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Abstract

We study the problem of computing on large datasets that are stored on an untrusted server. We follow
the approach of amortized verifiable computation introduced by Gennaro, Gentry, and Parno in CRYPTO
2010. We present the first practical verifiable computation scheme for high degree polynomial functions.
Such functions can be used, for example, to make predictions based on polynomials fitted to a large
number of sample points in an experiment. In addition to the many non-cryptographic applications of
delegating high degree polynomials, we use our verifiable computation scheme to obtain new solutions
for verifiable keyword search, and proofs of retrievability. Our constructions are based on the DDH
assumption and its variants, and achieve adaptive security, which was left as an open problem by Gennaro
et al (albeit for general functionalities).

Our second result is a primitive which we call a verifiable database (VDB). Here, a weak client
outsources a large table to an untrusted server, and makes retrieval and update queries. For each query,
the server provides a response and a proof that the response was computed correctly. The goal is to
minimize the resources required by the client. This is made particularly challenging if the number
of update queries is unbounded. We present a VDB scheme based on the hardness of the subgroup
membership problem in composite order bilinear groups. This is the first such construction that relies on
a “constant-size” assumption, and does not require expensive generation of primes per operation.
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1 Introduction

This paper presents very efficient protocols that allow a computationally weak client to securely outsource
some computations over very large datasets to a powerful server. Security in this context means that the
client will receive an assurance that the computation performed by the server is correct, with the optional
property that the client will be able to hide some of his data from the server.

The problem of securely outsourcing computation has received widespread attention due to the rise
of cloud computing: a paradigm where businesses lease computing resources from a service (the cloud
provider) rather than maintain their own computing infrastructure [2, 60]. A crucial component of secure
cloud computing is a mechanism that enforces the integrity and correctness of the computations done by the
provider.

Outsourced computations are also increasingly relevant due to the proliferation of mobile devices, such
as smart phones and netbooks, computationally weak devices which might off-load heavy computations,
e.g., a cryptographic operation or a photo manipulation, to a network server. Here too, a proof of the
correctness of the result might be desirable if not necessary.

A crucial requirement in all of these cases is that the computation invested by the (weak) client in order to
verify the result of the server’s work must be substantially smaller than the amount of computation required
to perform the work to begin with. Indeed if that was not the case, the client could perform the computation
on its own without interacting with the server! It is also desirable to keep the server’s overhead as small
as possible: in other words the computation of the server to provide both the result and a correctness proof
to the client should be as close as possible to the amount of work needed to simply compute the original
function (otherwise, the server, which might provide this service to many clients, may become overwhelmed
by the computational load).

This paper initiates a line of research about efficient protocols for verifiable computation of specific
functions, in our case the evaluation of polynomials derived from very large datasets. Most of the prior
work (reviewed below) has focused on generic solutions for arbitrary functions. So while in ”general” the
problem we are considering has been solved, by focusing on specific computations we are able to obtain
much more efficient protocols. This is similar to the way research over secure multiparty computation has
evolved: following generic protocols for the evaluation of arbitrary functions [63, 29, 9, 17], there has been a
twenty-plus year effort to come up with efficient distributed protocols for specific computations encountered
in practical applications (e.g. the entire work on threshold cryptography [21], or protocols on set intersection
and pattern matching such as [34]).

OUR RESULTS. This paper focuses on the evaluation of polynomials derived from very large datasets. While
the computations themselves are simple, it’s the magnitude of data that prevents the client (who cannot even
store the entire data) to perform them by itself. In our protocols the client will initially store the data at the
server (with the option of encrypting it for confidentiality, if desired), with some authenticating information.
The client will only keep a short secret key. Later, every time the client requests the value of a computation
over the data, the server will compute the result and return it together with an authentication code, which the
client will be able to quickly verify with the secret key. This description shows that our problem naturally
fits into the amortized model for outsourced computation introduced in [27]: the client performs a one-time
computationally expensive phase (in our case storing the data with its authentication information) and then
quickly verifies the results provided by the server.

Our protocols are very efficient. The computation of the authentication data is comparable to encrypting
the file using the ElGamal encryption scheme (i.e. roughly 2 exponentiations per data block). Verification
takes at most a logarithmic (in the number of blocks) number of exponentiations under the DDH Assump-
tion. Additionally, we present a faster protocol (which requires only a single exponentiation to verify the
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result) which is secure under a decisional variant of the Strong Diffie Hellman Assumption in single groups1.
An immediate application of our results is the ability to verifiably outsource computations to make

predictions based on polynomials fitted to a large number of sample points in an experiment.
In the second part of our paper, we present an extension to our protocols, which allows the client to

efficiently update the data (and its associated authentication information) stored at the server. We also
present applications of our protocols to the problems of verifiable keyword search (the client stores a large
database with the server and it queries if a specific keyword appears in it) and secure proofs of retrievability
(the client checks that the file stored with the server is indeed retrievable) [53, 36].

VERIFIABLE DELEGATION OF POLYNOMIALS. The basis of all our protocols is verifiable delegation of
polynomials. Assume the client has a polynomial P (·) of large degree d, and it wants to compute the value
P (x) for an arbitrary inputs x. In our basic solution the client stores the polynomial in the clear with the
server as a vector c of coefficients in Zp. The client also stores with the server a vector t of group elements
of the form gaci+ri where a ∈R Zp and ri is the ith-coefficient of a polynomial R(·) of the same degree as
P (·). When queried on input x the server returns y = P (x) and t = gaP (x)+R(x) and the client accepts y iff
t = gay+R(x).

If R(·) was a random polynomial, then we can prove that this is a secure delegation scheme in the sense
of [27]. However checking that t = gay+R(x) would require the client to perform computation polynomial in
the degree of P (·) – the exact work that we set out to avoid. The crucial point, therefore, is how to perform
this verification fast, in time which is independent, or at the very least sublinear in the degree of P (·). We
do that by defining ri = FK(i) where F is a pseudo-random function (PRF in the following) with a special
property which we call closed form efficiency. The property is that given the polynomial R(·) defined by
the ri coefficients, the value R(x) (for any input x) can be computed very efficiently (sub-linearly in d)
by a party who knows the secret key K for the PRF. Since F is a PRF, the security of the scheme is not
compromised (as F is indistinguishable from a random function), and the closed form efficiency of F will
allow the client to verify the result in time sub-linear in the degree of the polynomial.

We generalize our result for PRFs with other types of closed form efficiency, which yield efficient and
secure delegation protocols not only for single-variable polynomials of degree d, but also for multivariate
polynomials with total degree d or of degree d in each variable. We have several different variations of
PRFs: the least efficient one is secure under the Decisional Diffie-Hellman assumption, while more efficient
ones require a decisional variant of the Strong DH assumption.

Adaptivity: One of the main questions to remain open after the work of GGP [27] is whether we can
achieve verifiable delegation even if the malicious server knows whether the verifier accepted or rejected
the correctness proof of the value computed by the server. Indeed, the GPV scheme becomes insecure if the
server learns this single bit of information after each proof is sent to the verifier. Our constructions are the
first to achieve adaptive security in the amortized setting.

Privacy: Our solution allows the client to preserve the secrecy of the polynomial stored with the server,
by encrypting it with an additively homomorphic encryption scheme. In this case the server returns an
encrypted form of y which the client will decrypt.

Keyword Search: The applications to keyword search without updates is almost immediate. Consider a
text file F = {w1, . . . , wℓ} where wi are the words contained in it. Encode F as the polynomial P (·) of
degree ℓ such that P (wi) = 0. To make this basic solution efficiently updatable we use a variation of the
polynomial delegation scheme which uses bilinear maps. We also present a generic, but less efficient way
to make any static keyword search protocol updatable which might be of independent interest.

Proof of Retrievability: Again the application of our technique is quite simple. The client encodes the file
as a polynomial F (x) of degree d (each block representing a coefficient), and delegates the computation of

1See e.g., [19] for a survey of the strong DH family of assumptions
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F (x) to the server. The proof of retrievability consists of the client and the server engaging in our verifiable
delegation protocol over a random point r: the client sends r and the server returns the value F (r) together
with a proof of its correctness. The client accepts if it accepts the proof that F (r) is the correct value.

VERIFIABLE DATABASES WITH EFFICIENT UPDATES. In the second part of our paper we study the problem
of verifiable databases, where a resource constrained client wishes to store an array DB on a server, and to
be able to retrieve the value at any cell DB[i], and to update the database by assigning DB[i] ← v for a
new value v. The goal is to achieve this functionality with an additional guarantee that if a server attempts
to tamper with the data, the tampering will be detected when the client queries the database.

Simple solutions (based on Message Authentication Codes or Signature Schemes) exist for the restricted
case where the database is static – i.e. the client only needs to retrieve data, but does not modify the database.
One example is to have the client sign each pair (index,value) that is sent to the server. Clearly, if no updates
are performed, the server has no choice but to return the correct value for a given cell. However, the problem
becomes significantly harder when efficient updates are needed. One solution is for the client to just keep
track of all the changes locally, and apply them as needed, but this contradicts our goal of keeping client
state and workload as small as possible. On a high level, the main technical difficulty stems from the fact
that the client must revoke any authenticating data that the server has for the previous value of the updated
cell. This issue has been addressed in the line of works on cryptographic accumulators [16, 49, 56], and,
using different techniques, in the authenticated datastructures literature [50, 43, 55, 62].

We present a verifiable database delegation scheme based on the hardness of the subgroup membership
problem in composite order bilinear groups (this assumption was originally introduced in [13]). Our solution
allows the client to query any location of the database, and verify the response in time that is independent
of the size of the database. The main advantage of our construction is that it allows the client to insert and
delete values, as well as update the value at any cell by sending a single group element to the server after
retrieving the current value stored in the cell. Prior solutions either rely on non-constant size assumptions
(such as variants of the Strong Diffie-Hellman assumption [23, 15]), require expensive generation of primes
for each operation (in the worst case), or require expensive “re-shuffling” procedures to be performed once
in a while on the data. On the other hand, our construction works in the private key setting, whereas some
prior solutions allow public verification (e.g., [16, 49]).

ROADMAP. The rest of the paper is organized as follows. In Section 2 we define the security assumptions
used in the paper. Readers interested in the precise definition of Verifiable Computation and its security can
find them in Section 3. In Section 4 we introduce our notation of Algebraic Pseudorandom Functions which
are the main building block of our constructions. In Section 5 we show how to securely delegate polynomial
evaluations to an untrusted server using Algebraic PRFs. In Section 6 we use delegation of polynomials to
implement verifiable databases. Finally our results on Proof of Retrievability are given in Section 7.

1.1 Related Work

As mentioned above our work follows the paradigm introduced in [27] which is also adopted in [20, 3].
The protocols described in those papers allow a client to outsource the computation of an arbitrary function
(encoded as a Boolean circuit) and use fully homomorphic encryption (i.e. [28]) resulting in protocols of
limited practical relevance. Our protocols on the other hand work for only a very limited class of computa-
tions (mostly polynomial evaluations) but are very efficient and easily implementable in practice.

The previous schemes based on fully homomorphic encryption also suffer from the following draw-
back: if a malicious server tries to cheat and learns if the client has accepted or rejected its answer, then
the client must repeat the expensive pre-processing stage. The only alternative way to deal with this prob-
lem proposed in these papers is to protect this bit of information from the server (which is a very strong
assumption to make). Somewhat surprisingly our scheme remains secure even if a cheating server learns the
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acceptance/rejection bit of the client, without any need to repeat the pre-processing stage. This is not only
conceptually interesting, but also a very practical advantage.

There is a large body of literature, prior to [27], that investigates the problem of verifiably outsourcing
the computation of an arbitrary functions (we refer to [27] for an exhaustive list of citations). This problem
has attracted the attention of the Theory community, starting from the work on Interactive Proofs [5, 31],
efficient arguments based on probabilistically checkable proofs (PCP) [37, 38], CS Proofs [45] and the
muggles proofs in [30]. However in PCP-based schemes, the client must store the large data in order to
verify the result and therefore these solutions might not be applicable to our setting.

This problem has also been studied by the Applied Security community, with solutions which are prac-
tical but whose security holds under some very strong assumptions on the behavior of the adversary. For
example, solutions based on audit (e.g. [48, 6]) which typically assume many clients, and require a fraction
of them to recompute some of the results provided by the server, but are secure only under the assumption
that bad clients do not collude. Another approach is to use secure co-processors (e.g. [59, 64]) which ”sign”
the computation as correct, under the assumption that the adversary cannot tamper with the processor. Fi-
nally, other trust models have been considered. The area of authenticated data structures [61, 43, 57] aims
to provide delegation solutions for data storage, modification, and retrieval. These works additionally study
a three-party model, where the owner maintains a large state, and acts as a trusted third party, but delegates
his data to an untrusted server that can be queried by weak clients.

For the specific case of outsourcing expensive cryptographic operations, Chaum and Pedersen in [18],
describe protocols to allow a client to verify the behavior of a piece of hardware placed on the client’s
device by a service provider such as a bank. Hohenberger and Lysyanskaya formalize this model [35],
and present protocols for the computation of modular exponentiations (arguably the most expensive step in
public-key cryptography operations). Their protocol requires the client to interact with two non-colluding
servers. Other work targets specific function classes, such as one-way function inversion [32].

The application of secure keyword search over a stored file can be handled using zero-knowledge sets,
[46] which however does not allow for an easy way to update the file. Our protocol for keyword search
combines ideas from our polynomial delegation scheme with some machinery inspired by zero-knowledge
sets, to obtain a protocol that allows for efficient updates and other additional desirable properties (see
Section 6.1).

The problem of proof of retrievability was first posed in [53, 36], and subsequent protocols include
[4, 58, 22]. A proof of retrievability protocol usually goes like this: after storing a (potentially large) file
with the server, the client issues a query to receive an assurance that the file is still correctly stored. The
server computes an answer based on the query and the file, and finally the client performs some verification
procedure on the answer. All of these protocols incur a substantial storage overhead for the server (since the
file is stored using an erasure code) and, except for [22], require communication which is quadratic in the
security parameter. The protocol in [22] has linear communication complexity but it requires both the server
and the client to work in time proportional to the size of the file. Our solution achieves linear communication
complexity in the security parameter and is very efficient for the client (as its work is sublinear in the size
of the file).

Our verifiable database construction is closely related to Memory Checkers (see e.g. [10, 26, 1, 24, 53]).
However, our setting differs from the memory checking setting in that we allow the server to be an arbitrary
algorithm, whereas a memory checker interacts with a RAM (an oracle that accepts store/retrieve queries).
In this context, our construction would yield a memory checker with poor performance since it would require
the checker to issue a number of queries that is linear in the size of the memory. In contrast, we focus on
optimizing the communication and the work of the client when the server can perform arbitrary computation
on its data. Our construction requires the server to perform a linear amount of work to answer one type of
queries (update/retrieve), while the other type of queries requires only a constant amount of work. Finally,
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we note that the work on accumulators [16, 49, 56] and authenticated data structures [50, 43, 55, 62] can be
used to construct verifiable databases with similar efficiency under “non-constant size” assumptions (such
as Strong Diffie-Hellman), or under the strong RSA assumption, but requiring generation of random primes
to perform certain update operations. We direct the reader to [56] for a good survey of accumulator based
data structures.

2 Assumptions

In this work we rely on the following assumptions about computational groups.

DECISIONAL DIFFIE HELLMAN. The standard Decisional Diffie-Hellman Assumption (DDH) is defined
as follows. For every PPT distinguisher A there exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g, gx, gy, gxy) = 1]− Pr[A(1n, g, gx, gy, gz) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length approximately n, and x, y, z ∈R

Zp.

STRONG DIFFIE HELLMAN. The strong Diffie-Hellman family of assumptions allows an adversary to
obtain group elements g, gx, gx

2
, . . . , gx

d
, and requires the adversary to compute or distinguish a related

group element from a random one. Computational variants of the problem appeared as early as the work of
Mitsunari et al [47]. More recently, bilinear versions of the assumptions, starting with the works of Boneh
and Boyen [11, 12], were used in several applications (e.g. [23, 15]). Boneh and Boyen gave a proof of the
bilinear assumptions in the generic group model. In one of our constructions, we achieve high efficiency by
relying on a decisional version of the strong DH assumption in single groups.

The d-SDDH assumption is stated as follows. For every PPT distinguisher A there exists a negligible
function neg(·) such that for all n,

|Pr[A(1n, g, gx, gx2
, . . . , gx

d
) = 1]− Pr[A(1n, g, gx1 , gx2 , . . . , gxd) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length approximately n, and x, x1, . . . , xd ∈R

Zp.

SUBGROUP MEMBERSHIP ASSUMPTION IN COMPOSITE ORDER BILINEAR GROUPS. The subgroup mem-
bership assumption in composite order bilinear groups first appeared in [13], and has seen many recent ap-
plications in the areas of Identity Based Encryption (IBE), Hierarchical IBE, and others [25, 13, 8, 39, 42].
The assumption we rely on (for our verifiable database delegation scheme) is the following.

For every PPT distinguisher A there exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g1g2, u2, (g1g2)
x) = 1]− Pr[A(1n, g1g2, u2, u

x
2) = 1]| ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length approximately n, G1 and G2

are subgroups of G of orders p1 and p2 respectively, g1 ∈R G1, g2, u2 ∈R G2, and x ∈R ZN .
In addition, we require the existence of an efficiently computable pairing e : G×G→ GT where GT is

a group of order N . We shall make use of the following property of pairings over composite order groups:
for g1 ∈ G1 and g2 ∈ G2, e(g1, g2) = 1GT

. This property holds for every bilinear pairing over composite
order groups (as shown e.g. in [40]).

BILINEAR SUB-GROUP PROJECTION ASSUMPTION. In the analysis of our verifiable database scheme
we first show the security of the scheme based on the following new assumption. We then apply Lemma
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2.1 (given below) to obtain a reduction to the subgroup membership problem. The Bilinear Sub-Group
Projection Assumption (BSGP) is stated as follows: for every PPT adversary A, there exists a negligible
function neg(·) such that for all n,

Pr[A(1n, (g1g2), (h1h2), u2) = e(g1, h1)] ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length approximately n, G1 and G2

are subgroups of G of orders p1 and p2 respectively, g1, h1 ∈R G1, and g2, h2, u2 ∈R G2. The following
lemma shows that the BSGP assumption is implied by the standard sub-group membership assumption in
composite order bilinear groups.

Lemma 2.1. The subgroup membership assumption in composite order bilinear groups reduces to the BSGP
assumption.

Proof. Let A be an adversary breaking the BSGP assumption with advantage ε. We construct a distinguisher
B that distinguishes between a random member of G and a random member of G2 with advantage ε3/64.
B is given a challenge t, and generators g12 = g1g2 of G, and u2 of G2.

Intuitively, B is going to run use A to compute the pairing e both as e(g1, h1) and e(g1t1, h1). To do
this it will run A on (g12, h12) and will check if its output will change when the first operand is multiplied
by t. If t ∈ G2 then output should not change. The issue with this intuition is that A can be wrong on many
inputs and in fact it might have a few outputs which are very likely whenever it is wrong, e.g. A might
output 1GT

whenever it does not find a suitable output. To account for this our adversary will first run A a
few times and collects statistics about its very likely outputs and later ignores these outputs of A.

The precise implementation is as follows. We will use a parameter δ = ε3

64 ln2 n
; This choice will become

clear later. B starts by generating h12 = h1h2 = gα12 by choosing α ∈R ZN . It then repeats the following
procedure 1/δ times: generate β ∈R ZN , and run A(1n, gβ12, h12, u2) to obtain a value v. Let V be the set of
all values obtained during this procedure.

After collecting the above samples, B runs A(1n, g12, h12, u2) and A(1n, g12 ·t, h12, u2) to obtain values
w and w′ respectively. If {w,w′} ∩ V ̸= ∅ or if w ̸= w′, B outputs 0. Otherwise, we have that w = w′ and
w ̸∈ V . In this case, B outputs 1.

Our next step is to analyze B’s probability of success. Let us first consider the case that t ∈R G2. We
denote by E the event that A(1n, g12, h12, u2) “wins” and outputs the correct value e(g1, h1). Note that it
may not be easy to determine whether E occurred. For notational clarity, in the following we assume that A
is deterministic (the analysis extends to the randomized case). We define E[g12, h12, u2] to be the event E
when g12, h12, u2 are the inputs to A.

Suppose that both E[g12 · t, h12, u2] and E[g12, h12, u2] occur. Then, we have w = e(g1, h1) and
w′ = e(g1t1, h1), where t1 is the G1 component of t, which is 1G when t ∈ G2. Therefore, in this case, the
equality w = w′ holds. This implies,

Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G2] = Pr
[
(w = w′) ∧ (w ̸∈ V )|t ∈R G2

]
≥ Pr [E[g12 · t, h12, u2] ∧ E[g12, h12, u2] ∧ e(g1, h1) ̸∈ V |t ∈R G2]

≥ Pr [E[g12 · t, h12, u2] ∧ E[g12, h12, u2]|t ∈R G2]− Pr [e(g1, h1) ∈ V |t ∈R G2] (1)

Let us now analyze the probability that both E[g12 · t, h12, u2] and E[g12, h12, u2] occur. To do so, we show
that the value Prg2 [E[g1g2, h12, u2]|g1, h12, u2] is unlikely to be too low. First observe that the following
holds

Pr
g1,h12,u2

[
Pr
g2

[E[g1g2, h12, u2]|g1, h12, u2] ≥ ε/4

]
> 3ε/4,
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as otherwise Pr[E] ≤ ε
4(1 − 3ε) + 3ε

4 < ε which is a contradiction. Now observe that once we condition
on g1, h12, u2, the two events E[g12, h12, u2] and E[g12 · t, h12, u2] are independent and have the same
probability. Plugging these two observations into (1) implies,

Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G2]

≥ Eg1,h12,u2

[
Pr
g2,t

[E[g12 · t, h12, u2]|g1, h12, u2] Pr
g2,t

[E[g12, h12, u2]|g1, h12, u2]
∣∣∣t ∈R G2

]
− Pr [e(g1, h1) ∈ V |t ∈R G2]

≥ Eg1,h12,u2

[
Pr
g2

[E[g12 · t, h12, u2]|g1, h12, u2]2
∣∣∣t ∈R G2

]
− Pr [e(g1, h1) ∈ V |t ∈R G2]

≥ 3ε/4× (ε/4)2 − Pr [e(g1, h1) ∈ V |t ∈R G2] ≥ 3ε3/64− Pr [e(g1, h1) ∈ V |t ∈R G2] (2)

Let us now analyze the probability that e(g1, h1) ∈ V . We rely on the fact that that after fixing h1, e(g1, h1)
is uniformly distributed over a subset of GT of size p1 and that |V | = 1/δ. Therefore, (2) reduces to,

Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G2] ≥ 3ε3/64− |V |/p1 ≥ 3ε3/64− 1

δp1
. (3)

We now turn to analyze the case t ∈ G. In this case, we observe that (once we choose h12 and u2, w

and w′ are independent and distributed identically to the ⌈1/δ⌉ samples V =
{
A(1n, gβi

12, h12, u2)
}⌈1/δ⌉

i=1

generated by B prior to computing w,w′. Now consider the value w. If Prg12 [A(1
n, gβi

12, h12, u2) = w] ≥
δ ln2 n then Pr[w ̸∈ V ] ≤ (1− δn)1/δ ≤ e− ln2 n. Hence, we get

Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G] = Pr[
{
w,w′} ∩ V = ∅ ∧ w = w′] ≤ 1

nlnn
+ δ ln2 n. (4)

Combining (3) and (4),

|Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G2]− Pr[B(1n, t, g12, h12, u2) = 1|t ∈R G]|

≥ 3ε3/64− 1

δp1
− 1

nlnn
− δ ln2 n > ε3/64,

where the inequality follows because the second and third terms are (super-polynomially) small and δ is
chosen so that the last term is at most ε3/64.

3 Verifiable Computation

A verifiable computation scheme is a two-party protocol between a client and a server. The client chooses
a function and an input which he provides to the server. The latter is expected to evaluate the function on
the input and respond with the output together with a proof that the result is correct. The client then verifies
that the output provided by the worker is indeed the output of the function computed on the input provided.

The goal of a verifiable computation scheme is to make such verification very efficient, and particularly
much faster than the computation of the function itself. We adopt the amortized model of Gennaro et al. [27]:
for each function F , the client is allowed to invest a one-time expensive computational effort (comparable
to the effort to compute F itself) to produce a public/secret key pair, which he will use to efficiently (e.g. in
linear-time) verify the computation of F by the server on many inputs.

We prove our results in a stronger version of the [27] definition of verifiable computation scheme. As we
discussed in the Introduction, the main difference is that in our protocols the server is allowed to learn if the
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client accepts or rejects the output of a particular computation (in [27] and following works in the amortized
model, leaking this bit of information to the server would help him cheat in the following executions).

THE ALGORITHMS. A verifiable computation scheme VC = (KeyGen,ProbGen,Compute,Verify)
consists of the four algorithms defined below.

1. KeyGen(f, n) → (PK,SK): Based on the security parameter n, the randomized key generation
algorithm generates a public/secret key pair for the function f . The public key is provided to the
server, while the client keeps the matching secret key private.

2. ProbGenSK(x) → (σx, τx): The problem generation algorithm uses the secret key SK to encode
the function input x as a public value σx which is given to the server, and a secret value τx which is
kept private by the client.

3. ComputePK(σx) → σy: Using the client’s public key for f and the encoded input, the server
computes an encoded version of the function’s output y = f(x).

4. VerifySK(τx, σy) → y ∪ ⊥: Using the secret key SK and the secret “decoding” value τx, the
verification algorithm converts the worker’s encoded output into the output of the function, e.g., y =
f(x) or outputs ⊥ indicating that σy does not represent the valid output of f on x.

SECURITY. A verifiable computation scheme should be both correct and secure. A scheme is correct if
the problem generation algorithm produces values that allows an honest server to compute values that will
verify successfully and correspond to the evaluation of f on those inputs. More formally, let F be a family
of functions:

Definition 3.1 (Correctness). A verifiable computation scheme VC is F-correct if for any choice of func-
tion f ∈ F , the key generation algorithm produces keys (PK,SK) ← KeyGen(f, λ) such that, ∀x ∈
Domain(f), if (σx, τx)← ProbGenSK(x) and σy ← ComputePK(σx) then y = f(x)← VerifySK(τx, σy).

Intuitively, a verifiable computation scheme is secure if a malicious worker cannot persuade the verifica-
tion algorithm to accept an incorrect output. In other words, for a given function f and input x, a malicious
worker should not be able to convince the verification algorithm to output ŷ such that f(x) ̸= ŷ. Below, we
formalize this intuition with an experiment, where poly(·) is a polynomial.

Experiment ExpV erif
A [VC, f, n]

(PK,SK)← KeyGen(f, n);
For i = 1, . . . , ℓ = poly(n);

xi ← A(PK, x1, σx,1, β1, . . . , xi−1, σx,i−1, βi−1);
(σx,i, τx,i)← ProbGenSK(xi);
σy,i ← A(PK, x1, σx,1, β1, . . . , xi−1, σx,i−1, βi−1, σx,i);
βi ← VerifySK(τx,i, σy,i);

x← A(PK, x1, σx,1, β1, . . . , xℓ, σx,ℓ, βℓ);
(σx, τx)← ProbGenSK(x);
σ̂y ← A(PK, x1, σx,1, β1, . . . , xℓ, σx,ℓ, βℓ, σx);
ŷ ← VerifySK(τx, σ̂y)
If ŷ ̸=⊥ and ŷ ̸= f(x), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding of multiple problem instances,
and also oracle access to the result of the verification algorithm on arbitrary strings on those instances. The
adversary succeeds if it convinces the verification algorithm to accept on the wrong output value for a given
input value. Our goal is to make the adversary succeed only with negligible probability.
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Definition 3.2 (Security). For a verifiable computation scheme VC, we define the advantage of an adversary
A in the experiment above as:

AdvV erif
A (VC, f, n) = Prob[ExpV erif

A [VC, f, n] = 1] (5)

A verifiable computation scheme VC is F-secure if for any function f ∈ F , and for any adversary A
running in probabilistic polynomial time,

AdvV erif
A (VC, f, λ) ≤ negli(n) (6)

where negli() is a negligible function of its input.

EFFICIENCY. The final condition we require from a verifiable computation scheme is that the time to
encode the input and verify the output must be smaller than the time to compute the function from scratch.

Definition 3.3 (Efficiency). A VC is efficient if for any x and any σy, the time required to compute
(σx, τx) ← ProbGenSK(x) plus the time required for Verify(τx, σy) is o(T ), where T is the time re-
quired to compute f(x).

Notice that, following [27], we are not including the time to compute the key generation algorithm (i.e.,
the encoding of the function itself). As we said before, computing the public/private keys is a one-time
operation (per function) which can then be amortized over the cost of many computations.

UPDATING THE PUBLIC KEY. In many situations it may be necessary for the client to modify the delegated
function f that is stored on the server. One simple way to achieve this is to store a signed encryption
of the description of f on the server. Then, to update f , the client retrieves the description, modifies it
appropriately, and generates a new public key using KeyGen. This solution has clear drawbacks, most
notably the amount of communication and the amount of computation that the client needs to do.

4 Algebraic Pseudorandom Functions

Our main technical tool is a new way of viewing pseudo-random functions (PRF) with algebraic properties
to achieve efficient verification of server certificates in the delegation setting. Intuitively, we rely on the fact
that certain pseudo-random functions (such as the Naor-Reingold PRF [51]) have outputs that are members
of an abelian group, and that certain algebraic operations on these outputs can be computed significantly
more efficiently if one possesses the key of the pseudo-random function that was used to generate them.
In this section we present an abstraction of the said property, and several constructions achieving different
trade-offs between the types of functions that can be efficiently evaluated given the key, and the assumption
that is needed to guarantee pseudo-randomness.

An algebraic pseudorandom function (PRF) consists of algorithmsPRF = ⟨KeyGen, F,CFEval⟩where
KeyGen takes as input a security parameter 1n and a parameter m ∈ N that determines the domain size of
the PRF, and outputs a pair (K, param) ∈ Kn, where Kn is the key space for security parameter n. K
is the secret key of the PRF, and param encodes the public parameters. F takes as input a key K, public
parameters param, an input x ∈ {0, 1}m, and outputs a value y ∈ Y , where Y is some set determined by
param.

We require the following properties:

• (Algebraic) We say that PRF is algebraic if the range Y of FK(·) for every n ∈ N and (K, param) ∈
Kn forms an abelian group. We require that the group operation on Y be efficiently computable given
param. We are going to use the multiplicative notation for the group operation.
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• (Pseudorandom) PRF is pseudorandom if for every PPT adversary A, and every polynomial m(·),
there exists a negligible function neg : N→ N, such that for all n ∈ N:

|Pr[AFK(·)(1n, param) = 1]− Pr[AR(·)(1n, param) = 1]| ≤ neg(n)

where (K, param)←R KeyGen(1n,m(n)), and R : {0, 1}m → Y is a random function.

• (Closed form efficiency) Let N be the order of the range sets of F for security parameter n. Let
z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently computable h : Zk

N → Zl
N with h(x) =<

h1(x), . . . , hl(x) >. We say that (h, z) is closed form efficient for PRF if there exists an algorithm
CFEvalh,z such that for every x ∈ Zk

N ,

CFEvalh,z(x,K) =

l∏
i=1

[FK(zi)]
hi(x)

and the running time of CFEval is polynomial in n,m, k but sublinear in l. When z = (0, . . . , l) we
will omit it from the subscript, and write CFEvalh(x,K) instead.

The last condition (which distinguishes our notion from traditional PRFs) allows to compute a “weighted
product” of l PRF values much more efficiently than by computing the l values separately and then com-
bining them. Indeed, given param, h, x, and FK(z), one can always compute the value

∏l
i=1[FK(zi)]

hi(x)

in time linear in l (this follows from the algebraic property of the PRF). The purpose of the closed form
efficiency requirement is therefore to capture the existence of a more efficient way to compute the same
value given the secret key K.

Note that closed form efficiency can be defined for PRFs over arbitrary input spaces. In particular, it is
a non-trivial condition to attain even when the input space is polynomial in the security parameter2. In the
constructions needed for our delegation scheme, this will be the case.

4.1 Small Domain Algebraic PRFs From Strong DDH

Construction 1. Let G be a computational group scheme. The following constructionPRF1 is an algebraic
PRF with polynomial sized domains.

KeyGen(1n,m): Generate a group description (p, g,G)←R G(1n). Choose k0, k1 ∈R Zp. Output param =
(m, p, g,G), K = (k, k′).

FK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in n. Compute and output
gk0k

x
1 .

Closed form efficiency for polynomials. We now show an efficient closed form for PRF1 for polyno-
mials of the form

p(x) = FK(0) + FK(1)x+ · · ·+ FK(d)xd

where d ≤ D. Let h : Zp → Zd+1
p , be defined as h(x) def

= (1, x, . . . , xd). Then, we can define

CFEvalh(x,K)
def
= g

k0(1−kd+1
1 xd+1)

1−k1x

2When the input space is polynomial in the security parameter traditional PRFs exist unconditionally: if the input space has ℓ
elements {x1, . . . , xℓ}, define the key as ℓ random values y1, . . . , yℓ and FK(xi) = yi. Notice however that this function does not
have closed-form efficiency
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Let us now write the
∏d

i=0[FK(zi)]
hi(x) where (z0, . . . , zd) = (0, . . . , d):

d∏
i=0

[FK(zi)]
hi(x) =

d∏
i=0

[gk0k
i
1 ]x

i
= gk0

∑d
i=0 k

i
1x

i

Applying the identity
∑d

i=0 k0k
i
1x

i = k0(1−(k1x)d+1)
1−k1x

we obtain the correctness of CFEvalh(x).

Theorem 4.1. Suppose that the D-Strong DDH assumption holds. Then, PRF1 is a pseudorandom func-
tion.

Proof. The input to the reduction is a description (p, g,G) of a group, and a challenge t1, . . . , td where ti is
either a random member of G, or gk

i
1 , and k1 ∈ Zp is randomly chosen once for the entire challenge. The

reduction then chooses k0 ∈R Zp, and computes the function H(i) = tk0i for 0 ≤ i ≤ d. Clearly, H is a
random function if the ti are random, and is equal to FK(·) for K = (k0, k1) if the ti are determined by
k1.

Construction 2. Let G be a computational group scheme. We define PRF2,d, for d ∈ N, as follows:

KeyGen(1n,m): Generate a group description (p, g,G) ←R G(1n). Choose k0, k1, . . . , km ∈R Zp. Output
param = (m, p, g,G), K = (k0, k1, . . . , km).

FK(x): Interpret x as a vector (x1, . . . , xm) ∈ {0, . . . , d}m. Compute and output gk0k
x1
1 ···kxmm .

Closed form for m-variate polynomials of total degree at most d. We describe an efficient closed form
for PRF2,d for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im
i1+···+im≤d

FK(i1, . . . , im)xi11 x
i2
2 · · ·x

im
m .

Let h : Zm
p → Zl

p, where l =
(
m+d
d

)
, be defined as

h(x1, . . . , xm)
def
=

( d

i1 . . . , im

) m∏
j=1

x
ij
j


i1+···+im≤d

Let z = [z1, . . . , zl] = [(i1, . . . , im)]i1+···+im≤d ∈ Zm×l
d . We can now define

CFEvalh,z(x1, . . . , xm,K)
def
= gk0(1+k1x1+···+kmxm)d

Correctness is shown as follows:

∏
i

[FK(zi)]
hi(x) =

∏
i1+···+im≤d

(
gk0k

i1
1 ···kimm

)( d
i1,...,im

)
∏m

j=1 x
ij
j

= g
k0

∑
i1+···+im≤d (

d
i1,...,im

)
∏m

j=1 x
ij
j k

ij
j (7)

= gk0(1+k1x1+···+kmxm)d

where equality (7) follows from the multinomial theorem.
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Theorem 4.2. Let d ∈ N, and suppose that the d-Strong DDH assumption holds. Then, PRF2,d is a
pseudorandom function.

Proof. Our proof proceeds in two steps: first we apply the strong DDH assumption to replace, for each
i ∈ [m], j ∈ [d], kji with a random value ki,j . In the second step, we reduce the security of the modified
scheme to the security of the Naor-Reingold PRF [51]. Since the latter is proven secure under the DDH
Assumption (which is implied by the d-Strong DDH one) our Theorem follows.

Step 1. Consider the following variant PRF ′
2,d of PRF2,d:

KeyGen′(1n,m): The key generation algorithm is modified to output K = (k0,K
′) where

K ′ =

k1,0 k1,1 · · · k1,d
...

. . .
...

km,0 km,1 · · · km,d


above ki,0 = 1G for 1 ≤ i ≤ m, and ki,j are randomly chosen from Zp for all i and j ≥ 1.

F ′
K(x1, . . . , xm): Recall that 0 ≤ xi ≤ d for all i. Compute and output gk0

∏m
i=1 ki,xi .

We now show that any adversary that can distinguish between an oracle for FK and an oracle for F ′
K can

be used to break the d-strong DDH assumption. Suppose that A is such an adversary that can distinguish
the two PRF families with advantage ε = ε(n), where n is the security parameter. We now construct an
adversary B that simulates A, and breaks the d-Strong DDH assumption with probability close to ε.

First, consider the following sequence of hybrid PRFs: PRF i
2,d, for 0 ≤ i ≤ m, sets (kj,1, . . . , kj,d) to

random values for 1 ≤ j ≤ i, and sets (kj,1, . . . , kj,d) = (kj , k
2
j , . . . , k

d
j ) for i < j ≤ m. Then, PRF0

2,d and
PRFm

2,d are identical to PRF2,d and PRF ′
2,d respectively. Clearly, if A distinguishes between PRF2,d

and PRF ′
2,d with advantage ε, then there exists 1 ≤ i ≤ m such that A distinguishes between PRF i−1

2,d

and PRF i
2,d with advantage ≥ ε/m.

B works as follows: B is given a sequence of group elements g, t1, . . . , td, where tj is either gx
j

for
a random x ∈ Zp, or a random group element from G. B then chooses randomly i ∈R {1, . . . ,m}, and
employs the so called “plug-and-pray” technique by implicitly setting (gki,1 , . . . , gki,d) = (t1, . . . , td). B
then generates (kj,1, . . . , kj,d) randomly for 1 ≤ j < i, and sets (kj,1, . . . , kj,d) = (kj , k

2
j , . . . , k

d
j ) for

i < j ≤ m.

B simulates A. To answer a query (x1, . . . , xm) made by A to the PRF oracle, B sets y = t
k0

∏
j ̸=i kj,xj

xi ,
and returns y. We get that B simulates PRF i−1

2,d if the challenge (t1, . . . , td) is pseudorandom, and PRF i
2,d

if the challenge is random. B then uses the output of A to distinguish random and pseudorandom tuples.
The advantage of B is therefore ≥ ε/m if B guessed i correctly.

Step 2. The second step of the proof is to reduce the security of PRF ′
2,d to the security of the Naor-

Reingold PRF. Our reduction proceeds as follows. Given an adversary B that distinguishes PRF ′
2,d from

a random function with advantage ε′ = ε′(n), we construct an adversary C that distinguishes a Naor-
Reingold PRF for inputs of length m · d from a random function. C simulates B, and given a query
(x1, . . . , xm) ∈ {0, . . . , d}m it creates a new query x̂ = ex1 | · · · |exm where ei is a binary string of length
d+ 1 containing 0 everywhere except at position i, where its value is 1. Above, “|” denotes concatenation.
C then submits x̂ to its own oracle to obtain a response y, and returns y to B. Finally, C outputs what B
outputs.

Recall that the Naor-Reingold PRF requires a key with m · d values in Zp to work on binary inputs of
length m · d. The above construction partitions the elements of the key into m blocks of size d. This in turn
yields an identical distribution on the output as the one output by PRF ′

2,d for m inputs.
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Remark 4.3. It is interesting to note that the Naor-Reingold PRF is a special case of Construction 2 obtained
by setting d = 1. Therefore, our construction provides a tradeoff between the security assumption and the
size of the key of the PRF: to operate on binary inputs of length n our construction requires n/ log2(d+ 1)
elements of Zp in the key.

Remark 4.4. One can change the above construction so that it becomes slightly less efficient but secure
under the standard DDH assumption. This modified version is presented in Construction 4 as PRF4,d.

4.2 Small Domain Algebraic PRFs from DDH

Construction 3. Let G be a computational group scheme. We define PRF3 as follows:

KeyGen(1n,m): Generate a group description (p, g,G)←R G(1n). Choose k0, k1,1, . . . , k1,s, . . . , km,1, . . . , km,s ∈R

Zp. Output param = ((m, s), p, g,G), K = (k0, k1,1, . . . , k1,s, . . . , km,1, . . . , km,s).

FK(x): Interpret x = (x1, . . . , xm) with each xi = [xi,1, . . . , xi,s] as an s-bit string. Compute and output

gk0k
x1,1
1,1 ···k

x1,s
1,s ···k

xm,1
m,1 k

xm,s
m,s .

Closed form for polynomials of degree d in each variable. We describe an efficient closed form for
PRF3 for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im≤d

FK(i1, . . . , im)xi11 · · ·x
im
m

where the PRF F is initialized with m and s = ⌈log d⌉. Let h : Zm
p → Zl

p, where l = md, be defined as
h(x1, . . . , xm) = (xi11 · · ·ximm )i1,...,im≤d. Let z = [z1, . . . , zl] = [(i1, . . . , im)]i1,...,im≤d then

CFEvalh,z(x1, . . . , xm,K)
def
= gk0

∏m
j=1(1+kj,1xj)(1+kj,2x

2
j )···(1+kj,sx

2s

j )

Correctness follows directly by expanding the expression in the exponent.

Remark 4.5. Note that for m = 1 we obtain an alternative construction for single-variable polynomials of
degree d. Below we prove that Construction 3 is a PRF under the DDH Assumption. Therefore compared
to Construction 1, this construction relies on a weaker assumption (DDH vs. D-strong DDH). However the
efficiency of the closed form computation in Construction 1 is better: constant vs. O(log d) in Construction
3. Jumping ahead this will give us two alternative ways to delegate the computation of a single-variable
polynomial of degree d with the following tradeoff: either one assumes a weaker assumption (DDH) but
verification of the result will take O(log d) time, or one assumes a stronger assumption to obtain constant
verification time.

Closed form for 1-out-of-2 multivariate polynomials of degree 1. We now consider polynomials of the
form

p(x1, y1, . . . , xm, ym) =
∑

s∈{0,1}m
FK(s)xs11 y1−s1

1 · · ·xsmm y1−sm
m

In such polynomials, each monomial contains exactly one of xi and yi for 1 ≤ i ≤ m. We initial-
ize the PRF F with m and s = 1 (and for simplicity we drop the double subscript and denote the key
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ki,1 as ki). Specifically, let h : Z2m
p → Zl

p, where l = 2m, be defined as h(x1, y1, . . . , xm, ym) =

(xs11 y1−s1
1 · · ·xsmm y1−sm

m )s∈{0,1}m . We can then define

CFEvalh(x1, y1, . . . , xm, ym)
def
= gk0(x1+k1y1)···(xm+kmym)

Correctness is straightforward by expanding the expression in the exponent. The proof of the following
theorem was given in [51];

Theorem 4.6. [51] Suppose that the DDH assumption holds for G. Then, PRF3 is a pseudorandom
function.

Construction 4. Let G be a computational group scheme. We define PRF4,d, for d ∈ N, as follows:

KeyGen(1n,m): Generate a group description (p, g,G)←R G(1n). Choose k1,0, . . . , k1,m, . . . , kd,0, . . . , kd,m ∈R

Zp. Output param = (m, p, g,G), K = (k1,0, . . . , kd,m).

FK(x): Interpret x as a vector (x1, . . . , xd) ∈ {0, . . . ,m}d. Compute and output gk0
∏d

j=1 kj,xj .

Closed form for m-variate polynomials of total degree at most d. We describe an efficient closed form
for PRF4,d for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im
i1+···+im≤d

FK(i1, . . . , im)xi11 x
i2
2 · · ·x

im
m .

Let h : Zm
p → Zl

p, where l = (m+ 1)d, be defined as

h(x1, . . . , xm)
def
=

 d∏
j=1
ij ̸=0

xij


i1,...,id∈{0,...,m}

Let z = [z1, . . . , zl] = [(i1, . . . , id)]i1,...,id∈{0,...,m} ∈ Zd×l
m . We can now define

CFEvalh,z(x1, . . . , xm,K)
def
= g

∏d
i=1(ki,0+ki,1x1+···+ki,mxm)

Correctness follows by algebraic manipulation and is given in the full version of this paper.

Theorem 4.7. Let d ∈ N, and suppose that the DDH assumption holds. Then, PRF4,d is a pseudorandom
function.

The proof is a small adaptation of that of Theorem 4.2. The main observation is that the ki,j values
are never raised to a power more than one so the output of the PRF is in fact a subset of the bits of the
Naor-Reingold PRF [51].

Remark 4.8. It is interesting to note that constructions 2 and 4 solve the exact same problem. While the
former has better parameters, the later works under a weaker assumption.
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Polynomial Type Setup C. Query S. Query Assumption PRF
1-variable, degree d O(d) O(1)4 (1) O(d) d-Strong DDH PRF1

n-variable, variable degree d O((d+ 1)n) O(n log d) (1) O((d+ 1)n) DDH PRF3

n-variable, total degree d O(
(
n+d
d

)
) O(n log d) (1) O(

(
n+d
d

)
) d-Strong DDH PRF2,d

n-variable, total degree d O((n+ 1)d) O(nd) (1) O((n+ 1)d) DDH PRF4,d

Table 1: Parameters of different protocols for verifiable delegation of polynomials. Numbers inside the
parenthesis show the number of group operations. Columns starting with “C.” are the client’s require-
ments and the ones starting with “S.” are the server’s. In each case the server’s query runtime (resp.
space requirements) is asymptotically the same as evaluating (resp. storing) the polynomial. Note that
( n+1√

d+1
)d ≤

(
n+d
d

)
≤ (n+ d)d, and in particular for constant d it is Θ(nd).

5 Verifiable Delegation of Polynomials

The basic idea of our construction is the following. The client stores the polynomial P (·) in the clear with
the server as a vector c of coefficient in Zp. The client also stores with the server a vector t of group elements
of the form gaci+ri where a ∈R Zp and ri is the ith-coefficient of a polynomial R(·) of the same degree as
P (·). When queried on input x the server returns y = P (x) and t = gaP (x)+R(x) and the client accepts y iff
t = gay+R(x).

If R(·) was a random polynomial, then our proof below shows that this is a secure delegation scheme.
However checking that t = gay+R(x) would require the client to evaluate the random polynomial R(·),
which is just as inefficient as evaluating the original polynomial P (·). Moreover, the client would have to
store a long description of a random polynomial that is as long as the original polynomial3 P (·). The crucial
point, therefore, is how to make this computation fast. We do that by defining ri = FK(i) for an algebraic
PRF that has a closed form efficient computation for polynomials, such as the ones described in the previous
section. Since F is a PRF, the security of the scheme is not compromised, and the closed form efficiency of
F will allow the client to verify the result in time sub-linear in the degree of the polynomial.

The result is described in general form, using algebraic PRFs. It therefore follows that we obtain efficient
and secure delegation protocols not only for single-variable polynomials of degree d, but also for multivariate
polynomials with total degree d or of degree d in each variable. The relevant parameters of the resulting
protocols for each of these cases can be seen in Table 1.

Finally at the end of the section we show how to protect the privacy of the polynomial, by encrypting it
with an homomorphically additive encryption scheme.

5.1 Construction Based on Algebraic PRFs

We describe a verifiable delegation scheme for functions of the form fc,h(x) = ⟨h(x), c⟩, where c is a
(long) vector of coefficients, x is a (short) vector of inputs, and h expands x to a vector of the same length
of c. Our construction is generic based on any algebraic PRF that has closed form efficiency relative to h.

Protocol Delegate-Polynomial(c)

KeyGen(c, n): Generate (K, param) ←R KeyGen(1n, ⌈log d⌉). Parse c as a vector c = (c0, . . . , cd) ∈
Zd+1
p . Let G be the range group of FK , and let g be a generator for that group. Compute gi ← FK(i)

3Alternatively, the client could generate the coefficients of R using a standard PRF, thereby avoiding storing a large polynomial.
However, this would still require the client to recompute all the coefficients of R each time a verification needs to be performed

4The client needs to do two exponentiations.
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for 0 ≤ i ≤ d, choose a ∈R Zp, and set t = [t0, . . . , td] ← (g0g
ac0 , . . . , gdg

acd). Output PK ←
(param, c, t), and SK← (K, a).

ProbGen(SK,x): Output (σx, τx) = (x,x).

Compute(PK, σx): Parse PK as (param, c, t), c as c0, . . . , cd, and σx as x. Compute w ← h(x) =

[h0(x), . . . , hd(x)] ∈ Zd+1
p , y ←

∑d
i=0 cihi(x), and t←

∏d
i=0 t

hi(x)
i . Output νx = (y, t).

Verify(SK, τx, νx): Parse SK as (K, a), τx as x, and νx as (y, t) ∈ Zp×G. Compute z ← CFEvalh(x,K),
and accept if t ?

= z · ga·y. Otherwise, reject.

CORRECTNESS. The correctness of the above scheme follows straightforwardly from the correctness of
CFEval for the algebraic PRF F .

5.2 Analysis

We now prove that our verifiable delegation scheme is secure under the assumption that (KeyGen, F ) is a
family of pseudorandom functions.

Theorem 5.1. Suppose that (KeyGen, F ) is a secure pseudorandom function scheme. Then, Delegate-
Polynomial is a secure verifiable delegation scheme according to Definition 3.2.

Our proof proceeds in two steps: first, we switch to an information theoretic setting, where FK is re-
placed by a random function. Then, we apply an information theoretic argument to obtain security. Formally,
the proof proceeds by a sequence of games. For each game i we denote by Xi the event that the adversary
wins (by successfully convincing the verifier to accept a false output).

Game 0. Game 0 is the original security experiment, played with the adversary A.

Game 1. Game 1 is the same as Game 0, except that verification is done differently: instead of using
CFEval, the challenger now computes z directly by using the algebraic properties of the PRF: let
g = (g0 = FK(0), . . . , gd = FK(d)), then, z =

∏
i g

h(x)i
i .

Game 2. Game 2 is the same as Game 1, except that the group elements g0, . . . , gd are chosen randomly
from the range G of the PRF.

Claim 5.2. Pr[X0] = Pr[X1]

Proof. The difference between Games 0 and 1 is only in the way that the value z is computed during
verification. In Game 1 it is computed directly using the algebraic properties of the PRF, while in Game 0,
the key K of the PRF is used to perform the computation efficiently. In both cases, z =

∏
i g

h(x)i
i .Therefore,

the change is purely conceptual, and the probability that the adversary wins is not affected.

Claim 5.3. |Pr[X1]− Pr[X2]| ≤ εPRF

Proof. The proof is by straightforward reduction to the security of the pseudorandom function (KeyGen, F ).
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Before proceeding to prove that the probability of winning Game 2 is small we state and prove a Lemma
which will be useful in the proof. Consider the following experiment, (all≡ signs show congruence modulo
n)

Experiment ExpA[Zn,m]
a ∈ Zn is chosen uniformly at random;
For i = 1, . . . ,m;

xi ← A(n,m, x1, y1, . . . , xi−1, yi−1);
ri ∈ Zn is chosen uniformly at random;
yi ← axi + ri;

AOa,(ri)i,(xi)i
(·,·,·)(x1, . . . , xm, y1, . . . , ym, n) is ran with the following oracle:

Oa,(ri)i,(xi)i(y, x, (ci)i) =

{
1 if y ≡ ax+

∑
i ciri and x ̸≡

∑
i cixi,

0 otherwise
;

If O ever output 1 to A output 1, otherwise output 0;

Lemma 5.4. If a (computationally unbounded) adversary A always makes at most q queries to O in the
above experiment its success probability is at most q/p where p is the smallest prime factor of n.

Proof. First notice that we can make the interaction of A and O completely non-adaptive. In other words,
if A ever gets a 1 from O it has already won the game so once A knows x1, . . . , xm, y1, . . . , ym and its
randomness it is going to make the same series of queries to O, except perhaps stopping when he gets 1 as
an answer. We can then change the last two steps of the experiment as follows,

((y′1, x
′
1, (c

1
i )i), . . . , (y

′
q, x

′
q, (c

q
i )i))← A(x1, . . . , xm, y1, . . . , ym, n);

If there is a 1 ≤ j ≤ q such that y′j ≡ ax′j +
∑

i c
j
i ri and x′j ̸≡

∑
i c

j
ixi output 1, otherwise output 0;

We can now bound the probability that the result of this experiment is 1 as follows. Without loss of
generality we assume that the adversary never outputs (y′j , x

′
j , (c

j
i )i) such that x′j ≡

∑
i c

j
ixi as such outputs

can be avoided and do not help the adversary. We have,

Pr [output is 1] = Pr

∨
j

y′j ≡ ax′j +
∑
i

cji ri

 ≤∑
j

Pr

[
y′j ≡ ax′j +

∑
i

cji ri

]
.

We will now consider the probability inside the sum conditioned on a particular value for x1, . . . , xm,
y1, . . . , ym showing that no matter what they are it is at most 1/p. First notice that as the adversary is
computationally unbounded, without loss of generality one can assume that it is deterministic. Now fix such
a value for xi’s and yi’s that happens in the experiment with non-zero probability. Notice that once we fix the
value of a, no matter what it is, there is a unique value for r1 that results in the answer y1 for the adversary’s
first query, x1. There in then one unique value of r2 that makes the answer to the query x2, y2, and so on
and so forth. In other words there are exactly n possible values of a, r1, . . . , rm that result in these queries
and answers, precisely one for each possible choice of a. Now if y′j ≡ ax′j +

∑
i c

j
i ri, we have,

y′j −
∑
i

yici ≡ ax′j +
∑
i

cji ri − a

(∑
i

cixi

)
−
∑
i

cji ri ≡ a

(
x′j −

∑
i

cixi

)
.

Given that x′j −
∑

i c
j
ixi ̸≡ 0(mod n) the same quantity is also nonzero modulo some prime factor of n, say

p0|n. In other words, a ≡
(
x′j −

∑
i c

j
ixi

)−1 (
y′j −

∑
i yici

)
(mod p0). But there are exactly n/p0 such
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a. In other words, out of the n possible settings of a, r1, . . . , rm at most n/p0 will result in the adversary
succeeding.

Putting everything together we can write,

Pr [output is 1] ≤
∑
j

Pr

[
y′j ≡ ax′j +

∑
i

cji ri

]

=
∑
j

Ex1...,xm,y1,...,ym Pr

[
y′j ≡ ax′j +

∑
i

cji ri
∣∣x1 . . . , xm, y1, . . . , ym

]
≤ q/p0 ≤ q/p.

Note that the distribution on xi’s and yi’s in the second line is not uniform but rather depends on how the
adversary computes its queries. However, the bounds on the conditional probabilities hold for any value of
these variables.

We will make use of the following corollary in the analysis of our updatable verifiable database scheme
in Section 6.2:

Corollary 5.5. Lemma 5.4 holds even when the adversary submits pairs (xi, x′i) of elements in ZN and sees
axi + bx′i + ri, where b ∈R ZN .

Claim 5.6. Pr[X2] ≤ l/p, where l is the number of the queries the adversary makes and p is the size of the
group.

Proof. We show that in Game 2 the advantage of the adversary in winning the game is negligible uncondi-
tionally. Let us denote gi = gri for 1 ≤ i ≤ d, where ri ∈R Zp is a random exponent. Then, t = (t0, . . . , td)
where ti = gri+aci . Let (x0, . . . , xd) ← h(x). Our goal is to show that with all but negligible probability,
the client will only accept the correct value y = c0x0 + · · ·+ cdxd.

Let us review the check performed by the client. First, the client computes z = gx0
0 . . . gxd

d = gr0x0+···+rdxd .
Then, to check a response (y′, t) produced by the server, the client checks if t ?

= zgay
′
= g

∑
rixi+ay′ .

We will use Lemma 5.4 with parameters n = p and m equal to the dimension of the vector c. Assume
that such an adversary, A, exists. We will show how to construct an adversary A′ for Lemma 5.4. In the first
step of the experiment of Lemma 5.4 a random a is chosen. In the second step A′ will output x1 = c1, x2 =
c2, . . . and receive yi = ri + aci. It will compute ti = gyi and submit t = (t1, . . . , td), c = (c1, . . . , cd)
to A. Each time A outputs an xi to be given to ProbGen we run ProbGen(xi), and when A outputs a
σy,i = (yi, ti) we run the oracle O on (logg ti, yi, h(x)), where logg ti is the discrete log of ti, the number
for which glogg ti = ti.5 Notice that as Lemma 5.4 applies to any adversary (regardless of runtime) we can
find the discrete log of ti. They are several cases depending on the output of Verify. The Verify step will
result in f(x) if and only if ⟨h(x), c⟩ = yi which is the case where O answers 0 because of the second
condition. It will result in ⊥ if and only O outputs 0, because of the first condition. And finally, Verify
outputs something other than f(x) and ⊥ if and only if O outputs 1.

To sum everything up the success probability of A′ is exactly the same as that of A.

5.3 Encrypting The Polynomial

The solution described above has the drawback that the client must store the polynomial in the clear with
the server. This problem can be solved by encrypting the coefficients of the polynomial with an additively-
homomorphic encryption scheme. In this case, after the client provides the value x, the server can compute

5notice that yi is used as the x of Lemma 5.4.

20



an encryption of P (x) and return it to the client who will decrypt it. The verification step remains the same.
Details follow.

Let E =AH-KG, AH-Enc, AH-Dec, denote a public-key probabilistic encryption scheme. Let the mes-
sage space be a group under addition and the ciphertext space a group under multiplication. We say that E is a
additively-homomorphic if for any public key pk of the encryption scheme, given γ1 = AH− Encpk(m1; r1)
and γ2 = AH− Encpk(m2; r2), there exists an r such that

γ1 · γ2 = AH− Encpk(m1 +m2; r).

Note that if one encrypts the coefficient (c0, . . . , cd) of a polynomial P (·), γi = AH− Encpk(ci) then for any
value x one can compute AH− Encpk(P (x)) =

∏
i=0 γ

xi

i . An example of a good additively homomorphic
scheme for our purposes is [54].

Protocol Private-Delegate-Polynomial(c)

KeyGen(c, n): Generate (K, param) ←R KeyGen(1n, ⌈log d⌉). Parse c as a vector c = (c0, . . . , cd) ∈
Zd+1
p . Let G be the range group of FK , and let g be a generator for that group. Compute gi ← FK(i)

for 0 ≤ i ≤ d, choose a ∈R Zp, and set t = [t0, . . . , td]← (g0g
ac0 , . . . , gdg

acd).

Generate (pk, sk) ←R AH− KG(1n), a public/private key pair for an additively homomorphic en-
cryption scheme. Compute γi = AH− Encpk(ci)

Output PK← (param, pk,γ, t), and SK← (K, sk, a).

ProbGen(SK,x): Output (σx, τx) = (x,x).

Compute(PK, σx): Parse PK as (param, pk,γ, t), γ as γ0, . . . , γd, and σx as x. Compute w ← h(x) =

[h0(x), . . . , hd(x)] ∈ Zd+1
p , u←

∏d
i=0 γ

hi(x)
i , and t←

∏d
i=0 t

hi(x)
i . Output νx = (z, t).

Verify(SK, τx, νx): Parse SK as (K, sk, a), τx as x, and νx as (u, t). Compute y = AH− Decsk(u)

Compute z ← CFEvalh(x,K), and accept if t ?
= z · ga·y. Otherwise, reject.

Notice that although the privacy of the polynomial is preserved, the client still reveals to the server the points
on which he wants the polynomial evaluated.

Theorem 5.7. Suppose that (KeyGen, F ) is a secure pseudorandom function scheme, and E =AH-KG, AH-
Enc, AH-Dec a semantically secure additively homomorphic encryption scheme. Then, Private-Delegate-
Polynomial is a secure verifiable delegation scheme according to Definition 3.2. Moreover for any two
d-degree polynomials P0, P1, the views of the server in Private-Delegate-Polynomial when the client uses
either P0 or P1 are computationally indistinguishable.

The proof is an easy extension of the proof of Theorem 5.1 and will be presented in the final version.

6 Verifiable Database Queries with Efficient Updates

We have shown a general framework that allows any resource constrained client to verifiably delegate large
polynomials to a server. As we have already mentioned in the introduction, this immediately gives a verifi-
able delegation solution to many natural practical applications (such as prediction using fitted polynomials).
In this Section we present an application of our techniques to the problem of efficient verification of the
result to queries posed to a dynamic database. In other words the client stores a database with the server
together with some authentication informatiom. It then needs to be able to efficiently verify that the results
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of its queries are correct, and also to efficiently update the database and its associated authenticator. The
techniques we developed for delegation of polynomials are at the basis of the solution we present, which
however requires other novel and interesting technical ideas.

We describe our solution in steps. First we show a simple solution for the simpler problem of verifiable
keyword search, and then we extend it to the case of updatable databases. We also have a generic (but less
efficient) way to add updates to any implementation of verifiable keyword search which due to lack of space
is presented in Appendix A of the appendix.

6.1 Verifiable Keyword Search

Consider a large text file F = {w0, . . . , wd} where wi are the words appearing in F . Consider the appli-
cation in which the client stores the file with the server and later issues keyword seach queries: for a given
keyword w the server must efficiently prove to the client if w ∈ F or not.

A SIMPLE SOLUTION BASED ON MACS. As a leading example towards our construction we briefly
describe a simple and very efficient construction for this problem based on Message Authentication Codes6.
The main idea is the following: for each w ∈ F the client computes σw = MACK(w), and uploads σw to
the server. The more interesting case is what to do for all w ̸∈ F . Indeed, the trivial solution of allowing
the server to return ⊥ allows the server to falsely claim that a certain element w ∈ F is, in fact, not in the
file (a malicious server can just return ⊥ whenever it wants to convince a client that something is not in F ).
The solution is for the client to MAC every shortest prefix u such that no continuation of u is in F (that is,
for all u′ ∈ {0, 1}∗, uu′ ̸∈ F ). Fortunately, the number of such prefixes is polynomial, and can be found by
constructing a binary tree that is pruned at all the subtrees that contain no elements of F (as is described in
[46]). For every such prefix u, the client MACs the special string “u⊥”. Then, for the client to be convinced
that w ̸∈ X , the server must produce a MAC of “u⊥”, where u is a prefix of w.

A SOLUTION BASED ON POLYNOMIAL DELEGATION. Our solution based on polynomial delegation is
more expensive than the MAC-based one described above. Yet we present it because (i) has additional
properties not enjoyed by the MAC-based solution and (ii) forms the conceptual basis of a scheme in which
the client can efficiently update the stored file (described later in this Section). The construction is almost
immediate: the client encodes F as the polynomial P (·) of degree d such that P (wi) = 0, and then the
client and the server run our verifiable delegation scheme over P (the client accepts w ∈ F if the server
returns P (w) = 0). A variation of this protocol yields privacy of the polynomial and of the query w for free,
without using any form of encryption. We obtain this through two separate ideas:

1. The client chooses a key κ for a “traditional” PRF family {ϕκ}. Computes χi = ϕκ(wi) and defines
P (·) as the polynomial of degree d such that P (χi) = 0. When querying a keyword w, the client
submits χ = ϕκ(w).

2. The client does not store the polynomial with the server, but just the authentication information since
that alone will allow him to determine if P (χ) = 0 or not.

We now describe the complete protocol:

Protocol Polynomial-Keyword-Search(w)

KeyGen(w, n): Generate (K, param) ←R KeyGen(1n, ⌈log d⌉) the keys for an algebraic PRF family
{FK} which has a closed form efficiency for d-degree single-variable polynomials (Constructions 1

6 The main idea is an adaptation to the private key setting of constructions from the area of Zero Knowledge Sets [46] We do
not know if this idea has appeared elsewhere before.
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or 3). Also generate κ the key for a traditional PRF family {ϕκ}. Compute χi = ϕκ(wi) and the
polynomial P (·) of degree d such that P (χi) = 0. Let c be the vector of its coefficients in Zp. Let G
be the range group of FK , and let g be a generator for that group. Compute gi ← FK(i) for 0 ≤ i ≤ d,
choose a ∈R Zp, and set t = [t0, . . . , td] ← (g0g

ac0 , . . . , gdg
acd). Output PK ← (param, t), and

SK← (K, a, κ).

ProbGen(SK, w): Output (σw, τw) = (χ = ϕκ(w), w).

Compute(PK, σw): Parse PK as t = [t0, . . . , td], and σw as χ. Compute t←
∏d

i=0 t
χi

i . Output νw = t.

Verify(SK, τx, νx): Parse SK as (K, a, κ), τw = w, and νx = t. Compute χ = ϕκ(w) and z ←
CFEvalh(χ,K) = g

∑d
i=0 FK(i)χi

efficiently using the closed form efficiency of FK . Accept if, and
accept if t/z = 1. Otherwise, reject.

ADVANTAGES. While the polynomial-based solution is computationally more expensive than the MAC
based solution it has two additional properties not enjoyed by the latter. construction that is described later
on in this section:

1. Privacy of query response against the server. In the polymonial-based solution the server has no idea
from the transcript of the protocol if the client accepted or not (it is not clear how to achieve this in
the MAC-based solution).

2. Deniability. The client can always deny the content of the file to a third-party who knows the infor-
mation stored at the server. Indeed the client can always come up with a ”fake” private key K̂, κ̂, â
(choosing them uniformly at random) which implicitly defines a polynomial P̂ that matches the vector
t stored at the server7.

VERIFIABLE DELEGATION OF A DATABASE. Both solutions above can be extended to the verifiable
delegation of database queries. Consider a database of the form {(x1, v1), . . . , (xd, vd)} where xi is the
index and vi is the payload (data) associated with xi.

The extension is simple. Run the keyword search scheme on the indices, and then when an index is in
the database, also return the payload with a MAC on it. We note that in this case the deniabilty and privacy
advantages of our polynomial scheme over the tree-based scheme do not hold anymore (since the server
stores the MACs of all the values in the database).

6.2 A Verifiable Database Protocol with Efficient Updates

We are now finally ready to present the protocol for verifiable database queries with efficient updates.
The protocol uses ideas borrowed from our polynomial verification scheme: the authenticator for ev-

ery database entry can be efficiently reconstructed by the client using a PRF with closed form efficiency.
However as we pointed out in the Introduction the main challenge comes with the updates: the client must
revoke any authenticating data that the server has for the previous value of the updated cell. We deal with
this problem by ”masking” the authenticator with another closed-form efficient PRF. This ”mask” can be
efficiently removed by the client to perform the authentication and can also be efficiently updated so that old
masked values cannot be reused. The technical details are somewhat involved and are described below.

HANDLING LARGE PAYLOADS. For simplicity we consider databases of the form (i, vi) where i is the index
and vi the payload data. The construction we describe below allows data values to be only polynomially large

7 The client can actually choose â appropriately after selecting K̂, κ̂ so that the polynomial P̂ satisfy one condition P̂ (x) = y.
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(in the security parameter). Before proceeding to describe our protocol, we show a simple transformation
that allows us to support databases with arbitrary payload sizes.

On a high level, we will use a small payload protocol, such as the one described in Construction 6.4, to
store a database of the form (i, si) where si is a counter that counts the number of times index i has been
updated. The server will also store the MAC of the tuple (i, si, vi) where vi is the (possibly large) payload.

When the client queries i, it will receive the value si through the verifiable database protocol. The
security of this protocol will guarantee to the client that si is correct. Then the server will also answer with
vi and the MAC on (i, si, vi) and the client will accept vi if the MAC is correct. To update index i, the client
will first query i and retrieve the current tuple (i, si, vi). It will then update si on the verifiable database by
setting s′i = si + 1. This can be done since si is bounded by the running time of the client and therefore
polynomial. Finally it will store the new v′i together with a MAC on (i, s′i, v

′
i). Since si will only ever

increase, the server will not be able to re-use old MACs once an index has been updated.
Therefore for now we will focus on databases with small (polynomial) payloads. The protocol is de-

scribed in detail below.

RELATION TO MERKLE TREES. Merkles trees [44] are a standard technique for efficient authentication
of data. Each element is represented as a leaf of a binary tree. The internal nodes contain hashes of their
two children, and the owner of the data keeps only the root, which is essentially a hash of the entire tree.
Retrieval queries can now be answered and verified in logarithmic time: the server simply sends the hashes
along the path from the root to the desired leaf (along with any hashes within distance 1 of the path), and
the client uses these values to compute the hash at the root of the tree. The client then checks that the stored
hash value of the root is equal to the recomputed hash. Updating the tree is also quite efficient – only the
hashes along the path to the updated leaf must be recomputed. In comparison, our scheme requires the client
to perform a constant amount of work both during retrieval and updates, while the server must choose one
of the two types of queries where he will do a linear amount of work (the other type of queries requires a
constant amount of work from the server as well).

OUR PROTOCOL. The basic tools that we use are computational bilinear groups of composite order. In this
setting, a pair of groups G,GT are generated, along with a pairing e : G × G → GT . Here each of the
groups are of some order N = p1p2 where p1 and p2 are large primes. The cryptographic assumption is that
it is infeasible to distinguish a random member of G (or GT ) from a random member of the subgroup of
order p1 or p2. Such groups have recently been used to solve several important open problems in the areas
of identity based encryption, leakage resilient cryptography, and other related problems (see e.g. [13]).

The basic approach of our construction (leaving some details to the full description below) can be de-
scribed as follows: each entry (i, vi) in the database (where i is an index and vi is data) is encoded as a
composite group element of the form

ti = gri+avi
1 gwi

2 .

Here, g1 and g2 are generators of the subgroups G1 and G2 of G, and the values ri, wi are generated using
a pseudo-random function. To retrieve the value of the database at index i, we will have the server compute
(given keys that we shall describe in a moment) the value

t = gri+avi
1 g

∑
i wi

2 .

Forgetting (for now) how the server should compute these values, the client can easily strip off the G2

masking by keeping the single group element g
∑

wi

2 in his private key. It is now easy to see that if we
replace the ri’s with random values, then our scheme is secure before any updates are performed. This
follows from the fact that each entry in the database is MAC’ed with an information theoretically secure
MAC (the G2 part hasn’t played a role so far), and so the server must return the correct value in the G1 part
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of each entry. The difficulty is in allowing updates that do not require the client to change his keys for the
pseudo-random functions, which in turn would require the server to obtain new MACs for all the entries in
the database.

A naive solution to change the value of index i from vi to v′i can be for the client to send to the server a
new encoding gri+bvi

1 gwi
2 . However, the server can then easily recover the MAC keys ri and a by dividing

the new group element that he receives during the update by the previous encoding that he already has. Our
solution is therefore to randomize the new encoding by having the client send

t′x = gri+aδ
1 g

w′
i

2 ,

where δ = v′i − vi, and w′
i is a new pseudorandom value (generated by using a counter). Intuitively, this

allows the client to send t′x as an update token that the server can multiply into his existing group element
ti to obtain g

ri+av′i
1 g

wi+w′
i

2 . Notice that the G1 part is a MAC of the value v′i using the same key that was
previously used to MAC vi. We show, relying on the subgroup membership assumption, that the random
mask g

wi+w′
i

2 effectively makes the MAC in the G1 of the token indistinguishable from a new MAC using
fresh keys.

We now arrive at the problem of allowing the server to compute the value t, which requires stripping the
G1 part of all the tokens except the token that corresponds to index i, without compromising security. We
achieve this by issuing to the server random group elements t̂1 from G, and t̂0 from G2. The server then
computes the response to query i as

t = e(ti, t̂1)
∏
j ̸=i

e(tj , t̂0).

A remaining technical issue is the fact the in the above discussion we haven’t mentioned anything about how
the client should remember the new masked value w′

i after an update. Our solution is to compute it pseudo-
randomly as Fk(i, si) where si is a counter that is incremented with each update and is stored together with
the payload vi. This guarantees that a fresh pseudo-random value is used after each update, which in turn
allows us to substitute the pseudo-random wi’s by random ones in the security analysis.

6.3 Definition

THE ALGORITHMS. A verifiable database scheme VDB = (Setup,Query,Verify,Update) consists
of the four algorithms defined below.

1. Setup(DB,n) → (PK,SK): Based on the security parameter n, the setup algorithm generates a
public encoding PK of the database DB, and a secret key SK to be stored at the client.

2. QueryPK(x) → σ: The query processing algorithm takes as input an index x and returns a pair
σ = (y, T ).

3. VerifySK(σ) → y: Using the client’s secret key SK the client verifies the server response σ, and
outputs a value y or a special symbol ⊥.

4. UpdateSK(x, y)→ t′x: Using the client’s secret key, the update procedure generates a token t′x that
is sent to the server. The server then uses t′x to update PK.

SECURITY. Intuitively, a verifiable database scheme is secure if a malicious server cannot persuade the
verification algorithm to accept an incorrect output. In other words, when a client submits a query x, the
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only response that the server can generate and would be accepted by the verifier is the value vx that was last
written to location x in the database. This can be either the initial value submitted by the client during setup,
or the last value that was assigned to index i by invoking the Update procedure. Below, we formalize this
intuition with an experiment, where poly(·) is a polynomial.

Experiment ExpV erif
A [VC, DB, n]

(PK,SK)← KeyGen(DB,n);
For i = 1, . . . , ℓ = poly(n);

Verify query:
(xi, σi)← A(PK, β1, t1, . . . , βi−1, ti−1);
βi ← VerifySKi

(σi);
Update query:

(xi, v
(i)
xi )← A(PK, β1, t1, . . . , βi−1, ti−1);

(SKi, ti)← UpdateSKi−1
(xi, v

(i)
xi );

(x, σ)← A(PK, β1, t1, . . . , xℓ, βℓ, tℓ);
ŷ ← VerifySK(σ)

If ŷ ̸=⊥ and ŷ ̸= v
(ℓ)
x , output ‘1’, else ‘0’;

Above we implicitly assign SKi ← SKi−1 when a verification query is made, and v
(i)
x ← v

(i−1)
x for all

x. If an update query is made we implicitly assign v
(i)
x ← v

(i−1)
x for all x ̸= xi. Essentially, the adversary

is given oracle access to verify query responses (and obtain the accepted value if the response was accepted
by the verifier), and also oracle access to the update functionality that allows him to obtain tokens that allow
him to update the encoding PK of the database. The adversary succeeds if it convinces the verification
algorithm to accept on the value for a given index in the database. Our goal is to make the adversary succeed
only with negligible probability.

Definition 6.1 (Security). For a verifiable database scheme VDB, we define the advantage of an adversary
A in the experiment above as:

AdvV erif
A (VC, D, n) = Prob[ExpV erif

A [VC, D, n] = 1] (8)

A verifiable database scheme VDB is secure if for any initial database DB ∈ [m] × {0, 1}∗, where
m = poly(n), and for any adversary A running in probabilistic polynomial time,

AdvV erif
A (VDB, DB, λ) ≤ negli(n) (9)

where negli() is a negligible function of its input.

6.4 Construction

We construct a verifiable database scheme (VDB) based on any pseudo-random function F , and any bilinear
computational group scheme.

Protocol Verifiable-Database

Setup. The setup algorithm takes as input a security parameter n and a set S of index-value pairs (i, vi) ∈
[m]×Zn−1. It then generates groups G,GT of order N = p1p2, where p1, p2 are primes in the range
[2n−1, 2n − 1], and a pairing e : G×G→ GT . Let l = ⌈log(m)⌉. Then choose two PRF keys k1, k2
randomly, and choose randomly:

g1, h1 ∈R G1, g2, h2, u2 ∈R G2, a, b ∈R ZN

26



For each x ∈
{
0, . . . , 2l − 1

}
, set rx = Fk1(x), wx = Fk2(x, 1), and sx = 1. Then set cx = vx if

(x, vx) ∈ S, and cx = 0 otherwise. Then, set

ti ← gri+aci+bsi
1 gwi

2 ∀ 0 ≤ i ≤ 2l − 1

w =

2l−1∑
i=0

wi, Tw ← e(g2, u2)
w

Set t̂0 = u2 and t̂1 = h1h2. The public key is PK =
(
(t̂0, t̂1, s0, t0, . . . , s2l−1, t2l−1), S

)
. The private

key is SK = (a, Tw, k1, k2).

Query. The query processing algorithm takes as input the public key PK and a query x ∈ {0, 1}l. Then
compute

T ← e(tx, t̂1) · e

 2l−1∏
i=0,i̸=x

ti, t̂0


If (x, vx) ∈ S set y ← vx, and set y ← 0 otherwise. Output (T, y, sx).

Verification. The verification algorithm takes as input a private key SK, a query x, and server output
(T, y, sx). The verifier then computes rx = Fk1(x), wx = Fk2(x, sx) and checks

T
?
= Tw · e(grx+a·y+b·sx

1 g2, h1u
−wx
2 hwx

2 )

If the equality holds, the verifier outputs b. Otherwise, the verifier outputs ⊥.

Update. The update algorithm takes as input a pair (x, δ) ∈ [m] × Zn−1. It then submits x as a query to
the server, and verifies the response (T, y, sx). Then, set w′

x = Fk2(x, sx + 1)− Fk2(x, sx), and sets

Tw ← Tw · e(gw
′
x

2 , u2) and t′x ← ga·δ+b
1 g

w′
x

2

The server is then given t′x, and updates the public key by setting tx ← tx · t′x and sx ← sx + 1.

CORRECTNESS. Correctness follows from properties of bilinear maps over composite order groups:

T = e(tx, t̂1)e(
∏
i ̸=x

ti, t̂0) = e(grx+acx+bsx
1 , gwi

2 , h1h2)
∏
i ̸=x

e(gri+aci+bsi
1 , gwi

2 , u2)

= e(grx+acx+bsx
1 g2, h1u

−wx
2 hwx

2 )
∏
i

e(gri+aci+bsi
1 , gwi

2 , u2)

= e(grx+acx+bsx
1 g2, h1u

−wx
2 hwx

2 ) · Tw

6.5 Analysis

Theorem 6.2. Protocol Verifiable-Database is secure according to the Definition 6.1

Our proof proceeds via a sequence of games:

Game 0. Game 0 is the original security experiment, played with the adversary A.
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Game 1. Game 1 proceeds as Game 0, except that the private key and the masking values wx are generated
differently, and the verification procedure is modified. Specifically, the values r0, . . . , r2l−1 are chosen
randomly from ZN and the private key is set to

SK← (a, Tw, k, r0, . . . , r2l−1)

The verification is then performed directly using the values {ri}0≤i≤2l−1 (instead of first computing
rx as rx = Fk1(x)).

The masking values wx are generated randomly, rather than as outputs of the PRF. Specifically, let l
be an upper bound on the number of update queries made by the adversary. The challenger in Game 1
generates, for each x ∈ [m], l random values w(1)

x , . . . , w
(l)
x . During setup and updates, the value wi

x

is used instead of Fk2(x, i).

Game 2. Game 2 proceeds as Game 1, except that the following values are generated differently. In the
setup phase, the challenger generates:

g12, h12 ∈R G1, ĝ2, u2, ĥ2 ∈R G2

Then the challenger sets

ti ← gri+aci+bsi
12 ĝwi

2 , t̂0 ← u2, t̂1 ← h12ĥ2

Tw,x ← e(tx, ĥ2)
∏
i̸=x

e(ti, u2)

Verification is modified to perform the following check:

T
?
= Tw,x · e(grx+ay+bsx

12 ĝwx
2 , h12)

Updates are now performed by setting:

Tw,x ← Tw,x · e(ĝw
′
x

2 , ĥ2), Tw,y ← Tw,y · e(ĝw
′
x

2 , u2) for y ̸= x

t′x ← gaδ+b
12 ĝ

w′
x

2

Game 3. Game 3 proceeds identically to Game 2, except that the group elements g12, h12 are chosen from
the group G instead of G1.

Game 4. Game 4 proceeds identically to Game 3, except that the group element ĝ2 is chosen from the group
G instead of G2.

The following claim follows straightforwardly from the security of the pseudorandom function.

Claim 6.3. No adversary can distinguish between Games 0 and 1 with advantage more than εPRF.

Claim 6.4. Games 1 and 2 proceed identically.

Proof. Let us denote δ = rx + ay + bsy and γi = ri + aci + bsi. The check performed by the challenger
can be written as follows:

T
?
= e(gδ12ĝ

wx
2 , h12) · e(gγx12 ĝ

wx
2 , ĥ2)

∏
i̸=x

e(gγi12ĝ
wi
2 , u2)

= e(g12, h12)
δ · e(ĝ2, ĥ2)wx

∏
i̸=x

e(ĝ2, u2)
wi

= e(g12, h12)
δ · e(ĝ2, ĥ2)wxe(ĝ2, u2)

∑
i̸=x wi
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On the other hand, the check performed by the challenger in Game 1 is:

T
?
= e(g2, u2)

∑
wi · e(gδ1g2, h1u−wx

2 hwx
2 )

= e(g2, u2)
∑

i ̸=x wi · e(g1, h1)δe(g2, h2)wx

Finally, we observe that the tuples (g12, h12, ĝ2, ĥ2, u2) and (g1, h1, g2, h2, u2) are identically distributed.

Claim 6.5. Games 2 and 3 are indistinguishable if the Bilinear Subgroup Projection assumption holds.

Proof. We use the adversary A to construct a distinguisher B that breaks Assumption 1 (by distinguishing a
random member of G2 from a random member of G). B is given a challenge hc. B then generates randomly
g12, h

′
12 ∈R G, sets h12 = h′12hc and generates all other values as in Game 3.

We shall first argue that the public key is distributed identically in games 2 and 3. In game 3, we can
write g12 = g1g2, h12 = h1h2, ĝ2 = gβ2 , where g1, h1 ∈ G1 and g2, h2 ∈ G2, and β ∈ ZN . We then get:

γi ← ri + aci + bsi, ti = gγi12ĝ
wi
2 = gγi1 gγi+βwi

2 , t̂0 = u2, t̂1 = h1(h2ĥ2)

Since wi are uniformly random, so are the values γi +wi. Similarly, to update tx, for some x, in game 3 the
adversary is given t′x = gaδ+b

12 ĝ2
w′

x = gaδ+b
1 g

aδ+b+βw′
x

2 . The exponent of g1 is the same as in game 2, while
the exponent of g2 is uniformly random (since w′

x is random), and therefore has the same distribution as the
exponent of g2 in game 2.

Consequently, the view of the adversary is identical in games 2 and 3, unless he submits a query xi,
and a certificate σy′,i, such that σy′,i is accepted in game 2 but rejected in game 3, or vice versa. We now
consider each of these two cases:
Case 1: let us denote by Bi the event that σy′,i = (y′, T ) is accepted in Game 2, but rejected in Game 3,
and it is the first such query. The values computed by the challenger, and compared to T , in games 2 and 3
respectively are:

T2 = e(g
rx+ay′+bsy′
1 , h1)e(g

γx+βwx
2 , h2)e(g

γx+βwx
2 , ĥ2)

∏
i̸=x

e(ti, u2)

T3 = e(g
rx+ay′+bsy′
1 , h1)e(g

rx+ay′+bsy′+βwx

2 , h2)e(g
γx+βwx
2 , ĥ2)

∏
i̸=x

e(ti, u2)

Event Bi implies that T = T2. Therefore, we can compute:

W0 = (T3/T )
(a(y′−cx)+b(sy′−sx))−1

= e(g2, h2) (10)

We assume that (a(y′−cx)+b(sy′−sx))
−1 mod N exists. Otherwise, we can easily find the factors p1, p2

of N . Suppose that event Bi occurs with probability ε. Therefore, the adversary A can be used to break the
BSGP assumption with advantage at least ε/n.

Case 2: let us denote by B′
i the event that σy′,i = (y′, T ) is accepted in Game 3, but rejected in Game 2, and

it is the first such query. By applying Claim 6.6 and Claim 6.7 we obtain that this event only occurs with
negligible probability.

Claim 6.6. The difference between the probabilities that the challenger accepts an invalid certificate in
Games 3 and 4 is negligible.
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Proof. The proof proceeds by a simple reduction to Assumption 2. Note that in games 3 and 4 all group
elements are either chosen randomly from G2 or G, and that the reduction has access to generators of both
these groups. The reduction receives a challenge gc and assigns ĝ2 ← gc. Now, if gc is a random member of
G2, we obtain a perfect simulation of Game 3, while if it is a random member of G we get a simulation of
Game 4.

Let us denote by B
(3)
i and B

(4)
i the events that the ith query σy′,i is invalid (i.e. y′ ̸= y), and is accepted

by the challenger in Game 3 and 4 respectively. Consider any 1 ≤ i ≤ l for which Pr[B
(3)
i ]−Pr[B

(4)
i ] = ε.

We can construct a distinguisher D that simulates A up to the ith query. Then, if y′ ̸= y but the query is
accepted, D outputs 1. Otherwise, D tosses a fair coin and outputs the outcome. We then get

Pr[D(gc) = 1|gc ∈R G2]− Pr[D(gc) = 1|gc ∈R G] = Pr[D(gc) = 1|gc ∈R G2, B
(2)
i ] Pr[B

(3)
i ]

− Pr[D(gc) = 1|gc ∈R G, B
(3)
i ] Pr[B

(4)
i ]

= Pr[B
(3)
i ]− Pr[B

(4)
i ]

Claim 6.7. Let B(4)
i be the event that in Game 4 A submits a σy′,i where y′ ̸= vi, and the verifier accepts,

and it is the first such query. Then, Pr[B(4)
i ] ≤ l/p′ where p′ = min {p1, p2} and N = p1p2 is the size of

the group G.

Proof. We show that in order for event B(4)
i to occur the adversary A must win in the experiment described

in Lemma 5.4. The claim then follows immediately from Lemma 5.4. Let us recall the check that is
performed by the challenger in Game 4 to verify a certificate σy′,i = (y′, T, sx): let ĝ2 = gα1 g

β
2

T
?
= Tw,x · e(grx+ay+bsx

12 ĝw
(i)
x

2 , h12)

We now describe an inefficient reduction to the game of Lemma 5.4 (recall that the statement of Lemma 5.4
holds even against computationally unbounded adversaries). The reduction simulates the adversary A as
follows. A outputs an initial DB (v1, . . . , vm). The reduction then queries the MACing oracle on inputs
(v1, 1), . . . , (vm, 1) to obtain MACs (τ1, . . . , τm). The reduction then generates group elements

g12, h12, ĝ2, u2, ĥ2

and sets ti ← (g12ĝ2)
τi

The reduction then simulates A until A submits the ith query (xi, σy,i). The simulation is performed as
follows: when A submits a query (xj , σy,j) for j < i, the reduction performs two checks: (i) if y ̸= vxj then
the reduction responds with ⊥. (ii) if y = vxj then the reduction checks

T
?
= Tw,xe((g12ĝ2)

τj , h12)

and responds to the query with y if the check passes and with ⊥ otherwise.
To handle an update query (i, v′i) the reduction queries the MAC oracle on (v′i, si + 1) to obtain a MAC

τ ′i . Note that si + 1 never appeared before as a counter value (otherwise the adversary successfully forges
a MAC during the query part of the update procedure), therefore, in Game 4, a fresh value w′

i would have
been generated, and so obtaining a fresh MAC yields the correct distribution. It then sets si ← si + 1,
Tw,x ← Tw,xt

−1
i (g12ĝ2)

τi . The reduction then sends t′i = (g12ĝ2)
τ ′i−τi to A as a response. Finally, when A

submits the ith query (xi, σy,i) the reduction parses σy,i = (y, T ), computes T ′ = T/Tw,x and extracts the
discrete logarithm τ of T ′ relative to e(g12ĝ2, h12). Suppose that event B(4)

i occurs, then τ is a valid MAC
under the same key as τi.
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7 Proofs of Retrievability

Assume a client stores a (potentiall long) file on a server, but wants some assurance that the file is indeed
retrievable when needed. The client could periodically request the file from the server and check it against
a short fingerprint that the client stored, but this would require large communication (to send the file) and
computation (to recompute the fingerprint). The goal of an efficient proof of retrievability is to have short
communication protocol, and an efficient computation (at least for the client) which will assure the client
that the server is still storing the correct file. Formally this is defined by enforcing an extraction property: if
at the end of the protocol the server convinces the client with non-negligible probability, then there exists an
extractor machine that interacting with the server is able to efficiently reconstruct the file. We refer to [58]
for a formal definition.

A proof of retrievability protocol usually goes like this: the client issues a query to the server, which
computes an answer based on the query and the file, and finally the client performs some verification proce-
dure on the answer. Usually the important parameters are: the communication required by the query and the
answer, the computation time required by the client and the server, and the storage overhead of the server.
Denoting by n the security parameter, let f be the number of n-bit blocks required to write the file. A
proposal by Shacham and Waters [58] has queries of size O(n2), computation time by the client and the
server O(n) (if we count basic operations such as modular multiplication as a unit of time), and an overhead
of 4 in terms of storage (the server must store 4f blocks, since the file is encoded using an erasure code that
doubles its size, and for each block the server must also store its MAC). The protocol in [22] improve on the
communication (O(n)) and storage parameters (the server stores only the file, and a MAC for each block)
but then requires the server and the client to compute over the entire file (O(f) computation).

We present a simple solution based on our verifiable delegation of polynomials, that has optimal com-
munication (query and answer are O(n) size) and client computation (O(n) or O(n log f) depending on the
underlying security assumption) and requires no storage overhead. In our solution only the server is required
to compute over the entire file.

Our protocol Retrievability-Proof works as follows. The client encodes the file as a polynomial F (x) of
degree d (each block representing a coefficient in Zp where p is the order of the group used in our verifiable
delegation scheme, determined by the security parameter). It then delegates the computation of F (x) to
the server (according to protocol Delegate-Polynomial described in Section 5). The proof of retrievability
consists of the client and the server engaging in our verifiable delegation protocol Delegate-Polynomial
over a random point r: the client sends r and the server returns the value F (r) together with a proof of its
correctness. The client accepts if it accepts the proof that F (r) is the correct value.

Theorem 7.1. Protocol Retrievability-Proof is a secure proof of retrievability.

The security follows almost immediately from the security of our delegation scheme. Indeed if the client
accepts at the end of our protocol then it means that the server returned the correct F (r) value. Therefore if
the server convinces the client with non-negligible probability δ then in time O(d/δ) we can obtain d + 1
correct points on the polynomial and extract the file by polynomial interpolation.
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Protocol π′ π0 π1 π2 π3 · · ·
Content {15, 5, 13, 2, 145} {12} {1, 3} ∅ 67, 46, 6, 235, 23, 64, 76, 0 · · ·

Figure 1: A possible state of the protocol for implementing insertions (§A.1.) The database was initialized
containing the keywords 15, 5, 13, 2, 145 with the rest added later using “Insert” operations.

A Generic Updates

In this section we present a generic way to add insertion and deletions to any (static) implementation of
verifiable keyword matching.

A.1 Generic Insertion

In this section we present a generic way to add insertion to any implementation of verifiable keyword match-
ing. We assume we have a way to implement a static keyword matching with setup time O(f(n)) and query
time O(g(n)) for the client and we show a protocol with setup time O(f(n)), query time O(g(n) log n) and
insertion time O(f(n) log n/n + g(n) log n). There two down sides however, firstly the insertion time is
amortized running time and secondly the insertion takes 2 interactions between the client and the server.8

Here n is the total number of elements in the database. The server’s runtime is only increased by a factor of
log n for queries, and a factor of n (resp. logn) for insertions in worst case (reps. amortized.)

The outline of the scheme is as follows. We will call the original (static) protocol Π. At any point
in time the client and server will have multiple copies of this protocol instantiated with the set of key-
words currently present in the database distributed among the protocols. We will call these multiple copies
π′, π0, π1, . . . , πlogn. The following invariants will remain true through out any interaction between the
server and the client. Firstly, the set of keywords the database was initialized with are always stored in
π′. Secondly, any other keywords that the client adds to the database is stored in exactly one of π0, π1, . . ..
Thirdly, for any i and at any point in time either πi does not contain any keywords or it contains 2i keywords;
we call the former (resp. later) an active (resp. inactive) protocol. Figure 1 shows a possible state of the
database. The client will keep track of the private information associated with each of the Π protocols and
the total number of “Insert” operations so far (called m.)

Notice that as long as the above invariants hold m will completely determine which of the πi databases
are empty and which are nonempty. In fact the empty databases correspond to the bits in the binary repre-
sentation of m that are 0. Notice that initializing the database will take runtime O(f(n) + f(1) log n) =
O(f(n)) for the client. To search the client and server run log n+1 parallel search protocols on π0, . . . , πlogn
and π′. Given that each of these databases has size at most O(n) the runtime of the server and the client is
multiplied by log n. The Insert operation is a bit more complicated.

We will describe the three operations below. Below, we assume that the QueryGen step of the static
protocol Π just outputs x like the ones we developed in previous sections. This assumption is not strictly
required but it clarifies the presentation and simplifies notation. What is required is for the server to prove
all the content of Si to the client. This is always attainable in one extra round of communication with the
server first sending Si to the client and the client asking for the status of all the elements of Si in parallel
from the server. But when the output of the QueryGen method can be easily generated for the members of
Si by the server (like assumed in the following presentation of the protocol) this extra pass is not required.

8The first interaction starts with the client just sending an empty message and the server replying and the second has data in
both directions.
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Setup(S): Let n = |S|. Run (PK0, SK0) = Setup(∅), . . . , (PKlogn, SKlogn) = Setup(∅) to gen-
erate log n + 1 empty databases corresponding to π0, . . . , πlogn and (PK′, SK′) = Setup(S) to
generate a database corresponding to π′. Output PK = ((PK′, S), (PK0, ∅), . . . , (PKlogn, ∅)) and
SK = (SK′, SK0, . . . , SKlogn).

QueryGen(SK, x): Output (σx, τx) = (x, x).

CompQuery(PK, σx): Parse PK as ((PK′, S), (PK0, ∅), . . . , (PKlogn, ∅)). Compute z′ = CompQuery(PK′, σx)
and zi = CompQuery(PKi, σx) for all 0 ≤ i ≤ log n. Output z = (z′, z0, . . . , zlogn).

Verify(SK, τx, z): Parse SK as (SK′, SK0, . . . , SKlogn), and z as (z′, z0, . . . , zlogn). Compute y′ = Verify(SK′, τx)
and yi = Verify(SKi, τx), for all 0 ≤ i ≤ log n. Output y defined as,

y =


⊥ y′ =⊥ or yi =⊥ for some i,
True otherwise if y′ = True or yi = True for some i,
False otherwise.

That is, if any of the verifications failed, output ⊥, otherwise output x ∈ S if x was found in any of
the databases S′, S0, . . . , Slogn.

InsertGen(SK, x): Output (σx, τx) = (x, x).

CompInsert1(PK, σx): Let l be the least significant zero bit of m in base two. Send the content of
S0, . . . , Sl−1 to the client. Also for each element run CompQuery for that element and

InsertGet1(SK, τx, z): Let l be the least significant zero bit of m in base two. Parse z as sets S0, . . . , Sl−1

and 2l − 1 outputs of CompQuery. Run Verify on all the 2l − 1 outputs (together with the
corresponding element in the received Si) and output ⊥ if any of the runs resulted in False or ⊥.
Let (PKi, SKi) = Setup(∅) for 0 ≤ i < l. Let (PKl, SKl) = Setup(S0 ∪ · · · ∪ Sl−1 ∪ {x}). Send
(PK0, . . . ,PKl) to the server. Update the first l + 1 elements of SK to SK0, . . . , SKl.

CompInsert2(PK, σx, z′): Parse z′ as (PK0, . . . ,PKl) and update PK accordingly.

It is not hard to see that the above operations maintain the invariants. To analyze the amortized runtime of
the Insert operation notice that in a sequence of M inserts Setup is ran exactly ⌈M/2i+1⌉ times on πi.
Furthermore, before each such Setup there are exactly 2i Verify operations. So the overall client runtime
will be,

≤
logM∑
i=0

(f(2i) + 2ig(2i))⌈M/2i+1⌉ ≤
logM∑
i=0

(f(2i) + 2ig(2i))M/2i = 2 logMf(M) +M logMg(M)),

where we have assumed that f(·) is grows at least linearly. In other words if n is the total number of elements
in the database,

Amortized insert time = O(
f(n) log n

n
+ g(n) log n).

The exact same analysis shows that the amount of communication between the server and the client behaves
in the same way.
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A.2 Generic Deletion

In this section we present a generic way to add deletions to any implementation of verifiable keyword
matching that already supports Insertion. We assume we have a way to implement a keyword matching
with setup time O(f(n)), query time O(g(n)) and Insertion time O(h(n)) for the client and we show a
protocol with setup time O(f(n)), query time O(g(n) log n), and amortized insertion and deletion time
O(g(n) log n+h(n)+ f(n) log n/n).9 Here n is the total number of elements in the database. The server’s
runtime is only increased by a factor of log n for queries, and a factor of n (resp. log n) for insertions and
deletions in worst case (reps. amortized.) Depending on the implementation we are trying to add deletions
to insertions and deletions might take one more round in the resulting implementation than insertions in
the original implementation. However if we are using the output of the previous subsection the number
of rounds of communication does not increase. Thus, applying the construction of this subsection after
that of subsection A.1 we have a way to add insertion and deletion to any verifiable keyword matching
protocol (assuming the same condition as in the previous section) which increases the number of rounds of
communication by just one.

The outline of the scheme is as follows. We will call the original (static) protocol Π. At any point in
time the client and server will have multiple copies of this protocol instantiated which we call π1, . . . , πk.
We call the set of keywords stored via these protocols S1, . . . , Sk and the set of keywords in the database
S. The idea is to store the keywords which are inserted into the database exactly once in S1, the keywords
which are deleted in S2, the ones which are added again after getting deleted in S3 and so on. In other words
for all i, Si ⊇ Si+1 and S = S1\S2∪S3\ · · · . There are two problems with this idea however, first of all the
combined size of Si’s, and hence the running times, will be a function of the total update operations done on
the database and not its size. But perhaps more importantly, the number of the sets Si’s (and πi’s) we need
will be the number of times an element can get deleted and reinserted which is unbounded. To solve these
two issues we also add the condition that at any point in time for all i, |Si| ≥ 2|Si+1|. If any Si gets bigger
than half the size of the one preceding it then the server simply sends the of contents Sj for all j >= i− 1
to the client and the client reinitializes Si−1 to Si−1\Si ∪ Si+1\ · · · . It is not hard to see that the total sizes
of Sj for all j >= i − 1 is at most 4|Sj | while this total size will be reduced to at most 3|Sj |/4 after the
update. The amortized runtime will then follow in a straight forward manner using the potential function
method by defining a potential function Φ(S1, S2, . . .) =

∑
i>1 |Si| + f(|Si|). We leave the details of the

protocol as well as the proof of its security for the full version of the paper.

9as a technical condition we also need (the reasonable condition) that f(n) is at most polynomial in n.
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