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Abstract

After several years of theoretical research on distance bounding protocols,
the first implementations of such protocols have recently started to appear.
These protocols are typically analyzed with respect to three types of
attacks, which are historically known as Distance Fraud, Mafia Fraud, and
Terrorist Fraud.

We define and analyze a fourth main type of attack on distance bound-
ing protocols, called Distance Hijacking. This type of attack poses a serious
threat in many practical scenarios. We show that many proposed distance
bounding protocols are vulnerable to Distance Hijacking, and we propose
solutions to make these protocols resilient to this type of attack.

We show that verifying distance bounding protocols using existing
informal and formal frameworks does not guarantee the absence of Distance
Hijacking attacks. We extend a formal framework for reasoning about
distance bounding protocols to include overshadowing attacks. We use the
resulting framework to prove the absence of all of the found attacks for
protocols to which our countermeasures have been applied.

Previous proposals for distance bounding protocols only analysed their
protocols with respect to some specific attack types, whose relations and
problem coverage are unknown. To improve this situation, we define an
exhaustive classification for attacks on distance bounding protocols.

Keywords: Distance bounding, location verification, position verification, at-
tacks, hijacking, multi-prover environment, formal model, formal verification

1 Introduction

By using distance bounding protocols, a device (the verifier) can securely obtain an
upper bound on its distance to another device (the prover). A number of distance
bounding protocols were proposed in recent years [2, 4, 5, 12, 14, 15, 19–21,23,24,

∗An extended abstract of this paper appears at IEEE S&P 2012.
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27–29]. The proposed protocols differ in terms of the performance and security
guarantees that they provide. So far, several distance-bounding protocols were
implemented, some using digital processing and short symbols [9, 16], whereas
others rely on analog processing and use signal streams (operating similarly to
radar systems) [23].

The security of distance-bounding protocols was so far mainly evaluated by
analyzing their resilience to three types of attacks. For historical reasons, these
are known as Distance Fraud, Mafia Fraud and Terrorist Fraud. In Distance
Fraud attacks, a sole dishonest prover convinces the verifier that he is at a
different distance than he really is. In Mafia Fraud attacks, the prover is honest,
but an attacker tries to modify the distance that the verifier establishes by
interfering with their communication. In Terrorist Fraud attacks, the dishonest
prover colludes with another attacker that is closer to the verifier, to convince the
verifier of a wrong distance to the prover. So far, it was assumed that distance
bounding protocols that are resilient against these three attack types can be
considered secure.

However, we show that many of these protocols, irrespective of their physical-
layer implementation, and including the classical Brands and Chaum protocol [4]
and the recent CRCS protocol [23], are vulnerable to attacks when used in
environments with multiple provers. We coin this type of attack Distance
Hijacking. In Distance Hijacking attacks, a dishonest prover convinces the
verifier that it is at a different distance than it actually is, by exploiting the
presence of an honest prover. For example, one of the ways in which the dishonest
prover can achieve this is by hijacking the distance measurement phase of a
distance bounding protocol from an honest (closer or further) prover. This type
of attack can pose a serious threat in many practical scenarios.

Conceptually, Distance Hijacking can be placed between Distance Fraud and
Terrorist Fraud. Unlike Terrorist Fraud, in which a dishonest prover colludes
with another attacker, Distance Hijacking involves a dishonest prover interacting
with other honest provers. Unlike Distance Fraud attacks, which involve only a
dishonest prover and a verifier, Distance Hijacking attacks additionally involve
other honest provers. These differences have significant consequences. For
example, the countermeasures proposed against Terrorist Fraud rely on the
assumption that dishonest provers are not willing to share their keying material
with other attackers. Such countermeasures will therefore not deter the dishonest
provers from executing Distance Hijacking attacks that do not involve other
attackers. Furthermore, Distance Hijacking can occur even in situations where
Terrorist Fraud is not a concern. In fact, as we will show, protocols that
are resilient against the three classical attack types may still be vulnerable to
Distance Hijacking.

We define an exhaustive classification for attacks on distance bounding
protocols that includes Distance Hijacking. Our classification naturally leads
to minor reformulations of previously known attack types. Instead of using the
traditional attack names for our new definitions, we propose names that are
more descriptive and less generic.

We perform a case study of existing protocols. All distance bounding protocols
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that were proposed in the last years roughly fall into two categories: those
based on the Brands and Chaum protocol, and those based on the Hancke
and Kuhn protocol. We show that all proposed protocols that followed the
structure proposed by Brands and Chaum are vulnerable to Distance Hijacking.
Protocols that followed the structure proposed by Hancke and Kuhn are less
vulnerable to this type of attack. We propose two classes of effective and
generic countermeasures that make Brands and Chaum and related protocols
secure against Distance Hijacking in the above scenario. Our countermeasures
are inexpensive: the protocols can be repaired without introducing additional
messages or cryptographic operations.

Remarkably, none of the existing frameworks for analyzing distance bounding
protocols (e. g., [1,3,10,18,25]) guarantees the absence of our Distance Hijacking
attacks, even if some instances of Distance Hijacking can be detected using some
of those frameworks. We extend the formal framework of Basin et al. [3] to
capture all known types of Distance Hijacking attacks and use the resulting
framework to analyze several protocols. The new framework enables us to model
bit-level manipulations of messages by considering overshadowing parts of a
message [22], as well as flipping some bits of a message. We use our framework
to formally prove for specific protocols that our fixes indeed prevent the found
attacks.

We show that all distance bounding protocols, including those based on the
Hancke and Kuhn protocol, may be vulnerable to Distance Hijacking if run
alongside another distance bounding protocol. This can occur if more than
one distance bounding protocol is used in the same environment, i. e., a multi-
protocol environment. In particular, some protocols, when run by an honest
prover, enable a dishonest prover (running, e. g., a Hancke and Kuhn protocol)
to hijack the distance of the honest prover. Such attacks can be seen as a variant
of the Chosen Protocol Attack [13]. However, unlike Chosen Protocol attacks,
our attacks do not require the protocols to share any cryptographic material.
We discuss designs of distance bounding protocols that enable such attacks and
show how to mitigate these attacks.

Contributions First, we identify Distance Hijacking as a threat for distance
bounding protocols that are run in multi-prover environments, whose absence
is not guaranteed by existing frameworks. Second, we show that prominent
distance bounding protocols are vulnerable to Distance Hijacking and propose
countermeasures. Third, we extend a formal framework for reasoning about Dis-
tance Bounding protocols to model overshadowing attacks and use the resulting
framework to prove correctness of our countermeasures for specific protocols.
Fourth, we address the security of distance bounding protocols in multi-protocol
environments and propose mitigating measures. Finally, we generalize Distance
Hijacking to Location Hijacking, and show that it is possible to hijack locations
at which no other provers reside.

We proceed as follows. In Section 2 we provide background on distance bounding
protocols. In Section 3 we introduce Distance Hijacking attacks and analyze
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the resilience of existing distance bounding protocols against these attacks.
We relate the attacks to the classical attack types and provide an exhaustive
classification. In Section 4 we show how distance bounding protocols can be
made resilient against Distance Hijacking. In Section 5 we present an extended
formal framework and analyze a set of protocols. In Section 6 we analyze the
resilience of distance bounding protocols to Distance Hijacking in multi-protocol
environments. We introduce the notion of Location Hijacking in Section 7,
present the related work in Section 8, and conclude in Section 9. In Appendix A
we provide a detailed attack on the signature-based version of the Brands and
Chaum protocol.

2 Background

The goal of a distance bounding protocol is to enable a verifier to establish an
upper bound on its physical distance to a prover. As a running example, we
consider the basic Brands and Chaum protocol with signatures [4, p. 7], depicted
in Figure 1. In the protocol, the prover P randomly generates (denoted by ∈R )
a bit string m1, . . . ,mk, and sends a commit of this value to the verifier V . Thus,
although the bit string is not revealed yet, V will be able to check whether P
indeed committed to this particular string when V learns the string later. The
verifier then generates his own random bit string α1, . . . , αk, and initiates the
so-called rapid bit exchange. In this exchange, bits are sent one-by-one, and
the prover has to respond as quickly as possible with the exclusive-or (⊕) of
the challenge bit string α and his own bit string. In the end, the verifier will
derive an upper bound on the distance to the prover from the response times.
Notice that the prover can delay messages at will, making himself appear farther
away, but he cannot respond faster than what is dictated by the time-of-flight of
the messages. After this phase, P concatenates the bits as c, and sends to V a
means to open the commit he sent earlier, as well as the concatenation c signed
with his signature key. Upon receiving this final message, V verifies that the
commit previously sent by P indeed matches with the response (by computing
mi = αi ⊕ βi and opening the commit), concatenates the bits he has observed,
and compares them to the received signature using the public key of P .

Because the goal of a distance bounding protocol is to provide a guarantee
for the verifier V , V will never participate in an attack since that would mean
V would be attacking itself. The attacker can of course pretend to be another
verifier V ′, and abuse his location to attack the real verifier V .

As stated in the introduction, three different classes of attacks are traditionally
considered in the analysis of distance bounding protocols: Distance Fraud, Mafia
Fraud and Terrorist Fraud. All attacks that fall into one of these three classes
have a similar goal, namely to make the verifier believe that the prover P is
physically closer to the verifier V than it really is. The main difference between
these attacks is in the parties that carry out the attack, and their mutual
relationships.

Mafia Fraud attacks, also called relay attacks, were first described by
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Verify commit
c← α1|β1| · · · |αk|βk

verify sign(c)

msc Signature-based Brands and Chaum protocol

Figure 1: Signature-based Brands and Chaum protocol.

Desmedt [8]. In this type of attack, both the prover P and verifier V are
honest, and the attack is performed by an external attacker A. The attacker
attempts to shorten the distance measured between the honest prover and the
verifier. In Mafia Fraud attacks, the physical distance between the attacker and
the verifier is typically small in order for the attacker to be able to shorten the
distance.

In a Distance Fraud attack, a dishonest prover P will try to shorten the
distance measured by the verifier V . This type of attack is executed by the
dishonest prover P alone, without collusion with other (external) parties. An
example of a Distance Fraud attack occurs if the protocol allows the prover to
send his reply before receiving the challenge. This enables the prover to reply
too early, thereby shortening the distance measured by the verifier.

The third class of attacks is Terrorist Fraud attacks [8]. In this type of attack,
a dishonest prover P collaborates with an external attacker A to convince the
verifier V that he is closer than he really is. All countermeasures to Terrorist
Fraud make the assumption that the dishonest prover P is unwilling to reveal
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his long-term (private or secret) key to the attacker A that he collaborates with.
Possible reasons for this unwillingness are impersonation, i. e., the external at-
tacker can later use the key to impersonate the dishonest prover, and traceability,
i. e., the key may later be used to implicate the dishonest prover in performing
a Terrorist Fraud attack. Furthermore, from the perspective of the verifier, it
is impossible to distinguish between the external attacker and the prover if the
attacker knows the long term key of the prover.

3 Distance Hijacking

In this section we define a fourth class that has until now been overlooked in the
design of distance bounding protocols, Distance Hijacking attacks. We relate
this class of attacks to the three classical attack types on distance bounding pro-
tocols, and propose an exhaustive classification of attacks on distance bounding
protocols.

3.1 Distance Hijacking attacks

We say that a prover P is honest if and only if all of P ’s actions conform to the
protocol specification.

Definition 1. A Distance Hijacking attack is an attack in which a dishonest
prover P exploits one or more honest parties P1, . . . , Pn to provide a verifier V
with false information about the distance between P and V .

A protocol is then said to be vulnerable to Distance Hijacking if it allows P
to perform a successful Distance Hijacking attack. We observe that these attacks
do not exclude the involvement of other attackers with whom the dishonest
prover is colluding or the involvement of other honest verifiers that might enable
the execution of the attack.

In the context of distance bounding protocols, the information about the
distance is the upper bound; hence attacks involve convincing V that P is closer
than it actually is. In a typical Distance Hijacking attack on a distance bounding
protocol, a dishonest prover P convinces a verifier V that P has executed a
distance measurement phase (e. g., a rapid bit exchange) with V , whereas this
phase has been really executed by an honest prover P ′. This is done without the
cooperation of the honest prover P ′. Often this type of attack can be carried
out by allowing the honest prover to complete the distance bounding protocol as
he normally would, and then by replacing all messages that contain signatures
or MACs, with messages signed (or MAC’ed) by the attacker.

Example 1 (Distance hijacking attack on signature-based Brands and Chaum).
Figure 2 depicts a basic Distance Hijacking attack on the signature-based Brands
and Chaum from Figure 1.

In the attack, V thinks he is communicating with P , where P is dishonest.
When an honest prover P ′ tries to prove his distance, P initially allows the
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Figure 2: Distance Hijacking attack on basic signature-based Brands and Chaum.
signP and signP ′ denote the signatures with the signature keys of P and P ′,
respectively.

protocol to proceed as normal between P ′ and V , waiting until the final signature
is sent by P ′. Note that before this point, V has no cryptographic evidence that
the messages it received were indeed sent by P ′. When P ′ sends the signature, P
jams the message and re-signs the content c with his own signature key, and sends
the result to V . V will successfully verify the commit as well as the signature,
and will falsely conclude that P has also sent the previous message. Thus, V
assumes that P is within the distance computed from the distance bounding phase,
even though in reality, this phase was performed by P ′.

We next show an example scenario in which Distance Hijacking attacks pose
a threat.

Example 2 (Real-world scenario). Consider the scenario depicted in Figure 3,
in which several people work in a secure facility. In the facility is a mainframe
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Figure 3: Real-world scenario for Distance Hijacking. P has a (stolen) smart-
card. However, he cannot enter the secure facility and he does not have any
collaborators inside the facility. In a Distance Hijacking attack, P exploits the
presence of an honest P ′ to convince V that P is within the secure facility.

containing sensitive information. The mainframe can be accessed wirelessly by
all authorized personnel, in order to facilitate easy access by multiple people at
the same time. As an added security mechanism, in case an employee loses his
smartcard with his private key, the mainframe can only be accessed by people
inside the building. This is verified every time an employee logs in to the system,
by running a distance bounding protocol between a station in the building (acting
as the verifier) and the employees terminal (acting as the prover).

Assume that an attacker has managed to get hold of an employee smartcard
but is unable to physically access the building. He is instead located in a van
in the parking lot where he has a powerful antenna capable of communicating
with the wireless terminal inside the building. However in order to log in to the
system the attacker needs to prove that he is inside the building by running a
distance bounding protocol.

If the distance bounding protocol in use is vulnerable to distance hijacking, the
attacker can exploit the presence of the smartcard of another (non-collaborating
and unaware) employee inside the building to execute a Distance Hijacking attack.
The mainframe security system now believes that the attacker is in the building
with a valid private key, and he is granted wireless access.

As straightforward as this type of attack may seem, a surprising number of
distance bounding protocols are vulnerable to Distance Hijacking, as we will
show in Section 3.5. In Section 6 we discuss more complex Distance Hijacking
attacks, where several different distance bounding protocols are used in the same
environment.

3.2 Relation to historical attack types

We first relate Distance Hijacking to the three attack types that are traditionally
considered for distance bounding protocols.
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As stated in the introduction, conceptually speaking, Distance Hijacking
can be placed between Distance Fraud and Terrorist Fraud. One could thus
consider extending the definition of either Distance Fraud or Terrorist Fraud to
also include Distance Hijacking attacks. However, given that previous analyses
and countermeasures do not exclude such attacks, the consequence would be
that many protocols would be incorrectly labeled as being resistant against
the (new definitions of) Distance Fraud or Terrorist Fraud, or that existing
countermeasures are insufficient. We therefore choose to introduce Distance
Hijacking as a separate type of attack.

We show why the existing three attack types do not cover Distance Hijacking.
In Mafia Fraud attacks the prover is honest. Distance Fraud attacks are defined
as attacks by a lone dishonest prover. These two types are therefore clearly
different from Distance Hijacking, which involves at least a dishonest prover and
another honest party.

To illustrate the difference between Distance Hijacking and the attack type
that is conceptually closest, Terrorist Fraud, we consider again the scenario from
Example 2. Recall that in Terrorist Fraud, the dishonest prover collaborates
with another (closer) attacker. In the scenario from the example, there are two
main reasons why the absence of Terrorist Fraud attacks does not guarantee the
absence of Distance Hijacking attacks. First, we observe that Terrorist Fraud is
not possible in this scenario, because the attacker does not have another attacker
inside the building that is willing to cooperate with him. Hence the designers
of the system could consider using a protocol such as signature-based Brands
and Chaum, on which Distance Hijacking may still be possible. Second, the
common countermeasure to Terrorist Fraud is to force the attacker to reveal his
long term key to his accomplice, based on the assumption that this will deter
the attacker. However, in the scenario from Example 2 this assumption does
not hold: the attacker has no problem with leaking the (stolen) long term key.
Additionally, even if he does transmit the key, it will be to the (unmodified)
smartcard of an honest employee. The employee’s smartcard will typically not
detect this key, and will even delete the received data after the session ends.
Hence guaranteeing the absence of Terrorist Fraud attacks, either by assumption
or by countermeasure, does not guarantee the absence of Distance Hijacking.

3.3 Attack classification

The traditional attack types Mafia Fraud, Distance Fraud, and Terrorist Fraud,
are defined independent of each other and usually in incompatible ways. This
makes it hard to determine whether all possible attacks on distance bounding
protocols are covered by these types, even if we include Distance Hijacking
attacks. We propose to remedy this situation by deriving attack type definitions
that cover all possible attacks by construction. Intuitively, we perform a sequence
of case distinctions based on three attributes of attacks on distance bounding
protocols: whether the prover is honest, whether the prover is the only party
involved in attacking the verifier, and if not, whether one of the other involved
parties is honest. By considering these three attributes we arrive at definitions
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Figure 4: Classification of attacks on distance bounding protocols, in which a
verifier computes an incorrect distance bound for a prover.

for four attack types.

We introduce some additional terminology. The goal of a distance bounding
protocol is to compute a correct distance bound. More precisely, we say that the
verifier V computes the correct distance bound d on P , if P or his identifying
key1 is indeed within the (computed or expected) distance d. We make two
assumptions on distance-bounding protocols. First, in the absence of attackers,
the verifier computes the correct distance bound. Second, we assume that the
protocols guarantee weak authentication of P (i. e., aliveness [17]).

Using the above terminology and assumptions, we provide an exhaustive
classification of attacks on distance bounding protocols attacks in which the
verifier computes an incorrect distance bound for the prover, represented in
Figure 4. Assume that V does not compute the correct distance bound d for P .
Thus, neither P nor his identifying key is within the distance d. Because of our
first protocol assumption, this must be caused by an attacker.

We distinguish two main cases. If P is honest, then P is not the attacker,
and therefore an external attacker is changing the distance. We call this type of
attack External Distance Fraud.

Definition 2. An External Distance Fraud attack is an attack in which an
attacker provides a verifier V with false information about the distance between
an honest prover P and V .

In the second case, if P is not honest, then we distinguish again between two
cases. First, if only P is involved in the attack, he must be the attacker, trying
to change his own distance. We call this type of attack Lone Distance Fraud.

Definition 3. A Lone Distance Fraud attack is an attack in which a lone prover
P provides a verifier V with false information about the distance between P and
V .

If other parties are involved, we make a final distinction. If all of the other
parties are dishonest or collaborating, the attack is called an Assisted Distance
Fraud attack.

Definition 4. An Assisted Distance Fraud attack is an attack in which a prover
P is assisted by one or more other parties, none of which are honest, to provide
a verifier V with false information about the distance between P and V .

1In our context, P is identified by his key. If others know P ’s key, they cannot be
distinguished from P .
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Alternatively, if one of the other parties involved in the attack is honest, we
call the attack a Distance Hijacking attack, as in Definition 1.

In constructing the above classification, we have tried to stay close to the
historical attack types. In fact, three of our attack types are variants of the
historical types. However, we have tried to provide them with more descriptive
and less generic names. In particular, our definition of Lone Distance Fraud
closely resembles the classical notion of Distance Fraud. Our definition of
External Distance Fraud resembles that of Mafia Fraud, and our definition of
Assisted Distance Fraud includes Terrorist Fraud attacks.

It is worth pointing out that although P refers to a specific identity, or rather
the identity of a party holding a specific key, this classification is also valid in the
context of anonymous distance bounding protocols [30]. In anonymous distance
bounding, the only guarantee provided to the verifier is that someone is within
a specific distance, as opposed to P is within a specific distance. In order to fit
anonymous distance bounding protocols into this model, we say that all provers
in anonymous distance bounding share the same key (which could be public)
and, in the decision points in Figure 4, “the prover” must be replaced by “the
closest prover”.

3.4 Multi-prover environments

The main requirement for Distance Hijacking is that there are other parties
in the environment, which can be exploited by a dishonest prover. We call
environments in which multiple provers may occur multi-prover environments.
We give two concrete examples of such environments.

Multiple provers, single verifier One such a scenario occurs when a verifier
accepts proofs from multiple provers, as depicted in Figure 5. For example,
this may occur in RFID distance bounding where a reader may accept multiple
tags. In this case, Distance Hijacking occurs when a dishonest prover P hijacks
the distance from P ′ to V and instead convinces V that P is at this distance,
thereby falsely “shortening” the distance between P and V .

Note that in the above example, the verifiers accept protocol sessions from
multiple provers. Below we show that this is not required for the attacks.

Multiple provers, multiple verifiers Consider an environment with multi-
ple provers P, P ′, . . . and corresponding verifiers, VP , VP ′ , . . ., where verifier VP
only accepts proofs-of-distance from prover P and verifier VP ′ only from prover
P ′. Even in this scenario, a prover P can hijack a session from a prover P ′

to a verifier VP ′ to make VP falsely believe that P is at distance dist(P ′, VP ).
This type of scenario is depicted in Figure 6. P ′ assumes that he is proving his
distance to VP ′ , but instead, the fast response of P ′ is accepted by VP , who
assumes that it was sent by P .

Note that for the attack to work, neither P and VP nor P and P ′ need
to be physically close. Instead, the communication between P ′ and VP ′ can
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Figure 5: Scenario in which V ac-
cepts protocol sessions from multi-
ple provers, here P and P ′, where
Distance Hijacking may be a threat.

Figure 6: Scenario with multiple
prover/verifier pairs, where Vx only
accepts sessions from x. Even in this
case, Distance Hijacking may be pos-
sible.

be enabled by the attacker who created a relay between them whereas P can
communicate to P ′ using a high power transceiver and a high gain antenna.
This second scenario may even occur across domains: the only requirement is
that the distance measurement (e. g., rapid bit exchange) phases used in both
domains are to some extent compatible.

3.5 Analysis of Existing Distance Bounding Protocols

We have analyzed several protocols and found numerous new attacks that fall
into the class of Distance Hijacking attacks. We give an overview of the protocols
analyzed in Table 1. The vast majority of the attacks we find are new. To the best
of our knowledge, only two such attacks were previously reported in the literature.
The attack on a simplified version of “Brands and Chaum (signature)” is described
in [25]. The attack on a member of the protocol family proposed by Meadows
et al., in particular for the instance with F (NV ,NP , P ) = 〈NV ,NP ⊕ P 〉, is
described in [3]. All other attacks in the table are new.

In our analysis we used the following system and attacker model. We assume
that the attacker controls the network and may eavesdrop, intercept, inject, and
block messages. We do not pose any restrictions on the number or locations
of devices that the attacker holds; the attacker can control several dishonest
provers as well as other wireless devices. Entities are identified by their keys;
entities that hold the same keys cannot be distinguished.

In this paper, we describe two attacks from the table in detail. We already
described the attack on the basic Brands and Chaum protocol with signatures in
Example 1. We describe an attack on the Kuhn, Luecken, Tippenhauer protocol
in Example 4.

In general, it seems that protocols that closely follow the original Brands and
Chaum protocols do not offer protection against Distance Hijacking. In contrast,
protocols that derive from the Hancke and Kuhn protocol, which explicitly uses
the key shared between agents in the distance bounding phase, protect against
Distance Hijacking in single-protocol environments. However, as we explain
in Section 6, all protocols, including the ones derived from the Hancke and
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No. Protocol
Discovered

attack

1 Brands and Chaum (Fiat-Shamir) [4, p. 351] Yes
2 Brands and Chaum (Schnorr) [4, p. 353] Yes
3 Brands and Chaum (signature) [4, p. 350] Yes
4 Bussard and Bagga [5] No
5 CRCS [23] Yes

6 Hancke and Kuhn [12] No
7 Hitomi [20] No
8 KA2 [15] No
9 Kuhn, Luecken, Tippenhauer [16] Yes
10 MAD [29] Yes

11 Meadows et al. for F (. . .) = 〈NV ,NP ⊕ P 〉 [18] Yes
12 Munilla and Peinado [19] No
13 Noise resilient MAD [27] Yes
14 Poulidor [28] No
15 Reid et al. [24] No

16 Swiss-Knife [14] No
17 Tree [2] No
18 WSBC+DB [21, p. 50] Yes
19 WSBC+DB Noent [21, p. 51] Yes

Table 1: Discovered Distance Hijacking attacks on existing protocols (single
protocol environment).

Kuhn protocol, are vulnerable to Distance Hijacking in specific multi-protocol
environments.

We note that for many of the attacks in the table, it is required that the
verifier V is not “disturbed” by P ’s messages. As a concrete example, consider
the attack in Figure 2. If V would receive and parse P ’s final signed message,
V might abort the protocol, in which case the attack fails. There are several
practical scenarios in which the attacks are directly possible. For example,
assume that the signed message is sent through standard WiFi channels, and
P assumes that he is responding to some other verifier V2. In this case, P
sends the message addressed to V2, and V ’s hardware may already filter out
the message before it arrives at the protocol level. Alternatively, the attacker
can jam-and-eavesdrop the signals sent by P (except for P ’s fast response).
Jamming seems to be possible on all protocols in the table except for MAD,
which explicitly requires jamming detection, upon which the protocol aborts.
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Figure 7: Phases in distance bounding protocols: Setup, distance measurement,
and finalizing. The setup and finalizing phases may be empty.

4 Protecting against Distance Hijacking

We have seen that many protocols are vulnerable to Distance Hijacking, and
we now show how to repair them. Without loss of generality, any distance
bounding protocol can be divided into three phases as depicted in Figure 7:
the setup phase, where nonces and commitments are exchanged; the distance
measurement phase, where the physical distance is measured, often using rapid
bit exchange; and the finalizing phase that often includes a proof of identity. The
only phase that is required to be non-empty is the distance measurement phase.
The distance measurement phase follows the following schema: the verifier sends
out a fresh challenge, to which the prover responds with some value; this process
may be split into several rounds. The distance measurement is derived from the
measured response time, which means that the prover must reply immediately.
It is therefore infeasible to use cryptographic functions (such as encryption or
signatures) in the computation of the response in this phase.

In a typical Distance Hijacking attack, a dishonest prover exploits another
prover’s response in the distance measurement phase. Thus, although the
dishonest prover has few restrictions, because he does not have to follow the
protocol and can construct his own messages as he chooses, he can only exploit
honest provers as far as the protocol allows him to. Therefore, in the fixes we
propose, we ensure that the distance measurement response of an honest prover
cannot be abused by others in their communication with the verifier.

Before we proceed to solutions, we provide more intuition by showing why
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Figure 8: Attack on Brands and Chaum variant where setup and finalization use
a secure channel. We use dashed arrows to denote transmission over a secure
channel. P ′ assumes that P is a verifier.

two seemingly straightforward fixes to the basic Brands and Chaum protocol
fail.

Example 3 (Flawed fix: Xor identity). A first flawed fix is to include the
prover’s identity in the response messages by sending challenge ⊕NP ⊕ P. The
problem with this solution is that the identity of an attacker P ′ might only differ
in a few bits from P . Then challenge⊕NP ⊕P agrees with challenge⊕NP ⊕P ′

on all other bits and the adversary only has to guess the remaining few bits
in challenge ⊕ NP ⊕ P ′ and overshadow them in P ’s response. After learning
challenge and NP, the dishonest prover can check if his guesses were right and
send the final signature. If the Hamming distance between P and P ′ is k, then
the attacker has to guess k bits and his success probability is therefore ( 1

2 )k.

Example 4 (Flawed fix: secure channels). A second fix is to perform the setup
and finalizing phases over some secure channel, e. g., by using SSL/TLS, mutually
authenticated using client and server certificates. A protocol along these lines
is described in [16]. Because an attacker now cannot eavesdrop (or change) the
contents of the communication, it might seem that any hijacking is thwarted.
However, as depicted in Figure 8, such protocols are still vulnerable to Distance
Hijacking. In the attack, P claims to be a verifier when communicating with P ′,
and P claims to be a prover when communicating with V . Thus, P ′ assumes
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that he is proving his distance to P , and therefore transmits his commit over the
secure channel to P . P simply forwards this commit to V . Because the distance
measurement phase is not protected by the secure channel, P ′ will respond to
V ’s challenge. Afterwards, P ′ will finalize his part over the secure channel with
P . P re-signs this information and sends it to V over the secure channel.

As shown by the examples, it is not trivial to make protocols resilient against
Distance Hijacking. The solution is to make the prover’s messages during the
distance measurement phase distinguishable from those of other provers, such
that a verifier will not mistake the response of one prover (say, P ′) for the
response of another (say, P ). We discuss two possible solutions: explicit linking
and implicit linking.

Solution family 1: Explicit linking The first solution, explicit linking,
ensures that the response from different provers is distinguishable by explicitly
including identity information in the response, combined with integrity protection.
Example instances of explicit linking are the following, where we assume that
NP is a nonce generated by the prover which he commits to in the setup phase.

• challenge ⊕ h(P,NP), where h is a hash function.

• challenge ⊕ signP (NP).

• challenge ⊕MAC k(P,V )(P,NP), where k(P, V ) is a symmetric shared key
between P and V .

Solution family 2: Implicit linking The second solution type, implicit
linking, does not make the responses of different provers distinguishable on their
own. Rather, it relies on the fact that honest provers do not reveal some secret,
typically their own nonce NP , before the distance measurement phase has been
completed. Thus, before this phase, only the prover who generated NP knows
the secret and can use it to construct messages. In protocols that commit to
a (temporary) secret in the setup phase, the prover can include his identity in
the commit, hence sending commit(P,NP) before the distance measurement
phase. Until the prover P releases this nonce during or after his response, other
(dishonest) provers cannot commit to NP with their own identity. Thus, the
verifier can check that the claimed identity for the distance measurement phase
corresponds to the commit he received during the setup phase.

5 Formal Analysis

Previous formal models capture Distance Hijacking to an insufficient extent.
Specifically, they do not capture overshadowing parts of a message (see [22]),
e. g., by sending bits using a stronger signal. Several of our Distance Hijacking
attacks involve such overshadowing. To capture these attacks, we extend the
formal framework of Basin et al. [3] to allow the attacker to perform message
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manipulation on the wireless channel by overshadowing parts of a message, as
well as flipping some bits of a message. The resulting new framework allows to
formally prove the absence all of the previously described Distance Hijacking
attacks. A complete Isabelle/HOL formalization of all definitions and proofs in
this section is available in [26].

In Section 5.1, we recall the basic model from [3] and we present its extension
in Section 5.2.

5.1 Basic model

Agents and Environment We assume that there are countably infinite
disjoint sets Honest and Dishonest of honest and dishonest agents. We define
the set of all agents as Agent = Honest ∪ Dishonest. We use A, B, P , V for
agents. We associate a location locA ∈ R3 to each agent. Based on the location,
we define the line-of-sight communication distance between two agents A and B
as

cdistLoS(A,B) =
|locA − locB |

c

where c denotes the speed of light. This distance constitutes a lower bound on
the time required for a signal to travel from A to B derived from the locations
of both agents.

Messages We assume that there is a countably infinite set Const of constants.
We assume that there are countably infinite disjoint sets NonceA for each agent
A and define Nonce =

⋃
A∈Agent NonceA. We assume that there is a countably

infinite set Key of keys that is partitioned into keys for symmetric encryption and
asymmetric encryption/signatures. We assume that there is an inverse operator
·−1 on Key that is the identity on symmetric keys. The set of syntactic messages
SMsg is defined by the grammar

M,M ′ ::= atom | 〈M,M ′〉 | h(M) | {M}k |M ⊕M ′ | 0

where atom ∈ Agent ∪ Const ∪ Key ∪ Nonce is an atomic message, and the
remaining cases denote pairing, hashing, encryption with k ∈ Key, exclusive-or,
and the all-zero message. We write signA(M) as a shorthand for {M}sk(A).

We define the set Msg of messages as SMsg/=E , where =E is the equational
theory generated by the set of equations

E = {M ⊕ 0 = M,M ⊕M = 0,

(M ⊕M ′)⊕M ′′ = M ⊕ (M ′ ⊕M ′′),
M ⊕M ′ = M ′ ⊕M}.

In the following, we abuse notation and write M to denote the corresponding
equivalence class {M ′ |M ′ =E M} ∈ Msg.
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M ∈ IKA

M ∈ DMA(tr)

(t,RecvA(M)) ∈ tr

M ∈ DMA(tr)

M ∈ DMA(tr) M ′ ∈ DMA(tr)

M ⊕M ′ ∈ DMA(tr)

M ∈ DMA(tr) M ′ ∈ DMA(tr)

〈M,M ′〉 ∈ DMA(tr)

M ∈ DMA(tr)

h(M) ∈ DMA(tr)

M ∈ DMA(tr) k ∈ DMA(tr)

{M}k ∈ DMA(tr)

〈M1,M2〉 ∈ DMA(tr)

Mi ∈ DMA(tr)

{M}k ∈ DMA(tr) k−1 ∈ DMA(tr)

M ∈ DMA(tr)

Figure 9: Rules defining DMA(tr).

Events and Traces The set of events is defined as

EV ::= SendA(M)[M∗] | RecvA(M) | ClaimA(M).

For Send, A denotes the agent executing the send, M the sent message, and M∗

is a sequence of messages denoting local state information associated with the
event. For Recv, A denotes the agent executing the receive and M the received
message. For Claim, A denotes the agent making the claim and M the claim
itself. A trace tr is a sequence of timed events (t, EV ) with t ∈ R.

Initial knowledge To model initial key distributions, we define the functions
pk : Agent→ Key, sk : Agent→ Key, and K : Agent×Agent→ Key that denote
the public, secret, and shared keys of agents with the expected properties, e. g.,
pk(A)−1 = sk(A) and K(A,B) = K(B,A). We define the initial knowledge of an
agent A as

IKA = Agent ∪ Const ∪NonceA ∪ {0}
∪ {sk(A)} ∪ {pk(B) | B ∈ Agent}
∪ {K(A,B) | B ∈ Agent}.

Message deduction Let A be an agent and let tr be a trace. Then the
set DMA(tr) of deducible messages is the least set closed under the rules in
Figure 9. The rules model message manipulations under the perfect cryptography
assumption, and are all considered modulo E.

Network and Attacker The set of possible traces TR for the basic model is
defined as the least set closed under the Start-rule, the attacker rule Intr, and
the basic network rule BasicNet2 given in Figure 10 and the rules formalizing

2Note that this rule is called Net in [3].
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ε ∈ TR
Nil

tr ∈ TR I ∈ Dishonest M ∈ DMI(tr)

tr · (t,SendI(M)[]) ∈ TRP

Intr

tr ∈ TR (t′,SendA(M)[L]) ∈ tr t ≥ t′ + cdistLoS(A,B)

tr · (t,RecvB(M)) ∈ TRP

BasicNet

Figure 10: Rules for network and attacker from the basic model.

tr ∈ TR

∀X ∈ components(M).

∃ t′ A L M ′ Y ∈ components(M ′).
(t′,SendA(M ′)[L]) ∈ tr

∧X ⊕ Y ∈ LHW

∧ t ≥ t′ + cdistLoS(A,B)

tr · (t,RecvB(M)) ∈ TRP

ExtNet

Figure 11: The new network rule for the extended model.

the analyzed protocol. For an example of protocol rules, see Figure 12. All
rules have the implicit side condition that timestamps are monotonous, i. e.,
the timestamp of a newly added event cannot be smaller than the maximal
timestamp in the trace. The Intr rule allows dishonest agents to send arbitrary
deducible messages. The BasicNet rule formalizes that if there is a message
M that has been sent by an agent A, then B can receive the message at time t
if t ≥ t′ + cdistLoS(A,B).

Given a set of traces of a protocol for a model, we can define when a protocol
is secure.

Definition 5. A distance bounding protocol is secure if all claims (V, P, dist)
that occur in traces of the protocol are valid, i. e., they agree with locV and locP .
Here, we account for the fact that we allow dishonest nodes to share key material
and therefore identify all dishonest agents, i. e., a claim (V, P, dist) for dishonest
P is valid if there is some dishonest P ′ such that dist is an upper bound on the
distance between V and P ′.

5.2 Extended model

The network rule BasicNet from [3] does not account for message manipulation
on the wireless channel. As a result, several attacks from the previous sections
(e. g., the attack in Example 3) cannot be reproduced in the basic model. We
define our extended model by replacing the network rule BasicNet by a new
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rule ExtNet, shown in Figure 11, that allows for a more fine-grained model of
message manipulation.

We start from the observation that the BasicNet rule does not account for
the ability of an attacker to overshadow parts of a message. Overshadowing can
be used to replace components in pairs with known messages or to transform an
(unknown) message M into an (unknown) message M ′ if M and M ′ differ only
in a few bits.

In the context of a model where signals traverse distances, as required for
modeling distance bounding protocols, an attacker that is far from a receiver
(e. g., the verifier) may want to use overshadowing to modify the message M of
a sender (e. g., the prover) that is close to the intended recipient into a message
M ′. Let t be the time at which the sender sends the message M . Because
the attacker is further away, the attacker needs to send the overshadowing bits
(M ⊕M ′) at time t′, where t′ < t, to ensure that they arrive at the same time
at the receiver. If the attacker knows the (parts of the) message that he wants
the recipient to receive, this is straightforward. However, if the attacker does
not know the message M yet at time t′ and requires the message M to compute
M ′, he needs to guess the positions where M and M ′ differ, then guess the bits
of M ′ on these positions, and finally overshadow M on these positions with the
guessed bits. We assume that guessing many of the bits of M correctly can only
be done with negligible probability. Subsequently, the attacker can transform
M into M ′ with non-negligible probability if and only if the Hamming distance
between M and M ′ is small.

To account for these manipulations, we require two definitions. First, the
components of a message M are defined as components(M) = components(M1)∪
components(M2) if M = 〈M1,M2〉 and components(M) = {M} otherwise. Sec-
ond, the set LHW of messages that may have a low Hamming weight is defined
as

L,L′ ::= latom | L⊕ L′ | 0

where latom = Agent ∪ Const. This excludes nonces, keys, hashes, encryptions,
and the exclusive-or of such messages since the probability that these have a low
Hamming weight can be assumed to be negligible, unless such a message cancels
itself out. We do not include pairs of low Hamming weight messages since we
already allow the attacker to modify components of pairs individually.

Our new network rule ExtNet is shown in Figure 11. According to the
rule, an agent B can receive a message M if for all components X of M , there
is a corresponding send event (with compatible timestamp) of a message M ′

such that M ′ has a component Y with a low Hamming distance to X, i. e., the
Hamming weight of X ⊕ Y is low.

Example 5. We assume that the attacker does not know NV and NP. To
overshadow NP with NI in the message 〈NV ,NP〉 sent by an honest P , the
attacker has to send NI (early enough) such that both sends together result in a
receive of 〈NV ,NI〉.

In Example 3, the attacker overshadows some bits to transform the (unknown)
message NV ⊕ NP ⊕ P into the (unknown) message NV ⊕ NP ⊕ P ′. In our
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tr ∈ TR P ∈ Honest NP ∈ (NonceP \ subterms(tr))

tr · (t,SendP (h(NP))[P1,NP ]) ∈ TR
ProvCom

tr ∈ TR V ∈ Honest
(t,RecvV (COM )) ∈ tr NV ∈ (NonceV \ subterms(tr))

tr · (t,SendV (NV )[V1,COM ,NV ]) ∈ TR
VerChal

tr ∈ TR P ∈ Honest
(t,RecvP (NV )) ∈ tr (t,SendP (X)[P1,NP ]) ∈ tr

tr · (t,SendP (NV ⊕NP )[P2,NP ,NV ]) ∈ TR
ProvResp

tr ∈ TR P ∈ Honest (t,SendP (X)[P2,NP ,NV ]) ∈ tr

tr · (t,SendP (signP (NV ,NP , P ))[]) ∈ TR
ProvAuth

tr ∈ TR V ∈ Honest (tchal ,SendV (NV )[V1, h(NP),NV ]) ∈ tr
(tresp ,RecvV (NV ⊕NP)) ∈ tr

(tauth ,RecvV (signP (NV ,NP , P ))) ∈ tr

tr · (t,ClaimV (V, P, (tresp − tchal) ∗ c/2)) ∈ TR
VerResp

Figure 12: Formalization of the Brands-Chaum Protocol.

model, the attacker does not have to perform any action since (NV ⊕NP ⊕P ′)⊕
(NV ⊕ NP ⊕ P ) = P ⊕ P ′ ∈ LHW. This captures the intuition that allowing
the attacker to flip some bits of unknown messages is equivalent to allowing for
some bit-errors introduced by the wireless channel.

The set of possible traces TR for our extended model is defined as the least
set closed under the Start-rule, the attacker rule Intr, the extended network
rule ExtNet, and the rules formalizing the analyzed protocol.

Protocol Formalization We formalize the original signature-based version of
the Brands-Chaum by the rules in Figure 12. Pi and Vi are constants used in the
local state of the verifier and prover in step i. The rules ensure that the previous
steps have been executed, the required messages have been received, and nonces
are freshly chosen (not subterm of the trace tr). The final rule VerResp uses
the times when the challenge was sent and the time when the reply was received
to compute an upper bound on the distance between P and V . We refer the
reader to [3] to further details on modeling protocols in this kind of framework.

Case studies We have analyzed the Brands-Chaum protocol and its various
fixes in our extended framework. For example, we have proven that if we modify
Brands-Chaum to include explicit linking, the Distance Hijacking attack is no
longer possible. Note that for proving the correctness of the version with implicit
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linking, we need the assumption that verifiers cannot receive the bits/message
that they sent themselves, e. g., because different channels are used. Without
this assumption, Brands-Chaum is vulnerable to Distance Fraud attacks (by
reflection or using low Hamming weight overshadowing). As another example,
our extended framework also reveals that modifying the response to NV ⊕NP⊕P
is not secure since the attack from Example 3 is captured. Note that in the basic
framework from [3], which did not account for message manipulation on the
wireless channel, this attack was not captured and a security proof was possible.
This clearly shows the effect of the adversary’s additional powers in our extended
model.

For a complete description of our case studies and their formalization we
refer the reader to [26].

6 Multi-protocol Environments

So far, we discussed Distance Hijacking attacks in single-protocol environments,
where both dishonest and honest prover run the same distance bounding protocol.
However, it is possible that verifier-prover pairs execute different ranging and
distance bounding protocols, for example when they belong to different domains.
We call such environments multi-protocol environments.

Distance Hijacking in Multi-protocol Environments In what follows we
show that there are plausible multi-protocol environments in which protocols
that are resilient to Distance Hijacking in single-protocol environments become
vulnerable again to Distance Hijacking.

We define a multi-protocol environment MPE as a set of triplets, where a
triplet (A,B,R) denotes that agent A may execute the protocol role R (e. g., the
prover role of the Brands and Chaum protocol) when communicating with B,
and where at least two different protocols are contained in the set. We say that
a distance bounding protocol DB is vulnerable to a Distance Hijacking Attack
in a multi-protocol environment MPE if a dishonest prover P can perform a
successful Distance Hijacking attack against a verifier V running DB in the
verifier role in that environment (and hence (V, P,DB(verifier)) ∈ MPE ).

It is easy to see that, given any distance bounding protocol, a multi-protocol
environment can be constructed in which this protocol will be vulnerable to
Distance Hijacking attacks. For example, all distance bounding protocols will be
vulnerable to Distance Hijacking if run in the same environment with a protocol
that uses a similar distance measurement phase, but that gives a dishonest
prover full control over the way the response bits are computed by the honest
prover. This is not such an unlikely scenario, since it is plausible that in the same
environment in which a verifier and a dishonest prover run e. g., Hancke and
Kuhn, an honest prover runs an insecure ranging protocol that supports the same
type of distance measurement phase as the Hancke and Kuhn protocol. This
insecure ranging protocol could easily allow a dishonest prover to set the bits that
the honest prover uses in the distance measurement phase (e. g., for debugging
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Figure 13: A Distance Bounding Protocol that enables Distance Hijacking on
Hancke-Kuhn protocol in multi-protocol environments.

purposes). It might also be that this insecure ranging protocol is simply enabled
as a feature for non-critical applications and therefore coexists with the Hancke
and Kuhn protocol on the devices (and thus shares the same hardware / distance
measurement implementation with the Hancke and Kuhn protocol). This means
that no multi-prover distance bounding protocol deployments can be guaranteed
to be secure unless additional measures are in place.

In the above example we used an insecure protocol. However, similar attacks
are possible using only protocols that are secure in single-protocol environments.
We show this on an example of the Hancke-Kuhn distance bounding protocol
from [12]. We construct a multi-protocol environment in which the verifier runs
the Hancke-Kuhn protocol, and the honest provers support a minor variation
of the Hancke-Kuhn protocol that is secure against Distance Hijacking in a
single-protocol environment. This protocol, shown in Figure 13, differs from
the Hancke and Kuhn protocol in that the prover does not compute the values
of registers NP0 and NP1 but that these are computed by the verifier and sent
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(confidentially) to the prover. This protocol modification would make sense if
one would, e. g., assume that the prover does not have a good random number
generator (e. g., an RFID tag).

A Distance Hijacking attack in this environment works as follows. A dishonest
prover P initiates the original Hancke and Kuhn protocol with the verifier V ,
and derives shared register values with V (for details see Hancke and Kuhn
protocol [12]). P then acts as a verifier and initiates the modified Hancke and
Kuhn protocol from Figure 13 with the honest prover P ′. P then provides the
register values to P ′ as specified in the modified protocol. V and P ′ then execute
a rapid bit exchange and V believes that this exchange was executed by P .

Observe that the attack does not require the two protocols to share the same
long-term keys: V verifies the use of the key as prescribed by the Hancke and
Kuhn protocol, which was provided by P , and remains unknown to P ′. However,
the attack strictly requires V and P ′ to use similar hardware for the fast response
phase.

Similarly, a modified version of the Brands and Chaum protocol can be
constructed that, if run next to the Hancke and Kuhn protocol, would also
enable a Distance Hijacking attack against the Hancke and Kuhn protocol. This
phenomenon is similar to the Chosen Protocol attack in cryptographic protocol
analysis. We relate the two concepts in Section 8.

Protecting against Distance Hijacking in Multi-Protocol Environments
Previously, we proposed countermeasures that prevent Distance Hijacking in
single-protocol environments. We now discuss some approaches that can mitigate
such attacks in multi-protocol environments.

For multi-protocol environments the obvious solution is to try to ensure that
all protocols in an environment use different (incompatible) hardware for their
distance measurement phase. This is analoguous to the concepts of tagging
or disjoint encryption for classical cryptographic protocols. Thus, attacks in
multi-protocol environments can be prevented by better regulation in distance
bounding protocol deployment and construction. Minor application-specific
modifications to the distance measurement phase (e. g., including application-
specific dummy bits) would already prevent a number of attacks. Similarly,
manufacturer-specific or deployment specific hardware modifications would also
protect against multi-protocol attacks; this can, however, be expensive.

There are a number of scenarios in which such deployment and regulatory
protection measures cannot be used. Application-specific modifications of the
distance measurement phase are particularly difficult to implement; given the
tight timing constraints in the distance measurement phase, this phase will
be processed in hardware. It is also likely that only a few implementations of
the distance measurement phase will emerge in the future, limiting available
application-specific modifications of this phase. This finally means that most
distance bounding protocols will likely use the same implementation of the
distance measurement phase.

Accounting for these scenarios, we propose an alternative solution that makes
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use of “prover honeypots”. Recall that to execute a Distance Hijacking attack, a
dishonest prover either needs to be able to successfully claim to have executed a
distance measurement phase that was executed by an honest prover, or needs to
make an honest prover execute a distance measurement phase using specific bits.
The prevention of the false distance measurement claim naturally extends from
single- to multi-protocol environments — this type of attack can be prevented
by using protocols that are resilient to Distance Hijacking in single-protocol
environments. However, as we have shown, protocols that are resilient to Distance
Hijacking in single-protocol environments cannot prevent attacks in a multi-
protocol environment where an honest prover is made to execute a distance
measurement phase using the bits provided by a dishonest prover. We aim to
detect such attacks by the use of prover honeypots.

Our solution works as follows. The verifier first sets up a number of virtual
or real honeypot provers which are either physical or virtual devices that are
placed in the vicinity of the verifier. These honeypot provers are created either
by the verifier or by the devices that the verifier trusts and controls. To other
provers, honeypot provers claim either their true or false locations/identities, and
they support a broad set of ranging and distance bounding protocols. The idea
behind this setting is that when a dishonest prover mounts a Distance Hijacking
attack, it chooses one of the honeypot provers to abuse in his attack. Besides
setting up honeypot provers, the verifier also limits its operation to specific
distance bounding protocols: it executes only distance bounding protocols that
force a dishonest prover to reveal (most of the bits of) its secret key (that it
shares with the verifier) to the honest prover if he wants to execute a Distance
Hijacking attack. This is commonly the case for protocols that are resilient
against Terrorist Fraud. Thus, if a dishonest prover exploits one of the honeypots
in a Distance Hijacking attack, the (majority of the) bits of the key that it shares
with the verifier will be revealed to the honeypot prover. For the case in which
the prover wants to be certain about the success of Distance Hijacking, all of the
bits of his key will be revealed to the honeypot. In order to check if a Distance
Hijacking attack was executed, the verifier, after the execution of a distance
bounding protocol with a given prover, simply needs to ask his honeypot provers
to send him the bits that they used in any recent distance measurement phase.
If those bits allow the reconstruction of the (majority of the bits of the) key that
the verifier shares with the prover [14], the verifier concludes that the prover
attempted to execute a Distance Hijacking attack.

7 Location Hijacking

In this section we generalize Distance Hijacking to Location Hijacking. We
consider the problem of location verification, or position verification, in which
a set of verifiers establishes the location of a prover, even though this prover
may act dishonestly, i. e., the prover can pretend to be at another location than
he really is. The objective of a location verification protocol is to ensure that
the location of the prover is reliably determined. Such protocols often build
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Figure 14: Location Verification and
Location Hijacking: P hijacks the loca-
tion of P ′, for example by hijacking the
distance bounding protocol instances
of P ′ with respect to the verifiers.

Figure 15: Location Hijacking to empty
location: When asked to prove his lo-
cation to the verifiers, P hijacks P1’s
distance for V1, P2’s distance for V2, and
P3’s distance for V3. The verifiers con-
clude that P is at the location indicated
by the arrow.

on distance bounding protocols. A prover repeatedly uses a distance bounding
protocol to prove his proximity to a set of verifiers. Based on the combined
information, the verifiers are able to verify the location of the prover.

This process is depicted in Figure 14. The circles represent the measured
distances by the verifiers V1, V2, V3, and they conclude that P ′ must be located
in the intersection. If a dishonest prover P can hijack distance bounding sessions
of a party P ′, he can pretend to be at the location where P ′ resides, regardless
of his actual location. This constitutes a Location Hijacking attack: a dishonest
prover can hijack the location of P ′.

Definition 6. Location Hijacking attack. A Location Hijacking attack is an at-
tack in which a dishonest prover P exploits one or more honest parties P1, . . . , Pn

to provide a set of verifiers V1, . . . , Vk with false information about the location
of P (either absolute or relative to the location of the verifiers).

The threat of hijacking is magnified in the context of location verification,
because multiple distance bounding results are combined. For example, consider
the setup in Figure 15, in which three honest provers P1, P2, and P3 are
within range of the verifiers. As before, a dishonest prover can perform Distance
Hijacking attacks on the distance bounding phases, thereby hijacking the location
of P1, P2, or P3 as he chooses. However, he can also combine Distance Hijacking
attacks with respect to multiple honest provers: this allows him to make his
location appear to be at any intersection of the distances of a set of honest
provers. For example, in Figure 15, he can convince the verifiers that he is located
at the position indicated by the arrow, by combining the distance bounding
phases of the honest provers, even though nobody is present at this location.
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Case Study of Location Hijacking To emphasize that Location Hijacking
is indeed a relevant problem, even on recent protocols, we give a brief case
study of a recent protocol by Chiang et al. [6] that is vulnerable to Location
Hijacking. In this protocol a prover sends out a location claim, after which
he receives simultaneous challenges from a number of verifiers. The prover
aggregates the challenges and broadcasts his response to all verifiers. This
many-to-one challenge response then constitutes one round of the underlying
distance bounding protocol, which in this case is Brands and Chaum’s original
suggestion [4]. The authors present a proof that their scheme is optimal in the
sense that it achieves the “maximal security” any location verification schemes
based solely on time-of-flight can provide.

Despite the proof, this scheme is vulnerable to Location Hijacking (Figure 14).
The proof in [6] establishes that a prover must be at the claimed location (within
some accuracy) in order to correctly reply to the challenges. The proof however,
does not address the authentication of the node at the claimed location but
instead leaves that up to the underlying distance bounding protocol. Since
the underlying distance bounding protocol is vulnerable to Distance Hijacking,
the location verification protocol inherits this vulnerability. In this case it is
possible that another distance bounding protocol could be used instead of Brands
and Chaum, in order to achieve a secure scheme, but this example shows that
even recent location verification schemes with proofs of optimal security, can be
vulnerable to Location Hijacking.

8 Related work

Distance bounding for RFID tags Avoine et al. present in [1] a framework
for analyzing RFID distance bounding protocols. They give definitions for the
three main attack types, and also define Impersonation Fraud, in which “a
lonely prover purports to be another one” [1, p. 5], i. e., a violation of weak
authentication. They consider these four types of attack with respect to black-
box and white-box provers, yielding a total of eight security notions. None of
their models covers Distance Hijacking attacks.

Dürholz et al. propose in [10] the first computational formal framework for
proving properties of RFID distance bounding protocols that are based on shared
symmetric keys. Their framework considers an attacker that interacts only with
a single prover (the tag) and single verifier (the reader). Consequently, proving
that an RFID protocol is secure in their framework does not guarantee the
absence of Distance Hijacking attacks.

Formal models for distance bounding Meadows et al. developed a formal
methodology to prove properties of distance bounding protocols [18]. Because the
methodology is not particularly suited for dealing with dishonest provers, they
did not consider scenarios that would allow them to detect Distance Hijacking
attacks.
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The first two formal approaches for distance bounding protocols that have
considered multi-prover scenarios and dishonest provers are Malladi et al. [25]
and Basin et al. [3]. Malladi et al. propose a tool-supported framework for
analyzing distance bounding protocols, and model a variant of the first signature-
based protocol by Brands and Chaum. They analyze this protocol in several
scenarios and find an attack that falls into our class. In their “farther adversary”
scenario, the attacker is farther from the verifier than the reported distance.
This suggests that the “farther adversary” scenario covers both Distance Fraud
and Distance Hijacking. However, this observation is not consistent with Malladi
et al.’s statement that including the identity in the signature makes the protocol
secure in the “farther adversary” scenario. From our analysis it is clear that the
resulting protocol will still be vulnerable to Distance Hijacking.

Basin et al. proposed in [3] the basic framework that we have used here
as a starting point for our extended model. Basin et al. analyze a family of
distance bounding protocols proposed by Meadows et al. in [18] and find an
attack that falls into our class of Distance Hijacking attacks, which they refer to
as an “impersonation attack”. They prove that a concatenation-based version
of the protocol is secure in their framework. This protocol is not secure in our
extended framework, as the protocol is still vulnerable to a Distance Hijacking
attack that uses overshadowing.

Chosen Protocol attack The multi-protocol Distance Hijacking attack de-
scribed in Section 6 resembles the Chosen Protocol (or Multi-Protocol) attack
in cryptographic protocol analysis, which was introduced by Kelsey, Schneier,
and Wagner [13]. They describe how, given any secure cryptographic protocol,
a second protocol can be constructed (“chosen”) that is also secure, but when
both are executed in parallel, an attacker can use the second protocol to attack
the first. Chosen Protocol attacks are an instance of Multi-Protocol attacks [7].
In a traditional (Dolev-Yao style) setting, Multi-Protocol attacks require that
both protocols use the same key infrastructure, in which case many protocols
are vulnerable [7]. Ensuring that the protocols use different keys prevents the
problem [11], which is often guaranteed in practice. The practical threat of
multi-protocol attacks in the Dolev-Yao setting is therefore limited.

In contrast, our multi-protocol Distance Hijacking attacks do not require
that keys are shared among protocols. Rather, the distance measurement phase
must be regarded as a security primitive, and care must be taken when security
primitives are shared among protocols. If not, unexpected interactions can occur,
as witnessed by our attacks. In practice, multi-protocol Distance Hijacking
poses a more significant threat than Chosen Protocol attacks, because it can be
expected that only a few different hardware components for distance measurement
will be manufactured, which may be used by a large number of different protocols.
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9 Conclusions

In many practical scenarios, including scenarios in which Terrorist Fraud attacks
are not a concern, Distance Hijacking attacks can pose a serious threat. Sur-
prisingly, until now, this type of attack was not considered in the analysis of
proposed distance bounding protocols.

In fact, our analysis shows that many distance bounding protocols cannot be
safely used in scenarios with multiple provers. Fortunately, it seems that adapting
the protocols to be resilient against these attacks is possible in single-protocol
environments without imposing a significant overhead. Similar observations can
be made for location verification protocols with respect to Location Hijacking
attacks.

We introduced an extended framework to reason about distance bounding
protocols in a symbolic way, which at the same time incorporates bit-level
message manipulations by the attacker. The results of this hybrid approach have
thus far been promising. The framework enables us to detect more attacks than
previous frameworks, including Distance Hijacking attacks, and also allows us to
prove the absence of the attacks we found.

We proposed an exhaustive classification of attacks on distance bounding
protocols. In this context, we also proposed new names and definitions for the
three classical attack types. Our new attack names are less generic and more
descriptive than the previous names. Many current works do not attempt to
analyse their protocols with respect to all possible threats, and instead provide
only a limited analysis of the protocols with respect to some previously defined
classes, whose relations and problem coverage are unclear. We hope that our
exhaustive classification can contribute to a more systematic analysis of all
possible threats against distance bounding protocols.

It is clear that secure functioning in a context with multiple provers is a
desirable feature, giving an edge to those protocols that are resilient against
Distance Hijacking attacks. It seems therefore prudent to analyze new proposals
for distance bounding protocols for their vulnerability to Distance Hijacking.
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Lubbe. Shedding some light on RFID distance bounding protocols and
terrorist attacks. CoRR, abs/0906.4618, 2009.

[21] P. Peris-Lopez, J. Hernandez-Castro, J. Tapiador, E. Palomar, and J. van der
Lubbe. Cryptographic puzzles and distance-bounding protocols: Practical
tools for RFID security. In RFID, 2010 IEEE International Conference on,
pages 45–52, 2010.

[22] C. Pöpper, N. O. Tippenhauer, B. Danev, and S. Čapkun. Investigation of
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A Example attack: Brands and Chaum (Schnorr
identification)

In [4] several concrete protocols are suggested. None of the proposed protocols
is resilient against Distance Hijacking attacks. However, some the attacks are
more involved than just re-signing the final message. Below we give a concrete
example of such a more involved attack on the protocol from [4, p. 353], which
is based on the Schnorr identification scheme.

The Schnorr-based protocol variant is depicted graphically in Figure 16. In
the protocol, the public key of the prover is the tuple (p, q, g, h = gx mod p) and
the corresponding private key is x.

In the protocol, a prover P chooses a random bit string β and secret random
value w. P sends gw and a commit of β to the verifier V . The verifier chooses
his own random bit string α. Next, V performs a rapid bit exchange with P
based on α and β. After the rapid bit exchange, P combines α and β into c and
computes r ← w + cx mod p, i. e., he adds his secret value w to the product of c
and his secret key x, modulo q. He sends the resulting r along with the commit
opening to V . V also computes c. V then raises the public key of P (h = gx) to
the power of c and multiplies the result with a = gw and compares the result
with gr. If the values match, the verifier accepts that P is within the measured
distance.

In Figure 17 we show a Distance Hijacking attack on the protocol. The
honest prover P ′ starts and tries to prove his distance to the verifier V . The
dishonest prover P intercepts the initial message of P ′ and replaces the value
aP = gwP ′ by his own aP = gwP . He sends aP along with the commit to V . V
then performs the rapid bit exchange with P ′, unaware of the identity mismatch.
After this phase, P again intercepts the response of P ′, effectively replacing
the identification computation by his own, while forwarding the “open commit”
unchanged.

For the attack, it is necessary that P replaces the value aP ′ by some value
gwP such that P knows wP . wP does not need to be random and may be an
arbitrary constant, but it is needed for P to later compute rP as expected by V .
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prover

P

verifier

V

βi ∈R {0, 1}
w ∈R Zq

a← gw mod p

a, commit(β1, . . . , βk)

αi ∈R {0, 1}

αi

βi

Rapid bit exchange

c← α1|β1| · · · |αk|βk

r ← w + cx mod q

(open commit), r

c← α1|β1| · · · |αk|βk

gr
?
= hca mod p

msc Brands and Chaum protocol (Schnorr scheme
variant)

Figure 16: Brands and Chaum protocol based on the Schnorr identification
scheme. The public key of the prover is the tuple (p, q, g, h = gx mod p) and the
corresponding private key is x.
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verifier
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βi ∈R {0, 1}
wP ′ ∈R Zq

aP ′ ← gwP ′ mod p

aP ′ , commit(β1, . . . , βk)

wP ∈ Zq

aP ← gwP mod p

aP , commit(β1, . . . , βk)

αi ∈R {0, 1}

αi

βi

Rapid bit exchange

c← α1|β1| · · · |αk|βk

rP ′ ← wP ′ + cxP ′ mod q

(open commit), rP ′

c← α1|β1| · · · |αk|βk

rP ← wP + cxP mod q

(open commit), rP

c← α1|β1| · · · |αk|βk

grP
?
= hP

ca mod p

msc Attack on Brands and Chaum (Schnorr scheme)

Figure 17: Distance Hijacking attack on Brands and Chaum (Schnorr scheme
variant). xP and xP ′ are the private keys of P ′ and P , respectively, and
hP = gxP .
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