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Abstract:  Revisiting long established conventions has proven very fertile in many a case.  

Let’s then revisit the  premise  that  arithmetic must be constructed with the arithmetic 

addition as its foundation.  Here we explore an arithmetic realm over integers without 

invoking the quintessential operation of addition.  We propose an arithmetic constructed 

over a fundamental mapping of one set of integers into another.  We start and focus here on 

mapping an  arbitrary number  of integers to a single integer, and further limit our 

investigation to a mapping procedure  that views the input integers as a set of conflicting 

answers to a binary question,  and attempt to figure out the single integer  that best reflects 

the combined “wisdom”  of the input answers.   Thereby we construct the proposed 

arithmetic as ground tool for discriminant analysis.   On the other end,  the many-to-one 

mapping suggests this  arithmetic as a fundamental hashing function, and the complexity of 

data loss suggests a new primitive  for  asymmetric cryptography.   This arithmetic evolved 

from practical algorithms  used by the author in his  engineering practice, where the 

original name was BiPSA:  Binary Polling Scenario Analysis.  For continuity purposes we 

carry on the name.   This article focuses on the skeleton  arithmetic.  Applications and  

substantiation will follow. 

 

1.0 Introduction 

The arithmetic addition belies the subsequent range of mathematical operations: 

subtraction, multiplication, division, raising to a power, etc.   Just for that reason alone one 

mailto:Gideon.Samid@CASE.edu


 
2 

 

should submit to the curiosity of how would one construct an arithmetic without invoking 

the operation of adding two quantities to  measure their combination.  Given that the 

natural numbers are sequentially defined with it (“+1”) this  premise seems too ambitious.  

But  then the series of natural numbers can be defined as follows: given n numbers,  we can 

define as the next number (marked as “n+1” for convenience) as a number which is not 1, 

not 2, not 3….., not n. Thereby leaving the ‘distance’ between the successive numbers 

undefined.  The various numbers simply  indicate the order in which they were included in 

the set of counted natural numbers.  An arithmetic without ‘addition’ will then rely on the 

mere distinction between the numbers, (and their natural order), without quantifying that 

distinction. An attempt at such a construction was reported last year [Samid-10], and in 

due course it became clear that the practical discriminant analysis  employed by the author 

in practice also so qualifies, and such is of interest beyond its immediate application.  

The roots of  the proposed arithmetic are in a procedure known as  BiPSA -- Binary Polling 

Scenario Analysis,  which was developed as a discriminant analysis tool where any number 

of opinion sources, n, offered their opinion (vote) over a binary question (yes/no), and the 

objective was to integrate the various opinions (votes) into a single opinion, which is 

expected to be a "fair representation" of the "summary wisdom" of the n voters. The idea 

was to construct a unit integrator that would regard all voters as having equal impact on 

the result, and capture the relative significance of each voter through a network 

configuration of these unit integrators, which would be easy to manipulate. The voters 

would indicate their binary opinion along with a measure of self-confidence in their own 

answer. The opinion and the confidence measure would determine the output of the BiPSA 
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integrator. The success of this construction suggested a formal definition as described 

herewith. The  name BiPSA  indicates that the original use of BiPSA was for analyzing a 

projected scenario with the binary question: is that scenario, as described, more likely to 

happen, or more likely not to happen?  

 

2.0 The Basic BiPSA Algebra Concept 

We define a "BiPSA (n/N) set" ( = Bp(n/N)) as a set of n integers, b1,b2,....bn each in the range 

{-N:+N}. "n" will be referred to as the "BiPSA count" and "N" will be the BiPSA range. 

We define a "→" as the BiPSA operation mapping Bp(n/N) to Bp(m/N)  

Bp(n/N)  → Bp(m/N) 

where n, and m are arbitrary natural numbers.  

Equivalently:  

Bp(m/N) = ß Bp(n/N) 

The symbol "ß" will designate the BiPSA operator. The BiPSA operator maintains the BiPSA 

range.  

We define the set of all BiPSA sets, as the BiPSA realm . Any BiPSA operator maps an 

element of the BiPSA realm to the same or another set of same realm. We may write:  

Bp(m/N) = ßkßk-1....ß1Bp(n/N) 

interpreted as the BiPSA set Bp(n/N) is operated on with ß1, and the resultant BiPSA set is 

operated on with ß2; similarly the resultant BiPSA set is operated on wtih ß3, and so on 

until ßk , resulting in Bp(m/N).  
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If a certain ß operator operates on a set Bp(n/N) t times then we may write:  

Bp(m/N) = ßtBp(n/N) 

We now define the "BiPSA Unit Operator" (BiPSA-UI, or ßUI) as a BiPSA operator that 

outputs a BiPSA set containing one member:  

Bp(1/N) = ßUIBp(n/N) 

Alternatively we shall write:  

Bp(1/N) = b0= [b1, b2.......bn] 

using the subscript "0" to denote the output integer of the BiPSA unit integrator, and the 

squared brackets to indicate the BiPSA unit operation.  

The BiPSA unit operator is called normal if it is consistent with the following terms of 

constraint:  

  1. Permutation invariance.  

  2. Symmetry  

  3. Monotony  

  4. Range limits  

  5. Full-range terms for same sign instances.  

  6. Full-range terms for mixed signs instances.  

  7. N-invariance  

Explained:  

permutation:  This term is really self evident because 

the ßUI operates on a set which is an unordered 

collection of elements. This attribute is emphasized 

with reference to the graphic, "wired" depiction of the 

ßUI, which is to say that the various integer values can 

switch their wire location without affecting the output.  
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symmetry: If all the signs of the n input integer variables are switched, then the sign of the 

BiPSA output switches sign too, but the absolute value remains the same. Say: Let b*i= -bi 

for i=1,2,3,...n then: [ b1, b2, b3, .....bn] = -[ b*1, b*2, b*3, .....b*n]  

monotony: The monotony term says that if the value of an input variable increases, (while 

the other values stay unchanged) then the ßUI output value must not decrease. It can 

increase or stay the same. And conversely, if the value of an input variable decreases, then 

the ßUI output value must not increase 

range limits: If M is the largest absolute value of any input to the ßUI, then the absolute 

value of the output will not be larger than M.  

full-range terms for same sign instances: This term refers to BiPSA input sets where the 

input integers have no conflicting signs (either all the signs are positive, and zero, or all the 

signs are negative and zero). It specifies that among all the possible Bp(n/N) that may be 

processed by the ßUI (there are (N+1)n)/n! sets like that), there would be at least one such 

set that maps into the output value of 1, and at least another set that maps into the output 

value of 2, one for 3, etc., up to N. In other words, it would be possible to produce the 

output range of {-N:+N} from same sign input sets.  

full-range terms for mixed sign instances: this term specifies that among all the possible 

Bp(n/N) input sets to the ßUI, where one or more integers is positive, and one or more 

integers is negative, there will be at least one such input set where the output would be -

(N-1), and one set where the output would be -(N-2), etc, through 0, and to an output of (N-

1). In other words it would be possible to produce the output range of {-(N-1):+(N-1)}, 

from mixed-sign input sets.  
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N-invariance: This term specifies that for any given input set, the output would be the 

same regardless of the limiting value N for the set (provided N is higher than any absolute 

value of the set). To wit:  

[Bp(n/N)] = [Bp(n/M)] 

for any M>N. So that the ßUI output for the input set [5,-3, +201, -14] would be the same 

whether the value of N (the maximum allowed absolute value for input) is N=201, or 

N=202, or higher.  

Below we first present some BiPSA theorems, and then define the The Proper BiPSA Unit 

Integrator. 

 

2.1 Properties of Nominal BiPSA Unit Integrators 

The following theorems hold true for any nominal BiPSA unit integrator:  

T-1.    0 = [0,0,...0]  

Or say, if all i=1,2,3....n    bi= 0 then bo= 0.  

Proof: This is due to the symmetry term. If (x ≠ 0 )= [0,0,...0] then upon reversal of signs the 

output should be -x, while the input variables do not change, which is an impossibility 

according to the single output term.  

T-2:   For every BiPSA range N and BiPSA count n, if bi= M for all i=1,2,3...n, then bo= M  

Or say:  

M = [M,M,M,......M] 

  Proof: Suppose we had: (X ≠ M) =[M,M,...M], then if the respective range, N=M, we would 

have X < M. (Since the output range would be M:-M). And the output of M would have to be 
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generated by another input set (due to the full range term):  M = [ b1, b2, b3, .....bn]  

where one of the inputs, at least, is smaller than M, which will violate the monotony term, 

and hence, necessarily X=M.  

T-3: M-1 = [M,-1]  

Proof: If M is also the range, N=M, then the pair (M,-1) is the highest mixed signs 

combination, and thus to satisfy the monotony term and the full range term it sould 

evaluate to yield the highest BiPSA output value in the range 0,...(M-1). And because of the 

N-invariance term, the same is true for any value of M ≤N.  

T-4: {M-1,M} = [M,L] for M >L ≥ 0  

Proof:  X= [M,L] cannot be smaller than M-1 because of T-3, and the monotony term; it 

cannot be larger than M because of the N-invariance term, and hence the only allowable 

values for X are M-1, and M.  

 

note: the above four theorems are accompanied by symmetric four theorems where all integers are of 

opposite signs. The latter are proven by the symmetry terms..  

 

 

2.2 The Proper BiPSA Unit Integrator 

We shall now define a normal BiPSA unit operator which we will designate as 'proper':  

A proper BiPSA unit operator is a normal unit operator which also satisfies the following  

proprietary terms:  

 The binary same signs term  

 The binary mixed signs term  

 The binary zero term  

 The BiPSA Count Reduction Procedure  
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defined as follows:  

The Binary Same Sign Term: states that:  

M-1 = [M, L] for L=1,2,....(M-2) and M = [M, L] for L=M-1   This further specifies and is 

consistent with theorem T-4.  

The Binary Mixed Signs Term: states that:  

(M-L) = [M,-L] For L and M natural numbers and M >L  

The Binary Zero Term: states that:  

for M>1 [M,0]=M-1,  and [1,0]=1  

 

 The above three terms fully define the proper BiPSA unit integrator for BiPSA count n=2. 

For n=1 the invariance terms requires that: M=[M], for any integer M.  

Note: while the specified BiPSA terms seem to involve subtraction (reverse addition), this is only for  convenience.  

The expression, say: M-L (M,L natural numbers) may be interpreted as counting down the numbers list M-1, M-2, 

L times.  It is different from the classic notion of addition, amassing say  B units on top of A units to a total 

quantity of A+B. 

 

 We shall now define the Reduction to Binary procedure that would convert any BiPSA set 

with n>2 to a binary BiPSA set with 1 ≤n ≤2.  

2.2.1 The BiPSA Count Reduction Procedure  

The basic procedure is structured as follows: 

1. Filter out the negative integers, then reduce the resultant set to a single non-negative 

integer. 

2. Filter out the positive integers, then reduce the resultant set to a single non-positive 

integer 

3. Resolve the results of the (1) and (2) according to the binary solutions above. 
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Filtering is the process of replacing the filtered integer with a  zero (“+0”). The reduction of 

the ‘same sign’ set (the filtered sets) proceeds as follows: 

 

Same sign  reduction procedure:  based on iterative reduction of the size of the BiPSA 

input set, until n=1.  The description below applies for the non-negative set. A symmetric 

procedure will apply to the non-positive  set. 

 

We disinguish between an even number of BiPSA inputs and an odd number. For an odd 

number (n=2k+1): Let b1 ≤ b2 ≤ b3 ≤ .....≤b2k+1 be a sorted ascending list of the BiPSA input 

values. Input bk+1 is the middle of that list. That value is put aside, to start a second list, 

b'1=bk. The resultant original list now is left with 2k elements:  b1, b2,... bk, bk+2.....b2k+1  

We now remove the two center elements: bk, bk+2, and compute their BiPSA value according 

to the procedure for two BiPSA elements:   b' 2= [bk, bk+2]  and define the result as the 

second element of the second list.  The resultant original list now is: b1, b2,... bk-1, bk+3.....b2k+1  

Again, we remove the central pair and use the two-elements BiPSA procedure to define the 

next element in the second BiPSA list: b' 3= [bk-1, bk+3]   

 

We repeat this procedure, each round we remove the central pair in the original BiPSA list, 

and compute its BiPSA value, then add that value to the second BiPSA list.  We continue 

with these rounds until we exhaust the entire first BiPSA list.   

 

If the original BiPSA list is comprised of an even  number of elements: n=2k, then we apply 

the same procedure. Here too, we arrange the BiPSA  set in  ascending order:  b1 ≤ b2 ≤ b3 ≤ 
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.....≤b2k.     The difference is that in this case the first element in the second BiPSA list is: b' 1= 

[bk-1, bk+1], followed by: b' 2= [bk-2, bk+2], and so on until  b' k= [b1, b2k]       

 

The second BiPSA list is of length n/2 if the original list is even, and of length (n+1)/2 if the 

original list is  odd.   We now treat that second list, as if it were the original BiPSA list and 

thereby we generate a third BiPSA list, which  is again half size, or nearly half size of the 

secondary BiPSA list.  The so generated third BiPSA list now takes on the role of the  

original BiPSA list: namely, it generated a fourth BiPSA list of half size or nearly so.   This 

iterative procedure continues until the last generated BiPSA list is of size one which is to be 

regarded as the BiPSA evaluation of  the filtered BiPSA list, or say the single integer 

reduction of the filtered list. 

 

Symbolically for the odd case: The original list:  b1, b2,... bk, bk+2.....b2k+1  

generates a secondary list: bk+1, [bk, bk+2], [bk-1, bk+3], . . . [bk-i, bk+i+2], . . . [b1, b2k+1]. which is 

served as input to the same process, and so repeatedly until the size of the output list is 

one. If the original list has even numbers: b1, b2,... bk, bk+2.....b2k  

Then the secondary list is defined as: [bk, bk+1], [bk-1, bk+2], . . . [bk-i, bk+i+1], . . . [b1, b2k].  

 

Thereby we have now fully defined the BiPSA operation (βUI) over any arbitrary list of 

integers, identifying the integer that BiPSA represents the full list. 

 

To illustrate let's compute the BiPSA value of : [4, 0, -1, 2, -2, 1, -3].   The non-negative set,  

will be:  [4,0,0,2,0,1,0] , sorted: [0,0,0,0,1,2,4] .   We now build the second BiPSA list: 0, [-
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0,1], [0,2], [0,4] = 0, 1,1,3  from which we build the third list: [1,1], [0,3] = 1, 2, which 

evaluates to: [1,2]=2.  The non-positive set is: [0,0,-1,0,-2,0,-3], sorted: [0,0,0,0,-1,-2,-3].  We 

now build the second BiPSA list: 0,[0,-1],[0,-2],[0,-3]=0,-1,-1,-2, from which  we build the 

third list: [-1,-1], [0,-2]=-1,-1 which evaluates to [-1,-1]=-1.  We now BiPSA evaluate the 

non-negative reduction result against the non-positive reduction result: [2,-1]=1, and 

hence:  1 = [4, 0, -1, 2, -2, 1, -3] 

 

Second illustration: ? = [-12, 1, 11, 4, 3, -7, 4, 0].     The non-negative list: [0,1,11,4,3,0,4,0], 

sorted: [0,0,0,1,3,4,4,11];  the second list: 3,[1,4],[0,4],[0,11]=3,3,3,10;  the third list: 

[3,3],[3,10]=3,9  which evaluates to [3,9]=8.  The non-positive list: [-12,0,0,0,0,-7,0,0] 

sorted: [0,0,0,0,0,0,-7,-12]; the second list: 0,[0,0],[0,-7],[[0,-12]= 0,0,-6,-11; the third list: 

[0,-6],[0,-11]=-5,-10 which evaluates to -9,  and hence: = [-12, 1, 11, 4, 3, -7, 4, 0]=[8,-9]=-1  

 

3.0  Vector and Matrix Algebra (BiPSA) 

We shall advance the basic BiPSA concept to vector and matrix algebra.  

We cover the following topics:  

 zero notations  

 vector algebra  

 matrix algebra  

 

Zero Notations  

We shall distinguish between a minus zero (-0) and a (+0) as BiPSA elements. To understand these 

notations we need to resort to the wired diagram where the BiPSA unit operator is depicted as a 
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logical entity that receives n inputs (the BiPSA elements), and generates a single output (the BiPSA 

result). If a given input entry is not 'charged' with an input value (an integer), then this absence of 

data will be noted as minus zero, -0. If that input value (wire) is charged with the integer zero as 

input then it would be designated as plus zero, (“+0”).  

Hence:   [9,4,-3,-7,5,12,-3,7] =[9,4,-0,-3,-7,5,-0,-0,12,-3,7] �≠ [9,4,0,-3,-7,5,0,0,12,-3,7]  

 

Vector Algebra  

Owing to the N-invariance condition, it is not necessary to specify the BiPSA range, N, 

(when we limit our interest to proper integration), since the result will be the same 

regardless of the value of N. So:  

Bp(n/N) = Bp(n) 

We can now reduce the BiPSA set to an ordered list of the BiPSA integers (without affecting its 

integrated result), and thereby qualify this ordered list as a 'vector'. A BiPSA set so defined will be 

designated as B.  

Two BiPSA vectors of same length (same BiPSA count, n) may be added as follows:  

Ba+c= Ba+ Bc= [(ba1+ bc1), (ba2+ bc2).....[(ban+ bcn)] 

This addition is auxiliary, and not fundamental to the BiPSA arithmetic, and thus the 

characterization of BiPSA as an arithmetic without the arithmetic addition  still holds.  Alas,  

the ‘theologians’ among us may either disregard the operation of addition as defined above, 

or dispute the  title of the BiPSA arithmetic. Either way it does not detract from the thesis 

as a whole. 

 

In general:  

ßUI(Ba+ Bc) ≠ ßUIBa+ ßUIBc 
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For example: let Ba= [2,-0,4] and Bc= [-2,3,1]: We compute: Since [2,0,4] + [-2,3,1] = [0,3,5], and find: 

ßUI[2,0,4]=2, ßUI[-2,3,1]=2, and ßUI[0,3,5]=4, so here [2,-0,4]+[-2,3,1]=[0,3,5]=4 . However, if we 

check: Ba= [-4,-1,2]; Bc= [0,3,-4]: and compute: [-4,-1,2] + [0,3,-4] = [-4,2,-2], then ßUI[-4,1,2]=2, 

ßUI[0,3,-4]=0, and ßUI[-4,2,-2]=-1 we find that: [-4,-1,2] + [0,3,4] ≠ [-4,2,-2]. 

  

We may also define multiplication of a BiPSA vector with a scalar in the form of an integer t:  

t[b1,b2,....bn] = [tb1,tb2,....tbn] 

which may lead to a variety of expressions, and equations in the form:  

uBa+ vX= Bc where u and v are integers, and X is a BiPSA vector that satisfies the above 

equation, Ba and Bc are given BiPSA vectors.   We may also specify a BiPSA vector X such that:  

ßUIBa+ ßUIX= ßUIBc 

and similarly write a variety of  BiPSA equations for which the existence, the number, and the 

finding of proper solutions for X  is an expected mathematical challenge.  A system of equations 

with several BiPSA vectors unknown is readily extended to. 

3.1 Vector Multiplication 

By its definition any ordered list of integers will qualify as a vector in the BiPSA algebra, 

and may be BiPSA evaluated. Let W= [w1,w2,....wn] be such a vector while B= [b1,b2,....bn] 

will be an ordinary BiPSA set  written as a vector.  We shall now define a vector 

multiplication:  

bB,W= B* W= [b1w1; b2, w2; .....bnwn] = [b1, b2, .....bn]*[w1, w2, .....wn] 

resulting in the integer bB,W.  

The vector multiplication algorithm operates as follows:  

For m=1,2,...wmax  let's define Bm as a BiPSA set constructed as follows:  
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Bm= ( δ1λ1b1, δ2λ2b2, ............. δnλnbn) 

where if |wi|≥ m, then δi= 1, otherwise: δi= 0. And if wi≤ 0 then λi=-1, otherwise λi= 1 and 

where wmax is defined as: wmax= Max(|w1|, |w2|,....|wn|).  

 

The wmax BiPSA entities (Bm) will be BiPSA operated, resulting in wmax integers, which in 

turn will be grouped to a new BiPSA entity, get BiPSA operated on, and yield the integer 

value of bB,W.  Namely: 

bB,W= ßUI(ßUI(B1), ßUI(B2)........ ßUI(Bwmax) ) 

 

Illustration of vector multiplication: 

Let B = [3,-1,2,+0,4] and W = [3,0,-2,-2,1]. So n=5. We shall now construct the Bm entities:  

wmax= 3, so:  

B1= [1*1*3,  0*0*(-1),  1*(-1)*2, 1*(-1)*0, 1*1*4]=[3,-2,0,4] 

B2= [1*1*3,  0*0*(-1),  1*(-1)*2, 1*(-1)*0, 0*1*4]=[3,-2,0] 

B3= [1*1*3,  0*0*(-1),  0*(-1)*2, 0*(-1)*0, 0*1*4]=[3] 

And hence: bBW= [[3,-2,0,4],[3,-2,0],[3]]=[3,0,3]=2=[3,-1,2,+0,4] [3,0,-2,-2,1] . 

This illustration also clarifies that if δ=0, it removes its member from the list, same in the 

case where a member of the BiPSA set equals "-0", but not so when the member of the 

BiPSA set equal "+0" .  
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Wire Diagram of Vector Multiplication: 

BiPSA vector multiplication may be depicted 

graphically through a “wire diagram” that 

connects BiPSA unit integrators.  Every BiPSA 

value shows up in this  diagram a number of 

times, where this number is given by the 

absolute value of the corresponding integer in 

the W vector.  If the sign of that integer is negative, then it flips the result of the respective 

BiPSA unit integrator.  The  above illustration is wire-diagramed herein. 

 

Properties of Vector Multiplication 

Vector multiplication is not commutative. In general:  

B * W ≠ W * B 

Let us define the unit W vector as: ε = [1,1,1,......1],  

so that: t*ε = [t,t,t,.....t] for any integer t.   We can now write the epsilon multiplication [Eq. 

v-1] property:  

ßUI(B *( t* ε)) = ßUI(B) 

proof: for W=ε, we have:  

b0ε= ßUIB = ßUIB1= ßUIB2= ......= ßUIBn 

And hence:  

b0ε= [b0, b0, .......b0]= b0 

which proves the epsilon multiplication property . 
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3.2 Matrix Operations 

Let's consider m vector multiplications:  

B * W1 
B * W2 
....... 
....... 
B * Wm 
 

The m W vectors can be structured into a matrix, column wise:  

Using the notation: Wi= (wi1, wi2, .......win):  

Ω =  

       

   
       

  

Leading to a newly defined operation of a BiPSA vector multiplied by the Ω matrix:  

B * Ω = B' 

where B' is a BiPSA vector of count n' =m, equal to the number of columns in the Ω matrix.  

Let's designate the count (number of elements) of a BiPSA vector by 'absolute value' 

markings:  n = |B|; n'=|B'|.     Accordingly, we will identify three vector-matrix 

multiplication modes, using cryptographic nomenclature:  

 

Ω: |B| >|B'| hashing  

Ω: |B| = |B'| nominal encryption  

Ω: |B| < |B'| expanded encryption  
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To use BiPSA as a cipher system it would be necessary to find a pair of square matrices (Ωe, 

Ωd) such that for every ordered list of n integers, P, (representing plaintext), it would hold 

that:  

P*Ωe= C and C*Ωd= P 

and further it would be required that it would be intractable to deduce one matrix from the 

other.   

 

One could prepare k  BiPSA vectors, and multiply each of them by the W matrix. By formal 

analogy to regular matrix operations, this will define matrix-matrix multiplication:  

Π * Ω = Φ {a k*m matrix, where Π is a k*n matrix – the k BiPSA vectors, and Ω is the 

resultant n*m matrix} 

We can identify any element of Φ as:  

φij= [bi1, bi2, .....bin]*[w1j, w2j, .....wnj] 

 

Assuming a square BiPSA matrix, A, the above defined matrix multiplication would lead to a 

power definition:  

C = A k= A*A*A....A (k times). 

And from this, one would define: A = C 1/k   And a corresponding logarithm:  

k = log AC 

 

One could also define the multiplication of a scalar (t) by a matrix, corresponding to 

nominal matrix algebra:  C = t * A  is defined such that:  Cij = t * aij  where aij is the element of 
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A in the i-th row and the j-th column.   And also the addition or subtraction of two BiPSA 

matrices of the same dimensions (same number of rows and columns) as: D = A + C  

Where A, C, and D are all BiPSA matrices of n rows, and k columns, and:  dij = aij + bij  for 

i=1,2,...n and j=1,2,...k     And from there one can write BiPSA polynomial equations:  

tn * An+ tn-1 * An-1+ .... t1 * A1= 0 

It is easy to formulate such an equation with a given a square matrix A and n scalars t1, t2, 

t3, .....tnwith 0 representing a square matrix of size A where all elements are zero. It appears 

quite daunting to solve the same, or even prove the existence of a solution.  

 

4. 0 Applications 

We shall focus on applications constructed from the BiPSA unit integrator. The integrator is 

essentially a hashing algorithm that maps any number of integers into a single integer. It is 

constructed in a way designed to 'fairly represent' the input integers. The term 'fairly 

represent' is to be understood within the context of a binary question, where the sign of the 

integer reflects the binary answer, and the absolute value of each integer represents the 

measure of certainty in the signed answer. Say then that an integer -7 indicates the binary 

answer of minus, with a measure of certainty greater than is exhibited by the integer -5. 

Accordingly, the pair of integers +M and -M will be combined to a zero -- an inability to 

respond to the binary question. And the pair (+4,-3) will be naturally integrated to a 

positive answer. The question of greater interest arises with respect to any arbitrary set of 

integers -- how to integrate them to a 'fair answer'. So presented, one naturally thinks of 

the arithmetic mean as an age old algorithm to integrate such 'binary votes with varying 
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degrees of certainty'. Alas, the arithmetic means has numerous weaknesses when it comes 

to the described environment (a binary question), and the BiPSA algorithm is designed as a 

replacement thereto.  

 

This property of BiPSA suggests the original application for which it was developed: 

discriminant analysis. And since any issue of uncertainty can be expressed as a cascade of 

binary questions this application is quite wide reaching. The integration property of BiPSA 

also immediately suggests cryptographic hashing application, and its matrix operation 

suggests an asymmetric cipher.  

These two applications: (i) discriminant analysis and (ii) cryptographic primitives, will be 

briefly discussed below 

 

4.1 Discriminant Analysis BiPSA Applications 

We envision a binary question presented to n respondents who respond with an answer in 

the range {-N:+N}, where the sign of their response-integer captures their binary answer, 

and its absolute value captures the certainty with which the respondent gives his/her/its 

answer. If the n respondents are of equal trustworthiness, then their opinion (their 

response integers) are simply BiPSA processed, and the resulting integer reflects the 

wisdom of the community of the respondents as one.  

 

If the respondents are of differing degree of trustworthiness then one constructs a W vector that 

reflects the rank-order trustworthiness of the respondents.   The vector multiplication of the BiPSA 
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vector and the W vector (the weight vector) will reflect the wisdom of the community of the 

respondents given their degree of trustworthiness.  

 

Since the result of the BiPSA operation or the BiPSA vector multiplication is an integer in the same 

range of {-N:+N}, it is possible to construct a maze of BiPSA unit integrators to reflect any feedback 

from related previous binary questions, and increase the credibility of the overall BiPSA 

integration. The community of respondents may be divided to categories, the BiPSA integrated 

result of each category may also be computed, as well as other part way integrated results, along 

with the final integration.  

 

Illustration: Alice, Bob, Carla, and David respond to the same binary question:  Alice votes +2, Bob 

votes -1, Carla votes +1, and David votes -3.   If the four respondents are regarded of equal weight 

and trustworthiness, then the BiPSA integrated result will be:  [2,-1,+1,-3]=-1  namely, the 

community of respondents voted for the negative option at low certainty.  If, on the other hand the 

trustworthiness of the respondents is:  Alice=2, Bob=1, Carla=3, David=1, then the vector 

multiplication will determine the community vote: :  [2,-1,+1,-3][2,1,3,1]=1  
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4.2 BiPSA Cryptographic Primitives 

Representing a set of r characters (say the standard ASCII table for printable characters) 

with r integers is straightforward. Accordingly any plaintext P can b block chopped into 

blocks of n integers, which will be deemed BiPSA sets, and then BiPSA operated for a hash 

operation of n:1 ratio. The result might be helpful for error correction. Alternatively the 

plaintext BiPSA entities may be vector multiplied with a secret W vector, to again hash at a 

n:1 ratio, this time based on the secret W key. One could replace the W with a Ω matrix of k 

columns as a secret key and hash the plaintext blocks at a ratio of n:k.  

 

Using a square Ω matrix, one would encrypt the plaintext, P to a same size ciphertext C. 

Alas, the corresponding decrypting matrix is not an obvious deduction. The author is 

preparing a report  on a method to identify corresponding pairs of matrices Ωencryption and 

Ωdecryption that would be hard to deduce one from the other and thereby serve as a basis for 

an asymmetric cipher.  

Illustration: Suppose the plaintext is comprised just from the 26 letters of the alphabet. 

These letters can be mapped to 26  integers from -13 to +13.  And hence any plaintext 

constructed from these letters will be a string of {-13:+13} integers.  For illustration 

purposes we decide on chopping the plaintext to blocks of 3 letters each.  We now select a 

random  3x3 integer matrix, say: 

   
    
     

 

And use it to encrypt each block in turn.  If a block looks like [11,-3,7], then we compute the 

ciphertext as:  [11,-3,7][4,1,-2], [11,-3,7][3,1,1,], [11,3,7][2,-1,-3] 
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5.0 Outlook and Summary 

In this noisy information age, the daunting challenge of science in general and computer 

science in particular is to fairly and exhaustively draw conclusions from this data tsunami. 

BiPSA is a carefully constructed means to condense, integrate and summarize any size of 

original data to any desired size of summary and integration. By this attribute alone the 

BiPSA effort commands interest and attraction for many a disciplines. And since the science 

of cryptography is the opposite: means to obscure, cloud, and prevent an adversary from 

reading our data -- the BiPSA well handled data loss is a promising framework for many a 

cryptographic primitives 
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