
New Fully Homomorphic Encryption over the Integers

Gu Chunsheng
School of Computer Engineering

Jiangsu Teachers University of Technology
Changzhou, China, 213001
guchunsheng@gmail.com

Abstract: We first present a fully homomorphic encryption scheme over the integers, which
modifies the fully homomorphic encryption scheme in [vDGHV10]. The security of our
scheme is merely based on the hardness of finding an approximate-GCD problem over the
integers, which is given a list of integers perturbed by the small error noises, removing the
assumption of the sparse subset sum problem in the origin scheme [vDGHV10].
Then, we construct a new fully homomorphic encryption scheme, which extends the above
scheme from approximate GCD over the ring of integers to approximate principal ideal lattice
over the polynomial integer ring. The security of our scheme depends on the hardness of the
decisional approximate principle ideal lattice polynomial (APIP), given a list of approximate
multiples of a principal ideal lattice. At the same time, we also provide APIP-based fully
homomorphic encryption by introducing the sparse subset sum problem.
Finally, we design a new fully homomorphic encryption scheme, whose security is based on
the hardness assumption of approximate lattice problem and the decisional SSSP.
Keywords: Fully Homomorphic Encryption, Approximate Lattice Problem, Approximate
Principal Ideal Lattice, Approximate GCD, BDDP, SSSP

1. Introduction

We construct a new fully homomorphic encryption schemes based on approximate lattice
problem over the integers. Our scheme directly works on the integers without modulus. Our
first scheme is to modify their scheme [vDGHV10] to a FHE without the sparse subset sum
problem. Then we construct a new APIP-based FHE over the integers. Finally, we design a
FHE based on approximate general lattice problem. Now, we describe the second scheme.

Assume the parameter of security, n []/ 1nR Z x x= < + > is a ring over the integers. The

public key is a list of approximate multiples { }
0

(2) mod(1) , ()n
i i i i

b a f e x O n
τ

τ
=

= + + =

for a polynomial f R∈ , where , is the uniformly random elements over ia ie R such that

(1)O
ia n
∞
≤ and / 2ie n

∞
≤ . The secret key is a polynomial such that []s Z x∈

 1

(/) mod(1) 1nf s p x× + = , where p is the determinant of the circulant matrix of ,

namely

s

det(())p Rot s= . To encrypt a message bit , the ciphertext is computed as

, where

m

, {0,..., }
2ii T T

c b
τ∈ ⊆

= +∑ e m+ / 2e n
∞
≤ . To obtain addition or multiplication of the

messages in the ciphertexts, we simply add/multiply the ciphertexts as the
addition/multiplication over R . To decrypt a ciphertext , we compute the message bit

, where

c

(/ 0.5) mod mod 2m c f c s p h x= − × × +⎢ ⎥⎣ ⎦
1

0

n i
i

h x−

=
= ∑ .

It is easy to see that if we set , 1n = 1s = , f p= , then our scheme in this paper becomes

that in [vDGHV10]. So, our scheme adapts their scheme from one dimension to multiple
dimensions.

In the above scheme, we use the matries n mA ×∈] , m mT ×∈] to substitute ,f s , then we

can obtain a FHE based on approximate lattice problem over the integers.

1.1 Our Contribution

Our schemes are different from the previous both underlying the hardness assumption and
implementing the method of FHE. Our first scheme removes the hardness assumption of the
SSSP in [vDGHV10] to implement FHE. Our second scheme constructs a new FHE based on
approximate principal ideal lattice problem over the integers, which extends the scheme of
[vDGHV10] from one dimension to multiple dimensions. Our third scheme design a new
FHE based on approximate general lattice problem. As far as we know, this approximate
lattice problem does not consider in the previous work. The size of the public key in our

scheme is bits, and the expansion factor of ciphertext is . The

security of our first scheme relies on the hardness assumption of finding an approximate
principle ideal lattice problem (APIP), given a list of approximate multiples of a polynomial

3(log)O n n (log)O n n

f , and solving the sparse subset sum problem. To remove the hardness assumption of SSSP,

we design a new fully homomorphic encryption merely based on decisional approximate
principle ideal lattice problem. In fact, the objective we hide modulus p is to prevent

adversary factoring 1modnx p+ , since 1nx + and have a common factor. s

In this paper, we design fully homomorphic encryption scheme based on approximate lattice
problem over the integers by using self-loop method or circle encrypted secret key. So, we
assume our schemes are KDM-secure.

 2

1.2 Related work

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which
now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08,
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key

is approximately bits, the computation per gate costs operations. Smart and

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively

small key bits , ciphertext size bits and computation per gate at least

 operations, which is in some sense a specialization and optimization of Gentry’s

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully
homomorphic encryption scheme over the integers, whose security depends on the hardness
of finding an approximate integer gcd. Stehle and Steinfeld [SS10] improved Gentry's fully

homomorphic scheme and obtained to a faster fully homomorphic scheme, with

bits complexity per elementary binary addition/multiplication gate, but the hardness
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].

7n 6()O n

3()O n 1.5(O n)

n

3()O n

3.5()O n

1.3 Outline

We recalls some notations and definitions in Section 2, and then this paper is organized in two
parts. In Part I, we construct a fully homomorphic encryption based on hidden odd integers.
We first describe a somewhat homomorphic encryption scheme in Section 3, then transform it
into a FHE in Section 4, and finally give its security in Section 5. In Part II, we adapt the
above FHE from one dimension to multiple dimensions. First, we construct a new somewhat
homomorphic encryption in Section 6, then transform it into a fully homomorphic encryption
by introducing the hardness of SSSP in Section 7. What is more, we describe a new FHE by
using method of re-randomizing the secret key 1/p, and give the hardness assumption of the
security of scheme. In part III, we construct a new FHE based on approximate lattice problem
over the integers. In Section 13, we give further direction.

2. Preliminaries

2.1 Notations

Let with the power of be a security parameter. [n 2] {0,1,..., }n = . Let

. For []/ 1nR Z x x= < + > f R∈ , we denote by f
∞

 the infinity norm of its coefficient

 3

vector, []2
f the polynomial of its coefficient modulo 2. For R , its expansion factor mulγ

is , that is, n u v n u v
∞ ∞

× ≤ ⋅ ⋅
∞

, where × is multiplication in R .

Let denote to choose an element in according to the distribution w ψ← S w S ψ . For

the distributions ,A B , is computationally indistinguishing by arbitrary

probabilistic polynomial time algorithm.

cA B≡

2.2 Lattice

Given linearly independent vectors , the lattice is equal to the set n 1 2, ,..., n
mb b b ∈\

1 2 1
(, ,...,) { , }m

m i i ii
L b b b x b x

=
= ∈∑] of all integer linear combinations of the ’s. We also

denote by matrix

ib

B the ’s. In this paper, we only consider the lattice over the integers,

i.e., .

ib

n
ib ∈]

An ideal I R⊆ is a principal if it only has a single generator. For the coefficient vector

 of u , we define the cyclic rotation 0 1 1(, ,...,)T
nu u u u −=K R∈ 1 0 2() (, ,...,)T

n nrot u u u u− −= −K ,

and its corresponding circulant matrix 1() (, (),..., ())n TRot u u rot u rot u−= K K K . ()Rot u is

called the rotation basis of the ideal lattice . The detail may be found in the [Mic07]. For ()u

,f u R∈ , []uf is the coefficient vector of f modulo the rotation basis of , namely, u

mod ()f Rot u
K

.

2.3 Approximate Lattice Problem

In the following, we define the approximate-GCD from [vDGHV10], and extend it to the
approximate principal ideal lattice problem in this paper.
Definition 2.1. (Approximate-GCD over the Integers (AGCD)). Given a list of

approximate multiples of p : 1
0{ : , , 2n

i i i i i i ib a p e a Z e Z e }τ−
+ == + ∈ ∈ < , find p .

Definition 2.2. (Approximate Principal Ideal Lattice Problem (APIP)). For a polynomial

f R∈ and a distribution ϕ over R subject to e ϕ R← and , the

distribution

|| || / 2e n∞ ≤

,fH ϕ over R is generated by choosing uniformly random element Ua R←

 4

and , and outputting . The APIP problem, denoted e ϕ← R (2) mod(1)nb a f e x= × + +

,fAPIP ϕ , is defined as follows: Given access to arbitrary many independent samples from

,fH ϕ , find f . The decision version of APIP, denoted ,fdAPIP ϕ , is to distinguish ,fH ϕ

from . Ug R←

Definition 2.3. (Approximate Lattice Problem (ALP)). Let be integers related to

security parameter

,n m

λ , and χ a distribution over . Given a list samples of the

distribution

m] ib

, ,n mD χ over such that m] n mA ×←] , , n
is ←] ie χ← and

, the ALP 2i ib s A e= + i , ,n mALP χ is to distinguish the distribution , ,n mD χ from the

uniform distribution over . m]
Definition 2.4. (Decision Bounded Distance Decoding Problem). For R , the challenger

sets {0,1}Rα ← and . If 0 0() mod(nb a f x= × +1) 0α = , it samples 1 ,R fr H ϕ← and

sets . If 1 0mod ()r r Rot b= 1α = , it samples uniformly from r 0mod ()R Rot b . The

problem is to guess α given . 0(,)r b

Part I FHE-1 Based on Approximate GCD Problem

3. Somewhat Homomorphic Encryption (SHE-1)

In this section, we present a somewhat homomorphic encryption, which is similar to that in
[vDGHV10] and simply analyze its performace in this section.

3.1 Construction

Key Generating Algorithm (SHE-1.KeyGen).

(1) Select an odd integer
2 32np +> such that 1/s p≈ , , and

2 31 (2 nsp O − −= +)

() (log)h s nω= , where is the number of in the binary representation of . ()h s 1 s

(2) Pick random integers subject to the largest is an odd integer,
2()(2 , 2)O n n

ia ∈ 0a

, [ie Z i]τ∈ ∈ with 12n
ie −< . Then compute 0 0 2b a p e0= + , and []

0
2i i i b

b a p e= + .

 5

(3) Choose approximate integers ()t O n= 0{ 2 t
i i i id a p e } == × + with 12n

ie −< such

that , , and 1 / 2n
i id d+ < 2

0 / n
tb d < 2 0 0d b= .

(4) Output the public key , and the secret key . { } 00
(, ,{ })t

i i ii
pk n b dτ

==
= ()sk p=

Encryption Algorithm (SHE-1.Enc). Given the public key pk and an message bit

, choose a random subset {0,1}m∈ []T τ⊆ and an independent perturbed error polynomial

 with e 12ne −< . Compute the ciphertext
0

2ii T b
c b e

∈
m⎡ ⎤= + +⎣ ⎦∑ .

Add Operation (SHE-1.Add). Given the public key pk , and the ciphertexts ,

evaluate the ciphertext

1 2,c c

[]
0

1 2 b
c c c= + .

Multiplication Operation (SHE-1.Mul). Given the public key pk , and the ciphertexts

, evaluate the ciphertext 1 2,c c []
0

1 2()
b

c Opt c c= × , where is same as the optimizations

of Section 3.3 in [vDGHV10].

Opt

Decryption Algorithm (SHE-1.Dec). Given the secret key , and a ciphertext , decipher sk c

[] mod 2
p

m c= .

Remark 3.1: To quickly generate p , we may select with
2

2

2 6

3
2n j

jj n
s s+ −

= +
=∑

() (log)h s nω= and , such that its inverse 2() 2 6len s n= + p is an odd integer and

, where len is the length of s in binary representation.
2 31 (2 nsp O − −= +)

Example 3.1. Let 4n = . We select at random
38 22 28 29

19
2 2 2 2j

jj
s s − − − −

=
= = + +∑ , where

() (log) 3h s nω= = , , and compute . It is

easy to verify that . Now, we can use

as the secret key in the above SHE.

2() 2 6 38len s n= + = 1/ 4098251p s= =⎢ ⎥⎣ ⎦

190.9999999423 1 (2)s p O −= = +i 4098251p =

3.2 Performance of SHE-1

The size of the public key is bits, the size of the secret

key is . The running times of Enc, Dec, Add, Mul are , ,

{ } 00
(, ,{ })t

i i ii
pk n b dτ

==
= 3()O n

()sk p= 2()O n 3()O n 2()O n

 6

2()O n , and , respectively. The expansion factor of ciphertext is . 2(log)O n n 2()O n

4. Fully Homomorphic Encryption (FHE-1)

We first construct a new fully homomorphic shceme from SHE-1 by applying self-loop
Gentry’s bootstrappable technique, then discusses how to remove self-loop bootstrappable
technique. Since the multiplication operation increase the degree of perturbed error noise, we
require to reduce it to obtain fully homomorphic encryption. We refresh a ciphertext to a

new ciphertext with the smaller error noise by using Gentry’s bootstrappable technique.

To implement this function, we encrypt the secret key generated by KeyGen and add the
ciphertexts of to the public key.

c

newc

s
s

4.1 FHE-1 Scheme

FHE-1.KeyGen Algorithm.

(1) First, generate pk and as SHE. sk

(2) Assume . Choose random integers , with
2

2

2 6

3
2n j

jj n
s s+ −

= +
=∑

2()(2 , 2)O n n
ja ∈ je Z∈

12n
je −< , , and compute 2[3j n∈ +] 2

0
3

2j j j j n b
s a p e s

+ +
⎡ ⎤= + +⎣ ⎦
K .

(3) Output the public key
2 23 (3)

0 0 0
(, ,{ } ,{ } , 2)nt

i i i i jj
pk n w b d s sτ +∗ −

= = =
= =∑ j n+ +K K

, and the secret

key , where . ()sk p∗ = ()w h s=

The Enc, Dec, Add, Mul algorithms are identical to ones in the above SHE.
Remark 4.1: We may also generate the secret key as follows. Choose an arbitrary odd integer

p and a random fraction with 1s 1() (log)h s nω= , and compute p ’s inverse

. The public key includes and the ciphertexts 1 2 1/s s s p= + ≈ 2s 1s
K of the bits of .

Now, the public key is modified into

1s

2 23 (3)
0 0 1 0

(, ,{ } ,{ } , 2 ,)nt j
i i i i jj 2

npk n w b d s s sτ + − + +
= = =

= =∑K K .

It is not difficult to verify that the above parameters can implement FHE.

Example 4.1. Let 4n = . We select at random an odd integer 534019p = and a fraction

 with
38 22 25 34

1 19
2 2 2 2j

jj
s s − − − −

=
= = +∑ + 1() 3h s = , set 1 2 1/s s s p= + ≈ , and compute

. It is easy

to verify that . Now, we can use as the

20 21 23 25 26 27 29 31 34 35 36 37
2 2 2 2 2 2 2 2 2 2 2 2 2s − − − − − − − − − − − −= + + + + + + + + + + +

190.9999999423 1 (2)s p O −= = +i 534019p =

 7

secret key in the above SHE.
Recrypting algorithm (FHE-1.Recrypt). Evaluate a new ciphertext

0.5 mod 2 mod 2nc c s c= × + ⊕⎢ ⎥⎣ ⎦
K .

Theorem 4.1. FHE-1.Recrypt correctly generates a ‘fresh’ ciphertext with the same

message of and the perturbed error noise subject to

newc

c e 1/22 (/ 8)e p< .

Proof: We know the general form of ciphertext 2c ap e m= + + subject to 2e p≤ / 8

+

. So,

0.5 mod 2 (2) 0.5 mod 2 mod 2c s ap e m s a× + = + + × + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ .

By using , we obtain the message

. Thus, Recrypt only substitutes with

0 mod 2 (2) mod 2 mod 2c c ap e m a m= = + + =

0 mod 2m c a= + s sK , which is the form of the

ciphertexts of bits in . It is not difficult to verify that FHE-1.Recrypt algorithm correctly

computes a new ciphertext of in by using the ciphertext arithmetic circuit and

the fact

s

newc m c

() (log)h s nω= , and has the error noise less than newc 1/22 (/ 8)e p< , namely, it

now can carry out at least one multiplication operation. Notice that FHE-1.Recrypt uses the
methods of the hamming weights, the symmetric polynomials and the three-for-two, all of
which are explained in [Gen09, vDGHV10].■
Now we only need to prove our scheme can compute the circuit depth of FHE-1.Recrypt.
Lemma 4.1. The FHE-1.Dec algorithm from the above scheme is correct, if the error noise of

ciphertext is less than / 8p when decrypted.

Lemma 4.2. The above scheme is correct for arbitrary arithmetic circuit with addition

and multiplication gates, and circuit depth

C

2logd n= .

Proof. Assume 2j j j jc a p e m= + + 1,2j, = are the ciphertexts of arbitrary two bits of

generated by FHE-1.KeyGen in FHE-1. To correctly decrypt, the perturbed error noise of
ciphertext output by arithmetic circuit can not be too large. The error noise in addition gate is
linearly rising, whereas the error noise in multiplication gate is exponentially increasing. So,
the multiplication operation dominates the depth of arithmetic circuit. Now, we estimate the
bound of the perturbed error term in the ciphertext generated by one multiplication operation.

s

1 2

1 1 1 2 2

1 2

 (2) (2
 (2)

c c c
a p e m a p e m
a f e m m

= ×
= + + × + +
= × + +

2)

(2) 2a a p e m a a e a m= + + × + + 1 2 2 1 2(2)e e e m m e

.

where , 1 1 1 2 1 2 1 2 = × + + .

 8

So, 2
1 2 2 1 22 2 (2) 2 2 ne e e m m e= × + + < .

Since the perturbed error noise in the ciphertexts are less than . So, the error term

for one multiplication operation is less than . Thus, To correctly decrypt, the depth

of arithmetic circuit must be satisfied inequality

1 2,c c 2n

2(2)n d

2(2) / 8
dn p≤ , namely,

2log(log(/ 8) /) logd p n= = n .■

4.2 Performance of FHE-1

For our FHE, the size of the public key pk∗ is the size of the secret key

 is . The expansion factor of ciphertext is .

4()O n

()sk p∗ = 2()O n 2()O n

5. Security of FHE-1

5.1 Security Reduction

The security of our scheme is based on the hardness of the approximate-GCD over integers,
which follows from Theorem 4.2 in [vDGHV10].
Theorem 5.1. Suppose there is an algorithm A which breaks the semantic security of our
SHE with advantage ε . Then there is an algorithm for solving AGCD with advantage at
least

D
/ 2ε . The running time of is polynomial in the running time of , and D A 1/ ε .

5.2 Known Attack

Since our scheme is similar to the scheme in [vDGHV10], all known attacks for their scheme
are also appropriate for our scheme. But for the approximate GCD of many numbers attacked
by using the LLL algorithm, we analyze as follows.
To simply describe, we use the same notations as that in [vDGHV10], and only adapt to our
corresponding parameters. For the target solution vector

0 1 0 0 0 1 0 1 0 0 0 0 0(, ,...,) (2 , (/ /),..., (/ /))n
t tv a a a M a b a b b a a b a b b a a= × = − −K

t ,

Where and . First,
2()

0 2 2n O na ≤
2()

0 0 0 0(/ /) 2O n
i ib a b b a a− ≤ vK maybe is not the

shortest nonzero vector in , because the length of the first row vector in the matrix L M is

also
2()

1 2 2
(2 , , ,...,) 2n

tb b b = O n . Second, for large , there are exponentially many vectors t

 9

in of length at most . L
2()2O n

Thus, to guarantee the security of our scheme, the parameters in our scheme can resist this

attack, and do not need to set the size of public key in [vDGHV10]. 5n

Part II FHE-2 Based on Approximate Ideal Lattice Problem

6. Somewhat Homomorphic Encryption (SHE-2)

In this section, we extends SHE-1 in Section 3 from approximate GCD over the integer ring
to approximate principal ideal lattice over the polynomial ring, and construct a new somewhat
homomorphic encryption scheme based on approximate principal ideal lattice problem.

6.1 Construction

Key Generating Algorithm (SHE-2.KeyGen).

(1) Select a random polynomial
1

0

n i
ii

s s−

=
= x∑ such that is an

odd number and

logdet(()) 2n np Rot s= >

s n
∞
≤ .

(2) Evaluate f over R subject to () / 1mod(1)ns f p x× = + .

(3) Compute []
0

2i i i b
b a f e= × + with ()O nτ = , (2)n

ia O
∞
≤ and ,

where

|| || / 2ie n∞ ≤

0ib b
∞ ∞
≤ .

(4) Choose at random ()t O n= , , [i ia e R i t]∈ ∈ such that 1
0/ i

id b n +
∞ ∞

≤ , and

, and then compute || || / 2ie n∞ ≤ 1{ 2 t
i i i id a f e } == × + .

The public key is { } [] { } [](, ,)i ii i
pk n b d

τ∈ ∈
=

t
, the secret key is []2

(, ,)sk p s f= .

Encryption Algorithm (SHE-2.Enc). Given the public key pk and an message bit

, choose a random subset {0,1}m∈ []T τ⊆ and an independent ‘small’ error term with

. Compute the ciphertext

e

|| || / 2e n∞ ≤
0

2ii T b
c b e

∈
m⎡ ⎤= + +⎣ ⎦∑ .

Add Operation (SHE-2.Add). Given the public key pk , and the ciphertexts , 1 2,c c

 10

evaluate the ciphertext []
0

1 2 b
c c c= + .

Multiplication Operation (SHE-2.Mul). Given the public key pk , and the ciphertexts

, evaluate the ciphertext 1 2,c c 1 2(c Opt c c)= × such that 0c b
∞ ∞
≤ , where is

similar as that in [vDGHV10], namely,

Opt

1 01 2[[[[[]]]...]]
t td d d bc c c

− 0
= × .

Decryption Algorithm (SHE-2.Dec). Given the secret key , and the ciphertext c ,
decipher

sk

[] 22 2
(/ 0.5 mod [mod]m c s p h f x c x⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦ .

Remark 6.1: It is not difficult to show that the coefficients of quotient all are small for the

operation of each modulus according to the size of id 1()id −

∞
 over the rational number

. _

6.2 Correctness

Lemma 6.l. The SHE-2.Dec is correct, if the infinity norm of the error term in the ciphertext

is less than / (8)p n⎢⎣ ⎥⎦ when decrypted.

Proof. Given the ciphertext and the secret key , it is not difficult to verify that has

the form . To decrypt the ciphertext , we simply compute

c sk c

2c a f e m= × + + c

[] []
[] []

[] []
[] []

[] [] [] []

2 22

2 22

2 22

2 22

2 2 2 22 2

/ 0.5 mod mod

(2) / 0.5 mod mod

(/) (2) / 0.5 mod mod

mod mod

mod ()mod

c s p h f x c x

a f e m s p h f x c x

a f s p e m s p h f x c x

a f x c x

a f x a f m x

m

⎡ ⎤× + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × + + × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × × + + × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × ⊕⎣ ⎦

⎡ ⎤ ⎡ ⎤= × ⊕ × +⎣ ⎦ ⎣ ⎦
=

.

Since 2 /e p
∞
< ⎢ ⎥⎣ ⎦8n ,

1
(2) / 1/ (8) 1/ 8e m p s n s

∞
+ × ≤ × < .

It is easy to verify that all other algorithms are also correct in the above scheme.

6.3 Performance of SHE-2

The size of public key { } [] { } []\0(, ,)i ii i t
pk n b d

τ∈ ∈
= is , the size of secret key 3(log)O n n

 11

[]2
(, ,)sk p s f= is . The expansion factor of ciphertext is . The

running times of Enc, Dec, Add, Mul algorithm is respectively ,

, , and .

(log)O n n 2(log)O n n

3(log)O n n

2(log log log)O n n n 2(log)O n n 3(log log log)O n n n

7. Fully Homomorphic Encryption (FHE-2)

To construct an FHE from SHE, we need to give a new algorithm Recrypt, which freshens a

‘dirty’ ciphertext into a new ciphertext with the ‘smaller’ error term and the same

plaintext of . To do this, we introduce the sparse subset sum problem and add the hint of the
secret key to the public key. Now, we modify the SHE as follows:

c newc

c

7.1 Construction

Key Generating Algorithm for FHE-2 (FHE-2.KeyGen).

(1) Generate { } [] { } []\0(, ,)i ii i t
pk n b d

τ∈ ∈
= and 2(, ,[])sk p s f= as before.

(2) Choose at random a set of polynomials 1S 1t []ig Q x∈ with 2ig
∞
< such that

there is a subset of polynomials with 2S 2t
2 22

1/ii S
g s p

p∈
∞

⎡ ⎤ − <⎣ ⎦∑ .

(3) Set for and 1isk = 2i S∈ 0isk = for 1 2i S S∈ − .

(4) Encrypt as with || and || . isk 2i i isk a f e sk= × + +
JJK

i || (2)n
ia O∞ ≤ || / 2ie n∞ ≤

(5) Encrypt 2[]jf as 22 []j j j jf a f e f= × + +
K

 with || and .

Let

|| (2)n
ja O∞ ≤ || || / 2je n∞ ≤

2[]f
JJJK

 denote the ciphertext polynomial of 2[]f .

(6) Output the secret key 2(, ,[])sk p s f= and the public key

10 1 2 2(,{ } , , ,{ , } ,[])ii i i i Spk n b t t sk g fτ
= ∈=

JJK JJKJ
.

7.2 Recrypt Algorithm

Recrypting Algorithm (FHE-2.Recrypt(pk, c)).

(1) Compute []2ir c g= × i , keeping only 2log 3sθ = +⎡ ⎤⎢ ⎥ bits of precision after the

 12

binary point for each coefficient of . ir

(2) Evaluate , ii iu r sk= ×
JJK

1 2 2
0.5ii S

u u
∈

h⎡ ⎤⎢ ⎥⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦∑ by using the symmetric

polynomials in [GH10].

(3) Output a new ciphertext 2 2 2
[mod] ([]) modnewc c x u f x⎡ ⎤= ⊕ ×⎣ ⎦

JJJK
.

Theorem 7.1. FHE-2.Recrypt correctly generates a ‘fresh’ ciphertext with the same

message of , and support a product of two recrypting new ciphertexts when

newc

c
222

1 2()
8

t pn t t
n

< .

Proof: It is not difficult to verify that FHE-2.Recrypt correctly generates a new ciphertext of
 by using the method of symmetric polynomials over ciphertext operations. So, we only

need to analyze the perturbed noise size in FHE-2.Recrypt. To simplify analysis, we set

 where is an integer, and use the similar method of analysis as that in

[GH10].

m

1
2 2kt = −1 1k

First, we know there are t2 nonzero ones in t1 ciphertext numbers. So, by applying the
symmetric polynomial technique, we merely need to use the polynomial with total degree-t2
to compute the sum of t1 ciphertext numbers. It is easy to verify that the number of degree-t2
monomials in the polynomial representing ciphertext additions is equal to

, which is less than 2 2 2

2 2

...
/ 2 / 4 1

t t t
t t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

2(1)
2

tt − . By the induction method, we can

show the size of the error term of a degree-t2 monomial at most . Moreover, the number

of degree-t

22tn

2 monomial in the symmetric polynomial over t1 variables is at most . So, the

size of the error term of recrypting ciphertext is at most . At the same time, we must

support another ciphertext multiplication for freshing ciphertext. Hence, to support fully
homomorphic encryption, our scheme must correctly decrypt a ciphertext with error term

. Thus, we have

2
1
tt

22
1 2()tn t t

222
1 2() tn t t 222

1 2()
8

t pn t t
n

≤ by applying Lemma 3.2.■

8. Fully Homomorphic Encryption (FHE-2v)

To implement FHE-2, we introduce the assumption of SSSP. In this section, we first give a
new fully homomorphic encryption scheme by using self-loop bootstrappable technique
without the assumption SSSP, whose security merely depends on the hardness of solving
decisional approximate principal ideal lattice. Then, we discuss how to removing the self-loop
of FHE-2.

 13

8.1 Construction

Key Generating Algorithm (FHE-2v.KeyGen).

(1) Select with and
1

0

n i
ii

s s−

=
=∑ x 1 log{0,1,2 ,..., 2 }n

is ∈ s
∞
= n such that

 is an odd integer, logdet(()) 2n np Rot s= >
1

0
() () (log)n

ii
k W s w s nω−

=
= = =∑ , where

 is the hamming weight of and ()iw s is () 1iw s ≤ .

(2) Choose a random binary fraction
2 log 3

1 1log
2n n j

jj n n
v v+

,
−

=
=∑ with 1() (log)w v nω= , and

compute with 2 11/v p= − v 2 log 3n n +⎡ ⎤⎢ ⎥ bits of precision after the binary point.

(3) Compute its inverse f over R subject to () / 1mod(1)ns f p x× = + .

(4) Generate []
0

2i i i b
b a f e= × + with ()O nτ = , (2)n

ia O
∞
≤ and . Assume || || / 2ie n∞ ≤

0ib b
∞ ∞
≤ .

(5) Choose at random ()t O n= , , [i ia e R i t]∈ ∈ such that 1
0/ i

id b n +
∞ ∞

≤ , and

, and then compute || || / 2ie n∞ ≤ 1{ 2 t
i i i id a f e } == × + .

(6) Encrypt the j-th bit of as ,i js is , , ,2i j i j i j i js a f e s ,= × + +K with ,

 for ,

,|| || (2)n
i ja O∞ =

,|| || / 2i je n∞ ≤ []i n∈ [log]j n∈ . Let
1 1 log

,0 0 0
(2n n ni j

i ii i j
s s x s− −

= = =
= =) i

j x∑ ∑ ∑K K K .

(7) Encrypt as . Let 1, jv 1, 1,2j j jv a f e v= × + +K
j ,

2 log 3
1 1log

2n n j
jj n n

v v+ −
=

=∑K K and . 1 2v v v= +K K

(8) Encrypt 2[]jf as 22 []j j j jf a f e f= × + +
K

 with and ,

denoted as

|| || (2)n
ja O∞ ≤ || || / 2je n∞ ≤

2[]f
JJJK

.

(9) Output the secret key and the public key 2(, ,[])sk p s f∗ =

0 []\0 2(, ,{ } ,{ } , , ,[])i i i tpk n k b d s v fτ∗
==

JJJKK K .

8.2 Recrypt Algorithm

Recrypting Algorithm (FHE-2v.Recrypt(pk, c)).

(1) Evaluate , and r c v= ∗K K
2

0.5z r s h= ⎡ × + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
K KK

2 2
([]) modu z f x⎡ ⎤= ×⎣ ⎦

JJJKK K .

 14

(2) Output a new ciphertext 2[mod]newc u c x= ⊕K .

Theorem 8.2. FHE-2v.Recrypt correctly generates a ‘fresh’ ciphertext with the same

message of , and support a product of two recrypting new ciphertexts for the above
parameters.

newc

c

Proof. By Lemma 6.l, we have

[] []
[] []

[] []
[]

2 22

2 22

2 22

2

/ 0.5 mod mod

0.5 mod mod

mod mod

mod

m c s p h f x c x

r s h f x c x

z f x c x

u c x

⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × + × ⊕⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= × ⊕⎣ ⎦
= ⊕

.

So, we merely need to prove that FHE-2v.Recrypt can correctly implement the above

algorithm when substituting by 2,1/ ,[]s p f 2, ,[]s v f
JJJKK K . First, we have

1 1 1 1
1 2 1 2 1, 2,0 0 0 0

()n n n ni i i i
i i i ii i i i

r c v c x v v c v x c v x r x r x− − − −

= = = =
= ∗ = ∗ + = + = +∑ ∑ ∑ ∑ ∑K K K K K K1

0

n i
ii

−

=
.

Second, let [] [] [] []1 2 1 22 2 2
()g r s r r s r s r s= × = + × = × + ×K K K K K K K K K K

2 0. Compute

as follows, all others are similar to

0 1,0 2,g g g= +K K K

igK 0gK . For 1,0gK , we have

1,0 1,0 0 1,1 1 1, 1 1 2

1,0 0 1,1 1 1, 1 12 2 2
log log log

1,0 0, 1,1 1, 1, 1 1,0 0 02 2 2

1,0 0,02

2 2

2

n n

n n

n n nj j
j n j n jj j j

j
jj

g r s r s r s

r s r s r s

r s r s r s

r s

− −

− −

− −= = =

=

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑ ∑ ∑

K K K K K K K"
K K K K K K"
K K K K K K"
K K

[] []

log 1 log
1, ,1 02

log 1 log
0 1 0, 1 ,2 20 1 0

2 log 3 log 1 2 log 3 log
0 1, 0, 1,log 0 1 log 02 2

2

2 2

2 2 2

n n n j
t n t jt j

n n nj j
j t n t jj t j

n n n n n n nj i j
j i t jj n n i t j n n i

r s

c v s c v s

c v s c v s

−

−= =

−

−= = =

+ − +− −
−= = = = =

⎡ ⎤+ −⎣ ⎦

= + −

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

=

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

K K

K K K K

K K K K

2 log 3 log 1 2 log 3 log
1, 0 0, 1, ,log 0 1 log 022

2 log 3 log 2 log 3 log
0, 1, 0 , 1,log 0 log 02 2

2 2 2

2 2

n n n n n n nj i j
j i j tj n n i t j n n i

n n n n n nj i j i
i j n t i j tj n n i j n n i

v c s v c s

s v c s v c

+ − +− −
−= = = =

+ +− + − +
−= = = =

⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

K K K

K K K K1

1

n

t

−

=∑

2 j

, 2i
n t i

2i
n t i=

−

K

.

So, we get rational numbers denoted by ciphertexts. According to (log 4)n n n +

() (log)W s nω= and , there are only non-zero rational numbers

among the rational numbers of ciphertexts.

() 1iw s ≤ 2(log)nω

(log 4)n n n +

For , we have 2,0gK

 15

2,0 2,0 0 2,1 1 2, 1 1 2

2,0 0 2,1 1 2, 1 12 2 2
log log log

2,0 0, 2,1 1, 2, 1 1,0 02 2 2
log

0, 2,00 2

n n

n n

n n
i n i ni i

n
ii

g r s r s r s

r s r s r s

r s r s r

s r s

− −

− −

− −= =

=

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎣ ⎦

∑ ∑ ∑
∑

K K K K K K K"
K K K K K K"
K K K K K"

K K Klog log
1, 2,1 1, 2, 10 02 2

n n
n i i ni i

r s− −= =

0

n
ii

s
=

K

r⎡ ⎤ ⎡− + + − ⎤⎣ ⎦ ⎣∑ ∑K K" ⎦
K

.

That is, consists of rational numbers of ciphertexts with 2,0gK n (log)nω non-zero

numbers. So, we can evaluate by using the technique of symmetric polynomial in [GH10,

vDGHV10]. Thus, we can compute

0gK

gK ,
2

0.5z g h= ⎡ + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
KK , and 2 2

([]) modu z f x⎡ ⎤= ×⎣ ⎦
JJJKK K ,

finally output 2[mod]newc u c x= ⊕K .■

8.3 Improvement of FHE-2v

For the above FHE-2v, we know there are non-zero rational numbers among all

ciphertext numbers. Although Recrypt algorithm can evaluate this sum, the degree of
decryption algorithm polynomial is too big to make the above scheme be practical. So, to
decrease the complexity of decryption algorithm and guarantee the security of our scheme, we
induce the dimension of to a constant , but increase the size of its coefficients.
Concrete Key Generating algorithm consists of as follows.

2(log)nω

s k

(1) Select with
0

k i
ii

s s
=

= ∑ x 2rs
∞
= such that det(()) 2krp Rot s= > is an odd

integer, where is a function on , r n ()r r n n= ≥ .

(2) Compute a polynomial f over R subject to 1() / 1mod(1)ks f p x +× = + .

(3) Choose a random binary fraction
2 3

1, 1, , 2rk j
i ij rk

v v+

j
−

=
= ∑ with 1,() (log)iw v nω= , and

set with 2, 1,/i iv s p v= − i 32rk + bits of precision after the binary point.

(4) Generate []
0

2i i i b
b a f e= × + with ()O nτ = , (2)n

ia O
∞
≤ and , where 1|| || 2r

ie ∞ ≤

1 1() (log)r r n nω= ≥ . Assume 0ib b
∞ ∞
≤ .

(5) Generate with 0{ 2 t
i i i id a f e == × + } ()t O rn= , such that 1

0/ i
id b n +
∞ ∞

≤ and

. 1|| || 2r
ie ∞ ≤

 16

(6) Encrypt the j-th bit of
2 3

1, 1, , 2rk j
i ij rk

v v+

j
−

=
= ∑ as 1, , , , 1, ,2i j i j i j i jv a f e v= × + +K with

, ,|| || (2)n
i ja O∞ = 1

,|| || 2r
i je ∞ ≤ for []i k∈ and [j rk 3]∈ + . Let

,
2 3

1, 1, , 2rk j
i i jj rk

v v+ −
=

= ∑K K
1, 2,/i i is p v v= +

JJJJJK K , and
0

/ (/k i
ii

s p s p x
=

=)∑
JJJJK JJJJJK

.

(7) Encrypt 2[]jf as 22 []j j j jf a f e f= × + +
K

 with and ,

denoted as

|| || (2)n
ja O∞ ≤ 1|| || 2r

je ∞ ≤

2[]f
JJJK

.

(8) Output the secret key and the public key 2(, ,[])sk p s f∗ =

[] [] 2(, , ,{ } ,{ } , / ,[])i i i i tpk n k w b d s p fτ
∗

∈ ∈=
JJJJK JJJK

.

It is easy to verify that there is at most 1kw+ non-zero rational numbers among all
ciphertext numbers. When is a small constant, the circuit depth of decryption algorithm is

dominated by

k

1,() (log)iw v nω= . So, we have obtained some improvement of performance.

Remark 8.1: Indeed, we can use general polynomial
1

0

n i
ii

s s−

=
= x∑ as secret key, choose at

random a polynomial with
1

1 0

n i
ii

v v−

=
=∑ 1, x 1,() (log)ih v nω= for each , and set

. However, we now need to take

1,iv

1
2 0

/ n i
ii

v s p v x−

=
= −∑ 2, s

∞
 large enough to guarantee

computing (log)n nω non-zero rational numbers when performing recrypting algorithm.

8.4 Extension to Large Message Space

In the FHE-2v, we can reduce the expansion factor of ciphertext to by

expanding the plaintext message space. For a message , we map it into a

polynomial

(log)O n n

{0,1}nm∈

1

0
() n i

ii
m x m x−

=
= ∑ . Now, the Enc algorithm is

0

2 ()ii T b
c b e m x

∈
⎡ ⎤= + +⎣ ⎦∑ ,

the Dec algorithm [] [2 22
() (/) mod(1) 0.5 mod(1)n nm x c s]p x h f x c⎡ ⎤⎢ ⎥= × + + × + ⊕⎣ ⎦⎣ ⎦ .

The Recrypt algorithm is modified into 2 2 2
() [] []M x c u f⎡ ⎤= ⊕ ×⎣ ⎦

JJJKK
. Since ()M x

K
 consists

of ciphertexts, we require to transform n ()M x
K

 into a new ciphertext as follows:

.

()m xK

0

1

0
() (())n i

ii b
m x M x x−

=
⎡ ⎤= ×⎣ ⎦∑

KK

 17

8.5 Construction of Non-self-loop FHE-2v

According to [Gen09], the above FHE can not prove to be semantically secure by a standard
hybrid argument when using self-loop. In fact, the FHE in [Gen09] also reveals the encrypted
secret key bits, although it is not direct. Although we do not know any actual attack by using
self-loop, we may contain a cycle of encrypted secret key to remove self-loop in our scheme.

In this case, one can compute ciphertexts of under 1sk 1pk , but there is bigger error noise

in the ciphertexts of encrypted secret key than that in self-loop scheme. We now modify the
self-loop FHE-2v into a non-self-loop FHE-2v as follows.

We generate two keys jpk , , jsk 1,2j = , encrypt the secret key under the public key 1sk

2pk , the secret key under the public key 2sk 1pk , and output the public key

1 2{ , }pk pk pk∗ ∗= ∗ . Assume we use the public key 1pk to encrypt message bit. When we

refresh a ciphertext by using 1 2{ , }pk pk pk∗ ∗ ∗= , we first apply Recrypt of FHE-2 to

transform the ciphertext under 1pk into a ciphertext under 2pk , then again use Recrypt to

transform the ciphertext under 2pk into a new ciphertext under 1pk .

It is easy to see that there is a cycle of encrypted secret key in FHE. We can obtain an

encrypted under isk ipk by homomorphic operations. Moreover, an encrypted under isk

ipk in the non-self-loop scheme has bigger error noise than that in the self-loop scheme.

However, the drawback of our non-self-loop scheme is to require calling Recrypt two times to
refresh ciphertext.

9. Security Analysis

In this section, we present the hardness assumption of the security of our scheme, and give
possible attack for our scheme.
If we take , our scheme is identical to that of [vDGHV10]. On the other hand, our
scheme is also an extension for that of [Gen09] by replacing the public basis with an

approximate public basis, namely, if we take

1n =

0 0() mod(1)nb a f x= × + as public key, then

our scheme is similar to that of [Gen09], except for the ideal in their scheme may not be a
principal ideal.
Theorem 9.1. Suppose there is an algorithm which breaks the semantic security of our
SHE with advantage

A
ε . Then there is a distinguisher which solves the decisional APIP

with advantage at least
D

/ 2ε .

 18

Proof. We construct a distinguishing algorithm with advantage at least D / 2ε between

two distributions ,fH ϕ and . The algorithm Ug ← R D receives as input c and

{0,1}Uα ← , sends the challenge ciphertext []
0

2
b

c α+ to , then returns 1 if

guesses right

A A

α , and otherwise . It is easy to verify that solves the decisional APIP
with advantage at least

0 D
/ 2ε .■

From Theorem 9.1, we can directly obtain the following result for the decisional BDDP.
Corollary 9.1. Suppose there is an algorithm A which breaks the semantic security of our
SHE with advantage ε . Then there is a distinguisher which solves DBDDP with
advantage at least

D
/ 2ε .

Since our scheme is to extend that of [vDGHV10] from one dimension to multiple
dimensions. So, when is small, we have the following theorem, whose proof is to adapt
from that in [vDGHV10]. In this case, we must enlarge the error terms to guarantee the
security of scheme.

n
e

Theorem 9.2. Suppose there is an algorithm A which breaks the semantic security of our
SHE with advantage ε . Then there is a distinguisher which solves the APIP with

advantage at least . In particular, then there is an algorithm

D

/ 2nε B which solves AGCD

with advantage at least / 2ε .
Theorem 9.3. Suppose the decisional APIP is hard, then our SHE-2 is semantic security.

Part III FHE-3 Based on Approximate Lattice Problem

In this part, we will construct a new fully homomorphic encryption scheme based on
approximate general lattice problem. We first give a public key encryption scheme based on
approximate lattice problem, then provide homomorphic operations over this PKE, and finally
present a new FHE-3.

10. Somewhat Homomorphic Encryption (SHE-3)

10.1 Public Key Encryption Scheme (PKE)

To generate our public key encryption scheme, we require this following lemma.
Lemma 10.1. (AP09, Theorem 3.1 and 3.2). There is a probabilistic polynomial-time
algorithm that, on input a positive integer n, positive integer p , and a poly(n)-bounded

positive integer , outputs a pair of matries 8 logm n≥ p n m
pA ×∈] , m mT ×∈] such that A

is statistically close to uniform over n m
p
×] , 0modAT p= , and (log)T O n p= .

PKE.KeyGen:

 19

(1) Let be integers related to security parameter , ,n m p λ , and p an odd integer. By

using Lemma 10.1, one generates a pair of matries n m
pA ×∈] , m mT ×∈] such that A

is statistically close to uniform over n m
p
×] , 0modAT p= , is an odd integer,

and

det()T

(log)T O n p= (resp. (1)T O=).

(2) Let χ be a distribution over . Choose a list m] ()Oτ λ= elements

over such that ,

2i ib s A e= + i

m] n
is ←] ie χ← with / 2ie β

∞
≤ .

(3) Output the public key (, , [],)ipk m b i τ β= ∈ and the secret key (,)sk T p= .

To reduce the size of the public key, one in general sets (1)O
is λ
∞
≤ in the PKE.KeyGen.

PKE.Enc. Given the public key pk and a message , choose a random subset 2
mx∈]

[]S τ⊆ and an independent ‘small’ error term e χ← with and me∈] / 2e β
∞
≤ .

Evaluate a ciphertext . 2ii S
c b e

∈
= +∑ x+

PKE.Dec. Given the secret key , and the ciphertext , decipher

.

sk c

[] [] 1
22 2

()
p

x c T T −⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
i

Correctness: When 2 (2)ii S
p x e

∈
T

∞
> +∑ i , Dec works correctly because

[] []

[]

[]

[]

[] []
[] [] []

1
22 2

1
2

2 2

1
2

2 2

1
22 2

1
2 2 2

1
2 2 2 2

()

(2) (

(2) ()

(2) ()

()

()

p

i ii S p

ii S p

ii S

c T T

x s A e T T

x e T T

x e T T

x T T

x T T

)

x

−

−
∈

−
∈

−
∈

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= + +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= +⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= +⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
=

∑

∑

∑

i

i

i

i

i

i

.

Remark 10.1: We observe that the above PKE itself is very interesting because its public key
consists of a list of approximate vectors of the closest vector problem in lattice, but does not

provide lattice itself. The expansion rate of ciphertext is in this PKE. It is not

difficult to see that the security of PKE is harder than the decisional GapCVP with certain gap

(log)O p

 20

parameter.

Remark 10.2: For the above PKE, one can set the public key as i ib s A ei= + over

such that ,

m]

n
is ←] ie χ← with ie β

∞
≤ and .

Assume is first column of and

0 0 0 { / 2 ,0,...,0}b s A e p= + + ⎢ ⎥⎣ ⎦

t T 0 1mod 2t = . When encrypting, if a message bit is ‘0’,

then [] \ 0S τ⊆ , otherwise ' [] \ 0, ' {0}S S Sτ⊆ = ∪ . When deciphering, one decides a

message bit is ‘0’ or ‘1’ according to the value of [],
p

c t< > to be the nearest to 0 or p/2.

10.2 Homomorphic Operations over Ciphertexts

To discuss simplicity, assume that is some column of such that its first term

is an odd integer. Moreover, we merely use a message bit space and set

mt∈] T 0t

2x∈]

{ ,0,...,0}x x= . When encrypting, one outputs 2ii S
c b e

∈
x= + +∑ . When decrypting, one

outputs . []
2

,
p

x c t⎡ ⎤= < >⎣ ⎦
It is obvious that the above PKE supports addition operation over the ciphertexts. To perform
multiplication operation, Brakerski and Vaikuntanathan [BV11] consider the multiplication

operation over ciphertexts as the quadratic equation, that is, given the ciphertexts that

encrypts

1 2,c c

1 2,x x and the secret key : t
1 2, 1 2() , ,c cQ t c t c t=< > <i > . If the noise of is

small, then we can get

1 2,c c

1 2x xi by computing
1 2,

2
()c c p

Q t⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
. The problem is how to

perform this function under ciphertexts. In [BV11], they use the tensor product of t
to implement dimension reduction (key switching). Here we use another approach. Since

t t⊗

1
1 2 1 2 2 1,0
, , , , ,m

i ii
c t c t c t c t c c t t−

=
< > < >=<< > >=< >∑i i , we only require generate a new

ciphertext by evaluating . To compute this

ciphertext, we adapt the subroutines BitDecomp and Powersof2 introduced by [BV11, Gen11]

from to . Now, we assume

1 1
2 1, 2,0 1, 2, 1 1,0 0 1

(,...,)m m m
i i i i m i ii i i

c c t c c t c c− −

−= = =
=∑ ∑ ∑ t

p]] c
∞

q≤ . In the following we will give an optimization

algorithm to reduce the length of ciphertext.

Definition 10.1. (BitDecomp). Let and my∈] 2logN m q= ⋅ ⎡ ⎤⎢ ⎥ . We decompose y into its

bit representation , where all of the vectors
[2log]

2 j
j

j q
y

∈ ⎢ ⎥⎣ ⎦

= ∑ u {0,1, 1}m
ju ∈ − . Output

 21

0 1 2log(, ,...,) {0,1, 1}N
qu u u⎢ ⎥⎣ ⎦

∈ − .

Definition 10.2. (Powersof2). Let and my∈] 2logN m q= ⋅ ⎡ ⎤⎢ ⎥ . We define Powersof2(y)

to be the vector . 2log(, 2 ,..., 2)q Ny y y⎢ ⎥⎣ ⎦⋅ ⋅]∈

Lemma 10.2. For vectors , we have , mc t∈] (), 2() ,BitDecomp c Powersof t c t< >=< > .

Now, we can evaluate homomorphic multiplication by adding encrypted Powersof2(t) to the
public key.

11. Fully Homomorphic Encryption (FHE-3)

We can construct a new FHE-3 scheme based on ALP by applying two methods in Part II. To
be simple, we merely provide the FHE-3 by using bootstrapping with the sparse subset sum

problem. In addition, when generating the public key of FHE-3, we set (1), Oq kp k λ= = to

control the size of the public key. Our FHE-3 constructs as follows:
FHE-3.KeyGen.

(1) Generate (, , [],)ipk m b i τ β= ∈ , ()sk t= and by using PKE.KeyGen in Section

10.1.

A

(2) Let . Choose a list elements 2 logN m q= ⋅ ⎡⎢ ⎤⎥ ,, , 2i j i j i jb s A e= + over such that

,

m
q]

,
n

i j qs ←] ,i je χ← with , / 2i je β
∞
≤ , where [1], [1i m j N]∈ − ∈ − .

(3) Let '
iB , be a matrix with row vectors ,[1i m∈ −]],i jb [1j N∈ − . Evaluate

' (2()) mi i i odB B Powersof t p= + , where is added to the i-th column

of

2()iPowersof t

'
iB .

(4) Choose elements 3m , , 2i j i j i jd s A e ,= + over for m] [2], [1]i j m∈ ∈ − with

, ,
n

i js ←] ,i je χ← , , / 2i je β
∞
≤ and , / i

i jd q
∞

m≈ . Let , be a

matrix with row vectors ,

iD [2]i∈

,i jd [1j m]∈ − . We require 1() 1/i iD D−
∞∞

≈ .

(5) Choose at random a set of 1S 1δ vectors with m
ig Q∈ 2ig

∞
< such that there is

a subset of 2S 2δ vectors with
2 22

1/ii S
g t p

p∈
∞

⎡ ⎤ − <⎣ ⎦∑ .

 22

(6) Set for and 1isk = 2i S∈ 0isk = for 1 2i S S∈ − .

(7) Encrypt as isk 2i i isk s A e sk= + +
JJK

i with , n
is ←] ie χ← and / 2ie β

∞
≤ .

(8) Encrypt the i-th bit of []2
t as [] []2 2

() 2 ()i i it s A e t== + + i

JJJK
 with , n

is ←] ie χ←

and / 2ie β
∞
≤ , denoted as []2

t
JJJK

.

(9) Output the public key []
1

1 2
0 0 0 1 2 2

(,{ } ,{ } ,{ } , , ,{ , } ,)m
ii i i i i i i i Spk m b B D sk g tτ δ δ−

= = = ∈=
JJJKJJK

, and

the secret key . (,)sk t p=

FHE-3.Enc. Given pk and a message bit 2x∈] , set { ,0,...,0}x x= , output

0(2) moii S
c b e x

∈
= + +∑ d D .

FHE-3.Dec. Given , and a ciphertext , output sk c []
2

,
p

x c t⎡ ⎤= < >⎣ ⎦ .

FHE-3.Add. Given pk and ciphertexts , output 1 2,c c 1 2() modc c c D0= + .

FHE-3.Mul. Given pk and ciphertexts , output 1 2,c c

1
2, 1 2 1 00

(()) mod modm
i ii

c BitDecomp c c B D D−

=
= ∑ i mod D .

Remark 10.2: To remove in the above algorithms, we may permit to appropriately

increase the length of ciphertext. Of course, we must increase the size of Powersof2(y).

iD

FHE-3.Recrypt. Given pk and ciphertext , compute as follows: c

(1) Compute , keeping only ,ir c g=< >i 2log 3θ δ= +⎡ ⎤⎢ ⎥ bits of precision after the

binary point for each coefficient of . ir

(2) Evaluate , by using the symmetric polynomials

in [GH10].

ii iu r sk= ×
JJK

1 2
0.5ii S

u u
∈

⎡⎢= +⎢⎣⎣ ∑
⎤⎥
⎥⎦⎦

(3) Output a new ciphertext [] []2 2 2
,newc c t⎡ ⎤= < > ⊕⎣ ⎦ u
JJJK

.

Correctness: It is easy to verify that the FHE-3.Add and FHE-3.Mul works correctly for
appropriate parameters setting.
Now, we estimate the noise bound of the ciphertext after one homomorphic multiplication.

Given two ciphertexts , we have 1 2,c c

 23

[] [] []1 2 1 2 1 2, , , , 2 , ,
p p p

c t c t c t c t e x t c t⎡ ⎤< > < > = < < > > = << + > >⎣ ⎦i i
p

i .

According to FHE-3.Enc, 2
1 22 , 2e x t e m tβ< + > ≤i . On the other hand, to compute

12 ,e x t c< + >i 2 q

q

, one requires to sum ciphertexts, and this increases the noise of

ciphertext at most . At the same time, to reduce the size of ciphertext by using

modulo each time increases the noise of ciphertext at most

22 logm

22 logm β

iD 3m β . So, the noise bound

of the ciphertext 1c c c2= × is at most 2 2 3log 3 ()m p m t m O m3β β β β+ + ≈ .

Theorem 10.1. When , the FHE-3.Recrypt correctly generates a ‘fresh’ ciphertext

 with the same message of and smaller error term, and two homomorphic-decrypted

ciphertexts support one multiplication.

2()Om δ < p

newc c

Proof: This proof is similar as that of theorem 7.1.■

12. Security Analysis

To give the security of the above scheme, we first define a promise problem and a variant
about the closest vector problem in lattice.

Definition 12.1 (GapCVPγ). Given n mB ×∈] , and rmx∈] +∈_ , the promise problem

is to decide the following two cases: In YES inputs, we have , whereas in

NO inputs, we have

(, ())dist x L B r≤

(, ())dist x L B rγ> i .

Definition 12.2 (). Given rCVP n mB ×∈] , and mx∈] r +∈_ , the problem is to decide

whether there is a vector such that ny∈] x yB r− ≤ .

Theorem 12.1. Suppose there is an algorithm which breaks the semantic security of our

PKE with advantage

A

ε . Then there is a decisional algorithm for with

running in about the same time

D /4 logp mn pCVP

A and advantage at least / 2ε .
Proof. We construct a decisional algorithm D with advantage at least / 2ε for

. The algorithm receives as input . generates the public key as

PKE.KeyGen in Section 10.1, then sends the challenge ciphertext

/2 logp n pCVP D mx∈] D

(2) modx Bα+ to ,

then returns 1 if

A

A guesses the right α , and otherwise . If there is a vector 0 ny∈]

 24

such that min / 4 log
ny

x yB p n p
∞∈

− ≤
]

, then () (/ 4 log) 2 logx yB T p mn p mn p− ≤ i ,

namely () / 2x yB T p− ≤ . In this case, works correctly with advantage A ε . Otherwise,

A does not have any advantage. ■
Theorem 12.2. Suppose the decisional ALP is hard, then our SHE-2 is semantic security.

13. Further Direction

We have presented a new fully homomorphic encryption scheme based on APIP (resp. ALP),
whose security depends upon the hardness assumption of APIP (resp. ALP).
If the decisional APIP is hard, then our scheme is semantic security. In [vDGHV10], they
reduce the security of scheme to solving approximate GCD problem. But we do not obtain
similar result for our scheme since we can not adapt their reduction proof. An interesting open
problem is whether or not there is a reduction from the semantic security of our scheme to
solving APIP (resp. ALP)? Our public key has form 2sA e+ , in the following we will
establish the relationship between the GapCVP problem and our PKE to support the security
of our scheme to the worst-case hardness of some lattice problems.

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc.
of STOC 1996, pages 99-108, 1996.
[ACG08] C. Aguilar Melchor, G. Castagnos, and G. Gaborit. Lattice-based homomorphic
encryption of vector spaces. In IEEE International Symposium on Information Theory,
ISIT'2008, pages 1858-1862, 2008.
[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. Lecture Notes in Computer Science, 2005, Volume 3378, pages 325-341, 2005.
[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, 2011. To appear.
[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic
Encryption from (Standard) LWE. ePrint Archive: Report 2011/344:
http://eprint.iacr.org/2011/344.
[vDGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Proc. of Eurocrypt, volume 6110 of LNCS, pages 24-43.
Springer, 2010.
[Gen01] C. Gentry. Key Recovery and Message Attacks on NTRU-Composite. Eurocrypt’01,
LNCS 2045, pages 182-194.
[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. of STOC,
pages 169-178, 2009.
[Gen11] C. Gentry. Fully Homomorphic Encryption without Bootstrapping. ePrint Archive:
Report 2011/279: http://eprint.iacr.org/2011/277.
[GH10] C. Gentry and S. Halevi. Implementing Gentry's Fully-Homomorphic Encryption

 25

Scheme. Cryptology ePrint Archive: Report 2010/520: http://eprint.iacr.org/2010/520.
[GHV10] C. Gentry and S. Halevi and V. Vaikuntanathan. A Simple BGN-type Cryptosystem
from LWE. In Proc. of Eurocrypt, volume 6110, pages 506-522, 2010.
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proc. of STOC, pages 197-206, 2008.
[GS02] C. Gentry, M. Szydlo. Cryptanalysis of the Revised NTRU Signature Scheme.
Eurocrypt’02, LNCS 2332, pages 299-320.
[HPS98] J. Hoffstein, J. Pipher, J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. LNCS 1423, pages 267-288, 1998.
[LPR10] V. Lyubashevsky and C. Peikert and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Proc. of Eurocrypt, volume 6110, pages 1–23, 2010.
[Mic07] D. Micciancio Generalized compact knapsaks, cyclic lattices, and efficient one-way
functions. Computational Complexity, 16(4):365-411.
[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussion measures. SIAM Journal Computing, 37(1):267-302, 2007.
[Reg09] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
Journal of the ACM (JACM), v.56 n.6, pages1-40, 2009.
[SS10] D. Stehle and R. Steinfeld. Faster Fully Homomorphic Encryption. Cryptology ePrint
Archive: Report 2010/299: http://eprint.iacr.org/2010/299.
[SV10] N. P. Smart and F. Vercauteren Fully Homomorphic Encryption with Relatively Small
Key and Ciphertext Sizes. Lecture Notes in Computer Science, 2010, Volume 6056/2010,
420-443.
[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
40th Annual Symposium on Foundations of Computer Science, pages 554{567. IEEE, 1999.
[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169-180, 1978.
[Yao82] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science (FOCS '82), pages 160-164. IEEE, 1982.

 26

	New Fully Homomorphic Encryption over the Integers
	Introduction
	Our Contribution
	Related work
	Outline

	Preliminaries
	Notations
	Lattice
	Approximate Lattice Problem

	Part I FHE-1 Based on Approximate GCD Problem
	Somewhat Homomorphic Encryption (SHE-1)
	Construction
	Performance of SHE-1

	Fully Homomorphic Encryption (FHE-1)
	FHE-1 Scheme
	Performance of FHE-1

	Security of FHE-1
	Security Reduction
	Known Attack

	Part II FHE-2 Based on Approximate Ideal Lattice Problem
	Somewhat Homomorphic Encryption (SHE-2)
	Construction
	Correctness
	Performance of SHE-2

	Fully Homomorphic Encryption (FHE-2)
	Construction
	Recrypt Algorithm

	Fully Homomorphic Encryption (FHE-2v)
	Construction
	Recrypt Algorithm
	Improvement of FHE-2v
	Extension to Large Message Space
	Construction of Non-self-loop FHE-2v

	Security Analysis

	Part III FHE-3 Based on Approximate Lattice Problem
	Somewhat Homomorphic Encryption (SHE-3)
	Public Key Encryption Scheme (PKE)
	Homomorphic Operations over Ciphertexts

	Fully Homomorphic Encryption (FHE-3)
	Security Analysis
	Further Direction
	References

