
Faster 2-regular information-set decoding

Daniel J. Bernstein1, Tanja Lange2, Christiane Peters2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

3 Institute of Information Science
Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan

peter@cryptojedi.org

Abstract. Fix positive integers B and w. Let C be a linear code over F2

of length Bw. The 2-regular-decoding problem is to find a nonzero code-
word consisting of w length-B blocks, each of which has Hamming weight
0 or 2. This problem appears in attacks on the FSB (fast syndrome-
based) hash function and related proposals. This problem differs from
the usual information-set-decoding problems in that (1) the target code-
word is required to have a very regular structure and (2) the target weight
can be rather high, so that there are many possible codewords of that
weight.

Augot, Finiasz, and Sendrier, in the paper that introduced FSB, pre-
sented a variant of information-set decoding tuned for 2-regular decod-
ing. This paper improves the Augot–Finiasz–Sendrier algorithm in a way
that is analogous to Stern’s improvement upon basic information-set de-
coding. The resulting algorithm achieves an exponential speedup over
the previous algorithm.

Keywords: Information-set decoding, 2-regular decoding, FSB, binary
codes.

1 Introduction

The FSB family of hash functions was submitted to the SHA-3 competition
by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008 [1]. The submission
proposes six specific hash functions: FSB160, FSB224, FSB256, FSB384, FSB512,
and a toy version FSB48. The index specifies the size of the output. The hash
function consists of a compression function, which is iterated to compress the
entire message one block at a time, and a hash function to handle the output of

This work was supported by the National Science Foundation under grant 0716498,
by the European Commission under Contract ICT-2007-216499 CACE, and by the
European Commission under Contract ICT-2007-216646 ECRYPT II. Permanent
ID of this document: c6c2347b09f3864994aefae5f5b6e7be. Date: 2011.03.09.

2 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

the final round of the compression function. The designers chose Whirlpool as
the final hash function.

The compression function is what gives this class of functions its name “fast
syndrome-based hash functions”. The compression function uses a matrix H over
F2 of size r× 2bw, viewed as having w blocks of size r× 2b; the parameters here
are, e.g., r = 640, b = 14, w = 80 for FSB160. The matrix H is a parity-check
matrix for a code of length 2bw and dimension at least 2bw−r. A single iteration
of the compression function takes as input a bit string of length bw, interprets
the bit string as a sequence of w numbers m1,m2, . . . ,mw in [0, 2b − 1], and
computes the sum of the columns indexed by m1+1,m2+1, . . . ,mw +1 in blocks
1, 2, . . . , w respectively. The output of the compression function is therefore Hy,
the syndrome of the vector y = ((2m1)2, (2m2)2, . . . , (2mw)2), where (2mi)2 means
the 2b-bit binary representation of 2mi in little-endian notation. The primary
goal of the compression function is to make it difficult for attackers to find a
collision, i.e., two distinct inputs that compress to the same output.

Details about how the matrix is constructed and how the message blocks are
chained can be found in the design document [1] and in the papers [2], [3], [15],
and [14] describing preliminary FSB designs. In [7] we proposed a more efficient
family of syndrome-based hash functions called RFSB (for “really fast syndrome-
based” hashing); RFSB differs from FSB in the parameter choices and in the
way the matrix is constructed. For this paper the matrix-construction details
do not matter; for stating the algorithms we consider a general r × 2bw matrix,
or even more generally an r × Bw matrix. We use FSB160 as an example to
illustrate the ideas and the improvements in various algorithms.

Two distinct vectors y and y′ having the same syndrome Hy = Hy′ do not
necessarily correspond to a collision in the compression function, because not ev-
ery vector can be written in the form ((2m1)2, (2m2)2, . . . , (2mw)2). If the vectors
y and y′ correspond to colliding messages then they must have Hamming weight
exactly 1 in each block. The sum y + y′ is then a nonzero 2-regular codeword,
where 2-regular means that the word has weight 0 or 2 in each block. Note that
the concept of 2-regularity for FBw

2 depends implicitly on the partitioning of Bw
positions into w blocks; sometimes we write w-block 2-regularity.

Conversely, any 2-regular codeword can be written trivially as y+y′, where y
and y′ each have weight exactly 1 in each block. Any nonzero 2-regular codeword
therefore immediately reveals a collision in this compression function. The prob-
lem of finding a collision is thus equivalent to the problem of 2-regular decoding,
i.e., the problem of finding a nonzero 2-regular codeword in a code, specifically
the code defined by the parity-check matrix H.

There is an extensive literature on algorithms to search for low-weight words
in codes. One can use any of these algorithms to search for a codeword of weight
2w (or of weight in {2, 4, 6, . . . , 2w}), and then hope that the resulting codeword
is 2-regular. However, it is better to pay attention to 2-regularity in the design
of the low-weight-codeword algorithm. Augot, Finiasz, and Sendrier introduced
the first dedicated 2-regular-decoding algorithm in the same 2003 paper [2] that
introduced FSB and the 2-regular-decoding problem.

Faster 2-regular information-set decoding 3

This paper generalizes and improves the Augot–Finiasz–Sendrier algorithm.
The new algorithm combines ideas from various improved versions of low-weight
information-set decoding, and restructures those ideas to fit the more compli-
cated context of 2-regular codewords. In particular, our attack adapts ideas of
Lee–Brickell, Leon, and Stern (see Section 2) to increase the chance of success
per iteration at the expense of more effort per iteration. The increase in success
chance outweighs the extra effort by an exponential factor.

Section 5 shows the impact of the new algorithm upon FSB48, FSB160,
FSB256, and RFSB-509. In each case our algorithm uses far fewer operations
than the algorithm of [2]. Note, however, that all of these compression func-
tions are conservatively designed; our algorithm is not fast enough to violate the
security claims made by the designers.

All of these algorithms can be generalized to decoding arbitrary syndromes
for codes over arbitrary finite fields Fq. The only case that arises in our target
application is decoding syndrome 0 over F2.

Model of computation. Like previous papers on information-set decoding,
this paper counts the number of bit operations used for arithmetic, and ignores
the cost of memory access. We have made no attempt to minimize the amount of
memory used by our new algorithm, and we do not claim that our algorithm is an
improvement over previous algorithms in models of computation that penalize
memory access.

Other approaches. Information-set decoding is not the only strategy for find-
ing 2-regular codewords. Three other attack strategies have been applied to the
FSB collision-finding problem: linearization, generalized birthday attacks, and
reducibility. See our survey [7, Section 4] for credits, citations, and corrections.

Information-set decoding, linearization, and generalized birthday attacks are
generic techniques that apply to practically all matrices H. Reducibility is a
special-purpose technique that relies on a particular structure of H (used in the
FSB proposals from [15]) and that is easily combined with the generic techniques
when it is applicable. The generic techniques have not been successfully combined
with each other, and it is not clear that any one of these techniques is superseded
by the others. Linearization seems unbeatable when w/r is not much below 1/2,
but it degrades rapidly in performance as w/r decreases. For small w/r the best
technique could be information-set decoding or generalized birthday attacks.
The FSB paper [3] says that generalized birthday attacks are a larger threat; the
FSB submission [1, Table 4, “best attacks known”: “collision search” column]
says that information-set decoding is a larger threat; both of the underlying
analyses are disputed in [4]. We recommend continuing investigation of all of
these approaches.

2 Low-weight information-set decoding

This section reviews several improvements in low-weight information-set decod-
ing, as background for our improvements in 2-regular information-set decoding.

4 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

Types of decoders. We systematically phrase the algorithms here as syndrome-
decoding algorithms using parity-check matrices. The goal is to find a low-weight
error vector e matching a given syndrome s for a given parity-check matrix H:
specifically, to find e ∈ Fn

2 with wt(e) ≤ t such that He = s, given s ∈ Fr
2 and

H ∈ Fr×n
2 . We abbreviate n− r as k.

These algorithms can be, and in the literature often are, translated into word-
decoding algorithms using generator matrices. The distinction between syndrome
decoding and word decoding is minor: an application that wants word decoding
can begin with a word v ∈ Fn

2 , compute the syndrome s = Hv, apply a syndrome-
decoding algorithm to find e, and finally compute v − e, a codeword whose
distance from v is at most t. The distinction between parity-check matrices and
generator matrices is more important, and can have a noticeable effect on the
efficiency of the algorithms, although we are not aware of any systematic study
of this effect. It is typical in code-based cryptography for k to be larger than n/2,
so parity-check matrices are smaller than generator matrices; this is particularly
obvious for the parameters n and k appearing in FSB.

Plain information-set decoding. Information-set decoding was first sug-
gested by Prange in [22] and was later used by McEliece [21] to estimate the
security of code-based cryptography.

One iteration of plain information-set decoding works as follows. Select a
random set of r columns of the r × n parity check matrix H of the code. Per-
mute columns to move these to the right-hand side of the matrix, producing a
matrix H ′. Compute the inverse U of the rightmost r × r submatrix of H ′; if
the submatrix is not invertible — i.e., if the k non-selected columns are not an
information set — then the iteration fails. If wt(Us) ≤ t then the iteration has
successfully found a low-weight error vector e′ = (0 . . . 0|Us) matching Us for
UH ′ = (· · · |Ir) and therefore matching s for H ′; reversing the column permu-
tation on the positions of e′ produces a low-weight error vector e matching s
for H. Otherwise the iteration fails. The method succeeds if there are no errors
located in the information set.

As mentioned in the introduction, our main concern in this paper is the case
s = 0. Prange’s algorithm is not interesting for s = 0: its only possible output
is 0. Weight-t codewords can be viewed as weight-t error vectors (relative to
codeword 0) but will not be found by this algorithm (except in the degenerate
case t = 0). The improved algorithms discussed below do not have this limitation,
and remain interesting in the case s = 0: they allow sums of columns of Ir to
be cancelled by sums of other columns of UH ′, so they can find nonzero error
vectors having syndrome 0. A different way to handle syndrome 0 is to extend
Prange’s algorithm to scan the entire kernel of the r×r submatrix of H ′, allowing
the submatrix to be non-invertible; this is the starting point for the algorithm
of [2] discussed in the next section.

The standard improvements. Lee and Brickell in [18] improved Prange’s
method by choosing a small parameter p ≤ t and allowing p errors in the infor-
mation set (together with ≤ t − p errors in the selected columns). This means

Faster 2-regular information-set decoding 5

1

1
︸ ︷︷ ︸

(n−k)×(n−k) identity matrixA B

ℓ rows

X Y Z

Fig. 2.1. One check in Stern’s algorithm

checking
(
k
p

)
combinations of columns but amortizes the costs of Gaussian elim-

ination across those combinations.
Leon in [19], independently of Lee and Brickell, suggested p errors in the

information set together with `-row early aborts. Instead of checking the weight
of the sum of each set of p columns, this algorithm checks only the sets that add
up to 0 on a subset Z of the rows, where Z has size `. The effort for each of
the

(
k
p

)
combinations is reduced from an r-row sum to an `-row sum (plus an

(r−`)-row sum with probability about 1/2`), at the cost of missing error vectors
that have errors in the ` columns corresponding to Z.

The next year, in [24], Stern suggested the same improvements together with
a collision speedup. The information set is partitioned into two sets X and Y .
The Lee–Brickell parameter p is required to be even and is split as (p/2)+(p/2).
The algorithm searches for error vectors that have p/2 errors among the positions
in X and p/2 errors among the positions in Y ; all (p/2)-column subsets A of
X are tested for matches with all (p/2)-column subsets B of Y . The algorithm
follows Leon’s by checking only the pairs (A,B) that add up to 0 on a subset
Z of the rows. The collision speedup is as follows: instead of trying all pairs
(A,B), the algorithm computes one list of Z-sums of (p/2)-column subsets A,
and a second list of Z-sums of (p/2)-column subsets B, and then efficiently finds
collisions between the two lists.

Figure 2.1 displays one checking step in Stern’s algorithm for p = 4 and
` = 7. The two leftmost solid columns (red on color displays) form the set A; the
two rightmost solid columns (blue) form the set B. The pair (A,B) is considered
only if these columns match on the ` positions indicated by solid rows (green),
i.e., sum up to 0 on each of those positions. If so, the sum is computed on the
full length r. If the sum has weight t− 4 then the algorithm has found a word of
weight t. This word has nonzero entries in the 4 columns indexed by A,B and
the positions where the t− 4 errors occur.

Further improvements. Many papers have proposed improvements to Stern’s
algorithm, for example in how the matrices H ′ and UH ′ are computed; in how
the choices of columns in X and Y are handled; and in how the full test is done

6 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

once a choice was successful on the ` positions. The most recent papers are [5],
[16], and [6]; see those papers for surveys of previous work.

3 The Augot–Finiasz–Sendrier algorithm for 2-regular
decoding

This section discusses the Augot–Finiasz–Sendrier algorithm [2, Section 4.2] for
2-regular decoding. The algorithm inputs are positive integers r, B,w and a
parity-check matrix H ∈ Fr×n

2 , where n = Bw. If the algorithm terminates
then it outputs a nonzero w-block 2-regular codeword; recall that this means a
nonzero codeword v such that, for each i ∈ {1, 2, . . . , w}, the ith B-bit block of
v has Hamming weight 0 or 2.

The algorithm can be generalized to decoding arbitrary syndromes, but we
focus on syndrome 0 as discussed in the introduction. We refer to the positions
of nonzero entries in the target codeword as error positions, viewing the target
codeword as an error vector relative to codeword 0.

Review of the algorithm. Each iteration of this algorithm selects a set of r
out of the n positions of columns from H, performs r × r Gaussian elimination
to compute the kernel of those r columns, and checks each nonzero element of
the kernel for 2-regularity. The selection is split evenly among w0 blocks of H,
where w0 ∈ {1, 2, 3, . . . , w} is an algorithm parameter; assume for the moment
that w0 divides r and that r/w0 ≤ B.

Out of all 2r vectors supported in these r positions, only
∑

1≤i≤w0

(
r
2i

)
have

weight in {2, 4, 6, . . . , 2w0}, and only
((

r/w0
2

)
+ 1
)w0

− 1 are nonzero 2-regular
vectors. Each of these nonzero 2-regular vectors has, under suitable randomness
assumptions on H, probability 1/2r of being a codeword, so the expected number

of codewords found by one iteration of the algorithm is
(((

r/w0
2

)
+ 1
)w0

− 1
)

/2r.
Augot, Finiasz, and Sendrier conclude that the success probability of an

iteration is
((

r/w0
2

)
+ 1
)w0

/2r. Here they are ignoring the −1 above, and ignor-
ing the difference between the success probability and the expected number of
codewords (i.e., ignoring the possibility of an iteration finding two codewords at
once), but these are minor effects.

The expected number of kernel elements is (again under suitable randomness
assumptions on H, which we now stop mentioning explicitly) a constant; a large
kernel occurs with only small probability. The bottleneck in the iteration is
Gaussian elimination, using O(r3) bit operations.

Non-divisibility. Augot, Finiasz, and Sendrier say that for w < αr it is best
to take w0 = w; here α ≈ 0.24231 is chosen to maximize

((
1/α
2

)
+ 1
)α

. Many of
the published FSB parameters (r, B,w) have w dividing r and w < αr; in all of
these cases, w0 will also divide r.

However, Augot, Finiasz, and Sendrier also consider many parameters with
w > αr, and say that in this case it is best to take w0 = αr. Presumably this

Faster 2-regular information-set decoding 7

means choosing w0 as an integer very close to αr, but for almost all values of r
this means that w0 cannot divide r. This non-divisibility causes various problems
that are not discussed in [2] and that invalidate some of the algorithm analysis
in [2], as we now show.

The obvious way to interpret the algorithm to cover this case is to take some
blocks with br/w0c selected columns, and some with dr/w0e, for a total of r
columns. Write f = br/w0c, b = r −w0f = r mod w0, and a = w0 − b; then one
can take a blocks each with f columns and b blocks each with f + 1 columns,
for a total of r columns in w0 blocks. For example, if w0 = 0.24r, then one can
take 5w0 − r = 0.20r blocks with 4 columns and r − 4w0 = 0.04r blocks with 5
columns.

The number of 2-regular words supported in these r columns is exactly((
f
2

)
+ 1
)a ((

f+1
2

)
+ 1
)b

. Here we are counting, for each of the a blocks, the
number of ways to choose 0 or 2 out of f columns; and, for each of the b blocks,
the number of ways to choose 0 or 2 out of f +1 columns. The expected number
of nonzero 2-regular codewords found by one iteration is thus(((

f

2

)
+ 1
)a((

f + 1
2

)
+ 1
)b

− 1

)/
2r.

If r/5 < w0 ≤ r/4 then this number is (7a11b−1)/2r = (75w0−r11r−4w0−1)/2r ≈
((11/14)(75/114)w0/r)r; e.g., approximately 2−0.300r for w0 = αr.

The analysis in [2] incorrectly applies the formula
((

r/w0
2

)
+ 1
)w0

/2r without
regard to the question of whether r/w0 is an integer, and in particular for the
case w0 = αr. This overstates the success probability by a small but exponen-
tial factor, for example claiming success probability 2−0.298r for w0 = αr. The
discrepancy is larger for ratios r/w0 that are farther from integers; see Figure
3.1. Many of the curves plotted in [2] and [3, Section 4.4] need to be adjusted
accordingly. This analysis also shows that the correct cutoff for w0 is 0.25r, not
αr. We are not aware of any sensible algorithm modification that would rescue
the analysis in [2].

Comparison to low-weight decoding. We emphasize that finding a nonzero
2-regular codeword is much harder than merely finding a word of weight 2w.
Each nonzero 2-regular codeword has weight in {2, 4, 6, . . . , 2w}, but the opposite
is very far from being true: most words of this weight will not have the right
distribution of nonzero entries.

For example, consider FSB160, with r = 640, B = 214, and w = 80. The parity
check matrix is a 640 × n matrix where n = 214 · 80 = 1310720. The Augot–
Finiasz–Sendrier algorithm picks 640 columns in a regular pattern by taking
8 columns of each of the 80 blocks; by linear algebra identifies all codewords
supported in those columns; and checks 2-regularity of each nonzero codeword.
The number of nonzero 2-regular vectors supported in those columns is (

(
8
2

)
+

1)80 − 1 ≈ 2388.64, so the number of nonzero 2-regular codewords supported in
these columns is expected to be approximately 2388.64/2640 = 2−251.36.

8 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Fig. 3.1. Vertical axis, bottom curve: y = 1 − x log2

“`
1/x
2

´
+ 1

”
; the Augot–Finiasz–

Sendrier algorithm was claimed to use asymptotically 2yr iterations if x = w0/r. Verti-
cal axis, top segments: y = 1− (x(f + 1)− 1) log2

``
f
2

´
+ 1

´
− (1− xf) log2

``
f+1
2

´
+ 1

´
where f = b1/xc; the algorithm actually uses asymptotically 2yr iterations if x = w0/r.

For comparison, the number of weight-160 vectors supported in the same
columns is approximately

(
640
160

)
≈ 2514.44, so the number of weight-160 code-

words supported in these columns is expected to be approximately 2514.44/2640 =
2−125.56. The probability is slightly larger if weights 158, 156, . . . are also allowed.
This change in success criteria does not noticeably slow down the iteration, and
it drastically reduces the number of iterations required for success.

This difference is even more extreme for w ≈ r/4. Finding a w-block 2-regular
codeword then takes an exponential number of iterations, approximately

2r

/((
4
2

)
+ 1
)r/4

= (16/7)r/4,

while finding a weight-2w codeword takes a polynomial number of iterations,
approximately

2r

/(
r

r/2

)
≈ 2r

√2πr/2
(

r/2
e

)r/2
)2/

(
√

2πr
(r

e

)r

) =
√

πr/2.

In both cases each iteration takes polynomial time.

Faster 2-regular information-set decoding 9

4 A new algorithm for 2-regular decoding

This section presents a new algorithm for 2-regular decoding. This algorithm
combines the standard improvements in low-weight decoding (see Section 2)
with the Augot–Finiasz–Sendrier algorithm described in the previous section.

Impact of the improvements. One might guess that these improvements
actually have very little effect, if any at all, upon the complexity of 2-regular
decoding. There are several arguments for this guess:

• In the usual context of low-weight decoding, the standard improvements are
often viewed as rather small. For example, Augot, Finiasz, and Sendrier in
[2, Section 4.1] say that [10], [18], and [24] merely “reduce the degree of the
polynomial part” of the complexity of information-set decoding.

• Plain information-set decoding and the Augot–Finiasz–Sendrier algorithm
apply linear algebra to an r × r matrix. The improved algorithms by Lee–
Brickell, Leon, and Stern start by inverting an r× r matrix but then have to
multiply the inverse U by the remaining r× k submatrix of the parity-check
matrix H. This extra multiplication has comparable cost to the inversion if k
and r are on the same scale, as they usually are in applications of low-weight
decoding; but k is usually much larger than r in applications of 2-regular
decoding. For example, recall that FSB160 has r = 640 and k = 1310080.

• Speedups in low-weight decoding algorithms are usually aimed at the case of
small weight (at most the Gilbert–Varshamov bound), where one expects to
find at most one codeword. Normally 2-regular decoding is applied for much
larger weights, where many solutions exist. There is no reason to think that
speedups in one context should be effective for the other.

But there are also counterarguments. One can show that Stern’s speedup is
superpolynomial when parameters are properly optimized, and that the cost of
linear algebra inside Stern’s algorithm is asymptotically negligible. See [8]. For
the same reasons, the cost of multiplying U by H is also negligible.

To firmly settle the arguments we show that our new algorithm for 2-regular
decoding is faster than the old algorithm by an exponential factor. For example,
for w/r = 0.1435, the number of bit operations in the new algorithm is 20.2825r

times a polynomial factor (provided that B ≥ 28), while the number of bit
operations in the old algorithm is 20.3621r times a polynomial factor.

We also evaluate the polynomial factors in the operation count for the new
algorithm. The next section considers various specific hash functions, showing
in each case the concrete speedup from the Augot–Finiasz–Sendrier algorithm
to our algorithm.

The new algorithm. Each iteration of this algorithm works as follows. Select
a set of r out of the n positions of columns from H. Split the selection almost
evenly (see below) among w0 blocks of H, where w0 ∈ {1, 2, 3, . . . , w} is an
algorithm parameter with r ≤ Bw0.

10 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

The new algorithm will do more work than the old algorithm in this iteration:
it will search for 2-regular codewords that have exactly 2x errors in the n−r non-
selected positions. Here x ∈ {1, . . . , bw0/2c} is another algorithm parameter.
Note that the presence of 2x errors will exclude the possibility of uselessly
finding codeword 0.

Use Gaussian elimination to see whether the r selected vectors are linearly
independent. This occurs with probability approximately 29%; see [11]. If the
vectors are dependent, start the iteration over with a new selection of r positions;
even with this restarting, Gaussian elimination is not a bottleneck for large x.
An alternative is to consider each kernel element, but for simplicity and speed
we enforce linear independence.

The set of non-selected positions is now an information set for H, and the set
of selected positions is the corresponding redundancy set. Gaussian elimination
has also revealed a linear transformation that converts the selected r vectors into
an r × r identity matrix; apply the same transformation to all of H. This uses
quite a few operations, but it is not a bottleneck for large x.

Assume for simplicity that w0 is even. Partition the w0 selected blocks of H
into w0/2 “left” blocks and w0/2 “right” blocks; the codewords found by the
algorithm will have exactly x information-set errors spread among exactly x
left blocks, and exactly x information-set errors spread among exactly x right
blocks. Also choose a set S of ` out of the r row indices, where ` is another
algorithm parameter. This set S corresponds, via the r× r identity matrix, to `
elements of the redundancy set; the codewords found by the algorithm will have
0 errors in those positions, as in Stern’s algorithm.

Build a list L as follows. Choose x left blocks, choose one information-set
position in each block, and add the S-indexed bits of those x vectors, obtaining
an `-bit vector. Store the resulting `-bit vector along with the chosen positions
as the first entry in L. Repeat until L has N elements, where N is another
algorithm parameter. Similarly build a list R of N elements, using the right
blocks.

Find all `-bit collisions between L and R. For each collision, compute the sum
of the non-S-indexed bits of those 2x vectors. If the sum has weight 2i− 2x for
some i ∈ {2x, 2x + 1, . . . , w0} then it can be written trivially as a sum of 2i−2x
vectors from the redundancy set. The positions of those vectors, together with
the positions from L and R, form a codeword of weight 2i. Output the codeword
if it is 2-regular.

Algorithm analysis. Write ` as `1w0 + `0 with 0 ≤ `0 < w0. Our algorithm
analysis assumes that r−` is a multiple of w0, say fw0. In this case the algorithm
can, and we assume that it does, select columns as follows: `0 blocks each contain
exactly f + `1 + 1 elements of the redundancy set, including `1 + 1 elements
corresponding to elements of S; w0−`0 further blocks each contain exactly f +`1
elements of the redundancy set, including `1 elements corresponding to elements
of S. Note that each of these w0 blocks contains exactly f non-S elements of the
redundancy set.

Faster 2-regular information-set decoding 11

This appears to be the most nicely balanced case of the algorithm. However,
we do not assert that it is always optimal. The algorithm does not require w0

to divide r − `; if w0 does not divide r − ` then one can choose sizes so that
the total matches and some sets have one extra element each, as in the previous
section. We exclude this possibility solely to simplify the analysis.

An element of L and an element of R together specify a pattern of 2x errors
in 2x blocks in the information set. For each of those blocks there are exactly
f ways to choose a non-S element of the redundancy set within the block. For
each of the w0 − 2x remaining blocks there are exactly 1 +

(
f
2

)
ways to choose

zero or two non-S elements of the redundancy set.
Putting together all of these choices produces a nonzero 2-regular error pat-

tern. Each of the 2x initially specified blocks contains exactly one error in the
information set and exactly one non-S error in the redundancy set. Each of the
w0 − 2x remaining blocks contains exactly zero or exactly two non-S errors in
the redundancy set. If this error pattern is a codeword then it will be found by
the algorithm.

The expected number of codewords obtainable in this way is

δ =
N2

2r
f2x

(
1 +

(
f

2

))w0−2x

under suitable randomness assumptions. The factor N2 counts the number of
pairs of elements of L and elements of R, and the factor 1/2r is the chance of
an error pattern being a codeword. The success probability of an iteration is
approximately 1− exp(−δ).

The cost of an iteration is the cost of linear algebra, plus 2N` additions for
the elements of L and R (assuming reuse of additions as in [5, Section 4]), plus
approximately (N2/2`)2x(r − `) additions to handle the partial collisions. We
could use early aborts as in [5] to reduce the factor r− ` here, but for simplicity
we avoid doing so.

Parameter selection. For various choices of (r, B,w) we performed computer
searches to identify good algorithm parameters (w0,x, N, `). See Section 5 for
examples. The search space is small enough that no general recommendations
for parameter choices are needed, but we nevertheless make a few comments
regarding the optimal parameters.

There are obvious benefits to increasing N in this algorithm: δ grows quadrat-
ically with N , while the cost of the iteration grows only linearly with N (assum-
ing N < 2`; see below). But there are two hard limits upon this benefit. First,
N cannot exceed the number of choices of entries in L; this number is between(
w0/2
x
)
(B−1−r/w0)x and

(
w0/2
x
)
(B+1−r/w0)x. Second, the quadratic growth

of δ with N stops producing a quadratic growth in the success probability of
the iteration as δ approaches and passes 1, i.e., as N2 approaches and passes

2rf−2x
(
1 +

(
f
2

))2x−w0

. Our computations suggest that, in general, the best
operation counts for this algorithm balance the first and second limits: most of
the possibilities for L and R are used, and a single iteration has a high chance
of success.

12 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

If N is allowed to grow beyond 2` then the cost of the iteration begins to
grow quadratically. One can compensate for this by increasing `. In general it
seems best to choose ` close to log2 N , as in previous information-set-decoding
algorithms, so that the cost of building lists L and R is balanced with the costs
of doing the full-length checks. Increasing ` has the disadvantage of directly
reducing δ, but this appears to be outweighed by the advantage of keeping N2/2`

under control. Beware that increasing ` also has a disadvantage not visible in
the bit-operation cost model: efficient collision detection needs about 2` bits of
memory.

Asymptotics. Fix a positive integer B and a positive real number W . Assume
that w/r → W as r → ∞. The following analysis optimizes choices of posi-
tive real numbers W0,X, T for the following goals: if the algorithm parameters
w0,x, N, ` are chosen so that w0/r → W0, x/r → X, (log2 N)/r → T , and
`/r → T , then the algorithm run time also satisfies (log2 time)/r → T ; further-
more, T is as small as possible.

We impose several constraints upon the choices of W0,X, T :

• The ratio f = (1 − T)/W0 is a positive integer. This allows ` and w0 to be
chosen so that (r−`)/w0 = f once r is sufficiently large. We suspect that our
algorithm achieves smaller exponents without this constraint, but as noted
above our algorithm analysis requires w0 to divide r − `.

• W0 ≤ W . This allows w0 to be chosen in {2, 4, 6, . . . , 2bw/2c}.
• X ≤ W0/2. This allows x to be chosen in {1, 2, 3, . . . , bw0/2c}.
• 2T − 1 + 2X log2 f + (W0 − 2X) log2(1 + f(f − 1)/2) = 0; in other words,

(log2 δ)/r → 0. This ensures that the algorithm succeeds within 2o(r) itera-
tions. We do not have a proof that this constraint is always optimal, but we
impose it here to simplify the asymptotic analysis.

• T ≤ (W0/2) log2(W0/2) − X log2 X − (W0/2 − X) log2(W0/2 − X) +
X log2(B−1−1/W0). This ensures that N can be chosen below

(
w0/2
x
)
(B−

1− r/w0)x.

Under these constraints, the cost of an iteration is within a polynomial factor of
2(T+o(1))r, so the total number of bit operations used by the algorithm is also
within a polynomial factor of 2(T+o(1))r.

We view this constrained optimization problem as a series of separate prob-
lems: one with f = 1, one with f = 2, one with f = 3, etc. For any particular
f < 1/W0, substituting T = 1−fW0 into 2T−1+2X log2 f+(W0−2X) log2(1+
f(f − 1)/2) = 0 produces an equation for X in terms of W0, namely

X =
1− (2f − log2(1 + f(f − 1)/2))W0

2 log2(1 + f(f − 1)/2)− 2 log2 f
.

If this does not satisfy 0 < X ≤ W0/2 then f and W0 are incompatible. The final
inequality T ≤ · · · then puts a lower bound on B. To summarize, each choice
of W0 has a finite list of possibilities for f , with each possibility immediately
dictating X, T , and a lower bound on B.

Faster 2-regular information-set decoding 13

 0.24

 0.26

 0.28

 0.30

 0.32

 0.34

 0.36

 0.38

 0.40

 0.42

 0.05 0.10 0.15 0.20 0.25

Fig. 4.1. T as a function of W0. See text for description.

Figure 4.1 shows values of T that can be achieved in this way; Figure 4.2
shows the corresponding lower bounds on log2 B, and Figure 4.3 shows the cor-
responding X. The horizontal axis in each case is W0. The values of f are,
from right to left, first 3, then 4, etc. The figures omit values of W0 that require
B > 220.

For example, W0 = 0.2453 and f = 3 produce T = 0.2641, X ≈ 0.022649,
and the lower bound B ≥ 28. As another example, W0 = 0.1435 and f = 5
produce T = 0.2825, X ≈ 0.027001, and the lower bound B ≥ 28. The smallest
value of T in Figure 4.1 is T = 0.2420, achieved for W0 = 0.1895, f = 4,
X ≈ 0.009905, and B ≥ 219.81.

Given W we scan through W0 ≤ W to minimize T . For example, any W ≥
0.1435 can use T = 0.2825 by taking W0 = 0.1435, if B ≥ 28. Figure 4.4 plots
the resulting T as a function of W , and for comparison plots the exponent of
the Augot–Finiasz–Sendrier algorithm.

Further improvements. Finiasz and Sendrier [16] improved Stern’s algorithm
by avoiding the static split into left and right in the information set. We adapt
this approach to the situation of finding 2-regular words as follows. Build one list
L by repeatedly picking x blocks and then for one column per block computing
the sum on the ` positions specified by S. This increases the maximal value of N
to approximately

(
w0
x
)
(B−r/w0)x. Then search for `-bit collisions within L. If a

14 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

 2.00

 4.00

 6.00

 8.00

10.00

12.00

14.00

16.00

18.00

20.00

 0.05 0.10 0.15 0.20 0.25

Fig. 4.2. Minimum log2 B as a function of W0. See text for description.

collision on the ` positions happens to involve j positions shared between the two
entries from L the algorithm can still produce a 2-regular vector. The condition
changes to requiring that each of the other 2(x − j) initially specified blocks
contains exactly one error in the information set and exactly one non-S error in
the redundancy set. Each of the i − 2x remaining blocks contains exactly two
non-S errors in the redundancy set. If this error pattern is a codeword then it will
be found by the algorithm. Various computer searches did not find parameters
leading to smaller operation counts than before even though this approach can
produce a larger N .

The literature for low-weight information-set decoding also contains many
improvements to the cost of linear algebra. Adapting these improvements to
the 2-regular context might be helpful for small x, but linear algebra becomes
negligible as x grows, so we have not incorporated these improvements into our
algorithm. We have also not tried to adapt ball-collision decoding [6] to the
2-regular context.

5 Applications to hash functions

This section gives examples of the cost of finding collisions in several different
syndrome-based compression functions: the FSB48, FSB160, and FSB256 pro-
posals from [1], and the RFSB-509 proposal from [7]. We repeat a caveat from

Faster 2-regular information-set decoding 15

 0.00

 0.02

 0.04

 0.06

 0.08

 0.10

 0.12

 0.05 0.10 0.15 0.20 0.25

Fig. 4.3. X as a function of W0. See text for description.

Section 1: like previous papers, this paper merely counts the number of bit oper-
ations used for arithmetic; we do not claim that our algorithm is an improvement
over previous algorithms in models of computation that penalize memory access.

FSB48 was designed for ≥ 224 collision resistance. It has r = 192, B = 214,
and w = 24. The Augot–Finiasz–Sendrier algorithm needs 275.41 iterations, with
each iteration using quite a few bit operations. Our algorithm uses just 266.31

bit operations with w0 = 24, x = 3, N ≈ 249.78, and ` = 48.
FSB160 was designed for ≥ 280 collision resistance. It has r = 640, B = 214,

and w = 80. The Augot–Finiasz–Sendrier algorithm needs 2251.36 iterations. Our
algorithm uses just 2196.70 bit operations with w0 = 76, x = 11, N ≈ 2182.09,
and ` = 184.

Augot, Finiasz, Gaborit, Manuel, and Sendrier in [1, Table 4, “best attacks
known”] claim a “complexity” of “2100.3” for “ISD collision search” against
FSB160. In fact, no attacks are known that find FSB160 collisions (equivalently,
2-regular codewords) at this speed. The text in [1, Section 2.2.2] makes clear
that [1] is merely estimating the cost of finding a weight-160 codeword, not the
cost of finding an 80-block 2-regular codeword.

FSB256 was designed for ≥ 2128 collision resistance. It has r = 1024, B = 214,
and w = 128. The Augot–Finiasz–Sendrier algorithm needs 2402.18 iterations.
Our algorithm uses just 2307.56 bit operations with w0 = 122, x = 17, N ≈
2286.92, and ` = 292.

16 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

 0.24

 0.26

 0.28

 0.30

 0.32

 0.34

 0.36

 0.38

 0.40

 0.42

 0.05 0.10 0.15 0.20 0.25
 0.24

 0.26

 0.28

 0.30

 0.32

 0.34

 0.36

 0.38

 0.40

 0.42

 0.05 0.10 0.15 0.20 0.25

Fig. 4.4. Bottom segments: Asymptotic exponent T for this paper’s algorithm (with
the restrictions that w0 divides r−` and that δ ≈ 1), as a function of W . Top segments:
Asymptotic exponent for the Augot–Finiasz–Sendrier algorithm.

RFSB-509 was also designed for ≥ 2128 collision resistance, but for speed
it uses tighter parameters (and a different matrix structure). It has r = 509,
B = 28, and w = 112. The Augot–Finiasz–Sendrier algorithm needs 2154.80

iterations, and the Augot–Finiasz–Sendrier analysis would have claimed 2152.99

iterations. Our algorithm uses just 2144.90 bit operations with w0 = 94, x = 12,
N ≈ 2130.75, and ` = 133.

References

[1] Daniel Augot, Matthieu Finiasz, Philippe Gaborit, Stéphane Manuel, Nico-
las Sendrier, SHA-3 proposal: FSB (2008). URL: http://www-rocq.inria.fr/

secret/CBCrypto/fsbdoc.pdf. Citations in this document: §1, §1, §1, §5, §5, §5,
§5.

[2] Daniel Augot, Matthieu Finiasz, Nicolas Sendrier, A fast provably secure crypto-
graphic hash function (2003). URL: http://eprint.iacr.org/2003/230. Citations
in this document: §1, §1, §1, §2, §3, §3, §3, §3, §3, §3, §4.

[3] Daniel Augot, Matthieu Finiasz, Nicolas Sendrier, A family of fast syndrome based
cryptographic hash functions, in Mycrypt 2005 [13] (2005), 64–83. Citations in this
document: §1, §1, §3.

http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
http://eprint.iacr.org/2003/230

Faster 2-regular information-set decoding 17

[4] Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, Pe-
ter Schwabe, FSBday: implementing Wagner’s generalized birthday attack against
the SHA–3 round–1 candidate FSB, in Indocrypt 2009 [23] (2009), 18–38. URL:
http://eprint.iacr.org/2009/292. Citations in this document: §1.

[5] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the
McEliece cryptosystem, in PQCrypto 2008 [9] (2008), 31–46. URL: http://eprint.
iacr.org/2008/318. Citations in this document: §2, §4, §4.

[6] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Ball-collision decoding (2010).
URL: http://eprint.iacr.org/2010/585. Citations in this document: §2, §4.

[7] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Peter Schwabe, Really fast
syndrome-based hashing (2011). URL: http://eprint.iacr.org/2011/074. Cita-
tions in this document: §1, §1, §5.

[8] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Henk van Tilborg, Explicit
bounds for generic decoding algorithms for code-based cryptography, in WCC 2009
(2009), 168–180. Citations in this document: §4.

[9] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second
international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17-19,
2008, proceedings, Lecture Notes in Computer Science, 5299, Springer, 2008. See
[5], [14].

[10] Anne Canteaut, Florent Chabaud, A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511, IEEE Transactions on Information Theory 44 (1998),
367–378. MR 98m:94043. URL: ftp://ftp.inria.fr/INRIA/tech-reports/RR/

RR-2685.ps.gz. Citations in this document: §4.

[11] Aydano B. Carleial, Martin E. Hellman, A note on Wyner’s wiretap channel, IEEE
Transactions on Information Theory 23 (1977), 387–390. ISSN 0018-9448. Cita-
tions in this document: §4.

[12] Gérard D. Cohen, Jacques Wolfmann (editors), Coding theory and applications,
Lecture Notes in Computer Science, 388, Springer, 1989. See [24].

[13] Ed Dawson, Serge Vaudenay (editors), Mycrypt 2005, Lecture Notes in Computer
Science, 3715, Springer, 2005. See [3].

[14] Matthieu Finiasz, Syndrome based collision resistant hashing, in PQCrypto 2008
[9] (2008), 137–147. Citations in this document: §1.

[15] Matthieu Finiasz, Philippe Gaborit, Nicolas Sendrier, Improved fast syndrome
based cryptographic hash functions, in Proceedings of ECRYPT Hash Work-
shop 2007 (2007). URL: http://www-roc.inria.fr/secret/Matthieu.Finiasz/
research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf. Cita-
tions in this document: §1, §1.

[16] Matthieu Finiasz, Nicolas Sendrier, Security bounds for the design of code-based
cryptosystems, in Asiacrypt 2009 [20] (2009). URL: http://eprint.iacr.org/

2009/414. Citations in this document: §2, §4.

[17] Christoph G. Günther, Advances in cryptology—EUROCRYPT ’88, proceedings
of the workshop on the theory and application of cryptographic techniques held in
Davos, May 25–27, 1988, Lecture Notes in Computer Science, 330, Springer-Verlag,
Berlin, 1988. ISBN 3-540-50251-3. MR 90a:94002. See [18].

[18] Pil Joong Lee, Ernest F. Brickell, An observation on the security of McEliece’s
public-key cryptosystem, in Eurocrypt ’88 [17] (1988), 275–280. MR 0994669. URL:
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF. Cita-
tions in this document: §2, §4.

http://eprint.iacr.org/2009/292
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2010/585
http://eprint.iacr.org/2011/074
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz
http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf
http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf
http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/414
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF

18 D. J. Bernstein, T. Lange, C. Peters, P. Schwabe

[19] Jeffrey S. Leon, A probabilistic algorithm for computing minimum weights of large
error-correcting codes, IEEE Transactions on Information Theory 34 (1988), 1354–
1359. MR 89k:94072. Citations in this document: §2.

[20] Mitsuru Matsui (editor), Advances in cryptology—ASIACRYPT 2009, 15th inter-
national conference on the theory and application of cryptology and information
security, Tokyo, Japan, December 6–10, 2009, proceedings, Lecture Notes in Com-
puter Science, 5912, Springer, 2009. ISBN 978-3-642-10365-0. See [16].

[21] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §2.

[22] Eugene Prange, The use of information sets in decoding cyclic codes, IRE Trans-
actions on Information Theory IT-8 (1962), S5–S9. Citations in this document:
§2.

[23] Bimal K. Roy, Nicolas Sendrier (editors), Progress in Cryptology—INDOCRYPT
2009, 10th international conference on cryptology in India, New Delhi, India,
December 13–16, 2009, proceedings, Lecture Notes in Computer Science, 5922,
Springer, 2009. ISBN 978-3-642-10627-9. See [4].

[24] Jacques Stern, A method for finding codewords of small weight, in [12] (1989),
106–113. Citations in this document: §2, §4.

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

