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Abstract: We first present a fully homomorphic encryption scheme over the integers, which 
modifies the fully homomorphic encryption scheme in [vDGHV10]. The security of our 
scheme is merely based on the hardness of finding an approximate-GCD problem over the 
integers, which is given a list of integers perturbed by the small error noises, removing the 
assumption of the sparse subset sum problem in the origin scheme [vDGHV10]. 
Then, we construct a new fully homomorphic encryption scheme, which extends the above 
scheme from approximate GCD over the ring of integers to approximate principal ideal lattice 
over the polynomial integer ring. The security of our scheme depends on the hardness of the 
decisional approximate principle ideal lattice polynomial (APIP), given a list of approximate 
multiples of a principal ideal lattice. At the same time, we also provide APIP-based fully 
homomorphic encryption by introducing the sparse subset sum problem. 
Finally, we design a new fully homomorphic encryption scheme, whose security is based on 
the hardness assumption of approximate lattice problem and the decisional SSSP. 
Keywords: Fully Homomorphic Encryption, Approximate Lattice Problem, Approximate 
Principal Ideal Lattice, Approximate GCD, BDDP, SSSP 
 

1. Introduction 

We construct a new fully homomorphic encryption schemes based on approximate lattice 
problem over the integers. Our scheme directly works on the integers without modulus. Our 
first scheme is to modify their scheme [vDGHV10] to a FHE without the sparse subset sum 
problem. Then we construct a new APIP-based FHE over the integers. Finally, we design a 
FHE based on approximate general lattice problem. Now, we describe the second scheme. 

Assume  the parameter of security, n [ ]/ 1nR Z x x= < + >  is a ring over the integers. The 

public key is a list of approximate multiples { }
0

( 2 ) mod( 1) , ( )n
i i i i

b a f e x O n
τ

τ
=

= + + =  

for a polynomial f R∈ , where ,  is the uniformly random elements over ia ie R  such that 

(1)O
ia n
∞
≤  and / 2ie n

∞
≤ . The secret key is a polynomial  such that [ ]s Z x∈
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( / ) mod( 1) 1nf s p x× + = , where p  is the determinant of the circulant matrix of , 

namely 

s

det( ( ))p Rot s= . To encrypt a message bit , the ciphertext is computed as 

, where 

m

, {0,..., }
2ii T T

c b
τ∈ ⊆

= +∑ e m+ / 2e n
∞
≤ . To obtain addition or multiplication of the 

messages in the ciphertexts, we simply add/multiply the ciphertexts as the 
addition/multiplication over R . To decrypt a ciphertext , we compute the message bit 

, where 

c

( / 0.5 ) mod mod 2m c f c s p h x= − × × +⎢ ⎥⎣ ⎦
1

0

n i
i

h x−

=
= ∑ . 

It is easy to see that if we set , 1n = 1s = , f p= , then our scheme in this paper becomes 

that in [vDGHV10]. So, our scheme adapts their scheme from one dimension to multiple 
dimensions. 

In the above scheme, we use the matries n mA ×∈] , m mT ×∈]  to substitute ,f s , then we 

can obtain a FHE based on approximate lattice problem over the integers. 

1.1 Our Contribution 

Our schemes are different from the previous both underlying the hardness assumption and 
implementing the method of FHE. Our first scheme removes the hardness assumption of the 
SSSP in [vDGHV10] to implement FHE. Our second scheme constructs a new FHE based on 
approximate principal ideal lattice problem over the integers, which extends the scheme of 
[vDGHV10] from one dimension to multiple dimensions. Our third scheme design a new 
FHE based on approximate general lattice problem. As far as we know, this approximate 
lattice problem does not consider in the previous work. The size of the public key in our 

scheme is  bits, and the expansion factor of ciphertext is . The 

security of our first scheme relies on the hardness assumption of finding an approximate 
principle ideal lattice problem (APIP), given a list of approximate multiples of a polynomial 

3( log )O n n ( log )O n n

f , and solving the sparse subset sum problem. To remove the hardness assumption of SSSP, 

we design a new fully homomorphic encryption merely based on decisional approximate 
principle ideal lattice problem. In fact, the objective we hide modulus p  is to prevent 

adversary factoring 1modnx p+ , since 1nx +  and  have a common factor.  s

In this paper, we design fully homomorphic encryption scheme based on approximate lattice 
problem over the integers by using self-loop method or circle encrypted secret key. So, we 
assume our schemes are KDM-secure.  
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1.2 Related work 

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which 
now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08, 
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed 
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key 

is approximately  bits, the computation per gate costs  operations. Smart and 

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively 

small key  bits , ciphertext size  bits and computation per gate at least 

 operations, which is in some sense a specialization and optimization of Gentry’s 

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully 
homomorphic encryption scheme over the integers, whose security depends on the hardness 
of finding an approximate integer gcd. Stehle and Steinfeld [SS10] improved Gentry's fully 

homomorphic scheme and obtained to a faster fully homomorphic scheme, with   

bits complexity per elementary binary addition/multiplication gate, but the hardness 
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].  

7n 6( )O n

3( )O n 1.5(O n )

n

3( )O n

3.5( )O n

1.3 Outline 

We recalls some notations and definitions in Section 2, and then this paper is organized in two 
parts. In Part I, we construct a fully homomorphic encryption based on hidden odd integers. 
We first describe a somewhat homomorphic encryption scheme in Section 3, then transform it 
into a FHE in Section 4, and finally give its security in Section 5. In Part II, we adapt the 
above FHE from one dimension to multiple dimensions. First, we construct a new somewhat 
homomorphic encryption in Section 6, then transform it into a fully homomorphic encryption 
by introducing the hardness of SSSP in Section 7. What is more, we describe a new FHE by 
using method of re-randomizing the secret key 1/p, and give the hardness assumption of the 
security of scheme. In part III, we construct a new FHE based on approximate lattice problem 
over the integers. In Section 13, we give further direction. 

2. Preliminaries 

2.1 Notations 

Let  with the power of  be a security parameter. [n 2 ] {0,1,..., }n = . Let 

. For [ ]/ 1nR Z x x= < + > f R∈ , we denote by f
∞

 the infinity norm of its coefficient 

 3



vector, [ ]2
f  the polynomial of its coefficient modulo 2. For R , its expansion factor mulγ  

is , that is, n u v n u v
∞ ∞

× ≤ ⋅ ⋅
∞

, where ×  is multiplication in R . 

Let  denote to choose an element  in  according to the distribution w ψ← S w S ψ . For 

the distributions ,A B ,  is computationally indistinguishing by arbitrary 

probabilistic polynomial time algorithm. 

cA B≡

2.2 Lattice 

Given  linearly independent vectors , the lattice is equal to the set n 1 2, ,..., n
mb b b ∈\

1 2 1
( , ,..., ) { , }m

m i i ii
L b b b x b x

=
= ∈∑ ]  of all integer linear combinations of the ’s. We also 

denote by matrix 

ib

B  the ’s. In this paper, we only consider the lattice over the integers, 

i.e., .  

ib

n
ib ∈]

An ideal I R⊆  is a principal if it only has a single generator. For the coefficient vector 

 of u , we define the cyclic rotation 0 1 1( , ,..., )T
nu u u u −=K R∈ 1 0 2( ) ( , ,..., )T

n nrot u u u u− −= −K , 

and its corresponding circulant matrix 1( ) ( , ( ),..., ( ))n TRot u u rot u rot u−= K K K . ( )Rot u  is 

called the rotation basis of the ideal lattice . The detail may be found in the [Mic07]. For ( )u

,f u R∈ , [ ]uf  is the coefficient vector of f  modulo the rotation basis of , namely, u

mod ( )f Rot u
K

. 

2.3 Approximate Lattice Problem 

In the following, we define the approximate-GCD from [vDGHV10], and extend it to the 
approximate principal ideal lattice problem in this paper. 
Definition 2.1. (Approximate-GCD over the Integers (AGCD)). Given a list of 

approximate multiples of p : 1
0{ : , , 2n

i i i i i i ib a p e a Z e Z e }τ−
+ == + ∈ ∈ < , find p . 

Definition 2.2. (Approximate Principal Ideal Lattice Problem (APIP)). For a polynomial 

f R∈  and a distribution ϕ  over R  subject to e ϕ R←  and , the 

distribution 

|| || / 2e n∞ ≤

,fH ϕ  over R  is generated by choosing uniformly random element  Ua R←
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and , and outputting . The APIP problem, denoted e ϕ← R ( 2 ) mod( 1)nb a f e x= × + +

,fAPIP ϕ , is defined as follows: Given access to arbitrary many independent samples from 

,fH ϕ , find f . The decision version of APIP, denoted ,fdAPIP ϕ , is to distinguish ,fH ϕ  

from . Ug R←

Definition 2.3. (Approximate Lattice Problem (ALP)). Let  be integers related to 

security parameter 

,n m

λ , and χ  a distribution over . Given a list samples  of the 

distribution 

m] ib

, ,n mD χ  over  such that m] n mA ×← ] , , n
is ←] ie χ←  and 

, the ALP 2i ib s A e= + i , ,n mALP χ  is to distinguish the distribution , ,n mD χ  from the 

uniform distribution over . m]
Definition 2.4. (Decision Bounded Distance Decoding Problem). For R , the challenger 

sets {0,1}Rα ←  and . If 0 0( ) mod( nb a f x= × +1) 0α = , it samples 1 ,R fr H ϕ←  and 

sets . If 1 0mod ( )r r Rot b= 1α = , it samples  uniformly from r 0mod ( )R Rot b . The 

problem is to guess α  given . 0( , )r b

Part I FHE-1 Based on Approximate GCD Problem 

3. Somewhat Homomorphic Encryption (SHE-1) 

In this section, we present a somewhat homomorphic encryption, which is similar to that in 
[vDGHV10] and simply analyze its performace in this section. 

3.1 Construction 

Key Generating Algorithm (SHE-1.KeyGen).  

(1) Select an odd integer 
2 32np +>  such that 1/s p≈ , , and 

2 31 (2 nsp O − −= + )

( ) (log )h s nω= , where  is the number of  in the binary representation of . ( )h s 1 s

(2) Pick random integers  subject to the largest  is an odd integer, 
2( )(2 , 2 )O n n

ia ∈ 0a

, [ie Z i ]τ∈ ∈  with 12n
ie −< . Then compute 0 0 2b a p e0= + , and [ ]

0
2i i i b

b a p e= + . 
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(3) Choose  approximate integers ( )t O n= 0{ 2 t
i i i id a p e } == × +  with 12n

ie −<  such 

that , , and 1 / 2n
i id d+ < 2

0 / n
tb d < 2 0 0d b= . 

(4) Output the public key , and the secret key . { } 00
( , ,{ } )t

i i ii
pk n b dτ

==
= ( )sk p=

Encryption Algorithm (SHE-1.Enc). Given the public key pk  and an message bit 

, choose a random subset {0,1}m∈ [ ]T τ⊆  and an independent perturbed error polynomial 

 with e 12ne −< . Compute the ciphertext 
0

2ii T b
c b e

∈
m⎡ ⎤= + +⎣ ⎦∑ . 

Add Operation (SHE-1.Add). Given the public key pk , and the ciphertexts , 

evaluate the ciphertext 

1 2,c c

[ ]
0

1 2 b
c c c= + . 

Multiplication Operation (SHE-1.Mul). Given the public key pk , and the ciphertexts 

, evaluate the ciphertext 1 2,c c [ ]
0

1 2( )
b

c Opt c c= × , where  is same as the optimizations 

of Section 3.3 in [vDGHV10]. 

Opt

Decryption Algorithm (SHE-1.Dec). Given the secret key , and a ciphertext , decipher sk c

[ ] mod 2
p

m c= . 

Remark 3.1: To quickly generate p , we may select  with 
2

2

2 6

3
2n j

jj n
s s+ −

= +
=∑

( ) (log )h s nω=  and , such that its inverse 2( ) 2 6len s n= + p  is an odd integer and 

, where len is the length of s in binary representation. 
2 31 (2 nsp O − −= + )

Example 3.1. Let 4n = . We select at random 
38 22 28 29

19
2 2 2 2j

jj
s s − − − −

=
= = + +∑ , where 

( ) (log ) 3h s nω= = , , and compute . It is 

easy to verify that . Now, we can use  

as the secret key in the above SHE. 

2( ) 2 6 38len s n= + = 1/ 4098251p s= =⎢ ⎥⎣ ⎦

190.9999999423 1 (2 )s p O −= = +i 4098251p =

3.2 Performance of SHE-1 

The size of the public key  is  bits, the size of the secret 

key  is . The running times of Enc, Dec, Add, Mul are , , 

{ } 00
( , ,{ } )t

i i ii
pk n b dτ

==
= 3( )O n

( )sk p= 2( )O n 3( )O n 2( )O n
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2( )O n , and , respectively. The expansion factor of ciphertext is . 2( log )O n n 2( )O n

4. Fully Homomorphic Encryption (FHE-1) 

We first construct a new fully homomorphic shceme from SHE-1 by applying self-loop 
Gentry’s bootstrappable technique, then discusses how to remove self-loop bootstrappable 
technique. Since the multiplication operation increase the degree of perturbed error noise, we 
require to reduce it to obtain fully homomorphic encryption. We refresh a ciphertext  to a 

new ciphertext  with the smaller error noise by using Gentry’s bootstrappable technique. 

To implement this function, we encrypt the secret key  generated by KeyGen and add the 
ciphertexts of  to the public key. 

c

newc

s
s

4.1 FHE-1 Scheme 

FHE-1.KeyGen Algorithm. 

(1) First, generate pk  and  as SHE. sk

(2) Assume . Choose random integers  ,  with 
2

2

2 6

3
2n j

jj n
s s+ −

= +
=∑

2( )(2 , 2 )O n n
ja ∈ je Z∈

12n
je −< , , and compute 2[ 3j n∈ + ] 2

0
3

2j j j j n b
s a p e s

+ +
⎡ ⎤= + +⎣ ⎦
K . 

(3) Output the public key 
2 23 ( 3)

0 0 0
( , ,{ } ,{ } , 2 )nt

i i i i jj
pk n w b d s sτ +∗ −

= = =
= =∑ j n+ +K K

, and the secret 

key , where . ( )sk p∗ = ( )w h s=

The Enc, Dec, Add, Mul algorithms are identical to ones in the above SHE. 
Remark 4.1: We may also generate the secret key as follows. Choose an arbitrary odd integer 

p  and a random fraction  with 1s 1( ) (log )h s nω= , and compute p ’s inverse 

. The public key includes  and the ciphertexts 1 2 1/s s s p= + ≈ 2s 1s
K  of the bits of . 

Now, the public key is modified into 

1s

2 23 ( 3)
0 0 1 0

( , ,{ } ,{ } , 2 , )nt j
i i i i jj 2

npk n w b d s s sτ + − + +
= = =

= =∑K K .  

It is not difficult to verify that the above parameters can implement FHE. 

Example 4.1. Let 4n = . We select at random an odd integer 534019p =  and a fraction 

 with 
38 22 25 34

1 19
2 2 2 2j

jj
s s − − − −

=
= = +∑ + 1( ) 3h s = , set 1 2 1/s s s p= + ≈ , and compute 

. It is easy 

to verify that . Now, we can use  as the 

20 21 23 25 26 27 29 31 34 35 36 37
2 2 2 2 2 2 2 2 2 2 2 2 2s − − − − − − − − − − − −= + + + + + + + + + + +

190.9999999423 1 (2 )s p O −= = +i 534019p =
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secret key in the above SHE. 
Recrypting algorithm (FHE-1.Recrypt). Evaluate a new ciphertext 

0.5 mod 2 mod 2nc c s c= × + ⊕⎢ ⎥⎣ ⎦
K . 

Theorem 4.1. FHE-1.Recrypt correctly generates a ‘fresh’ ciphertext  with the same 

message of  and the perturbed error noise  subject to 

newc

c e 1/22 ( / 8)e p< . 

Proof: We know the general form of ciphertext 2c ap e m= + +  subject to 2e p≤ / 8

+

. So,  

0.5 mod 2 ( 2 ) 0.5 mod 2 mod 2c s ap e m s a× + = + + × + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . 

By using , we obtain the message 

. Thus, Recrypt only substitutes  with 

0 mod 2 ( 2 ) mod 2 mod 2c c ap e m a m= = + + =

0 mod 2m c a= + s sK , which is the form of the 

ciphertexts of bits in . It is not difficult to verify that FHE-1.Recrypt algorithm correctly 

computes a new ciphertext  of  in  by using the ciphertext arithmetic circuit and 

the fact 

s

newc m c

( ) (log )h s nω= , and  has the error noise less than newc 1/22 ( / 8)e p< , namely, it 

now can carry out at least one multiplication operation. Notice that FHE-1.Recrypt uses the 
methods of the hamming weights, the symmetric polynomials and the three-for-two, all of 
which are explained in [Gen09, vDGHV10].■ 
Now we only need to prove our scheme can compute the circuit depth of FHE-1.Recrypt. 
Lemma 4.1. The FHE-1.Dec algorithm from the above scheme is correct, if the error noise of 

ciphertext is less than / 8p  when decrypted. 

Lemma 4.2. The above scheme is correct for arbitrary arithmetic circuit  with addition 

and multiplication gates, and circuit depth 

C

2logd n= . 

Proof. Assume 2j j j jc a p e m= + + 1,2j, =  are the ciphertexts of arbitrary two bits of  

generated by FHE-1.KeyGen in FHE-1. To correctly decrypt, the perturbed error noise of 
ciphertext output by arithmetic circuit can not be too large. The error noise in addition gate is 
linearly rising, whereas the error noise in multiplication gate is exponentially increasing. So, 
the multiplication operation dominates the depth of arithmetic circuit. Now, we estimate the 
bound of the perturbed error term in the ciphertext generated by one multiplication operation. 

s

1 2

1 1 1 2 2

1 2

 ( 2 ) ( 2
 ( 2 )

c c c
a p e m a p e m
a f e m m

= ×
= + + × + +
= × + +

2 )

( 2 ) 2a a p e m a a e a m= + + × + + 1 2 2 1 2(2 )e e e m m e

. 

where , 1 1 1 2 1 2 1 2 = × + + . 
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So, 2
1 2 2 1 22 2 (2 ) 2 2 ne e e m m e= × + + < . 

Since the perturbed error noise in the ciphertexts  are less than . So, the error term 

for one multiplication operation is less than . Thus, To correctly decrypt, the depth  

of arithmetic circuit must be satisfied inequality 

1 2,c c 2n

2(2 )n d

2(2 ) / 8
dn p≤ , namely, 

2log(log( / 8) / ) logd p n= = n .■ 

4.2 Performance of FHE-1 

For our FHE, the size of the public key pk∗  is  the size of the secret key 

 is . The expansion factor of ciphertext is .  

4( )O n

( )sk p∗ = 2( )O n 2( )O n

5. Security of FHE-1 

5.1 Security Reduction 

The security of our scheme is based on the hardness of the approximate-GCD over integers, 
which follows from Theorem 4.2 in [vDGHV10]. 
Theorem 5.1. Suppose there is an algorithm A  which breaks the semantic security of our 
SHE with advantage ε . Then there is an algorithm  for solving AGCD with advantage at 
least 

D
/ 2ε . The running time of  is polynomial in the running time of , and D A 1/ ε . 

5.2 Known Attack 

Since our scheme is similar to the scheme in [vDGHV10], all known attacks for their scheme 
are also appropriate for our scheme. But for the approximate GCD of many numbers attacked 
by using the LLL algorithm, we analyze as follows. 
To simply describe, we use the same notations as that in [vDGHV10], and only adapt to our 
corresponding parameters. For the target solution vector 

0 1 0 0 0 1 0 1 0 0 0 0 0( , ,..., ) ( 2 , ( / / ),..., ( / / ))n
t tv a a a M a b a b b a a b a b b a a= × = − −K

t , 

Where  and . First, 
2( )

0 2 2n O na ≤
2( )

0 0 0 0( / / ) 2O n
i ib a b b a a− ≤ vK  maybe is not the 

shortest nonzero vector in , because the length of the first row vector in the matrix L M  is 

also 
2( )

1 2 2
(2 , , ,..., ) 2n

tb b b = O n . Second, for large , there are exponentially many vectors t
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in  of length at most .  L
2( )2O n

Thus, to guarantee the security of our scheme, the parameters in our scheme can resist this 

attack, and do not need to set  the size of public key in [vDGHV10]. 5n

Part II FHE-2 Based on Approximate Ideal Lattice Problem 

6. Somewhat Homomorphic Encryption (SHE-2) 

In this section, we extends SHE-1 in Section 3 from approximate GCD over the integer ring 
to approximate principal ideal lattice over the polynomial ring, and construct a new somewhat 
homomorphic encryption scheme based on approximate principal ideal lattice problem. 

6.1 Construction 

Key Generating Algorithm (SHE-2.KeyGen).  

(1) Select a random polynomial 
1

0

n i
ii

s s−

=
= x∑  such that  is an 

odd number and 

logdet( ( )) 2n np Rot s= >

s n
∞
≤ . 

(2) Evaluate f  over R  subject to ( ) / 1mod( 1)ns f p x× = + . 

(3) Compute [ ]
0

2i i i b
b a f e= × +  with ( )O nτ = , (2 )n

ia O
∞
≤  and , 

where 

|| || / 2ie n∞ ≤

0ib b
∞ ∞
≤ . 

(4) Choose  at random ( )t O n= , , [i ia e R i t]∈ ∈  such that 1
0/ i

id b n +
∞ ∞

≤ , and 

, and then compute || || / 2ie n∞ ≤ 1{ 2 t
i i i id a f e } == × + . 

The public key is { } [ ] { } [ ]( , , )i ii i
pk n b d

τ∈ ∈
=

t
, the secret key is [ ]2

( , , )sk p s f= . 

Encryption Algorithm (SHE-2.Enc). Given the public key pk  and an message bit 

, choose a random subset {0,1}m∈ [ ]T τ⊆  and an independent ‘small’ error term  with 

. Compute the ciphertext 

e

|| || / 2e n∞ ≤
0

2ii T b
c b e

∈
m⎡ ⎤= + +⎣ ⎦∑ . 

Add Operation (SHE-2.Add). Given the public key pk , and the ciphertexts , 1 2,c c
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evaluate the ciphertext [ ]
0

1 2 b
c c c= + . 

Multiplication Operation (SHE-2.Mul). Given the public key pk , and the ciphertexts 

, evaluate the ciphertext 1 2,c c 1 2(c Opt c c )= ×  such that 0c b
∞ ∞
≤ , where  is 

similar as that in [vDGHV10], namely, 

Opt

1 01 2[[[[[ ] ] ]...] ]
t td d d bc c c

− 0
= × . 

Decryption Algorithm (SHE-2.Dec). Given the secret key , and the ciphertext c , 
decipher 

sk

[ ] 22 2
( / 0.5 mod [ mod ]m c s p h f x c x⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦ . 

Remark 6.1: It is not difficult to show that the coefficients of quotient all are small for the 

operation of each modulus  according to the size of id 1( )id −

∞
 over the rational number 

. _

6.2 Correctness 

Lemma 6.l. The SHE-2.Dec is correct, if the infinity norm of the error term in the ciphertext 

is less than / (8 )p n⎢⎣ ⎥⎦  when decrypted. 

Proof. Given the ciphertext  and the secret key , it is not difficult to verify that  has 

the form . To decrypt the ciphertext , we simply compute 

c sk c

2c a f e m= × + + c

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ]

2 22

2 22

2 22

2 22

2 2 2 22 2

/ 0.5 mod mod

( 2 ) / 0.5 mod mod

( / ) (2 ) / 0.5 mod mod

mod mod

mod ( )mod

c s p h f x c x

a f e m s p h f x c x

a f s p e m s p h f x c x

a f x c x

a f x a f m x

m

⎡ ⎤× + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × + + × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × × + + × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × ⊕⎣ ⎦

⎡ ⎤ ⎡ ⎤= × ⊕ × +⎣ ⎦ ⎣ ⎦
=

. 

Since 2 /e p
∞
< ⎢ ⎥⎣ ⎦8n , 

1
(2 ) / 1/ (8 ) 1/ 8e m p s n s

∞
+ × ≤ × < . 

It is easy to verify that all other algorithms are also correct in the above scheme. 

6.3 Performance of SHE-2 

The size of public key { } [ ] { } [ ]\0( , , )i ii i t
pk n b d

τ∈ ∈
=  is , the size of secret key 3( log )O n n
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[ ]2
( , , )sk p s f=  is . The expansion factor of ciphertext is . The 

running times of Enc, Dec, Add, Mul algorithm is respectively , 

, , and . 

( log )O n n 2( log )O n n

3( log )O n n

2( log log log )O n n n 2( log )O n n 3( log log log )O n n n

7. Fully Homomorphic Encryption (FHE-2) 

To construct an FHE from SHE, we need to give a new algorithm Recrypt, which freshens a 

‘dirty’ ciphertext  into a new ciphertext  with the ‘smaller’ error term and the same 

plaintext of . To do this, we introduce the sparse subset sum problem and add the hint of the 
secret key to the public key. Now, we modify the SHE as follows: 

c newc

c

7.1 Construction 

Key Generating Algorithm for FHE-2 (FHE-2.KeyGen). 

(1) Generate { } [ ] { } [ ]\0( , , )i ii i t
pk n b d

τ∈ ∈
=  and 2( , ,[ ] )sk p s f=  as before. 

(2) Choose at random a set  of  polynomials 1S 1t [ ]ig Q x∈  with 2ig
∞
<  such that 

there is a subset  of  polynomials with 2S 2t
2 22

1/ii S
g s p

p∈
∞

⎡ ⎤ − <⎣ ⎦∑ . 

(3) Set  for  and 1isk = 2i S∈ 0isk =  for 1 2i S S∈ − . 

(4) Encrypt  as  with ||  and || . isk 2i i isk a f e sk= × + +
JJK

i || (2 )n
ia O∞ ≤ || / 2ie n∞ ≤

(5) Encrypt 2[ ]jf  as 22 [ ]j j j jf a f e f= × + +
K

 with ||  and . 

Let 

|| (2 )n
ja O∞ ≤ || || / 2je n∞ ≤

2[ ]f
JJJK

 denote the ciphertext polynomial of 2[ ]f . 

(6) Output the secret key 2( , ,[ ] )sk p s f=  and the public key 

10 1 2 2( ,{ } , , ,{ , } ,[ ] )ii i i i Spk n b t t sk g fτ
= ∈=

JJK JJKJ
. 

7.2 Recrypt Algorithm 

Recrypting Algorithm (FHE-2.Recrypt(pk, c)). 

(1) Compute [ ]2ir c g= × i , keeping only 2log 3sθ = +⎡ ⎤⎢ ⎥  bits of precision after the 
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binary point for each coefficient of . ir

(2) Evaluate , ii iu r sk= ×
JJK

1 2 2
0.5ii S

u u
∈

h⎡ ⎤⎢ ⎥⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦∑  by using the symmetric 

polynomials in [GH10]. 

(3) Output a new ciphertext 2 2 2
[ mod ] ( [ ] ) modnewc c x u f x⎡ ⎤= ⊕ ×⎣ ⎦

JJJK
. 

Theorem 7.1. FHE-2.Recrypt correctly generates a ‘fresh’ ciphertext  with the same 

message of , and support a product of two recrypting new ciphertexts when 

newc

c
222

1 2( )
8

t pn t t
n

< . 

Proof: It is not difficult to verify that FHE-2.Recrypt correctly generates a new ciphertext of 
 by using the method of symmetric polynomials over ciphertext operations. So, we only 

need to analyze the perturbed noise size in FHE-2.Recrypt. To simplify analysis, we set 

 where  is an integer, and use the similar method of analysis as that in 

[GH10]. 

m

1
2 2kt = −1 1k

First, we know there are t2 nonzero ones in t1 ciphertext numbers. So, by applying the 
symmetric polynomial technique, we merely need to use the polynomial with total degree-t2 
to compute the sum of t1 ciphertext numbers. It is easy to verify that the number of degree-t2 
monomials in the polynomial representing ciphertext additions is equal to 

, which is less than 2 2 2

2 2

...
/ 2 / 4 1

t t t
t t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

2( 1)
2

tt − . By the induction method, we can 

show the size of the error term of a degree-t2 monomial at most . Moreover, the number 

of degree-t

22tn

2 monomial in the symmetric polynomial over t1 variables is at most . So, the 

size of the error term of recrypting ciphertext is at most . At the same time, we must 

support another ciphertext multiplication for freshing ciphertext. Hence, to support fully 
homomorphic encryption, our scheme must correctly decrypt a ciphertext with error term 

. Thus, we have 

2
1
tt

22
1 2( )tn t t

222
1 2( ) tn t t 222

1 2( )
8

t pn t t
n

≤  by applying Lemma 3.2.■ 

8. Fully Homomorphic Encryption (FHE-2v) 

To implement FHE-2, we introduce the assumption of SSSP. In this section, we first give a 
new fully homomorphic encryption scheme by using self-loop bootstrappable technique 
without the assumption SSSP, whose security merely depends on the hardness of solving 
decisional approximate principal ideal lattice. Then, we discuss how to removing the self-loop 
of FHE-2. 
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8.1 Construction 

Key Generating Algorithm (FHE-2v.KeyGen).  

(1) Select  with  and 
1

0

n i
ii

s s−

=
=∑ x 1 log{0,1,2 ,..., 2 }n

is ∈ s
∞
= n  such that 

 is an odd integer, logdet( ( )) 2n np Rot s= >
1

0
( ) ( ) (log )n

ii
k W s w s nω−

=
= = =∑ , where 

 is the hamming weight of  and ( )iw s is ( ) 1iw s ≤ . 

(2) Choose a random binary fraction 
2 log 3

1 1log
2n n j

jj n n
v v+

,
−

=
=∑  with 1( ) (log )w v nω= , and 

compute  with 2 11/v p= − v 2 log 3n n +⎡ ⎤⎢ ⎥  bits of precision after the binary point. 

(3) Compute its inverse f  over R  subject to ( ) / 1mod( 1)ns f p x× = + . 

(4) Generate [ ]
0

2i i i b
b a f e= × + with ( )O nτ = , (2 )n

ia O
∞
≤ and . Assume || || / 2ie n∞ ≤

0ib b
∞ ∞
≤ . 

(5) Choose  at random ( )t O n= , , [i ia e R i t]∈ ∈  such that 1
0/ i

id b n +
∞ ∞

≤ , and 

, and then compute || || / 2ie n∞ ≤ 1{ 2 t
i i i id a f e } == × + . 

(6) Encrypt the j-th bit  of  as ,i js is , , ,2i j i j i j i js a f e s ,= × + +K  with , 

 for , 

,|| || (2 )n
i ja O∞ =

,|| || / 2i je n∞ ≤ [ ]i n∈ [log ]j n∈ . Let 
1 1 log

,0 0 0
( 2n n ni j

i ii i j
s s x s− −

= = =
= = ) i

j x∑ ∑ ∑K K K . 

(7) Encrypt  as . Let 1, jv 1, 1,2j j jv a f e v= × + +K
j ,

2 log 3
1 1log

2n n j
jj n n

v v+ −
=

=∑K K  and . 1 2v v v= +K K

(8) Encrypt 2[ ]jf  as 22 [ ]j j j jf a f e f= × + +
K

 with  and , 

denoted as 

|| || (2 )n
ja O∞ ≤ || || / 2je n∞ ≤

2[ ]f
JJJK

. 

(9) Output the secret key  and the public key 2( , ,[ ] )sk p s f∗ =

0 [ ]\0 2( , ,{ } ,{ } , , ,[ ] )i i i tpk n k b d s v fτ∗
==

JJJKK K . 

8.2 Recrypt Algorithm 

Recrypting Algorithm (FHE-2v.Recrypt(pk, c)). 

(1) Evaluate ,  and r c v= ∗K K
2

0.5z r s h= ⎡ × + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
K KK

2 2
( [ ] ) modu z f x⎡ ⎤= ×⎣ ⎦

JJJKK K . 
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(2) Output a new ciphertext 2[ mod ]newc u c x= ⊕K . 

Theorem 8.2. FHE-2v.Recrypt correctly generates a ‘fresh’ ciphertext  with the same 

message of , and support a product of two recrypting new ciphertexts for the above 
parameters. 

newc

c

Proof. By Lemma 6.l, we have 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ]

2 22

2 22

2 22

2

/ 0.5 mod mod

0.5 mod mod

mod mod

mod

m c s p h f x c x

r s h f x c x

z f x c x

u c x

⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × ⊕⎣ ⎦
= ⊕

. 

So, we merely need to prove that FHE-2v.Recrypt can correctly implement the above 

algorithm when substituting  by 2,1/ ,[ ]s p f 2, ,[ ]s v f
JJJKK K . First, we have  

1 1 1 1
1 2 1 2 1, 2,0 0 0 0

( )n n n ni i i i
i i i ii i i i

r c v c x v v c v x c v x r x r x− − − −

= = = =
= ∗ = ∗ + = + = +∑ ∑ ∑ ∑ ∑K K K K K K1

0

n i
ii

−

=
. 

Second, let [ ] [ ] [ ] [ ]1 2 1 22 2 2
( )g r s r r s r s r s= × = + × = × + ×K K K K K K K K K K

2 0. Compute  

as follows, all others  are similar to 

0 1,0 2,g g g= +K K K

igK 0gK . For 1,0gK , we have 

1,0 1,0 0 1,1 1 1, 1 1 2

1,0 0 1,1 1 1, 1 12 2 2
log log log

1,0 0, 1,1 1, 1, 1 1,0 0 02 2 2

1,0 0,02

2 2

2

n n

n n

n n nj j
j n j n jj j j

j
jj

g r s r s r s

r s r s r s

r s r s r s

r s

− −

− −

− −= = =

=

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑ ∑ ∑

K K K K K K K"
K K K K K K"
K K K K K K"
K K

[ ] [ ]

log 1 log
1, ,1 02

log 1 log
0 1 0, 1 ,2 20 1 0

2 log 3 log 1 2 log 3 log
0 1, 0, 1,log 0 1 log 02 2

2

2 2

2 2 2

n n n j
t n t jt j

n n nj j
j t n t jj t j

n n n n n n nj i j
j i t jj n n i t j n n i

r s

c v s c v s

c v s c v s

−

−= =

−

−= = =

+ − +− −
−= = = = =

⎡ ⎤+ −⎣ ⎦

= + −

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

=

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

K K

K K K K

K K K K

2 log 3 log 1 2 log 3 log
1, 0 0, 1, ,log 0 1 log 022

2 log 3 log 2 log 3 log
0, 1, 0 , 1,log 0 log 02 2

2 2 2

2 2

n n n n n n nj i j
j i j tj n n i t j n n i

n n n n n nj i j i
i j n t i j tj n n i j n n i

v c s v c s

s v c s v c

+ − +− −
−= = = =

+ +− + − +
−= = = =

⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

K K K

K K K K1

1

n

t

−

=∑

2 j

, 2i
n t i

2i
n t i=

−

K

. 

So, we get  rational numbers denoted by ciphertexts. According to ( log 4)n n n +

( ) (log )W s nω=  and , there are only  non-zero rational numbers 

among the  rational numbers of ciphertexts. 

( ) 1iw s ≤ 2(log )nω

( log 4)n n n +

For , we have  2,0gK
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2,0 2,0 0 2,1 1 2, 1 1 2

2,0 0 2,1 1 2, 1 12 2 2
log log log

2,0 0, 2,1 1, 2, 1 1,0 02 2 2
log

0, 2,00 2

n n

n n

n n
i n i ni i

n
ii

g r s r s r s

r s r s r s

r s r s r

s r s

− −

− −

− −= =

=

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎣ ⎦

∑ ∑ ∑
∑

K K K K K K K"
K K K K K K"
K K K K K"

K K Klog log
1, 2,1 1, 2, 10 02 2

n n
n i i ni i

r s− −= =

0

n
ii

s
=

K

r⎡ ⎤ ⎡− + + − ⎤⎣ ⎦ ⎣∑ ∑K K" ⎦
K

. 

That is,  consists of  rational numbers of ciphertexts with 2,0gK n (log )nω  non-zero 

numbers. So, we can evaluate  by using the technique of symmetric polynomial in [GH10, 

vDGHV10]. Thus, we can compute 

0gK

gK , 
2

0.5z g h= ⎡ + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
KK , and 2 2

( [ ] ) modu z f x⎡ ⎤= ×⎣ ⎦
JJJKK K , 

finally output 2[ mod ]newc u c x= ⊕K .■ 

8.3 Improvement of FHE-2v 

For the above FHE-2v, we know there are  non-zero rational numbers among all 

ciphertext numbers. Although Recrypt algorithm can evaluate this sum, the degree of 
decryption algorithm polynomial is too big to make the above scheme be practical. So, to 
decrease the complexity of decryption algorithm and guarantee the security of our scheme, we 
induce the dimension of  to a constant , but increase the size of its coefficients. 
Concrete Key Generating algorithm consists of as follows. 

2(log )nω

s k

(1) Select  with 
0

k i
ii

s s
=

= ∑ x 2rs
∞
=  such that det( ( )) 2krp Rot s= >  is an odd 

integer, where  is a function on , r n ( )r r n n= ≥ . 

(2) Compute a polynomial f  over R  subject to 1( ) / 1mod( 1)ks f p x +× = + . 

(3) Choose a random binary fraction 
2 3

1, 1, , 2rk j
i ij rk

v v+

j
−

=
= ∑  with 1,( ) (log )iw v nω= , and 

set  with 2, 1,/i iv s p v= − i 32rk +  bits of precision after the binary point. 

(4) Generate [ ]
0

2i i i b
b a f e= × +  with ( )O nτ = , (2 )n

ia O
∞
≤ and , where 1|| || 2r

ie ∞ ≤

1 1( ) (log )r r n nω= ≥ . Assume 0ib b
∞ ∞
≤ . 

(5) Generate  with 0{ 2 t
i i i id a f e == × + } ( )t O rn= , such that 1

0/ i
id b n +
∞ ∞

≤  and 

. 1|| || 2r
ie ∞ ≤

 16



(6) Encrypt the j-th bit of 
2 3

1, 1, , 2rk j
i ij rk

v v+

j
−

=
= ∑  as 1, , , , 1, ,2i j i j i j i jv a f e v= × + +K  with 

, ,|| || (2 )n
i ja O∞ = 1

,|| || 2r
i je ∞ ≤  for [ ]i k∈  and [j rk 3]∈ + . Let 

, 
2 3

1, 1, , 2rk j
i i jj rk

v v+ −
=

= ∑K K
1, 2,/i i is p v v= +

JJJJJK K , and 
0

/ ( /k i
ii

s p s p x
=

= )∑
JJJJK JJJJJK

. 

(7) Encrypt 2[ ]jf  as 22 [ ]j j j jf a f e f= × + +
K

 with  and , 

denoted as 

|| || (2 )n
ja O∞ ≤ 1|| || 2r

je ∞ ≤

2[ ]f
JJJK

. 

(8) Output the secret key  and the public key 2( , ,[ ] )sk p s f∗ =

[ ] [ ] 2( , , ,{ } ,{ } , / ,[ ] )i i i i tpk n k w b d s p fτ
∗

∈ ∈=
JJJJK JJJK

. 

It is easy to verify that there is at most 1kw+  non-zero rational numbers among all 
ciphertext numbers. When  is a small constant, the circuit depth of decryption algorithm is 

dominated by 

k

1,( ) (log )iw v nω= . So, we have obtained some improvement of performance. 

Remark 8.1: Indeed, we can use general polynomial 
1

0

n i
ii

s s−

=
= x∑  as secret key, choose at 

random a polynomial  with 
1

1 0

n i
ii

v v−

=
=∑ 1, x 1,( ) (log )ih v nω=  for each , and set 

. However, we now need to take 

1,iv

1
2 0

/ n i
ii

v s p v x−

=
= −∑ 2, s

∞
 large enough to guarantee 

computing ( log )n nω  non-zero rational numbers when performing recrypting algorithm. 

8.4 Extension to Large Message Space 

In the FHE-2v, we can reduce the expansion factor of ciphertext to  by 

expanding the plaintext message space. For a message , we map it into a 

polynomial 

( log )O n n

{0,1}nm∈

1

0
( ) n i

ii
m x m x−

=
= ∑ . Now, the Enc algorithm is 

0

2 ( )ii T b
c b e m x

∈
⎡ ⎤= + +⎣ ⎦∑ , 

the Dec algorithm [ ] [2 22
( ) ( / ) mod( 1) 0.5 mod( 1)n nm x c s ]p x h f x c⎡ ⎤⎢ ⎥= × + + × + ⊕⎣ ⎦⎣ ⎦ . 

The Recrypt algorithm is modified into 2 2 2
( ) [ ] [ ]M x c u f⎡ ⎤= ⊕ ×⎣ ⎦

JJJKK
. Since ( )M x

K
 consists 

of  ciphertexts, we require to transform n ( )M x
K

 into a new ciphertext  as follows: 

. 

( )m xK

0

1

0
( ) ( ( ))n i

ii b
m x M x x−

=
⎡ ⎤= ×⎣ ⎦∑

KK
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8.5 Construction of Non-self-loop FHE-2v 

According to [Gen09], the above FHE can not prove to be semantically secure by a standard 
hybrid argument when using self-loop. In fact, the FHE in [Gen09] also reveals the encrypted 
secret key bits, although it is not direct. Although we do not know any actual attack by using 
self-loop, we may contain a cycle of encrypted secret key to remove self-loop in our scheme. 

In this case, one can compute ciphertexts of  under 1sk 1pk , but there is bigger error noise 

in the ciphertexts of encrypted secret key than that in self-loop scheme. We now modify the 
self-loop FHE-2v into a non-self-loop FHE-2v as follows. 

We generate two keys jpk , , jsk 1,2j = , encrypt the secret key  under the public key 1sk

2pk , the secret key  under the public key 2sk 1pk , and output the public key 

1 2{ , }pk pk pk∗ ∗= ∗ . Assume we use the public key 1pk  to encrypt message bit. When we 

refresh a ciphertext by using 1 2{ , }pk pk pk∗ ∗ ∗= , we first apply Recrypt of FHE-2 to 

transform the ciphertext under 1pk  into a ciphertext under 2pk , then again use Recrypt to 

transform the ciphertext under 2pk  into a new ciphertext under 1pk . 

It is easy to see that there is a cycle of encrypted secret key in FHE. We can obtain an 

encrypted  under isk ipk  by homomorphic operations. Moreover, an encrypted  under isk

ipk  in the non-self-loop scheme has bigger error noise than that in the self-loop scheme. 

However, the drawback of our non-self-loop scheme is to require calling Recrypt two times to 
refresh ciphertext. 

9. Security Analysis 

In this section, we present the hardness assumption of the security of our scheme, and give 
possible attack for our scheme. 
If we take , our scheme is identical to that of [vDGHV10]. On the other hand, our 
scheme is also an extension for that of [Gen09] by replacing the public basis with an 

approximate public basis, namely, if we take 

1n =

0 0( ) mod( 1)nb a f x= × +  as public key, then 

our scheme is similar to that of [Gen09], except for the ideal in their scheme may not be a 
principal ideal.  
Theorem 9.1. Suppose there is an algorithm  which breaks the semantic security of our 
SHE with advantage 

A
ε . Then there is a distinguisher  which solves the decisional APIP 

with advantage at least 
D

/ 2ε . 
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Proof. We construct a distinguishing algorithm  with advantage at least D / 2ε  between 

two distributions ,fH ϕ  and . The algorithm Ug ← R D  receives as input c  and 

{0,1}Uα ← , sends the challenge ciphertext [ ]
0

2
b

c α+  to , then returns 1  if  

guesses right 

A A

α , and otherwise . It is easy to verify that  solves the decisional APIP 
with advantage at least 

0 D
/ 2ε .■ 

From Theorem 9.1, we can directly obtain the following result for the decisional BDDP. 
Corollary 9.1. Suppose there is an algorithm A  which breaks the semantic security of our 
SHE with advantage ε . Then there is a distinguisher  which solves DBDDP with 
advantage at least 

D
/ 2ε . 

Since our scheme is to extend that of [vDGHV10] from one dimension to multiple 
dimensions. So, when  is small, we have the following theorem, whose proof is to adapt 
from that in [vDGHV10]. In this case, we must enlarge the error terms  to guarantee the 
security of scheme. 

n
e

Theorem 9.2. Suppose there is an algorithm A  which breaks the semantic security of our 
SHE with advantage ε . Then there is a distinguisher  which solves the APIP with 

advantage at least . In particular, then there is an algorithm 

D

/ 2nε B  which solves AGCD 

with advantage at least / 2ε . 
Theorem 9.3. Suppose the decisional APIP is hard, then our SHE-2 is semantic security.  

Part III FHE-3 Based on Approximate Lattice Problem 

In this part, we will construct a new fully homomorphic encryption scheme based on 
approximate general lattice problem. We first give a public key encryption scheme based on 
approximate lattice problem, then provide homomorphic operations over this PKE, and finally 
present a new FHE-3. 

10. Somewhat Homomorphic Encryption (SHE-3) 

10.1 Public Key Encryption Scheme (PKE) 

To generate our public key encryption scheme, we require this following lemma. 
Lemma 10.1. (AP09, Theorem 3.1 and 3.2). There is a probabilistic polynomial-time 
algorithm that, on input a positive integer n, positive integer p , and a poly(n)-bounded 

positive integer , outputs a pair of matries 8 logm n≥ p n m
pA ×∈] , m mT ×∈]  such that A  

is statistically close to uniform over n m
p
×] , 0modAT p= , and ( log )T O n p= . 

PKE.KeyGen: 
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(1) Let  be integers related to security parameter , ,n m p λ , and p  an odd integer. By 

using Lemma 10.1, one generates a pair of matries n m
pA ×∈] , m mT ×∈]  such that A  

is statistically close to uniform over n m
p
×] , 0modAT p= ,  is an odd integer, 

and 

det( )T

( log )T O n p=  (resp. (1)T O= ).  

(2) Let χ  be a distribution over . Choose a list m] ( )Oτ λ=  elements  

over  such that , 

2i ib s A e= + i

m] n
is ← ] ie χ←  with / 2ie β

∞
≤ . 

(3) Output the public key ( , , [ ], )ipk m b i τ β= ∈  and the secret key ( , )sk T p= . 

To reduce the size of the public key, one in general sets (1)O
is λ
∞
≤  in the PKE.KeyGen. 

PKE.Enc. Given the public key pk  and a message , choose a random subset 2
mx∈]

[ ]S τ⊆  and an independent ‘small’ error term e χ←  with  and me∈] / 2e β
∞
≤ . 

Evaluate a ciphertext . 2ii S
c b e

∈
= +∑ x+

PKE.Dec. Given the secret key , and the ciphertext , decipher 

. 

sk c

[ ] [ ] 1
22 2

( )
p

x c T T −⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
i

Correctness: When 2 ( 2 )ii S
p x e

∈
T

∞
> +∑ i , Dec works correctly because 

[ ] [ ]

[ ]

[ ]

[ ]

[ ] [ ]
[ ] [ ] [ ]

1
22 2

1
2

2 2

1
2

2 2

1
22 2

1
2 2 2

1
2 2 2 2

( )

( 2 ) (

( 2 ) ( )

( 2 ) ( )

( )

( )

p

i ii S p

ii S p

ii S

c T T

x s A e T T

x e T T

x e T T

x T T

x T T

)

x

−

−
∈

−
∈

−
∈

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= + +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= +⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
=

∑

∑

∑

i

i

i

i

i

i

. 

Remark 10.1: We observe that the above PKE itself is very interesting because its public key 
consists of a list of approximate vectors of the closest vector problem in lattice, but does not 

provide lattice itself. The expansion rate of ciphertext is  in this PKE. It is not 

difficult to see that the security of PKE is harder than the decisional GapCVP with certain gap 

(log )O p
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parameter. 

Remark 10.2: For the above PKE, one can set the public key as i ib s A ei= +  over  

such that , 

m]

n
is ← ] ie χ←  with ie β

∞
≤  and . 

Assume  is first column of  and 

0 0 0 { / 2 ,0,...,0}b s A e p= + + ⎢ ⎥⎣ ⎦

t T 0 1mod 2t = . When encrypting, if a message bit is ‘0’, 

then [ ] \ 0S τ⊆ , otherwise ' [ ] \ 0, ' {0}S S Sτ⊆ = ∪ . When deciphering, one decides a 

message bit is ‘0’ or ‘1’ according to the value of [ ],
p

c t< >  to be the nearest to 0 or p/2. 

10.2 Homomorphic Operations over Ciphertexts 

To discuss simplicity, assume that  is some column of  such that its first term  

is an odd integer. Moreover, we merely use a message bit space  and set 

mt∈] T 0t

2x∈]

{ ,0,...,0}x x= . When encrypting, one outputs 2ii S
c b e

∈
x= + +∑ . When decrypting, one 

outputs . [ ]
2

,
p

x c t⎡ ⎤= < >⎣ ⎦
It is obvious that the above PKE supports addition operation over the ciphertexts. To perform 
multiplication operation, Brakerski and Vaikuntanathan [BV11] consider the multiplication 

operation over ciphertexts as the quadratic equation, that is, given the ciphertexts  that 

encrypts 

1 2,c c

1 2,x x  and the secret key : t
1 2, 1 2( ) , ,c cQ t c t c t=< > <i > . If the noise of  is 

small, then we can get 

1 2,c c

1 2x xi  by computing 
1 2,

2
( )c c p

Q t⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
. The problem is how to 

perform this function under ciphertexts. In [BV11], they use the tensor product  of t  
to implement dimension reduction (key switching). Here we use another approach. Since 

t t⊗

1
1 2 1 2 2 1,0
, , , , ,m

i ii
c t c t c t c t c c t t−

=
< > < >=<< > >=< >∑i i , we only require generate a new 

ciphertext by evaluating . To compute this 

ciphertext, we adapt the subroutines BitDecomp and Powersof2 introduced by [BV11, Gen11] 

from  to . Now, we assume 

1 1
2 1, 2,0 1, 2, 1 1,0 0 1

( ,..., )m m m
i i i i m i ii i i

c c t c c t c c− −

−= = =
=∑ ∑ ∑ t

p] ] c
∞

q≤ . In the following we will give an optimization 

algorithm to reduce the length of ciphertext. 

Definition 10.1. (BitDecomp). Let  and my∈] 2logN m q= ⋅ ⎡ ⎤⎢ ⎥ . We decompose y into its 

bit representation , where all of the vectors 
[ 2log ]

2 j
j

j q
y

∈ ⎢ ⎥⎣ ⎦

= ∑ u {0,1, 1}m
ju ∈ − . Output 
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0 1 2log( , ,..., ) {0,1, 1}N
qu u u⎢ ⎥⎣ ⎦

∈ − . 

Definition 10.2. (Powersof2). Let  and my∈] 2logN m q= ⋅ ⎡ ⎤⎢ ⎥ . We define Powersof2(y) 

to be the vector . 2log( , 2 ,..., 2 )q Ny y y⎢ ⎥⎣ ⎦⋅ ⋅ ]∈

Lemma 10.2. For vectors , we have , mc t∈] ( ), 2( ) ,BitDecomp c Powersof t c t< >=< > . 

Now, we can evaluate homomorphic multiplication by adding encrypted Powersof2(t) to the 
public key.  

11. Fully Homomorphic Encryption (FHE-3) 

We can construct a new FHE-3 scheme based on ALP by applying two methods in Part II. To 
be simple, we merely provide the FHE-3 by using bootstrapping with the sparse subset sum 

problem. In addition, when generating the public key of FHE-3, we set (1), Oq kp k λ= =  to 

control the size of the public key. Our FHE-3 constructs as follows: 
FHE-3.KeyGen. 

(1) Generate ( , , [ ], )ipk m b i τ β= ∈ , ( )sk t=  and  by using PKE.KeyGen in Section 

10.1. 

A

(2) Let . Choose a list elements 2 logN m q= ⋅ ⎡⎢ ⎤⎥ ,, , 2i j i j i jb s A e= +  over  such that 

, 

m
q]

,
n

i j qs ←] ,i je χ←  with , / 2i je β
∞
≤ , where [ 1], [ 1i m j N ]∈ − ∈ − . 

(3) Let '
iB ,  be a matrix with row vectors ,[ 1i m∈ − ] ],i jb [ 1j N∈ − . Evaluate 

' ( 2( ) ) mi i i odB B Powersof t p= + , where  is added to the i-th column 

of 

2( )iPowersof t

'
iB . 

(4) Choose  elements 3m , , 2i j i j i jd s A e ,= +  over  for m] [2], [ 1]i j m∈ ∈ −  with 

, ,
n

i js ←] ,i je χ← , , / 2i je β
∞
≤  and , / i

i jd q
∞

m≈ . Let ,  be a 

matrix with row vectors ,

iD [2]i∈

,i jd [ 1j m ]∈ − . We require 1( ) 1/i iD D−
∞∞

≈ . 

(5) Choose at random a set  of 1S 1δ  vectors  with m
ig Q∈ 2ig

∞
<  such that there is 

a subset  of 2S 2δ  vectors with 
2 22

1/ii S
g t p

p∈
∞

⎡ ⎤ − <⎣ ⎦∑ . 
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(6) Set  for  and 1isk = 2i S∈ 0isk =  for 1 2i S S∈ − . 

(7) Encrypt  as isk 2i i isk s A e sk= + +
JJK

i  with , n
is ← ] ie χ←  and / 2ie β

∞
≤ . 

(8) Encrypt the i-th bit of [ ]2
t  as [ ] [ ]2 2

( ) 2 ( )i i it s A e t== + + i

JJJK
 with , n

is ← ] ie χ←  

and / 2ie β
∞
≤ , denoted as [ ]2

t
JJJK

. 

(9) Output the public key [ ]
1

1 2
0 0 0 1 2 2

( ,{ } ,{ } ,{ } , , ,{ , } , )m
ii i i i i i i i Spk m b B D sk g tτ δ δ−

= = = ∈=
JJJKJJK

, and 

the secret key . ( , )sk t p=

FHE-3.Enc. Given pk  and a message bit 2x∈] , set { ,0,...,0}x x= , output 

0( 2 ) moii S
c b e x

∈
= + +∑ d D . 

FHE-3.Dec. Given , and a ciphertext , output sk c [ ]
2

,
p

x c t⎡ ⎤= < >⎣ ⎦ . 

FHE-3.Add. Given pk  and ciphertexts , output 1 2,c c 1 2( ) modc c c D0= + . 

FHE-3.Mul. Given pk  and ciphertexts , output 1 2,c c

1
2, 1 2 1 00

( ( ) ) mod modm
i ii

c BitDecomp c c B D D−

=
= ∑ i mod D . 

Remark 10.2: To remove  in the above algorithms, we may permit to appropriately 

increase the length of ciphertext. Of course, we must increase the size of Powersof2(y). 

iD

FHE-3.Recrypt. Given pk  and ciphertext , compute as follows: c

(1) Compute , keeping only ,ir c g=< >i 2log 3θ δ= +⎡ ⎤⎢ ⎥  bits of precision after the 

binary point for each coefficient of . ir

(2) Evaluate ,  by using the symmetric polynomials 

in [GH10]. 

ii iu r sk= ×
JJK

1 2
0.5ii S

u u
∈

⎡⎢= +⎢⎣⎣ ∑
⎤⎥
⎥⎦⎦

(3) Output a new ciphertext [ ] [ ]2 2 2
,newc c t⎡ ⎤= < > ⊕⎣ ⎦ u
JJJK

. 

Correctness: It is easy to verify that the FHE-3.Add and FHE-3.Mul works correctly for 
appropriate parameters setting. 
Now, we estimate the noise bound of the ciphertext after one homomorphic multiplication. 

Given two ciphertexts , we have 1 2,c c
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[ ] [ ] [ ]1 2 1 2 1 2, , , , 2 , ,
p p p

c t c t c t c t e x t c t⎡ ⎤< > < > = < < > > = << + > >⎣ ⎦i i
p

i . 

According to FHE-3.Enc, 2
1 22 , 2e x t e m tβ< + > ≤i . On the other hand, to compute 

12 ,e x t c< + >i 2 q

q

, one requires to sum  ciphertexts, and this increases the noise of 

ciphertext at most . At the same time, to reduce the size of ciphertext by using 

modulo  each time increases the noise of ciphertext at most 

22 logm

22 logm β

iD 3m β . So, the noise bound 

of the ciphertext 1c c c2= ×  is at most 2 2 3log 3 ( )m p m t m O m3β β β β+ + ≈ . 

Theorem 10.1. When , the FHE-3.Recrypt correctly generates a ‘fresh’ ciphertext 

 with the same message of and smaller error term, and two homomorphic-decrypted 

ciphertexts support one multiplication. 

2( )Om δ < p

newc c

Proof: This proof is similar as that of theorem 7.1.■ 

12. Security Analysis 

To give the security of the above scheme, we first define a promise problem and a variant 
about the closest vector problem in lattice. 

Definition 12.1 (GapCVPγ ). Given n mB ×∈] ,  and rmx∈] +∈_ , the promise problem 

is to decide the following two cases: In YES inputs, we have , whereas in 

NO inputs, we have 

( , ( ))dist x L B r≤

( , ( ))dist x L B rγ> i . 

Definition 12.2 ( ). Given rCVP n mB ×∈] ,  and mx∈] r +∈_ , the problem is to decide 

whether there is a vector  such that ny∈] x yB r− ≤ . 

Theorem 12.1. Suppose there is an algorithm  which breaks the semantic security of our 

PKE with advantage 

A

ε . Then there is a decisional algorithm  for  with 

running in about the same time 

D /4 logp mn pCVP

A  and advantage at least / 2ε . 
Proof. We construct a decisional algorithm D  with advantage at least / 2ε  for 

. The algorithm  receives as input .  generates the public key as 

PKE.KeyGen in Section 10.1, then sends the challenge ciphertext 

/2 logp n pCVP D mx∈] D

(2 ) modx Bα+  to , 

then returns 1 if 

A

A  guesses the right α , and otherwise . If there is a vector  0 ny∈]
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such that min / 4 log
ny

x yB p n p
∞∈

− ≤
]

, then ( ) ( / 4 log ) 2 logx yB T p mn p mn p− ≤ i , 

namely ( ) / 2x yB T p− ≤ . In this case,  works correctly with advantage A ε . Otherwise, 

A  does not have any advantage. ■ 
Theorem 12.2. Suppose the decisional ALP is hard, then our SHE-2 is semantic security. 

13. Further Direction 

We have presented a new fully homomorphic encryption scheme based on APIP (resp. ALP), 
whose security depends upon the hardness assumption of APIP (resp. ALP). 
If the decisional APIP is hard, then our scheme is semantic security. In [vDGHV10], they 
reduce the security of scheme to solving approximate GCD problem. But we do not obtain 
similar result for our scheme since we can not adapt their reduction proof. An interesting open 
problem is whether or not there is a reduction from the semantic security of our scheme to 
solving APIP (resp. ALP)? Our public key has form 2sA e+ , in the following we will 
establish the relationship between the GapCVP problem and our PKE to support the security 
of our scheme to the worst-case hardness of some lattice problems. 
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