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Abstract

In this paper, we present a new class of knapsack type PKC
referred to as K(III)ΣPKC. In a sharp contrast with the con-
ventional knapsack type PKC’s, in our proposed scheme, K(I
II)ΣPKC, no conventional secret sequence but the natural bi-
nary number with noise is used. We show that the coding
rate, a more conservative measure for the security on knap-
sack PKC, can be made approximately 1.0.

In Appendix, we present K(II)ΣPKC.
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1 Introduction

Various studies have been made of the Public-Key Cryptosys-
tem (PKC). The security of the PKC’s proposed so far, in
most cases, depends on the difficulty of discrete logarithm
problem or factoring problem. For this reason, it is desired
to investigate another classes of PKC’s that do not rely on
the difficulty of these two problems. The multivariate PKC,
linear or non-linear, is one of the very promising candidates
of such classes [1]∼[6].

Another promising candidate of the members is the knap-
sack type PKC [7]∼[24]. Most of knapsack type PKC’s use so
called super-increasing sequence first used in the Merkle and
Hellman’s PKC(MH PKC for short)[7]. Unfortunately the
MH PKC was broken by Shamir[8],[9]. In order to overcome
the vulnerability, Shamir proposed a new knapsack type PKC
using a super-increasing sequence with noise sequence[13].
However this scheme was broken by the LLL attack[14].

Another sequence, the shifted-odd sequence, was proposed
by Kasahara and Murakami[17]. The shifted-odd sequence
with noise was also proposed[18],[19].

Recently the present author proposed two new members,
K(I)ΣPKC[22] and K(II)ΣPKC[23], of the class referred to as

Class(0) that use no secret sequence such as super-increasing
sequence or shifted-odd sequence.

In this paper, we present a new member of the Class(0),
the class that uses no secret sequence but the conventional
binary number with noise sequence. The constructed PKC
will be referred to as K(III)ΣPKC.

In Appendix, we also present K(II)ΣPKC, which is similar
to K(III)ΣPKC.

In the following sections, “random matrix” implies the ma-
trix whose component takes on 0 or 1 in a random manner.
We assume that, for simplicity, 0 or 1 is generated equally
likely.

Also in the following sections, when the variable xi takes on
the actual value x̃i, we shall denote the corresponding vector
x = (x1, x2, · · · , xn) as

x̃ = (x̃1, x̃2, · · · , x̃n). (1)

The C̃ and M̃ et al. will be defined in a similar manner.
Let us define the several symbols:

C = CI + CII : Ciphertext.
CI : First ciphertext.
CII : Second ciphertext.
M0 : Message symbol over Z for CI .

M = (M1, · · · ,Mn) : Message vector over {0, 1} ∈ Z for CII .
|A| : Size of A in bit.

2 K(III)ΣPKC

2.1 Construction:

Let us transform message M = (M1,M2, · · · ,Mn) over
{0, 1} ⊂ Z into

(M1,M2, · · · ,Mn)[P ]n×n = (m1, m2, · · · ,mn), (2)

where [P ]n×n is a random permutation matrix.
In K(III)ΣPKC, the ciphertext C is given by

C = CI + CII . (3)
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For the given T , R and W , let w be given by

w−1T = R mod W. (4)

where R and T satisfy

|R| = |T | = n (bit) (5)

Letting M0 be a message symbol over Z, the first ciphertext,
CI , is given by

CI = M0T. (6)

Let the set of keys for CII , {ki}, be given by

w
(
ri + 2i−1

)
≡ ki mod W ; i = 1, 2, · · · , n, (7)

where ri is a random integer that satisfies

ri ≡ 0 mod R (8)

and

2n ≤ ri ≤ 22n−log2 n−1. (9)

We see that r1, r2, · · · , rn perform just as like a noise sequence
in [13]. The second ciphertext CII is given by

CII =
n∑

i=1

miki. (10)

The ciphertext C is given by

C = CI + CII . (11)

From Eq.(6), the size of M0, |M0|, is given by

|M0| = n − 1 (bit). (12)

The set of keys is given by

Public key : {ki}, T .
Secret key : w, R, W ,

{
ri + 2i−1

}
, [P ]n×n.

2.2 Encryption and decryption processes

Encryption process:
Step1: The first ciphertext, C̃I , is given by

C̃I = M̃0T. (13)

Step2: The second ciphertext, C̃II , is given by

C̃II =
n∑

i=1

m̃iki. (14)

Step3: The ciphertext C̃ is given by

C̃ = C̃I + C̃II . (15)

Decryption process:
Step1: Intermediate message M̃I is obtained by

w−1C̃ ≡ M̃I mod W

=
n∑

i=1

m̃i

(
ri + 2i−1

)
+ M̃0R.

(16)

Step2:

M̃I ≡
n∑

i=1

m̃i2i−1 mod R, (17)

yielding m̃1, m̃2, · · · , m̃n.
Step3: M̃0 is decoded by

M̃0 =

{
M̃I −

n∑
i=1

m̃i

(
ri + 2i−1

)}
R−1. (18)

Step4: The original message M̃ can be obtained by

(m̃1, m̃2, · · · , m̃n)[P ]−1
n×n = M̃

=
(
M̃1, M̃2, · · · , M̃n

)
. 2

(19)

We see that the encryption and decryption processes can
be performed very fast. It should be noted that no sequential
process is required when decrypting the ciphertext.

2.3 Parameters

The sizes of ciphertexts CI , CII and C are given by

|CI | = 2n − 1, (20)

|CII | = 2n + log2 n, (21)

and

|C| = |CI | + |CII | = 2n + log2 n + 1, (22)

respectively. The size of the public keys, SPK , is given by

SPK = n|ki| + n = n(2n + 1). (23)

The coding rate ρ is given by

ρ =
Entropy of original message

Length of ciphertext
=

2n − 1
2n + log2 n + 1

. (24)

3 Security considerations

LLL attack on w and W
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In the followings we assume that the first exponents 0, 1, 2, 3
are correctly estimated through the exhaustive search and the
following equations are successfully obtained.

w(r1 + 1) = Q1W + k1, (25)
w(r2 + 2) = Q2W + k2, (26)
w(r3 + 4) = Q3W + k3, (27)
w(r4 + 8) = Q4W + k4. (28)

where Qi’s are the quotients.
In the followings, for simplicity, we let ri +2i−1 be denoted

by Ai. From Eqs.(25) ∼ (28), we obtain

k2k4(A1Q3 − A3Q1) − k2k3(A1Q4 − A4Q1)
+k1k3(A2Q4 − A4Q2) − k1k4(A2Q3 − A3Q2) = 0 (29)

The size of kikj , |kikj | is given by

|kikj | = 4n (bit). (30)

On the other hand the size of AiQj − AjQj , |AiQj − AjQj |
is given by

|AiQj − AjQj | = 4n − log2 n. (31)

We see that when n is sufficiently large, the following relation
approximately holds

|kikj | ≈ |AiQj − AjQj |. (32)

From Eqs. (29), (30), (31), and (32), we see that the unknown
coefficients of {klkm}, {AiQj − AjQj} in Eq. (29) cannot be
disclosed by LLL attack.

We thus conclude that the set of secret keys w and W are
kept secret.

LLL attack on ciphertext
The coding rate, ρ given by Eq.(24), a reasonable measure

for the security of knapsack PKC, takes on a sufficiently large
value as we see in the examples given in the next section:

ρ = 0.994 for n = 1024, (33)

an extremely large value.
We conclude that K(III)ΣPKC would be secure against LLL

attack on ciphertext as the coding rate takes on sufficiently
large values.

Randomness of Ki

In K(III)ΣPKC, no secret sequence but the natural binary
number with noise sequence is used. In a sharp contrast with
K(II)ΣPKC(Please see Appendix), the randomness of Ki in
K(III)ΣPKC is sufficiently large. It should be noted that, the
ciphertext C can be kept secret due to the addition of the
first ciphertext.

4 Examples

In Table 1, we show several examples of K(III)ΣPKC. We see
that the coding rates take on large values.

Table 1: Examples
Ex. n |M | + |M0| |C| ρ SPK(Kbit)
I 256 511 521 0.983 131
II 512 1023 1034 0.989 525
III 1024 2047 2059 0.994 2098
IV 2048 4095 4108 0.997 8391

5 Conclusion

We have presented a new class of linear multivariate PKC
referred to K(III)ΣPKC. To summarize, K(III)ΣPKC has the
following remarkable features:
1 : Principle of construction is simple.
2 : Coding rate ρ, achieves ρ& 0.99 for a reasonable

size of public key.
3 : Decryption process can be performed very fast.
4 : No secret sequence but the natural binary number

with noise is used.
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Appendix: A Construction of
K(II)ΣPKC

In this appendix, we present a new class of knapsack type
PKC referred to as K(II)ΣPKC. In a sharp contrast with the
conventional knapsack type PKC’s, in K(II)ΣPKC, no con-
ventional secret sequence but the natural binary number with
noise is used.

A1. Construction

For a given set of T and W , we obtain w by

w−1T ≡ 1 mod W. (34)

Let ϵi be defined by

ϵi = ϵ′i + ϵ′′i ; i = 1, 2, · · · , n, (35)

where ϵ′i’s and ϵ′′i ’s are integers. We assume that ϵi’s satisfy

0 ≤ ϵ1 + ϵ2 + · · · + ϵn ≤ 2λ. (36)

Let the set {k′
i} be given by

w
(
ϵ′i + 2i+λ

)
≡ k′

i mod W ; i = 1, 2, · · · , n. (37)

Let the set of keys, {ki}, be given by

ki = k′
i + ϵ′′i T ; i = 1, 2, · · · , n. (38)
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Public key : {ki}.
Secret key : w, W , T , {εi}, [P ]n×n.

Encryption process:
The ciphertext is given by

C̃ = m̃1k1 + m̃2k2 + · · · + m̃nkn + M̃0T. (39)

Decryption process:
Step1:

w−1C̃ = m̃1ε1 + m̃2ε2 + · · · + m̃nεn

+ m̃12λ+1 + m̃22λ+2 + · · · + m̃n2λ+n + M̃0 mod W.

(40)

Step2:

m̃1ε1+m̃2ε2+· · ·+m̃nεn+m̃12λ+1+· · ·+m̃n2λ+n + M̃0

≡ M̃0 mod 2λ, (41)

yielding M̃0.

Step3:
As m̃1ε1+m̃2ε2+· · ·+m̃nεn is smaller than 2λ, m̃1, · · · , m̃n

is given instantly from Eq.(41) as they are.

Step4:
The original message can be obtained by

(m̃1, m̃2, · · · , m̃n)[P ]−1
n×n =

(
M̃1, M̃2, · · · , M̃n

)
. (42)

A2. Example

We shall present several examples in Table 2. Size of public
key, SPK is given by

SPK = n(λ + n) (bit). (43)

In this paper we assume that λ is given

λ = 2 log2 n. (44)

The size of the ciphertext, |C|, is given by

|C| = |Ki| + log2 n + λ = n + 3 log2 n. (45)

Table 2: Examples
Example n |C|(bit) SPK(Kbit) ρ

I 511 539 267 0.948
II 1023 1054 1060 0.970
III 2047 2081 4220 0.984

A3. Conclusion

We have presented a new class of linear multivariate PKC
referred to as K(II)ΣPKC. To summarize, K(II)ΣPKC has the
following remarkable features.

Feature I : Principle of construction is very simple.
Feature II : No secret sequence but natural binary

number with noise is used.
Feature III : Coding rate ρ, achieves ρ & 0.95 for a

reasonable size of public key.
Feature IV : Decryption process can be performed

very fast.
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