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Abstract

This paper shows that if exponentiation b = Xk in groups of finite field units or
B = [k]X in elliptic curves is considered as encryption of X with exponent k treated as
symmetric key, then the decryption or the computation of X from b (respectively B) can
be achieved in polynomial time with a high probability under random choice of k. Since
given X and b or B the problem of computing the discrete log k is not known to have a
polynomial time solution, the exponentiation has a trapdoor property associated with
it. This paper makes this property precise. Further the decryption problem is a special
case of a general problem of solving equations in groups. Such equations lead to more
such trapdoor one way functions when solvable in polynomial time. The paper considers
single and two variable equations on above groups and determines their solvability.
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1 Introduction

Trapdoor one way functions are foundations of symmetric and public key encryption al-
gorithms. While the RSA scheme gives rise to such a trapdoor function, the function ax

defined from Ze to the cyclic group < a > (of order e) used in the Diffie Hellman key
exchange scheme by itself is not known to have an associated trapdoor one way function
property [1, p. 47]. Nevertheless, since the inverse of the exponential function (or com-
puting the discrete logarithm (DL) x) is believed to be a hard computational problem over
groups of finite field units and elliptic curves, exponentiation does turn out to be a one
way function. Consider the exponential function ax from 0 < x < q − 1 taking values in
the group F∗

q . Given a primitive element a and b = ax the computation of the discrete
log x = loga b is believed to be a hard problem (for a random x, primitive a and q with
reasonable properties) while exponentiation ax is computable in polynomial time (in the
logarithm of the order of F∗

q). So what about computation of a in the group when b and x
are given? If this is also achievable in polynomial time in the logarithm of the group order,
then ak can be called a candidate as a (generalized) one way function with trapdoor k over
this group. The generalization meant here is made precise by the following definition.
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Definition 1 (Generalized Trapdoor One Way Function (GTOWF)). A function F (k, x)
from arguments x, k represented each by n-bit strings and taking values in arguments y
represented by n-bit strings is called a GTOWF with trapdoor k if

1. Given the n-bit string for k the value y = F (k, x) can be computed in polynomial
time in n for every x in the function’s domain.

2. Given a random k and a value y in the domain of values of F for which x exists, all
possible x can be computed with high probability in polynomial time in n such that
y = F (k, x).

3. Given a pair x, y corresponding to a randomly chosen k such that y = F (k, x) there
is no known polynomial time in n algorithm to compute k.

Note that in this definition we do not insist on unique inverse x for any values y of F
given k and moreover computations of x given y are possible in polynomial time with high
probability for randomly chosen k, justifying the adjective generalized. In this paper we
shall first make an elementary observation that the exponential function is GTOWF with
high probability over the group of units of finite fields and explore analogous questions of
solving equations over elliptic curve groups over this field.

1.1 Equations over groups

Our problem is in fact a special case of the problem of solving equations over groups. Let
G be a finite Abelian group of order n. Given a positive integer k < n and an element b of
G the equation

b = Xk

is an example of an equation over G in one variable. This is also called the exponential
function Xk in G. One of the important questions in computational sciences is to determine
conditions for solvability of equations over groups and studying complexity of computation
of their solutions [3]. We shall consider this question on groups of units of finite fields and
elliptic curve over finite fields. In more than one variables, an example of such an equation
(say in two variables) is,

b = XkY l (1)

in which k, l are given positive integers < n and b is a given element of the group. Let the
group be an elliptic curve E(K) over a field K. An example of a two variable equation on
this group is

Q = [k]X ⊕ [l]Y (2)

where Q is a given point on E and k, l given integers. While it is well known that com-
putation of solutions of solvable equations over Abelian groups is achievable in polynomial
time [4] in the group order, this fact is not practically useful in cryptography since the
group order is exponential in the input bit length (that of the size of the exponent). Hence
it is important to determine when such equations are solvable in polynomial time in the
logarithm of the group order.
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2 Trapdoors associated with exponential function

We consider special cases of groups, the group of units of a finite field F∗
q , the group of

modular units Z∗
n where n = pq, p, q prime, and an elliptic curve over a finite field E(K). In

all of these cases the exponentiation function Xk (or [k]X taking values in an elliptic curve),
which we shall call the encryption function, is known to be computable in polynomial time
in the logarithm of the group order. Hence the exponential function is of trapdoor one way
class if the problem of computing solutions X from given the inputs k and value of Xk

(which we call the decryption problem) is solvable in polynomial time in the logarithm of
the order. (Hereafter we shall use the term polynomial time to always mean in terms of the
logarithm of the order). Analogously, in two variables X, Y the decryption problem over
finite field K is one of computing solutions X, Y in K∗ (respectively E(K)) from a value
b = XkY l (respectively B = [k]X ⊕ [l]Y ) given k, l.

2.1 Decryption in the group F∗
q

Consider the equation b = Xk. There are two cases. In first case let k be coprime to the
order n = (q − 1) of F∗

q . Then l = k−1 mod n exists and bl is the unique solution. In the

second case let d = (k, n), k = dk1, l1 = k−1
1 mod n. Compute b1 = bl1 . Then we have the

equation
b1 = Xd (3)

If a is a solution then any other solution x satisfies (xa−1)d = 1. Hence if one solution is
found other solutions can be obtained from all dth roots of unity in Fq. Since d|(q−1) there
exist d such roots given by d distinct powers of g(q−1)/d where g is a primitive element of F∗

q .
These computations are polynomial time due to fast exponentiation. Hence it is necessary
to examine computation of one solution of the above equation. This problem can be solved
as an application of Berlekamp’s algorithm for irreducible factorization of a polynomial in
F∗
q [2] which has complexity O(d2 log q). For random k the gcd d = (k, n) has with high

probability only small divisors of n, alternatively with high probability has length of the
order log n. Hence with high probability the above equation can be solved in polynomial
time. We state this as

Proposition 1. The exponential function y = xk where x, y are in F∗
q and random exponent

k is a GTOWF.

2.2 Decryption in Z∗
n

Consider the equation b = Xk. The order of the group is φ(n) = (p − 1)(q − 1), the Euler
function evaluated at n. There are again two cases as above. Let (k, φ(n)) = 1, then there
is a unique l < n such that kl = 1 mod φ(n). Hence X = bl mod n is a unique solution.
In the next case d = (k, φ(n)) > 1. Let k = k1d where k1 is coprime to φ(n) and k1l1 = 1

mod φ(n). Then the problem reduces to computing dth roots of b1 = bl mod n. This
problem is polynomial time by Chinese reminder theorem if prime factorization of n are
known. When these are known computation of X is transferred to corresponding problems

of computing dth rots modulo the prime factors hence the problem reduces to the field case
above. This proves
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Corollary 1. The exponentiation function Xk on Z∗
n is a GTOWF if prime factors p, q of

n are known.

2.3 Decryption on elliptic curve

Next we turn to the problem of solving the single variable equation

B = [k]X (4)

where B is a given point in of an elliptic curve E(K) over a finite field K. First we assume
that charK 6= 2. Let X = (x, y) be the unknown co-ordinates of X a point on E(K) to be
solved. Let n be the order of E(K). We can thus assume k < n or consider modulo n. If K
is coprime to n then for l = k−1 mod n, X = [l]B is a solution. If Y is another solution then
[k]([l]B	Y ) =∞. Hence all solutions can be obtained by listing K-rational points in ker k
as an endomorphism of E(K). Hence complexity of computation of ker k is the deciding
factor in trapdoor one way-ness in this special case. Next consider the case when (k, n) = d.
Let k = dk1, l1 = k−1

1 mod n, B1 = [l]B then the equation reduces to B1 = [d]X where
d|n. If A is one solution then any other solution Y satisfies [d](X 	 Y ) = ∞. Thus again
this involves the problem of computation of K-rational points of ker d as an endomorphism
of E(K) to get all solutions of the equation (4). It is well known that the x-co-ordinates

of points in ker d in E(K) can be computed by computing K-rational roots of the dth

division polynomial. We now examine how one solution X can be computed. The theorem
on representation of endomorphisms by division polynomials [5, Theorem 3.6] resolves this
problem. (We refer to definition of division polynomials given in [5, Section, 3.2]. Following
proposition directly follows from this theorem.

Proposition 2. For a positive integer d There exist rational functions r1, r2, r3 in K(X)
such that if (x, y) denotes co-ordinates of a point on E(K), then

[d](x, y) = (r1(x), r2(x) + yr3(x)) (5)

Further, the maximum of the degree of numerator and denominator of ri(x) is d2.

Consider now the problem of solving for points X in E(K) from the equation

B = [d]X (6)

where B is a given point on E(K) and d a positive integer < n. Let B = (xb, yb). Denote
the rational functions ri(x) by relatively prime polynomial fractions over K[x] as

ri(x) =
fi(x)

gi(x)

for i = 1, 2, 3. Denoting B = (x0, y0) the above equation leads to equations in x, y, the
co-ordinates of X, as follows.

g1(x)x0 = f1(x)
g2(x)g3(x)y0 = f2(x)g3(x) + yf3(x)g2(x)

(7)
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To this we need to add the equation defining the elliptic curve E. Hence the x co-ordinates
of solutions X are K-roots of the first equation for which the elliptic curve equation is also
satisfied for some y in K. These y co-ordinates can be computed by solving the second linear
equation in y for the roots x. The solution y exists at all such points since f3(x)g2(x) = 0
would mean the point X is ∞ and this is possible only when B =∞.

Solution of K-roots of the first equation above is again achievable by Berlekamp’s algo-
rithm which will at most take time O(d4 log q) since max degree of f1, g1 is d2. Since (as we
argued in the case of F∗

q above), for random k the gcd d = (k, n) is a small divisor of n with
high probability (or of length log n). Hence the problem of computing the root of the first
equation is polynomial time with high probability. If R is a point on E(K) obtained from
solving the K-roots of the above polynomial equations, then all other associated solutions
of (6) can be obtained as R 	 Z where Z is a point in ker d. Hence to get all solutions X
of the equation we need to compute the set of all points in ker d as an endomorphism of

E(K). Since all such points are solutions of the dth division polynomial which is of degree
d2 by the same arguments it can be observed that the complete set of solutions of (4) can be
computed in polynomial time with high probability for a random choice of k. This proves

Theorem 1. The exponential function [k]X on E(K) is a GTOWF.

2.4 Case of char 2

The analysis of the decryption problem on E(K) above assumes from the start that charK 6=
2. This is because the formulas for division polynomials in char 2 are different. This case
is treated in this subsection. The elliptic curve E in this case is assumed to be non-
supersingular with defining equation

Y 2 +XY = X3 + a2X
2 + a6

with a2 in Fq and a6 in F∗
q , q = 2m. Then as shown in [6, III.4.2] if P = (x, y) and [d]P 6=∞

then the division polynomials fr which are only functions of x can be recursively computed
such that

[d]P = (x+
fd−1fd+1

f2d
, x+ y +

(x2 + x+ y)fd−1fdfd+1 + fd−2f
2
d+1

xf3d
)

with degree of fd of the order O(d2). However this expression is of the form (5)

[d]P = (r1(x), r2(x) + r3(x))

with rational functions ri and hence leads to similar equations as (7). The degree of the
polynomial to be solved for x in F2m in the first of these can be observed to be same as deg f2d .
The y co-ordinate can be solved from the second equation with the additional equation of
the elliptic curve. This computation is equivalent to solving again a first order equation in
F2m by squaring the second equation and substituting for y2 from the elliptic curve equation.
This shows that the equation (6) is solvable in polynomial time in O((deg fd)4m). We thus
have,

Proposition 3. The exponential function [k]X on non-supersingular elliptic curves on F2m

is a GTOWF.
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3 Two variable equations

We shall now consider a system of two variable equations. Consider the system

b1 = XaY b

b2 = XcY d

on F∗
q . In this equation let Bi be given elements of the group along with four integers a, b, c, d

less than order of the group. The problem is to solve for group elements X,Y . (Similar
equation can be considered on E(K)). If A,B is one solution then to get all solutions we
need to solve the system of equations

I = XaY b

I = XcY d

where I is the group identity. Such a system can be solved by choosing X a parameter and
solving for Y simultaneously from the resulting two equations. Hence existence of solution
will depend on existence of a common root Y to the two equations x−a = Y b and x−c = Y c

where x is a chosen parameter. This problem can be solved in polynomial time using above
analysis of one variable equations by converting the problem to solving the resultant of the
two polynomials over F∗

q .
On elliptic curves E(K) considered above, the two variables system of equations can be

similarly converted to the form
−[a]P = [b]Y
−[c]P = [d]Y

with arbitrary parameter point P . Then as in the one variable problem there will result
two polynomials (computed from the systems of equations constructed from the division
polynomials) whose common root in K will give the x-co-ordinate of Y . Such common
roots will require resultant computation of the two polynomials. These details are omitted.
In conclusion it can be observed that existence and computation of two variable equations
is achievable in polynomial time with high probability for randomly chosen a, b, c, d. This
gives rise to possibilities of constructing additional GTOWFs.

4 Encryption schemes using exponentiation

As shown above the exponentiations in K = F∗
q and elliptic curves E(K) are GTOWFs.

Hence in principle they should be useful for encryption schemes. However their practical
utility will depend on how fast can the encryption (exponentiation) ak or [k]P and the
decryption be computed. To recover the unique message a or P these will have to be
recognized from the multiple solutions of the decryption problem. At a theoretical level
this can be achieved by using another one way hash function H(.) and sending the hash
value H(a) or H(P ) along with encryption and then check the hash value of solutions
computed in the decryption problem. Computational details and analysis of security of
such a scheme shall be developed elsewhere.
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5 Conclusion

The exponential function on elliptic curve groups does have an associated trapdoor one
way function of a generalized form defined in this article. However much further work on
detailed computational analysis along with speeding up of the algorithm for irreducible
factorization of polynomials in finite fields is necessary before this function can be utilized
for cryptographic schemes.
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