
The Hummingbird-2 Lightweight
Authenticated Encryption Algorithm

Daniel Engels, Markku-Juhani O. Saarinen,
Peter Schweitzer, and Eric M. Smith

REVERE SECURITY

4500 Westgrove Drive, Suite 335, Addison, TX 75001, USA.
{daniel.engels,mjos,pater.schweitzer,eric.smith}

@reveresecurity.com

Abstract. Hummingbird-2 is an encryption algorithm with a 128-bit secret key
and a 64-bit initialization vector. Hummingbird-2 optionally produces an authen-
tication tag for each message processed. Like it’s predecessor Hummingbird-1,
Hummingbird-2 has been targeted for low-end microcontrollers and for hardware
implementation in lightweight devices such as RFID tags and wireless sensors.
Compared to the previous version of the cipher, and in response to extensive anal-
ysis, the internal state has been increased to 128 bits and a flow of entropy from
the state to the mixing function has been improved. In this paper we present the
Hummingbird-2 algorithm, its design and security arguments, performance anal-
ysis on both software and hardware platforms, and timing analysis in relation to
the ISO 18000-6C protocol.

Keywords: Hummingbird cipher, constrained devices, lightweight cryptogra-
phy, ISO 18000-6C.

1 Introduction

Authenticated encryption algorithms provide confidentiality and integrity pro-
tection for messages using a single processing step. This results in performance
and cost advantages, especially when the algorithm is implemented in hardware.

Hummingbird-2 is an authenticating encryption primitive that has been de-
signed particularly for resource-constrained devices such as RFID tags, wireless
sensors, smart meters and industrial controllers. Hummingbird-2 can be imple-
mented with very small hardware or software footprint and is therefore suitable
for providing security in low-cost ubiquitous devices.

The design described in this paper is an evolutionary step from Hummingbird-
1 [8, 10, 11] and was developed in part as a response to the cryptanalysis of the
cipher presented in [20]. Hummingbird-2 is resistant to all previously known
cryptanalytic attacks.

Table 1. S-Boxes used in Hummingbird-2.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 7 12 14 9 2 1 5 15 11 6 13 0 4 8 10 3
S2(x) 4 10 1 6 8 15 7 12 3 0 14 13 5 9 11 2
S3(x) 2 15 12 1 5 6 10 13 14 8 3 4 0 11 9 7
S4(x) 15 4 5 8 9 7 2 1 10 3 0 14 6 12 13 11

The Hummingbird-2 does not directly fall to either traditional stream ci-
pher or block cipher categories as it inherits properties from both. In this sense
Hummingbird-2 resembles the Helix and Phelix proposals [9, 16, 22]. Since
Hummingbird-2 operates on 16-bit blocks, more efficiency can be realized in
applications that chirp small messages, such as RFID devices or wireless sen-
sors. This also makes it easy to layer in security in various protocol schemes.

This paper is structured as follows: A formal description of Hummingbird-2
is contained in Section 2. Section 3 has the preliminary results of cryptanalysis
of the cipher. Software and hardware implementations are described in Section
4, together with ISO 18000-6C timing information and comparison in Section
5. Conclusions can be found in Section 6. Appendix A contains a set of imple-
mentation test vectors for Hummingbird-2.

2 Description of Hummingbird-2

The Hummingbird-2 cipher has a 128-bit secret key K and a 128-bit internal
state R which is initialized using a 64-bit Initialization Vector IV . These vari-
ables are accessed as vectors of 16-bit words:

K = (K1,K2,K3,K4,K5,K6,K7,K8),

R = (R1, R2, R3, R4, R5, R6, R7, R8),

IV = (IV 1, IV 2, IV 3, IV 4).

Hummingbird-2 is entirely built from operations on 16-bit words: the exclusive-
or operation on words (⊕), addition modulo 65536 (�) and a nonlinear mixing
function f(x).

2.1 Nonlinear functions f(x) and WD16(x, a, b, c, d)

The nonlinear mixing function f consists of four-bit S-Box permutation lookups
on each nibble of the word, followed by a linear mix.

The Hummingbird-2 S-Boxes S1, S2, S3 and S4 are given Table 1.1 Let
S(x) denote the computation of four S-Boxes and L(x) the linear transforma-
tion which is expressed using the left circular shift (rotation) operator (≪). We
may write the f component as

S(x) =S1(x0) | S2(x1) | S3(x2) | S4(x3)
L(x) =x⊕ (x≪ 6)⊕ (x≪ 10)

f(x) =L(S(x)).

We further define a 16-bit keyed permutation WD16 using f as

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d). (1)

The inverse of f(x) and WD16 can be derived in straightforward fashion.

2.2 Initialization

The internal state of Hummingbird-2 is initialized with a four-round procedure
using the 64-bit nonce IV . We first set

R(0) = (IV 1, IV 2, IV 3, IV 4, IV 1, IV 2, IV 3, IV 4) (2)

and then iterate for i = 0, 1, 2, 3 the following:

t1 =WD16(R
(i)
1 � 〈i〉,K1,K2,K3,K4)

t2 =WD16(R
(i)
2 � t1,K5,K6,K7,K8)

t3 =WD16(R
(i)
3 � t2,K1,K2,K3,K4)

t4 =WD16(R
(i)
4 � t3,K5,K6,K7,K8)

R
(i+1)
1 = (R

(i)
1 � t4)≪ 3

R
(i+1)
2 = (R

(i)
2 � t1)≫ 1

R
(i+1)
3 = (R

(i)
3 � t2)≪ 8

R
(i+1)
4 = (R

(i)
4 � t3)≪ 1

R
(i+1)
5 = R

(i)
5 ⊕R

(i+1)
1

R
(i+1)
6 = R

(i)
6 ⊕R

(i+1)
2

R
(i+1)
7 = R

(i)
7 ⊕R

(i+1)
3

R
(i+1)
8 = R

(i)
8 ⊕R

(i+1)
4 .

1 Some early versions of Hummingbird-2 used a different set of S-Boxes from Serpent [1].
Hummingbird-2 was tweaked in May 2011 to use these S-Boxes.

The initial state for encrypting the first plaintext word is R(4). Note that the
two’s complement numerical value of i = 0 . . . 3 is used in computation of t1.

2.3 Encryption

Encryption of a single word of plaintext Pi to ciphertext word Ci requires four
invocations of WD16. 2

t1 =WD16(R
(i)
1 � Pi,K1,K2,K3,K4)

t2 =WD16(R
(i)
2 � t1,K5 ⊕R(i)

5 ,K6 ⊕R(i)
6 ,K7 ⊕R(i)

7 ,K8 ⊕R(i)
8)

t3 =WD16(R
(i)
3 � t2,K1 ⊕R(i)

5 ,K2 ⊕R(i)
6 ,K3 ⊕R(i)

7 ,K4 ⊕R(i)
8)

Ci =WD16(R
(i)
4 � t3,K5,K6,K7,K8)�R

(i)
1 .

After each encrypted / decrypted word, we perform the following state update:

R
(i+1)
1 = R

(i)
1 � t3

R
(i+1)
2 = R

(i)
2 � t1

R
(i+1)
3 = R

(i)
3 � t2

R
(i+1)
4 = R

(i)
4 �R

(i)
1 � t3 � t1

R
(i+1)
5 = R

(i)
5 ⊕ (R

(i)
1 � t3)

R
(i+1)
6 = R

(i)
6 ⊕ (R

(i)
2 � t1)

R
(i+1)
7 = R

(i)
7 ⊕ (R

(i)
3 � t2)

R
(i+1)
8 = R

(i)
8 ⊕ (R

(i)
4 �R

(i)
1 � t3 � t1).

A shorthand of this is C = E(P). The state variable R is stepped by one iter-
ation for each invocation of E. Note that the update function can be simplified
since certain terms are re-used.

2.4 Authenticating fixed-length unencrypted associated data

Authenticated Encryption with Associated Data (AEAD) is a method of using
Hummingbird that encrypts / decrypts a payload and also authenticates any as-
sociated data (AD) that travels alongside the ciphertext such as the nonce and a
packet header. AD processing is optional in implementations.

AD processing occurs after the entire encrypted payload has processed. We
simply compute E(Ai) but transmit Ai itself instead. Note that the size of the
AD must be fixed (known by the recipient).

2 Some early versions of this paper had a typographic error here as the final addition of R(i)
1

was missing. Thanks to Jean-Philippe Aumasson for spotting this.

2.5 Stream cipher mode: A technique for encoding short fixed-length
fields

Sometimes it is desirable to communicate, without message expansion, data-
grams which are less than 16 bits in size. We describe an encoding technique
which enables this.

Let x be the short message of 1 ≤ n ≤ 15 bits. The ciphertext message
is derived from the n least significant bits of x ⊕ E(0). If message integrity is
required, the state is further updated by E(x). Decoding is straightforward.

Note that encrypting the two words 0 and x has exactly the same effect on
state and hence special care must be taken to ensure that both parties are in sync.
If a protocol requires arbitrary-length authenticated messages, this technique
can be used for padding, but the total message length (in bits) must be specified
and verified in an unambiguous fixed-length AD field.

2.6 Computing the Message Authentication Code

To compute a message authentication tag T of n ≤ 8 words, we first finalize the
message by first stepping the cipher three times without producing any output.

E(IV 1 �R1 �R3 � n)

E(IV 2 �R1 �R3)

E(IV 3 �R1 �R3).

HereR1 andR3 denotes the contents of those register words immediately before
each invocation of E. We then construct the words of the authentication tag T
as follows:

T1 =E(IV 4 �R1 �R3)

Ti =E(R1 �R3) for i = 2, 3, . . . ,n.

2.7 Uniqueness Requirement for IVs and Keys

Hummingbird-2 is an authenticated encryption primitive and may be used in
similar fashion as the Galois/Counter Mode (GCM) and GMAC, which are part
of NSA “Suite B” algorithms. Implementers would be wise to take similar care
in ensuring that keys and IVs are never repeated. We restate the requirement
from Section 8 of [7].

The probability that the authenticated encryption function ever will be
invoked with the same IV and the same key on two (or more) distinct
sets of input data shall be no greater than 2−32.

Generally speaking, compliance to this requirement is recommended in or-
der to mitigate the risk of using Hummingbird-2 in certain applications, and this
cipher is not as vulnerable to repeated IV attacks as AES-GCM and should be
able to resist many realistic chosen-IV attacks.

Indeed Hummingbird-2 leaks very little information should the nonce be
repeated. At most all you get are exact repetitions in the ciphertext where you
have exact repetitions in the plaintext.

3 Development and Analysis

The main differences between Hummingbird-1 and Hummingbird-2 are:

– The key size has been set to 128 bits to be commensurable with the actual
security of the cipher.

– The state size of the cipher has been increased from 80 bits to 128 bits and
the LFSR has been eliminated. The last four new state registers R5, R6, R7,
and R8 are called the “accumulator” registers.

– The keyed transform, called the “E Box” in [20] now only has four invo-
cations of the S-Boxes, compared to five in Hummingbird-1. This increases
the encryption speed of the cipher.

– The authentication mechanism has been improved to thwart a message ex-
tension attack.

– Support for authenticating unencrypted associated data has been introduced
with the AEAD mode discussed in Section 2.4.

– Recommendations to the reuse of keys and IVs have been introduced.
– An important design criteria was compatibility with the ISO 18000-6C tim-

ing requirements as discussed in Section 5.

We note that prior to publication, Hummingbird-2 has been subjected to a
significant cryptanalytic security assurance effort. For this, the services of Jim
Frazer & Son Cryptography (formerly ISSI) and the U. Waterloo Centre for Ap-
plied Cryptography Research were used, in addition to input from public analy-
sis of Hummingbird-1. After thousands of hours of cryptanalysis, no significant
flaws or sub-exhaustive attacks against Hummingbird-2 have been found. We
summarize the results of our analysis in the following sections.

3.1 Structure of the Cipher

Hummingbird-2 has been designed to be as lightweight as possible while still
maintaining a reasonable security margin against attacks. The state size of 128
bits should not be confused with the state size of stream ciphers (where the

key is usually loaded into the evolving state registers upon initialization). In
Hummingbird-2 the key is kept constant and hence we could say that the state
is 128+128=256 bits of which 128 bits is evolving. There is strong experimental
and theoretical evidence that the cycle upon constant input words is 2127.

The initialization function is one-to-one from the IV to the four state reg-
isters R1, R2, R3, and R4. Hence there are no nonce collisions. If more than
264 invocations of the E function is performed under a single key, a birthday
condition in the internal state may occur. The usage condition given in Section
2.7 will prevent this. Such a birthday condition has very limited cryptographic
implication beyond serving as a distinguisher with that complexity. We note that
this is the same bound that can be found for the AES algorithm [17].

3.2 S-Box selection

The S-Box (Table 1 and Section 2.1) selection was based on specific research
presented in more detail in [21]. The S-Boxes also belong to the optimal classes
discussed in [14].

We performed an exhaustive search through 16! possible permutations. The
S-Boxes specifically belong to a classes that ideally satisfy the following condi-
tions:

– Optimal differential bound p ≤ 1/4, linear bound ε ≤ 1/4, and branch
number 3.

– There is a minimum number of differential characteristics and linear ap-
proximations at the bounds.

– All S-boxes belong to a different linear equivalence class.
– The four S-boxes have a large Hamming distance from each other and the

identity permutation.
– The algebraic degree of all but one output bit is 3 and each output bit is

nonlinearly dependent on a maximum number of input bits.

3.3 Differential cryptanalysis

Hummingbird-2 has been designed to be resistant to Differential Cryptanalysis
[3, 4]. The most interesting findings in our research involve the high-bit differ-
ential ∆ = 8000 which behaves in the same way under modular addition and
XOR. Much of the nonlinearity for lower bits comes from interplay of these
two operations. The four rotations in the initialization phase were introduced to
increase the resistance of the cipher against certain related-key attacks.

We have verified that Hummingbird-2 is provably resistant against the types
of attacks described by Saarinen in [20]. This was done by performing a search

of all high-bit differentials in both initialization and actual encryption phases of
the cipher.

Differentials in the encryption function Let H = 8000 denote the high bit dif-
ferential and x some undefined ciphertext differential. We found the following
differentials that hold with probability 1.

∆P = 0 ∆R = (0 0 0 H 0 0 0 0) ⇒ ∆C = x ∆R = (0 0 0 H 0 0 0 H)

∆P = H ∆R = (H 0 0 0 0 0 0 0) ⇒ ∆C = H ∆R = (H 0 0 H H 0 0 H)

∆P = H ∆R = (H 0 0 H 0 0 0 0) ⇒ ∆C = x ∆R = (H 0 0 0 H 0 0 0)

∆P = 0 ∆R = (0 H H 0 H 0 0 0) ⇒ ∆C = 0 ∆R = (0 H H 0 H H H 0)

∆P = H ∆R = (H H H 0 H 0 0 0) ⇒ ∆C = H ∆R = (H H H H 0 H H H)

∆P = H ∆R = (H H H H H 0 0 0) ⇒ ∆C = x ∆R = (H H H 0 0 H H 0)

∆P = 0 ∆R = (0 H H H H 0 0 0) ⇒ ∆C = x ∆R = (0 H H H H H H H).

It can be observed that these differentials can’t be used to construct an iterative
differential.

Related keys in encryption For two related keys we found one iterative dif-
ferential which holds with probability one. When the two keys are related by
∆K = (H 0 0 0 H 0 0 0) we have:

∆P = H ∆R = (0 0 0 0 H 0 0 0) ⇒ ∆C = x ∆R = (0 0 0 0 H 0 0 0).

The ciphertext differential ∆C = x has some nontrivial value. We haven’t
found a direct way to exploit this related key property in an attack.

3.4 Linear and Algebraic Cryptanalysis

Hummingbird-2 has been designed to be resistant to Linear Cryptanalysis [15].
We performed a search for best linear masks in the mixing function f . Encryp-
tion of a single plaintext word involves sixteen invocations of f , five additions
of state words (R1, R2, R3, R4, and R1 again) and XOR keying with both static
keys and dynamic accumulator variables.

We ignore the modular additions in our analysis. The search and proba-
bility calculation was performed on up to four invocations of f , which is no
longer distinguishable. Our findings give significant confidence to assert that
Hummingbird-2 is resistant to linear cryptanalysis up to twelve rounds of f . We
have also experimented with multiple linear approximations in our analysis [2].

The algebraic degree and branch number of the S-Boxes alone thwarts most
forms of algebraic distinguishing attacks such as Cube Testers [6] and d-monomial
distinguisers [19]. A typical black-box chosen-IV scenario is made difficult by
the rather complicated initialization routine that has a total of sixteen WD16
invocations.

4 Implementation and Performance

Hummingbird-2 has been implemented in hardware and in software for various
microcontroller architectures. Functions were written in assembly language and
hand-optimized for all platforms. All library functions are C-callable and many
development environments are supported.

4.1 Microcontroller Software Implementations

As Hummingbird-2 algorithm allows for trade-offs between implementation
speed and size, we have implemented up to three software implementation pro-
files for some microcontroller platforms. Table 2 gives the characteristics of
these implementations.

Table 2. Microcontroller software implementations of Hummingbird-2. Encryption and decryp-
tion speeds are given in cycles per 16-bit word.

Target Encr. Decr. Size MAC-64 Init. RAM ≈
MSP430 “Tiny” 1520 1544 770 10768 5984 50
MSP430 “Fast” 576 729 2518 4101 2187 114
MSP430 “Furious” 359 560 3648 2648 1361 114
AVR “Fast” 745 930 3600 5689 2970 114
AVR “Furious” 574 770 4178 4310 2139 114
AVR “Ultimate” 495 652 3200 3764 1800 1500
PIC24 “Fast” 319 371 2227 2248 1162 114
PIC24 “Furious” 271 362 4959 1897 912 114
ARM Cortex 332 336 2200 2525 1492 116

4.2 Hardware Implementations

Three hardware implementation profiles have been produced with differing size,
power and speed characteristics. Table 3 summarizes these implementations.
Figure 4.2 shows the layouts of the three cores.

– High Performance Design HB2-ee4c. This 4 clock implementation of Hum-
mingbird is targeted at fast encryption (4 clocks) and maximum throughput
and bandwidth.

– Low Area and Power Design HB2-ee16c. This 16 clock implementation of
Hummingbird is targeted at minimum area and power.

– Ultra Low Area and Power Design HB2-ee20c. This 20 clock implementa-
tion of Hummingbird is targeted at ultra low area and power.

The process used was TSMC 0.13 µm, operating with 1.2 V. Encryption
speed can be derived by dividing the operating frequency by the number of
clocks required to encrypt a single word.

Table 3. Hardware implementations of Hummingbird-2. Encryption and decryption speeds are
given in cycles per 16-bit word. The library used was TSMC 180nm, 6 level metal, high density.
Synopsis synthesis tools were used.

Profile Frequency Clocks per
word

Peak pwr
(µW)

Leakage
(µW)

Area
(µm2)

Gate
Equiv.

HB2-ee4c 100 kHz 4 1.93 4.17 27381 3220
HB2-ee4c 10 MHz 4 163.1 4.17 27381 3220
HB2-ee16c 100 kHz 16 1.845 2.85 20871 2332
HB2-ee16c 10 MHz 16 156.8 2.85 20871 2332
HB2-ee20c 100 kHz 20 1.73 2.63 19383 2159
HB2-ee20c 10 MHz 20 149.1 2.63 19383 2159

Fig. 1. From left: The layouts of HB2-ee4c, HB2-ee16c, and HB2-ee20c in 0.13 µm process.

5 HB2 Timing Compatibility with ISO 18000-6C

The ISO 18000-6C protocol [12] is the leading passive UHF RFID protocol in
terms of number of tags sold today. The 18000-6C protocol specifies only a
32-bit password for access control and an electronic kill function.

The primary functionality of the 18000-6C protocol is for fast and effi-
cient tag identification across a range of operating environments. Consequently,
18000-6C supports a range of data rates at which the interrogator and the tag
may communicate. Communications are controlled by the interrogator in a Reader
Talks First communication scheme. The interrogator begins a communication
sequence by issuing a preamble that defines the length of the logic 0 and logic
1 symbols. The length of the logic 0 symbol is referred to as Tari, which is a
fundamental timing parameter for communications.

For all commands except the Write command, the Tari value determines the
amount of time the tag has to begin its response to the reader after the reader
has completed the last symbol in its command to the tag. This time is referred
to as T1 time. Table 4 shows the T1 timing for the minimum Tari value of 6.25
µs, the maximum Tari value of 25 µs, and a commonly used Tari value of 12.5
µs.

Table 4. T1 Timing Values and Available Clock Cycles.

Tari (µs) T1 Time (µs) Cycles 1.5 MHz Cycles 2 MHz Cycles 2.5 MHz
6.25 39.06 58 78 97
12.5 78.125 117 156 195
25 187.5 281 375 468

In addition to the T1 timings, Table 4 shows the number of full clock cycles
available for computation within T1 for three on tag clock frequencies around 2
MHz, a common on-tag clock frequency.

Table 5 compares the clocks per bit required to encrypt a single block for
various ciphers that can be implemented with up to approximately three thou-
sand gate equivalents and are therefore fit for RFID use. The figures for Katan
have been derived from [5], for Present, ICEBERG and AES from [18] and for
Trivium and Grain from [13].

Based upon the clocks per bit for each cipher, in Table 6 we compare the
number of clocks required to encrypt various amounts of data.

Command decode and processing overhead may be considerable. Further-
more, the mode overhead and initialization of the basic block ciphers is not

Table 5. Clocks Per Bit.

Cipher Block Size (bits) Key Size (bits) Clocks Per Bit
HB2 16 128 0.25
Grain-128 1 128 1
Trivium 1 128 1
Present-80 64 80 0.5
Present-128 64 128 0.5
Katan32 32 80 8
Katan48 48 80 5.31
Katan64 64 80 3.98
Iceberg 64 128 0.25
AES-128 128 128 1.25

Table 6. Comparison of Clock Cycles to Encrypt. Note that most block ciphers require initializa-
tion every time key is changed.

Cipher Init 16 bits 32 bits 48 bits 64 bits 96 bits 128 bits
HB2 16 4 8 12 16 24 32
Grain-128 513 16 32 48 68 96 128
Trivium 1333 16 32 48 68 96 128
Present-80 0∗ 32 32 32 32 64 64
Present-128 0∗ 32 32 32 32 64 64
Katan32 0∗ 256 256 512 512 768 1024
Katan48 0∗ 255 255 255 510 510 765
Katan64 0∗ 255 255 255 255 510 510
Iceberg 0∗ 16 16 16 16 32 32
AES-128 0∗ 160 160 160 160 160 160

considered. This additional processing will require even more overhead. While
some operations may be performed in parallel, the command decode and pro-
cessing must be performed prior to any cryptographic functions being performed.

In conclusion, HB2 is well suited for use in passive RFID systems due to
its low power consumption, which minimally impacts range, and its high speed
that enables the tag to continue normal operation within T1 timings.

6 Conclusions

We have presented Hummingbird-2, a lightweight authenticated encryption al-
gorithm that we believe to be resistant to all standard attacks to block ciphers
and stream ciphers such as differential and linear cryptanalysis, structure attacks
and various algebraic attacks. Hummingbird-2 also has the further advantage of
being resistant to chosen-IV attacks.

We have also presented results of software and hardware implementations
of Hummingbird-2. Hummingbird-2 can be implemented with little more than
2000 gate equivalents, making it well suited for ubiquitous devices such as
RFID tags and sensors. Hummingbird-2 has the additional advantage over other
lightweight encryption primitives that it produces a message authentication code.

Acknowledgements. In addition to the anonymous RFIDSec ’11 program com-
mittee members, we would like to thank Whitfield Diffie (who designed the
original WD16 function) and the members of CACR and ISSI teams. Troy Hicks
and Ken Lauffenburger were behind the hardware work on Hummingbird-2.
Jared Smothermon, Stanford Hudson, and Bob Nimon did the Software imple-
mentations on various platforms.

References

1. R. ANDERSON, E. BIHAM AND L. KNUDSEN. “Serpent: A Proposal for the Advanced
Encryption Standard.” http://www.cl.cam.ac.uk/~rja14/Papers/serpent.
pdf (1999)

2. A. BIRYUKOV, C. DE CANNIÈRE AND M. QUISQUATER. “On Multiple Linear Approxi-
mations.” CRYPTO 2004, LNCS 3152, pp. 1-22. Springer (2004)

3. E. BIHAM AND A. SHAMIR. “Differential Cryptanalysis of DES-like cryptosystems.” In A.
Menezes and S.A. Vanstone (Eds.): CRYPTO 1990. LNCS 537, pp. 2–21. Springer (1990)

4. E. BIHAM AND A. SHAMIR. “Differential Cryptanalysis of the Data Encryption Standard.”
Springer (1993)

5. C. DE CANNIÈRE, O. DUNKELMAN AND M. KNEŽEVIĆ. “KATAN & KTANTAN – A
Family of Small and Efficient Hardware-Oriented Block Ciphers.” CHES 2009, LNCS 5747,
pp. 272–288. Springer (2009)

6. I. DINUR AND A. SHAMIR. “Cube Attacks on Tweakable Black Box Polynomials.” EU-
ROCRYPT 2009, LNCS 5479, pp. 278–299. Springer (2009)

7. M. DWORKIN. “Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC.” NIST Special Publication 800-38D (2007)

8. X. FAN, H. HU, G. GONG, E. M. SMITH AND D. ENGELS. “Lightweight Implementa-
tion of Hummingbird Cryptographic Algorithm on 4-Bit Microcontroller.” The 1st Interna-
tional Workshop on RFID Security and Cryptography 2009 (RISC’09), pp. 838–84. Springer
(2009)

9. N. FERGUSON, D. WHITING, B. SCHNEIER, J. KELSEY, S. LUCKS, AND T. KOHNO “He-
lix: Fast Encryption and Authentication in a Single Cryptographic Primitive.” FSE 2003,
LNCS 2887, pp. 330–346. Springer (2003)

10. D. ENGELS, X. FAN, G. GONG, H. HU AND E. M. SMITH. “Ultra-Lightweight Cryp-
tography for Low-Cost RFID Tags: Hummingbird Algorithm and Protocol.” Centre for Ap-
plied Cryptographic Research (CACR) Technical Reports, CACR-2009-29. http://www.
cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf (2009)

11. D. ENGELS, X. FAN, G. GONG, H. HU AND E. M. SMITH. “Hummingbird: Ultra-
Lightweight Cryptography for Resource-Constrained Devices.” 1st International Workshop
on Lightweight Cryptography for Resource-Constrained Devices (WLC’2010). Tenerife, Ca-
nary Islands, Spain, January. (2010)

12. INTERNATIONAL STANDARDIZATION ORGANIZATION. “ISO/IEC 18000-6:2010. Informa-
tion technology – Radio frequency identification for item management – Part 6: Parameters
for air interface communications at 860 MHz to 960 MHz.”

13. T. GOOD AND M. BENAISSA. “Hardware results for selected stream cipher candidates.”
eStream, ECRYPT Stream Cipher Project Report 2007 / 023. Proceedings of SASC 2007
(2007)

14. G. LEANDER AND A. POSCHMANN. “On the Classification of 4 Bit S-Boxes.” In C. Carlet
and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 159–176. Springer (2007)

15. M. MATSUI. “Linear cryptoanalysis method for DES cipher.” In T. Helleseth (Ed.): EURO-
CRYPT 1993. LNCS 765, pp. 386–397. Springer (1993)

16. F. MULLER. “Differential Attacks against the Helix Stream Cipher.” FSE 2004, LNCS
3017, pp. 94–108. Springer (2004)

17. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. “The Advanced Encryption
Standard (AES).” FIPS Publication 197, U.S. DoC/NIST (2001)

18. A. POSCHMANN “Lightweight Cryptography - Cryptographic Engineering for a Pervasive
World”. PhD Thesis. Europaeischer Universitaetsverlag, in the IT-Security series, no 8. ISBN
978-3899663419. Also available as IACR ePrint 2009/516 (2009)

19. M.-J. O. SAARINEN. “d-Monomial Tests are Effective Against Stream Ciphers.” State of
the Art in Stream Ciphers (SASC) 2006. Workshop Record, K.U. Leuven (2006)

20. M.-J. O. SAARINEN. “Cryptanalysis of Hummingbird-1.” FSE 2011, LNCS 6733, 328–
341. Springer (2011)

21. M.-J. O. SAARINEN. “Cryptographic Analysis of All 4× 4 - Bit S-Boxes.” Selected Areas
in Cryptography (SAC) 2011. 11-12 August 2011, Toronto, Ontario, Canada, (2011)

22. D. WHITING, B. SCHNEIER, S. LUCKS, AND F. MULLER. “Phelix – Fast Encryption and
Authentication in a Single Cryptographic Primitive.” ECRYPT Stream Cipher Project Report
2005/027. http://www.schneier.com/paper-phelix.html, 2005.

A Test Vectors

The test data is given as an array of bytes. When using these test vectors, note
that Hummingbird-2 processes data in little-endian fashion (this means that the
first 16-bit plaintext word in the second test vector is actually 0x1100).

Secret key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
IV / Nonce 00 00 00 00 00 00 00 00
Plaintext 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Ciphertext C4 EF 87 A8 4F 05 A9 91 57 46 44 81 6E 25 3A CF
MAC BA ED 40 F0 67 B0 E1 3C 76 F3 59 41 A2 B2 D1 35

Secret key 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
IV / Nonce 12 34 56 78 9A BC DE F0
Plaintext 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
Ciphertext 5B D1 F8 AD 23 14 20 F4 BA B1 54 C2 45 29 3D 38
MAC C4 F6 74 C0 F6 4B 21 E7 37 24 DC 76 A6 6C 39 19

Document version 20110712121300.

