⎦
⎢ ⎥= ⊕ × +⎣ ⎦
⎢ ⎥= ⊕ × +⎣ ⎦

= ⊕

∑ ∑
∑ ∑
∑ ∑

K

K K K K

K K K

K K K

KK K
0mod

1
0,00

0.5 ) mod 2

( 0.5 ) mod 2

i t n

n
ii

u h h

u g

+ =

−

=

⎢ ⎥+⎣ ⎦
⎢ ⎥= ⊕ + +⎣ ⎦

= ⊕

∑ ∑
∑

K KK

K K

  (5-2). 

So, we merely need to prove that FHE-1.Recrypt correctly evaluates the formula (5-2) in the 

form of ciphertexts. Since [ ] ,020mod
( ) mi ti t n

u c s
+ =

= ×∑K K K
,0 ||te n∞ ≤od 2  and ||2  in , we 

evaluate the sum modulo 2 of  ciphertexts. Hence, the error term in the ciphertext  is at 

most . 

,0ts
K

n uK

2n

To estimate the error term in , we first determine the error term . According to 

FHE-1.KeyGen, there is at most single 1-bit among 

gK ih
K

,t jsK , [ ]j η∈  except for  that 

includes two 1-bits. So, the error term in 

0s
K

, ,
2

i i jj r
h h sη

= t j
⎡ ⎤= ×⎣ ⎦∑

K K K is at most ( 1n )η + . What is 

more, there is at most  non-zero numbers among encrypted 1l + 1n +  rational numbers via 

. 
1

0
( )n

ii
l w−

=
=∑ s

Since , 2 / 1/ (2 )j
i j ih c p n− × <
K K , we get ,0

( 2 ) / 1/ (2j
i t j ij

h s c pη

=
− × <∑ )n
K K K . So, 

1
0,00 0mod

1/
2

n
i i ti i t n

lh h c s p
n

−

= + =

+
+ − × <∑ ∑
K K K K . According to Lemma 4.1, there is an encrypted 

integer  such that zK
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1
0,00

1
0,00 0mod 0mod

/ /

( 1) / 2 1/ (4 )
1/ 2

n
ii

n
i i ti i t n i t n

h h

h h c s p c s p

n n z n
z

−

=

−

= + = + =

+

≤ + − × + ×

≤ − + +
< +

∑
∑ ∑ ∑

K K

K K K K K K

K
K

i t

g

. 

So, suppose 
1

0,0 0 10
' . ...n

i ki
g h h g g−

− −=
= + =∑

K KK K K
0 1( ) mod 2g g g−

K , then = +K K K . 

By applying the symmetric polynomial technique, we use the polynomial with total degree 
 to evaluate the sum of  encrypted rational numbers with at most  nonzero 

numbers. It is easy to verify that the number of degree 
1l + 1n + 1l +

1l +  monomials in the polynomial 

representing our addition of ciphertexts is equal to , 

which is less than . The error term of a degree 

1 1 1
...

1/ 2 1/ 4 1
l l l

l l
+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1( 1)ll ++ 1l +  monomial over ciphertexts is 

at most . So, the error term in 2 1( ) lnη + gK  is at most ( 1) 2 1( 1) ( )l ll nη+ ++ .  

In addition, our scheme must support another homomorphic multiplication to obtain FHE. 
Hence, our scheme needs to correctly decrypt a ciphertext with error term 

. Thus, ( 1) 2 1 2 2( 1) 4 2(( 1) ( ) ) 2( 1) ( )l l ll n n l nη η+ + ++ + ≤ + l+ 2( 1) 4 2 22( 1) ( ) / (4 2 )l ll n p n ηη+ ++ ≤  

by Lemma 4.1.■ 

5.2 General Parameters 

In the FHE-1.KeyGen algorithm, we use a special form for the secret key. Indeed, we may set 

general parameters. Assume 
1

0

n i
ii

s s−

=
= x∑  with 2s η

∞
=  and (2 )np O η=  an odd 

integer. We select at random a polynomial 
1

0

n j
jj

u u x−

=
R= ∈∑  with  and 

, and take 

( ) 1jw u ≤

1

0
( ) (log )n

jj
l w u ω−

=
= =∑ n v s u= − . We then encrypt  as  same as  in 

FHE-1.KeyGen, and output the public key 

u uK sK

0( , ,{ } , , )i ipk n p b u vτ
== K  and the secret key 

. ( )sk s=

For the general parameters of the secret key, we will use it to generate p  as a product of 
smoothing primes and prove the security of scheme in the following. 
In addition, we may apply the Gentry’s method, which introduces the hardness assumption of 
the sparse subset sum problem when implementing FHE-1. 
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5.3 Extension to Large Message Space 

For the FHE-1, we can reduce the expansion factor of ciphertext from 2(O n )η  to ( )O nη  

by extending the plaintext message space. For a message , we map it to a 

polynomial 

{0,1}nm∈

1

0
( ) n i

ii
m x m x−

=
= ∑ . Now, FHE-1.Enc is ( 2 ( )) moii T

c b e m x
∈

= + + d p∑ , and 

FHE-1.Dec is [ ]1( ) (( mod 2) ) ( mod 2)
p

m x Rot s c s−= × × . 

For Recrypt, we add to the public key the ciphertexts vs
K  of the inverse polynomial 

 of . Moreover, when FHE-1.Recrypt refreshes a ciphertext, in fact 

we get  ciphertexts: 

1( mod 2)vs s −= mod 2s

n [ ]1

0
( mod 2)n i

i v pi
C x s c s−

=
= × ×∑

K K K , where each iC
K

 is a ciphertext of 

one bit. So, we must combine 
1

0

n i
ii

C x−

=
×∑

K
 consisting of  ciphertexts into a new 

ciphertext . 

n

1

0
( ) mod( 1)n i n

new ii
c C x x−

=
= ×∑

K
+

=

We can perform homomorphic bit operations for the large message space above. To evaluate 
homomorphic operation over the bits, we first call FHE-1.Recrypt to obtain each encrypted 
bit of , then perform homomorphic operations over each bit, and finally combine  

encrypted bits into a ciphertext of  bits message by evaluating . 

m n

n newc

5.4 Non-self-loop FHE 

Since the FHE-1 reveals the encrypted secret key in the public key, we assume our scheme is 
KDM-secure. Indeed, the FHE in [Gen09, SV10] also reveals the encrypted secret key bits, 
although it is not direct. In this subsection, we construct a non-self-loop FHE by applying 
cycle keys. The advantage of cycle keys is to maximize possible distribution of the 
ciphertexts of encrypted secret key. But the drawback of this scheme is to require calling 
Recrypt two times to refresh ciphertext. 

Assume  are two pairs of keys such that  is 

encrypted under 

0( , ,{ } , ), ( ), 1, 2j j i i j j jpk n p b s sk s jτ
== =K

1s
K

2pk ,  under 2sK 1pk . To refresh a ciphertext , we first call Recrypt with 

 to generate an intermediate ciphertext  under 

c

c 1c 2pk , then again call Recrypt with  to 

obtain a new ciphertext  under 

1c

newc 1pk . 
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6. Security of FHE-1 

6.1 Security Analysis 

The security of the SHE-1 follows directly from the hardness of the decisional hidden 
principal ideal lattice problem. The proof of the following theorem adapts the proof of 
Theorem 3 of [GHV10]. We include it here for completeness. 
Theorem 6.1. Suppose there is an algorithm  which breaks the semantic security of our 
SHE-1 with advantage 

A
ε . Then there is a distinguishing algorithm  against D

, ,k pAPIP RM χ−  with running in about the same time  and advantage at least A / 2ε . 

Proof. We construct a distinguishing algorithm  with advantage at least D / 2ε  between 

the distribution , ,n pD χ  and the uniform distribution over pR . The algorithm D  receives 

as input .  picks at random c D {0,1}α ∈ , sends the challenge ciphertext 2 modc pα+  

to , then returns 1  if  guesses the right A A α , and otherwise . We omitted the 
remainder of proof, which is almost identical to [GHV10]. ■ 

0

Recall that f  is an arbitrary in the , ,k pRLWE χ  problem in Definition 2.2, whereas f  in 

the SHE-1 is satisfied to | det( ( ))p Rot f . Thus, the hardness result in this paper is only 

available for this special , ,k pRLWE χ  problem. 

Theorem 6.2. Suppose p  is the product of distinct smoothing primes. Then there is a 

probabilistic polynomial time reduction from , ,k pRLWE χ  to , ,k pAPIP RM χ− . 

Proof. It is obvious that by removing , we transform an instantiation of a , ,k pRLWE χ  into 

an instantiation of , ,k pAPIP RM χ− .■ 

Theorem 6.3. Suppose p  is a product of distinct smoothing primes. Then there is a 

probabilistic polynomial time reduction from , ,k pRLWE χ  to the search , ,k pRLWE χ . 

Proof. The proof of Theorem 6.3 is adapted from that of Lemma 3.6 in [Pei09]. ■ 
Theorem 6.4. Suppose p  is the product of distinct smoothing primes. Then there is a 

probabilistic polynomial time reduction from the search , ,k pRLWE χ  to , ,k pAPIP RM χ− . 

From Theorem 6.4, we know that breaking our scheme is harder than solving the ,fRLWE ϕ  

problem when p  is the product of distinct smoothing primes. 

Theorem 6.5. Suppose the , ,k pAPIP RM χ−  problem is hard for any PPT adversary . A
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Then the FHE-1 is semantic security. 

6.2 Known Attack and Our Strategy 

6.2.1 Attacking Generator of the Secret Key 

When p  is a prime, gcd( 1, ) 1modnx s+ ≠ p . Since one can factor  modulo 1nx + p  

and guess a principal ideal generator for the secret key . For example, 

, where 

s
3 2 22 1 ( 8)( 11 15) mod17s x x x x x x= + + + = + + + det( ( )) 17p Rot s= = , 

. So, one can enumerate the generators of all 

possible principal ideals of , and find a small generator for each principal ideal. The 
hardness of breaking the scheme is reduced to finding a small generator of a principal ideal 

given two integers 

1 ( 9)( 15)( 2)( 8) mod17nx x x x x+ = + + + +

s

( , )ip α , where iα  is the i-th root of 1nx +  modulo p . We observe 

that in fact one must not find the smallest generator of a principal ideal, and only needs to 
solve a ‘small’ multiple of the smallest generator. So, we must avoid this attack to guarantee 
the security of our scheme. We adopt methods as follows. 

(1) We base the security of our scheme on factoring integer problem. In order to use 
small , such as n=64, 128, we set the modulo n p  to be a product of two large primes. For 

example, one selects at random , 1,is R i 2∈ =  with det( ( ))i ip Rot s=  primes, and takes 

 and 1 2 mod( 1)ns s s x= × + 1 2p p p= . To implement FHE, we apply the method of general 

parameters in Section 4.2. As far as we know, there is not an efficient algorithm which factors 

 modulo 1nx + p  without factoring p . This is probably the most interesting part of this 

paper. Since all previous schemes are based on (principal) ideal lattices [Gen09, SV10, GH11] 
or the approximate GCD [vDGHV10].  

(2) One selects p  is the product of  distinct smoothing primes. For example, 

one picks 

( )O n

( )O nς =  small polynomials , [is R i ]ς∈ ∈ , whose determinants 

det( ( ))i ip Rot s=  of their circulant matrices are co-prime smoothing factors and (1)O
ip n= , 

and takes  and 
0

mod( 1)n
ii

s s xς

=
= +∏ 0 ii

p pς

=
=∏ . For this case, we require that the 

lattice dimension  are large enough to ensure the above attack to be infeasible for arbitrary 

subset with size 

n

(log )nω  of [ ]ς . It is easy to check that the number of all possible distinct 

principal ideals of  is . To obtain FHE, we also apply the method in Section 4.2.  s ( )O nn
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(3) One takes lattice dimension large enough, lower hamming weight in the secret key, 

and smaller error term in original ciphertexts. For example, we take 8192n = , 460p = , 

 such that 
1 1 7

,0 0 0
( 2n ni j

ii i j
s s x s− −

= = =
= =∑ ∑ ∑ ) i

i j x 1
,0

1n
i ji

s−

=
=∑  for [7]j∈ . In FHE-1, we 

take 1e
∞
= . Now, we change Recrypt as follows: 

 Set , keeping only /g c p= 8 4 3 15θ = + + =  bits of precision after the binary 

point for each coefficient  of . ig g

 Evaluate  for , 2 j
ju g s= × i
K K

j [7]j∈ , where , jsi
K  is the ciphertexts of 

, and 
1

, ,0
2n j i

j i ji
s s−

=
= ∑i x h7

1 0
0.5jj

u u
=

⎢ ⎥= +⎣ ⎦∑ K . 

 Evaluate [ ]2 2
u c= , and output a new ciphertext 1 2( ) monewc u u d x= ⊕ . 

If we use large message space, we need to transform  ciphertexts into a new ciphertext. n

We know the size of the error term in juK  is at most 148192*2 2= . By applying the method 

in [GH11], one can sum 8 encrypted rational numbers juK  and easily verify that the error size 

of  is at most . To support one multiplication over homomorphic decrypted 

ciphertexts, we need that . To quickly generate the secret key, we may use the 

method in Section 4.2. On the other hand, the approximation factor of lattice reduction 

algorithm is about  over average case according to [NS06]. 

1u 2182

4572p >

2*8192 469(1.02) 2≈

In addition, the above method can also attack the schemes in [SV10, GH11]. By solving a 

small multiple of f , we concretely analyze that their schemes in [SV10, GH11] are not 

secure for the practical parameters in another paper. 

6.2.2 Lattice Reduction Attack over the Ciphertexts 

For a 0-bit ciphertext  in the public key, one can construct a b ( 1) ( 1n n )+ × +  matrix as 

follows: 
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0

1

1

0 0 0
1 0 0
0 1 0

0 0 1n

p
b

M b

b −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"
"

# # # # #
"

. 

According to the Theorem of Minkowski, the lattice generated by the matrix M has non-zero 

vector less than 1/( 1)1 nn p n2η++ ≈ . On the other hand, by the parameter of our scheme, 

there is a non-zero vector  such that s

0 1 10mod

0

1

1

2

1 0 0
0 1 0

0 0 1

i j ni j n

n

e s s s s

b
b

b

−+ =

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ "

"
"

# # # #
"

#

 

However, it is not difficult to verify that there are exponential numbers of vectors with length 

0 1 10mod 2
( 2 i j ni j n

e s s s s −+ =∑ " ) , which is maybe not the shortest non-zero vector 

of the above lattice. Thus, we can not get the secret key by this attack method. 

7. Fully Homomorphic Encryption (FHE-2) 

Since the determinant p of circulant matrix of the secret key is public in FHE-1, one can 
factor xn+1 mod p and attempt to evaluate the generator polynomial of the secret key. So, to 
avoid the above attack, we will generalize the FHE-1 based on APIP-RM to FHE-2 based on 
ALP-RM. To be efficiency, we also construct a self-loop fully homomorphic encryption 
scheme. In this section, we first present a public key encryption scheme with the plaintext 
space of single bit, then discuss how to perform homomorphic operations over this public key 
encryption scheme, next construct a new fully homomorphic encryption, analyze its security, 
and finally discuss issues of optimization and implementation. 

7.1 Public Key Encryption (PKE-3) 

PKE-3.KeyGen: 

(1) Let  be integers related to security parameter , ,n m p λ , and p  an odd integer. By 

using Lemma 3.1/3.3, one generates a pair of matries n m
pA ×∈] ,  such that m mT ×∈]

A  is statistically close to uniform over n m
p
×] , 0modAT p= ,  is an odd 

integer, and 

det( )T

( log )T O n p=  (resp. (1)T O= ). Without loss of generality, assume 
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that  is some column of  such that its first term  is an odd integer. mt∈] T 0t

(2) Let χ  be a distribution over . Choose a list m
p] ( )Oτ λ=  elements  

over  such that , 

2i ib s A e= + i

m
p] n

i ps ← ] ie χ←  with / 2ie β
∞
≤ . 

(3) Output the public key ( , , , [ ])ipk m p b i τ= ∈  and the secret key ( )sk t= . 

PKE-3.Enc. Given the public key pk  and a message bit 2x∈] , set ( ,0,...,0)x x= , 

choose a random subset [ ]S τ⊆  and an independent ‘small’ error term e χ←  with 

/ 2e β
∞
≤ . Evaluate a ciphertext 2ii S p

c b e
∈

x⎡ ⎤= + +⎣ ⎦∑ . 

PKE-3.Dec. Given the secret key , and the ciphertext , decipher . sk c [ ]
2

,
p

x c t⎡ ⎤= < >⎣ ⎦

Correctness: When 2 2 , /ii S
e e x t p

∈
< + + > <∑ 2 , Dec works correctly because: 

[ ]

[ ]

2

2

2

2

2

2

,

2 ,

( 2 ) 2 ,

2 2 ,

2 2 ,

,

p

ii S p

i ii S p

ii S p

ii S

c t

b e x t

s A e e x t

e e x t

e e x t

x t

x

∈

∈

∈

∈

⎡ ⎤< >⎣ ⎦

⎡ ⎤⎡ ⎤= < + + >⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= < + + + >⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= < + + >⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= < + + >⎣ ⎦
= < >

=

∑

∑

∑
∑

 

7.2 Homomorphic Operations of PKE-3 

It is obvious that the above PKE-3 supports addition operation over the ciphertexts. So, we 
merely discuss how to perform multiplication operation. According to the method of [BV11, 
Gen11], they consider the multiplication operation over ciphertexts as the quadratic equation, 

that is, given the ciphertexts  that encrypts 1 2,c c 1 2,x x  and the secret key t : 

. If the noise of  is small, then we can get 
1 2, 1 2( ) , ,c cQ t c t c t=< > < >i 1 2,c c 1 2x xi

⎤
⎥⎦

 by 

computing . The problem is how to perform this function under ciphertexts. 

In [BV11, Gen11], they use the tensor product t

1 2,
2

( )c c p
Q t⎡⎡ ⎤⎣ ⎦⎢⎣

t⊗  of  to implement dimension 
reduction (key switching). Here, we apply another approach. Since 

t
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1
1 2 1 2 2 1,0
, , , , ,m

i ii
c t c t c t c t c c t t−

=
< > < >=<< > >=< >∑i i , we only require generate a new 

ciphertext by evaluating . To compute this 

ciphertext, we only need to call the following subroutines BitDecomp and Powersof2 
introduced by [BV11, Gen11]. 

1 1
2 1, 2,0 1, 2, 1 1,0 0 1

( ,..., )m m m
i i i i m i ii i i

c c t c c t c c− −
−= = =

=∑ ∑ ∑ t

⎤⎥

u

Definition 7.1. (BitDecomp (Definition 5 [Gen11])). Let  and . We 

decompose y into its bit representation 

m
py R∈ logN m p= ⋅ ⎡⎢

[ log ]
2 j

j
j p

y
∈ ⎢ ⎥⎣ ⎦

= ∑ , where all of the vectors . 

Output . 

2
m

ju R∈

0 1 2log( , ,..., ) N
pu u u R⎢ ⎥⎣ ⎦

∈

Definition 7.2. (Powersof2 (Definition 6 [Gen11])). Let  and . We 

define Powersof2(y, p) to be the vector . 

m
py R∈ logN m p= ⋅ ⎡⎢ ⎤⎥

∈log( , 2 ,..., 2 )p N
py y y R⎢ ⎥⎣ ⎦⋅ ⋅

Lemma 7.1. (Lemma 2 [Gen11]). For vectors  of equal length, we have ,c t

( , ), 2( , ) , modBitDecomp c p Powersof t p c t p< >=< > . 

7.3 FHE-2 Based on ALP-RM 

We now construct our self-loop FHE-2 scheme based on ALP-RM. We want to give addition 
algorithm, multiplication algorithm and recrypting algorithm over ciphertexts. To implement 
these algorithms, we need to add the ciphertexts of encrypted secret key to the public key.  
In particular, we also use the method of FHE-1 for recrypting algorithm, that is, by applying 
Lemma 3.3, we choose the secret key with small hamming weight. Certainly, we may choose 
general parameters by applying the method in Section 5.2. In addition, to implement FHE-2, 
we also can use the dimension reduction (key switching) and modulus switching in [BV11, 
Gen11].  
Notice that in some sense, our scheme extends their schemes to more general form. The 
public key of our scheme is the ciphertexts of their scheme. On the surface, this difference is 
small. In fact, this results in that the security of our scheme depends on the hardness 
assumption of the ALP problem. In this point, we believe that there is a relationship between 
the ALP and the closest vector problem (CVP). So, we may say that this paper extends the 
LWE problem to the ALP problem, and constructs a new fully homomorphic encryption based 
on ALP-RM. 
Our FHE-2 constructs as follows: 
FHE-2.KeyGen. 

(1) Generate ( , , , [ ])ipk m p b i τ= ∈ , ( )sk t= ,  by using KeyGen in Section 7.1. By 

Lemma 3.3, assume 

A

1 1 1
0 1 0, 1, ,0 0 0

( , ,..., ) ( 2 , 2 ,..., 2 )j j j
m j jj j j

t t t t t t tη η η− − −

m j
Τ Τ

= = =
= = ∑ ∑ ∑  
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such that  with 0 2 1t θ= + [ ] \ 0θ η∈ , , [ 1] \ 0it S i m∈ ∈ −  and 

1

0
( ) (log )m

ii
w tρ ω λ−

=
= =∑ , where , 1{0,1,2 ,..., 2 }S η−= 1 η  is a constant integer, 

 is the hamming weight of . ( )iw t it

(2) Let . Choose a list elements logN m p= ⋅ ⎡⎢ ⎤⎥ ,, , 2i j i j i jb s A e= +  over  such that 

, 

m
p]

,
n

i j ps ←] ,i je χ←  with , / 2i je β
∞
≤ , where [ 1], [ 1i m j N ]∈ − ∈ − . 

(3) Let '
iB ,  be a matrix with row vectors ,[ 1i m∈ − ] ],i jb [ 1j N∈ − . Evaluate 

' 2( , )i i iB B Powersof t p= + , where  is added to the i-th column of 2( , )iPowersof t p

'
iB . 

(4) Choose a list elements , , , 2i j i j i jb s A e= + , ][ 1], [ 1i m j η∈ − ∈ −  over  such that 

, 

m
p]

,
n

i j ps ←] ,i je χ←  with , / 2i je β
∞
≤ , and evaluate , , ,( ,0,...,0)i j i j i j p

t b t⎡ ⎤= +⎣ ⎦
K

, 

denoted as 
1 1 1

0, 1, ,0 0 0
( 2 , 2 ,..., 2 )j j j

j jj j j
t t tη η η− − −

m jt Τ
= = =

= ∑ ∑ ∑K K K K
. 

(5) Output the public key 1
0 0( , ,{ } ,{ } , )m

i i i ipk m p b B tτ −
= ==

K
, and the secret key . ( )sk t=

FHE-2.Enc. Given pk  and a message bit 2x∈] , call PKE-3.Enc(pk, x). 

FHE-2.Dec. Given , and a ciphertext , call PKE-3.Dec(sk, c). sk c

FHE-2.Add. Given pk  and ciphertexts , output 1 2,c c [ ]1 2 p
c c c= + . 

FHE-2.Mul. Given pk  and ciphertexts , set 1 2,c c 1
2, 10

( )m
i ii p

c BitDecomp c c−

=
B⎡ ⎤= ⎣ ⎦∑ i . 

FHE-2.Recrypt. Given pk  and ciphertext , compute as follows: c

(1) Set , keeping only /c c p=K log 3θ ρ= +⎡ ⎤⎢ ⎥  bits of precision after the binary point for 

each entry  of vector c . icK K

(2) Evaluate 1 2
, 0.5u c t= ⎡ < > + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
KK  and [ ]2 2

,u c t= < >
K

. 

(3) Output a new ciphertext . 1 2newc u u= ⊕

Correctness: the FHE-2.Add works correctly since 

[ ] [ ] [ ] [ ]1 2 1 2 1 2 1
2 2 22

, , , ,
p p pp

c c t c c t c t c t x x⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤< + > = < + > = < > + < > = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ 2p
. 
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The FHE-2.Mul works correctly since 

[ ]
2

1
2, 10

2

1
2, 10

2

1
2, 10

2

1 '
2, 10

,

( ) ,

( ) ,

( ) ,

( ) ( 2( , ) ),

p

m
i ii p p

m
i ii p

m
i ii p

m
i i ii

c t

BitDecomp c c B t

BitDecomp c c B t

BitDecomp c c B t

BitDecomp c c B Powersof t p t

−

=

−

=

−

=

−

=

⎡ ⎤< >⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= < >⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= < >⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= < >⎢ ⎥⎣ ⎦⎣ ⎦

= < +

∑

∑

∑

∑

i

i

i

i

[ ]

2

2, 1
2

1
2,0 1, 2, 1 1,0 1

2

1 2
2

1 2

( ) 2( , ) ),

,..., ,

, ,

p

i i p

m m
i i m i ii i p

p

BitDecomp c c Powersof t p t

c c t c c t t

c t c t

x x

−
−= =

⎡ ⎤⎡ ⎤>⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= < >⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= < >⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= < > < >⎣ ⎦
=

∑ ∑

i

i

i

 

In the above equality, we require that the noise of ciphertext is less than / (2 )p n t . 

Now, we estimate the noise bound of the ciphertext after one homomorphic multiplication. 

Given two ciphertexts , we have 1 2,c c

[ ] [ ] [ ]1 2 1 2 1 2, , , , 2 , ,
p p p

c t c t c t c t e x t c t⎡ ⎤< > < > = < < > > = << + > >⎣ ⎦i i
p

i . 

According to FHE-2.Enc, 2
1 22 , 2e x t e m tβ< + > ≤i . On the other hand, to compute 

12 ,e x t c< + >i 2 p

p 2

, one requires to sum  ciphertexts. This results in noise at most 

. So, the noise bound of the ciphertext 

2 logm

2 logm β 1c c c= ×  is at most 

2 2log ( )m p m t O mβ β+ ≈ 3

p

. 

Theorem 7.1. When , the FHE-2.Recrypt correctly generates a ‘fresh’ ciphertext 

 with the same message of and smaller error term, and two homomorphic-decrypted 

ciphertexts support one multiplication. 

( )Om ρ <

newc c

Proof: This proof is similar as that of theorem 5.1.■ 

7.4 Security 

In this section, we present the hardness assumption of the security of our scheme.  
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Theorem 7.2. Suppose p  is the product of distinct smoothing primes. Then there is a 

probabilistic polynomial time reduction from the search , ,n pLWE χ  to , , ,n m pALP RM χ− . 

Proof: This proof is similar as that of theorem 6.2.■ 

Theorem 7.3. Suppose the , , ,n m pALP RM χ−  problem is hard for any PPT adversary A . 

Then the FHE-2 is semantic security. 

7.5 Optimization 

7.5.1 Large Message Space 

In the FHE-2, we can apply PKE-1 to extend the plaintext space. So, we directly add the 
encrypted secret key to the public key. Namely, the public key includes the encrypted matrix 

[ ] 1
2

( )T T −i  same as the encrypted vector  in FHE-2. This is because  t

[ ]

[ ]

[ ]

[ ]
[ ]

1
2 2

1
2

2

1
2

2

1
2 2

1
2 2

( ( ) )

( 2 ) ( ( )

( 2 ) ( ( ) )

( 2 ) ( ( ) )

( ( ) )

p

i ii S p

ii S p

ii S

c T T

x s A e T T

x e T T

x e T T

x T T

x

−

−
∈

−
∈

−
∈

−

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= +⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= ⎣ ⎦
=

∑

∑
∑

i i

i i

i i

i i

i i

)

. 

Now, if we need to perform bit operation, then we first unpack a ciphertext encrypted m bits 
into m ciphertexts with each encrypted a single bit. After operating, we can combine m 
ciphertexts of single bit into a ciphertexts by homomorphicly decrypting each ciphertext bit in 
the corresponding location of a new ciphertext vector. 

Thus, the expansion rate of our FHE-2 is log ( )p O λ= , which can be improved to 

(log )O λ  by applying dimension reduction [BV11]. We observe that our method is also 

suitable for the scheme in [BV11, Gen11, LNV11]. 

7.5.2 Setting the Aggressive Public Key 

Since  in PKE-3 is not public, we can set aggressively A (0,..., ,...,0) modi i

t is in i th column

B S A t p
−

= +��	�
  

in FHE-2.KeyGen. So, we decrease a factor log p  of the public key size. 
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7.5.3 Optimizing the Secret Key 

For FHE-2, we can further optimize to decrease modulus p . Take  with 

 such that  for 

0
2i

ii
t uρ

=
=∑

2
m

iu ∈] 1
,0

1m
i jj

u−

=
=∑ [ ]i ρ∈  and iuK  is ciphertext vector of . We 

modify FHE-2.Recrypt as follows: 

iu

(1) Set , keeping only /c c p=K log 3θ ρ= +⎡ ⎤⎢ ⎥  bits of precision after the binary point for 

each entry  of vector c . icK K

(2) Evaluate 2 ,i
iu c ui=<
KK K K >  for [ ]i ρ∈ , 1 0 2

0.5jj
u uρ

=
h⎡ ⎤= +⎣ ⎦∑

KK , and 

[ ]2 0 2
,u c u= < >K . 

(3) Output a new ciphertext . 1 2newc u u= ⊕

7.6 Extension to ALP-UM 

For the above FHE-1 (resp. FHE-2), their security depends on the hardness assumption of the 
APIP (resp. ALP-RM). According Section 6.2.1, we know there is an attack of solving secret 
key for certain parameter setting. Although we currently do not know there is a similar attack 
for FHE-2. For the FHE-1, we must set large lattice dimension to avoid this attack. Indeed, we 
can design a general fully homomorphic encryption scheme based on ALP-UM or APIP-UM. 
In Section 3.2.2, we have proposed a public key encryption based on ALP-UM (PKE-2). Thus, 
it is not difficult to verify that by applying the same method of FHE-2, we can construct a 
new fully homomorphic encryption based on ALP-UM, whose security depends on the 
hardness of solving the ALP-UM problem. Of course, this scheme also works for the 
APIP-UM problem. 

8. Conclusion and Open Problem 

In this paper, we have constructed two new fully homomorphic encryption schemes, whose 
securities respectively depend on the hardness assumptions of the APIP problem and the ALP 
problem. 
This paper raises some interesting open problems. First, the securities of our schemes are 
based on the hardness of the decisional version of the APIP and ALP. It would be most 
desirable to reduce the search version to the decision version for the APIP/ALP problem. 
Second, the FHE-2 scheme has low efficient, can we improve its efficiency? Third, our public 
key has the form of the closest vector problem, whether or not we can build the relationship 
between the ALP problem and the CVP problem. 
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