Fully Homomorphic SIMD Operations

N.P. Smart and F. Vercauteren

! Dept. Computer Science,
University of Bristol,
Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.
ni gel @s. bris. ac. uk
2 COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,
B-3001 Heverlee,
Belgium.
fver caut @sat . kul euven. ac. be

Abstract. At PKC 2010 Smart and Vercauteren presented a variant ofr@effitilly homomorphic public key
encryption scheme and mentioned that the scheme could gupipdD style operations. The slow key generation
process of the Smart—\Vercauteren system was then addiesagraper by Gentry and Halevi, but their key gen-
eration method appears to exclude the SIMD style operatiodesd to by Smart and Vercauteren. In this paper,
we show how to select parameters to enable such SIMD opesatidhilst still maintaining practicality of the key
generation technique of Gentry and Halevi. As such, we nl@@omewhat homomorphic scheme supporting both
SIMD operations and operations on large finite fields of ottarsstic two. This somewhat homomorphic scheme
can be made fully homomorphic in a naive way by recryptinglath elements seperately. However, we show that
the SIMD operations can be used to perform the recrypt proeeith parallel, resulting in a substantial speed-up.
Finally, we demonstrate how such SIMD operations can be tasgelrform various tasks by studying two use cases:
implementing AES homomorphically and encrypted databasleup.

1 Introduction

For many years a long standing open problem in cryptogragisybeen the construction of a fully homomorphic
encryption (FHE) scheme. The practical realisation of sushheme would have a number of consequences, such as
computation on encrypted data held on an untrusted sernv2009 Gentry [8, 9] came up with the first construction
of such a scheme based on ideal lattices. Soon after Geimtitjed paper appeared, two other variants were presented
[5, 16]; the method of van Dijk et al. [5] is a true variant of i3g’'s scheme and relies purely on the arithmetic of
the integers; on the other hand the scheme of Smart and \ereal16] is a specialisation of Gentry’s scheme to a
particular set of parameters.

All schemes make use of Gentry’s idea of first producing a sama&homomaorphic encryption scheme and then
applying a bootstrapping process to obtain a complete FHiEme. This bootstrapping process requires a “dirty”
ciphertextto be publicly reencrypted into a “cleaner” @piiext. This requires that the somewhat homomorphic scheme
can homomorphically implement its own decryption circaiid so must be able to execute a circuit of a given depth.

Recently, Gentry and Halevi [10] presented an optimizedivearof the Smart—\ercauteren variant. In particular,
the optimized version has an efficient key generation praetased on the Fast Fourier Transform and a simpler
decryption circuit. These two major optimizations, alonghvwsome other minor ones, allow Gentry and Halevi to
actually implement a “toy” FHE scheme, including the cipkgt cleaning operation.

Smart and Vercauteren mentioned in [16] that their schemébezadapted to support SIMD (Single-Instruction
Multiple-Data) style operations on non-trivial finite fisleéf characteristic two, as opposed to operations on single
bits, as long as the parameters are chosen appropriatele\eo, the parameters proposed in both [10] and [16]
do not allow such SIMD operations, nor direct operation amants of finite fields of characteristic two of degree
greater than one. In particular, the efficient key genenatieethod of [10] precludes the use of parameters which
would support SIMD style operations. Using fully homomadg8IMD operations would be an advantage in any

practical system since FHE schemes usually embed relativedll plaintexts within large ciphertexts. Allowing each
ciphertext to represent a number of independent plaintextsd therefore enable more efficient use of both space and
computational resources.

In this paper we investigate the use of SIMD operations in Bfems in more depth. In particular we show how
by adapting the parameter settings of [10, 16] one can obitaibenefits of SIMD operations, whilst still maintaining
many of the important efficiency improvements obtained bygt@eand Halevi. We thus obtain a somewhat homomor-
phic scheme supporting SIMD operations, and operationame ffinite fields of characteristic two. We then discuss
how one can use the SIMD operations to perform the recryptguhare in parallel. In addition we explain how such
SIMD operations could be utilized to perform a number ofiiesting higher level operations, such as performing AES
encryption homomorphically and searching an encryptealdeste on a remote server.

The paper is structured as follows. Section 2 presents sasie facts about finite fields and algebras defined as
guotients of polynomial rings. Section 3 explains how thalsgbras allow us to create a somewhat homomorphic
encryption scheme whose message space consists of mpltid#el copies of a given finite field of characteristic
two. Section 4 describes a recryption procedure for the sdraehomomorphic scheme that preserves the underlying
message space structure. Section 5 contains our mainkaaidri, namely, a recryption procedure that makes use of
the SIMD operations. This new procedure significantly redutbe cost of recryption. To justify our claims, Section 6
presents implementation timings for a toy example. Fin&8ction 7 gives possible applications of the SIMD struetur
of our FHE scheme, including bit-sliced implementationalgbrithms, such as performing AES encryption using an
encrypted key, and database search.

Notations We end this introduction by presenting the notations th#ithvei used throughout this paper. Assignment
to variables will be denoted by < y. If Ais a set then: + A implies thatz is selected fromA using the uniform
distribution. If A is an algorithm then: +— A implies thatz is obtained from runningl, with the resulting probability
distribution being induced by the random coinsAfFor integerse, d, we denotdx], the reduction of: modulod
into the interval—d/2,d/2). If y is a vector then we let; denote the'th element ofy.

Polynomials over an indeterminalé will (usually) be denoted by uppercase roman letters, (K). We make
an exception for the cyclotomic polynomials which are asalisienoted by?,,(X). Elements of finite fields and
number fields defined by a polynomia(X), i.e. elements of ;[X]/F (X) andQ[X]/F(X), can also be represented
as polynomials in some fixed root 6% X) in the algebraic closure of the base field. We shall denote gatynomials
by lower case greek letters, with the fixed root (being an elarof the field) also being denoted by a lower case greek
letter; for instancey(#) whereF'(6) = 0. When the underlying root of (X)) is clear we shall simply write.

For a polynomialF'(X) € Q[X] we let|| F(X)||- denote thex-norm of the coefficient vector, i.e. the maximum
coefficient in absolute value. Similarly, for an element Q[X]/F(X) we write ||y s for [|[v(X)| e Wherevy(X)
is the corresponding unique polynomial of degreedeg(F). If F(X) € Q[X] then we let][F(X)]| denote the
polynomial inZ[X] obtained by rounding the coefficients 81 X) to the nearest integer. Similary, for an element
v € Q[X]/F(X) we write [~/ for [v(X)].

2 Fields and Homomorphisms

To present the SIMD operations in full generality and to ustind how they can be utilized we first set up a number
of finite fields and homomorphisms between them. We&FlgX') € F,[X] denote a monic polynomial of degréé
that we assume to split into exacthdistinctirreducible factors of degreé= N/r

F(X):= HFi(X).

In practiceF'(X) will be the reduction modulo two of a specially chosen mameducible polynomial overZ. This
polynomial F'(X) defines a number fielld = Q(0) = Q[X]/(F), whered is some fixed root in the algebraic closure
of Q.

Let A denote the algebrd := F,[X]/(F), then by the Chinese Remainder Theorem we have the natonabis
phisms

A= F[X]/(F) ® - © Fa[X]/(E)),
2y ®--- QFqa,

i.e. A is isomorphic ta- copies of the finite field,.. Arithmetic in A will be defined by polynomial arithmetic in the
indeterminateX modulo the polynomiaF’'(X). Our goal in this section is to relate arithmeticArexplicitly with the
elements in subfields of tH®,a.

We let6; denote a fixed root of; (X)) in the algebraic closure d;. To aid notation we defing; := Fo[X]/(F;)
and note that all thé&,; are isomorphic as fields, where the isomorphisms are ettplgiven by

L, — L
Aij e {a(ei) — a(pij(05))

with p; ;(6;) afixed root ofF; in L;, i.e. we haveF;(p; ;(X)) =0 (mod F;(X)).

For each divisor. of d, the finite fieldK,, := F~ is contained iff,.. We assume a fixed canonical representation
for K,, asF.[X]/K,(X) for some irreducible polynomidl’,,(X) € Fo[X] of degreen, which is often fixed by the
application. We let) denote a fixed root ok’,, (X) in the algebraic closure df,. Sincek,, is contained in each df;
defined above, we have explicit homomorphic embeddingsdive

. Kn — Li
i {aw)Ha(an,i(ei)),

with o, ;(6;) afixed root ofK,, (X) inL;, i.e. K,,(0,,,:(X)) = 0 (mod F;(X)). Note that the above mapping is linear
in the coefficients ofv(v)).

Combining the above homomorphic embedding with the ChiReseainder Theorem, we obtain a homomorphic
embedding of < r copies ofK,, into the algebrad via

r { K — A
U R, - m() s S R0, (X)) - Hi(X) - Gi(X),

The polynomials?; (X') andG;(X) are given by the Chinese Remainder Theorem and are defined as
H;(X) <« F(X)/F;(X)andG;(X) < 1/H;(X) (mod F;(X)).

We shall denote component wise addition and multiplicatibelements irKiI by k; + ks andk; x k,. As such
we have constructed two equivalent methods of computing eligments ifk! : the first method simply computes
component wise on vectors bélements irkK,,, whereas the second method first maps all inputs to the agebsing
I, performs computations id and finally maps back t&!, via F;ll. Note that by constructiok!, and T, ;(K!)

are isomorphic, so thdt, ;} is always well defined on the result of the computation.

The goal of this paper is to produce a fully homomorphic eption scheme that allows us to work via SIMD
operations ori copies ofK,, at a time, for all, dividing d, by computing in the algebra. In particular, this enables
us to support SIMD operations bothliia andF,.. To make things concrete the reader should consider theganh
F(X) being the3485-th cyclotomic polynomial. In this situation the polynorhia(X) has degreéV = ¢(3485) =
2560, and modulo two it factors inté4 polynomials each of degre®. This polynomial therefore allows us to compute
in parallel with up to64 elements of any subfield @4o. For instance, by selecting= 1 and/ = 64 we perform64
operations ir¥; in parallel; selectingr = 40 andl = 1 we perform operations in a single copy of the finite figldo;
whereas selecting = 8 and! = 16 we perform SIMD operations on what is essentially the AE&staatrix, namely
16 elements offys.

3 Somewhat Homomorphic Scheme Supporting SIMD Operationsi K,,

In this section, we recall the Smart—\Vercauteren varia@@ftry’s somewhat homomorphic scheme and show that it
can support SIMD operations incopies of the finite field,, by modifying key generation. Note that the recent FHE
schemes based on ring-LWE [2] also support such style dpasatand may be preferable in practice due to their im-
proved key generation procedures, we leave it to the read=ténd our work to these new schemes. However, whilst
our SIMD style operations extend to the ring-LWE based sonaomomorphic schemes, our parallel recryption
step does not carry over. We will return to this point later on

3.1 Smart-Vercauteren somewhat homomorphic scheme

Let F € Z[X] be a monic irreducible polynomial of degrééand letK = Q(0) = Q[X]/(F) denote the number
field defined byF'. Gentry’s original scheme uses two co-prime iddaind J in the number rindZ[d]. The ideall
is chosen to have small norvi(I) = #(Z[6]/1) and determines the plaintext space, nan¥#j/I. For this reason,
I = (2) is chosen in practice. Note that in the case of a genEr#ie quotient ringZ[d]/(2) is an algebra of a
somewhat more general type than discussed in Section 2. &llechlboseF’ later on such that one obtains precisely
the type of algebra considered in Section 2. The idedétermines the private/public key pair: the private keysists
of a “good” representation of, whereas the public key consists of a “bad” representatioh o

To clarify the notions of “good” and “bad”, we first descridget Smart—\Vercauteren instantiation. The idéal
is chosen to be principal, i.e. generated by one element Z[6], and has the following additional property: let
d=N(J)=4(Z[0]/J) = | Nx,o(v)|, whereNg o(-) denotes the number field normIfto Q, then there must exist
a uniquex € Z,4 such that

J=()=(d0-0a).

The “good” representation of (i.e. the private key) corresponds to the small generatavhereas the “bad”
representation (i.e. public key) {€, 0 — «). The additional property of is equivalent with the requirement that the
Hermite Normal Form representation.fthas the following specific form

d 00...0
- 1 0 0
—a? 01 0

—aN=10 0 1

where the entries belowin the first column are taken modudo Another characterisation of this property is that the
ideal J simply contains an element of the fofim- «.. This is clearly necessary sindecan be generated kiy, 6 — «),

but it is also sufficient. Indeed, singec J, this implies thatl € J, so(d,0 — «) C J and since both ideals have the
same norm, we must have= (d, 0 — «). As such, there exists an element Z[d] with v - v = § — «. To derive an
easy verifiable condition of, we define the algebraic numhge Z[6] such that

C-y=d. (1)

Multiplying v - v = 8 — « on both sides witly gives the condition - v =60 - — « - . Write { = Zf\’:gl ¢ - 6" and
F(X)= Z?]:o F; - X, then computing the produét ¢ explicitly and reducing moduld finally leads to:

-G =G-1—(n-1F;, modd,)

foralli =0,...,N —1where(_; = 0.
Note that the two element representat{dnd — «) defines an easily computable homomorphism

N-1 N-1
H:Z[0] »Zg:n=> mi-0"+ H(n) = ni-o' modd. (3)
=0 =0

The homomorphisni/ also makes it very easy to test if an element Z[6] is contained in the ideal, namelyn € J
if and only if H(n) = 0. Furthermore, given the “good” representatigrit is possible to inverf/ on a small subset
of Z[f] as shown by the following lemma.

Lemma 1. LetJ = (y) = (d,0 — «) and(- v = d and letH be defined as i(B8). Letn € Z[] with ||n||.. < U, then

we have " p
”:H“){(?'CJ” for U= e

whered,, = sup {W D,V E Z[@]}. Furthermore, for|n||.. < U we have

[]loo

[H(n) - Cla=1[n-Ca=n-C. (4)

Proof. Itis easy to see thdf () —» is contained in the principal ideal generatechbyAs such, there exists@ae Z[0]
such thati (n) — n = 3 - . Using¢ = d/~, we can write

_Hm-¢ n-¢
=Ta T ©)

Sincep has integer coefficients, we can recover it by rounding tledfiments of the first term if the coefficients of the
second term are strictly bounded bs2. This shows thag can be recovered froiff () for ||7]|cc < d/ (2000 [|¢]lc0)-
Furthermore, equation (5) shows th&k(n) - ¢]a = [n - ¢]a and since|n||- < U, we haven - (la =1 - C.

Corollary 1. Using the notation of Lemma 1, assume that., < U/L, thenfori =0,..., N — 1 we have

L Hm- -G [H®n- -G 1
T35 T d _[d J<

2L°
i.e. H(n) - ¢;/dis within distancel /2L of an integer.
Proof. Follows directly from equation (5) and the assumptiomon

The above lemma shows that we can recover an elemieom its image undef!, when its norm is not too large.
As such we obtain a trapdoor one way function that can be us#teebasis for encryption. Using these preliminaries
we are now ready to define key generation, encryption ang/ggéan.

KEY GENERATION: Input parametersy, ¢
Generate a monic irreducible polynomial e Z[X] of degreeN with small coefficients, defining the number field
K =Q(0) = Q[X]/(F). Choose an elemente Z[d] with v = 1 mod 2 such that the coefficients gfare smaller in
absolute value tha?f (at least one coefficient should be-hit integer). Compute the north= |Nx /o (7)| as well as
the element € Z[0] with ¢ - v = d. If d is even, choose a new If d is odd, compute = —(nx_1 - Fy/(o and verify
whether (2) holds forall = 1,..., N — 1. If not, generate a new. Otherwise, the public key is the paik := (d, «)
whereas the private key is the elemet= (.

In practice,N will be of the order a few thousand and few hundred. The size dfcan be approximated roughly
by NV . 2NVt this therefore results in @of several million bits.
ENCRYPTION: Input parametersi, pk := (d,), messagé/ € A :=F,[X]/(F(X))
The plaintext space consists of (a subalgebra of) the agéhe= F2[X]/(F(X)). Represent the messadé as a
polynomial M (X) € Z[X] with coefficients in{0, 1}. Generate a “noise” polynomid@(X) € Z[X] of degree< N
with || R(X)|le < p and compute the ciphertext as

¢ [M(a)+2-R()q.

Note that the ciphertext is an elementZp and that encryption simply corresponds to applying the hoorphism
H to the algebraic integer(0) := M (0) + 2 - R(0). Furthermore, it should be clear that if we can recavét), then
we can decrypt simply by computin@(X) mod 2. The encryption function is denoted @s— Encrypt(M (X), pk).
If M(X) e Athenwe sa3M|a = M(«) (mod d) is a “trivial” encryption of M (X), i.e. it is an encryption with no
randomness.

DECRYPTION Input parameters: ciphertext Z,, sk := ¢
Given the ciphertext € Z,, compute the elemedt(6) as

and then sef/ (X) = C(X) mod 2. Note that here we used the fact that= 1 mod 2. We can obtain a simpler
decryption procedure using the last statement in Lemmadedd, ifc is a decryptable ciphertext, we know that
[|C(0)]|c < U and thus that
[c-Cla=C(0)-C.
Sincey = 1 mod 2 andd is odd withd = ~ - ¢, we see that alsg = 1 mod 2. Furthermore('(0) = M (0) + 2R(0),
so we obtain
[¢-(]lgmod 2= M(0) mod 2 =M(X).

This shows that fo¢ = Zf.vzgl ¢;0" we can recover the coefficients df (X) = mg +my - X +---+mpy_1 - XV 7!
one by one, by computing
m; =[c-Gla (mod 2).

We write M (X') + Decrypt(c, sk). Note that to save space for key storage, it suffices to storeince the othet;
follow from equation (2). In particular, we obtain the cldsxpression; = w; - (; with

N
w; = —FLO Z Fj-o/" (mod d) . (6)
J=t+1

Since thew; can be publicly computed, we can decrypf = [c¢ - w; - {p]a (mod 2). We pause to note that it is this
linear relationship between the distinct decryption k&yshich enables the parallel recryption procedure we describ
later. For ring-LWE based somewhat homomorphic schemgsostipg SIMD operations, where such a simple linear
relation does not hold, it seems much harder to produce dglaecryption procedure using the squashing paradigm
of Gentry.
HOMOMORPHIC OPERATIONS It is easy to see that the scheme is somewhat homomorph@revthe operations
being performed are addition and multiplication of cipk&ts modulal. Indeed, let; = H(C;(0)) = H(M;(0) +
2R, (0)) fori = 1,2, then we have that

1+ ca = H(M1(0) + M2(0) + 2(R1(0) + R2(0)))
c1 - co = H(M(0) - M2(0) + 2(M1(0) R2(0) + Ma(0) R1(0) + 2R1(0) R2(9))) -

This shows that operations on the ciphertext space inducesponding operations on the plaintext space, i.e. the
algebraA. Thusiitis clear that the somewhat homomorphic scheme stggptMD operations and operations on ele-
ments in possibly large degree (i.e. degigénite fields. To make a distinction when we are performingoanorphic
operations we will use the notatiemand® to denote the homomorphic addition and multiplication phartexts.

3.2 Efficient key generation and SIMD operations

Whilst the FHE scheme works for any polynomialwith small coefficients, the common case, as in [10] and [i6],
to use the polynomia¥ (X) := X2" 4 1. As pointed out by Gentry and Halevi [10] this leads to a majgsrovement
in the key generation procedure over that proposed by Smdri/arcauteren [16]. If we lef; denote the roots of
the polynomialF’ over the complex numbers, or over a sufficiently large finglfithen we can computeandd as
follows:

— Computew; + v(n;) € Cfor all 7.

— Computed + [w;.

— Computev} < 1/w;.

— Interpolate the polynomid]l/d from the data values.

The key observation is that sindg X) is of the formX 2" + 1, then,; are2"+'-th roots of unity and so to perform
the polynomial evaluation and interpolation above we caiyaghe Fast Fourier Transform (FFT). Indeed, Gentry and
Halevi present an even more optimized scheme to compated ¢ which requires only polynomial arithmetic, but
this makes significant use of the fact that the trace-pbwer roots of unity is always zero.

The problem with selecting’(X) = X2" + 1 is that it has only one irreducible factor modulo two. In j@arar
if we selectF'(X) = X2" + 1 then the underlying plaintext algebra is given by

A= Fy[X]/(F) 2 B[X] /(X — 1)2".

In other words,F' does not split into a set distinctirreducible factors modulo two as we required to enable SIMD
operations.

We now present a possible replacement#giX). The key observation is that we need B(X) which enables
fast key generation via FFT like algorithms, which has smaéfficients, and which splits into distinct irreducible
factors modulo two of the same degree. In addition we neelhtvely large supply of such polynomials to cope with
increasing security levels (i.&V), different numbers of parallel operations (ieand different degree two finite fields

in which operations occur (i.e.). In particular need to pick aR'(X) which generates a Galois extension of degree
In addition we need to select a polynomi&lX') such tha® is neither ramified, nor an index divisor, in the associated
number field generated by a root Bf X). These conditions ensure that the algebra mod two spligistinct finite
fields of the same degree.

One is then led to consider other cyclotomic polynomialsadiews. We select an odd integer and recall that
them-th cyclotomic polynomial is defined by

@ (X) = [[(X =)

n

wheren ranges over allu-th primitive roots of unity. We havéeg(®,, (X)) = ¢(m), and thatb,,, (X) is anirreducible
polynomial with integer coefficients. In the practical renfgr m, the coefficients ofp,,, are very small, e.g. for all
m < 40000 the coefficients are bounded by 59 and are in most cases mwlesthan this upper bound.

The fieldQ(0) is a Galois extension and hence each prime ideal spliggé) into a product of prime ideals of the
same degree and ramification indexwifis odd then the prime two does not ramify in the fi€l(Y), nor is it an index
divisor. In particular, by Dedekind’s criterion, this meathat the polynomiab,,, (X)), of degreeN = ¢(m), factors
modulo two into a product of = N/d distinct irreducible polynomials of degree equal to thequiei degreé of the
prime ideals lying above the ide@). This degreel is the smallest integer such tit= 1 (mod m).

Hence, by selecting'(X) := &,,(X) in our construction of the algebrhoverF,, we find thatA is isomorphic to
a product of- finite fields of degred = N/r. The only issue is whether one can perform the key generefimiently.

To do this we use Fourier Transforms with respect tathth roots of unity. In particular given the polynomiain the
key generation procedure we compute the evaluation aitiie roots of unity via a Fourier Transform, and produce
the normd by selecting theV required values to multiply together (consisting of theleations of the primitive roots
of unity). One can then computég~ by inverting the Fourier coefficients and then interpolgtita the inverse Fourier
Transform.

In other words the same optimization as mentioned earlietbesapplied: Instead of taking the standard Cooley-
Tukey [6] FFT method for powers of two, we apply the Good-Tlasmmethod [11, 18] for whem is a product of two
coprime integers, or Cooley-Tukey whenis a prime power. Either method reduces the problem to comp&FTs
for prime power values af:, for which we can use the Rader FFT algorithm [15]. This ialfteeduces the problem to
computing a convolution of two sequences, which is thengoeréd by extension of the sequences to length a power
of two followed by the application of the Cooley-Tukey algbm to the extended sequence. Overall the FFT then
takesO(m - logm) operations on elements of sizglog, d) bits. In practicen ~ 2 - N and so this gives the same
complexity for key generation as usifg X) = X2" + 1, however the implied constants are slightly greater. This
means we can achieve almost the same complexity for key ggmeas in the-power root of unity case.

4 Fully Homomorphic Scheme and Naive Recryption Method

To turn the somewhat homomorphic scheme of the previoumsdnto a fully homomorphic scheme, we follow Gen-
try’s bootstrapping approach, i.e. we squash the decnygiicuit so much that it can be evaluated by the somewhat
homomorphic scheme. In particular, we use the optimizedqtore described by Gentry and Halevi in [10].

4.1 Recryption Method

Recall that each message hif can be recovered as; = [c-w; -(p]a (mod 2) with thew; being publicly computable
constants defined in (6). Sin¢e- w;|; can be computed without knowledge @f it suffices to show hovjc - ()4
(mod 2) can be computed with a low complexity circuit.

The idea is to write the private kejy as the solution to a sparse-subset-sum problem. In paxtjone will
defines sets ofS elements as follows (a discussion on the sizes afd.S will be given later): choose elements
z; € [0,...,d),arandomintegeR € [1,...,d) and define the-th set3; = {z;- R (mod d) | j € [0,...,S)} such
that the private key, can be written as the sum

s S—1

Go=>_Y bij-zi R (modd),

i=1 j=0

where for eachi only oneb; ; = 1 and all othew; ; are zero. The indexfor whichb; ; = 1 will be denoted by; and
So we can writ€y = »._, z; - R% (mod d). The result is that we have writte}y as the sum of elements, where
one element is taken from eatf). To enable recryption or ciphertext cleaning, we will augirtée public key with
additional information: compute the ciphertexts < Encrypt(b; ;, pk) for1 <i < s, 0 < j < S, then the public
key now consists of the data

(d,a,s,S, R, {$i7{Ci,j}J$;01 j:1) :

Denotey; ; = c-z;- R (mod d) fori =1,...,sandj =0,...,S—1suchthad <y, ; < d, then the decryption
function|c - {p]a (mod 2) can be rewritten as

s S—1
[¢-Cola (mod 2) = Z Z bij - Vi, (mod 2)
i=1 j=0 J
s S—1 s S—1
- Zzbw Yij | —d- ZZbi,j'y] (mod 2)
i=1 j=0 i=1 j=0
s S—1 s S—1
=@BPvi; vy mod2)e |33 by 2| (mod 2).
=1 j=0 i=1 j=0

Note that the latter double sufi= >""_, ZS 01 bi,; - ¥4 is equal tac - (o /d and if we assume thatis the image of
C(0) underH, where||C(0)||co < U/(s+1) then we know by Corollary 1 th&t is within distancel /2(s + 1) of an
integer. If we now replace eaé—ﬁ— with an apprommaﬂomd up top bits after the binary point, i.ez; ; — v, ;/d| <
2-(7+1), then since there are onfynon-zero terms, we have that— >-7_; 7~ 1 b; ;- z; ;| < s-2~+1. Rounding
the double sum over the ; will thus give the same result as roundifigas long as

1 —pt1
m +s5-2 () < 1/27
which implies thaip > [log,(s + 1)]. Furthermore, in the inner sum we are addfigumbers of which only one
is non-zero. As such, we can compute thth bit of this sum by simply XOR-ing thé-th bits of theb; ; - z; ; for
j=1,...,5. We are then left with an addition efnumbers, each which consistsyobits after the binary point.

We are now ready to formulate the recrypt algorithm by magpirese equations into the encrypted domain. To
this end, we require two helper functions. The first functioa- compute_bits(y) takes as input an integér< y < d
and outputs the vector of bits= (b, b1, . . ., b,) such that

y b1 b2 bp 1
g Gty rm oty <

This is easily computed by determining— [(2? - y)/d], and then reading the bits from the (small) integer

The second functioschool_book_add(A) takes as input as x (p + 1) array A of ciphertexts, where each row
contains the encryptions of tiig + 1) bits of an integer. The result of the function i$za+ 1) vector containing the
encryptions of theép + 1) bits of the sum of these integers modul@?+!. The school book method is discussed in
more detail in [10] where it is shown that it requires

p—1
Tschool-book-add = (5 ' 2p*1 + Z(S + k) : 2pk> : Tmod,d
k=1

whereT 4,4 denotes the cost of one multiplication moddlo

In Algorithm 1 we present the algorithm for recrypting thefibit of the message underlying a cipherigite. the
algorithm compute§: - {y]4 (mod 2) in the encrypted domain using the augmented public key.iSl@ssentially the
recryption algorithm used by Gentry and Halevi, where thegage space is one bit only. To obtain the recyption of
thei-th coefficient we simly inpufe - w;]4 instead ofc, since decrypting theth bit is given by[c - w; - (p]a (mod 2).

Algorithm 1: BitRecrypt(c, pk): Recrypting the First Bit of the Plaintext Associated W@iphertexic

A+ 0,whereA € Mgy (py1)(Za).
sum<« 0.
for ¢ from 1 upto s do

Yy < c-x; (mod d).

for j from O upto S — 1 do

if y is oddthen
sum<— sume ¢; ;.

b < compute_bits(y).
for « from 0 upto p do
A Aiju ® (by - cij).
y <+ y- R (mod d).
a < school_book_add(A).
C < sumo ag.
return (c).

We denote the cost of executing this algorithm for a one piieitext ad ;. Ignoring the modular additions, we see
thathits = ((S + 1) S +s- 2p71 —+ Zi;i (S + k) . 2pik) . Tmod,d-
To recrypt a whole ciphertext we first form ciphertexts; = BitRecrypt([c - w;]4, pk) for: = 0,..., N — 1,

which are recryptions of the coefficients of the underlyiotypomial M (X) by submitting[c - w;]4 to Algorithm 1.
Then giverg; we form the ciphertext
N-—-1
T Z % oo
=0

which will be a recryption of the original ciphertext. Note control the noise this last sum is computed naively, artd no
via Horner's rule, i.e. we multiply each coefficient ciptestc; by o' (mod d) and then sum. The resulting algorithm
is summarized in Algorithm 2. Assuming thé (mod d) andw; are precomputed, the total cost of recrypting a

Algorithm 2: Recrypting Ciphertext version 1
c<+ 0.
for < from O upto N — 1 do
¢; « BitRecrypt([c - wi]a, pk).
T+ ThT Oal.
return (c).

ciphertext corresponding to an arbitrary elemendiusing our naive method) is essentialy: Thits + 2 - N - Timod, -
If SIMD style operations, and operations on larger datatypee to be supported we therefore need a more efficient
method to perform recryption.

4.2 Security Analysis and Parameters

The analysis of Gentry of the above scheme and bootstrappi@gtion applies in our situation. The security of the
underlying somewhat homomaorphic scheme is based on thedéssdf a variant of the bounded distance decoding
(BDDP) problem; whereas the security of the bootstrappirggdure is based on the sparse subset sum problem
(SSSP). Indeed the minor modifications we make in futuré@exto the public key result in exactly the same security
reductions. Thus an adversary against the scheme can leithiemed into an algorithm to solve a decision variant of
the BDDP, or a SSSP.

When selecting key sizes for cryptographic schemes, intipeaone almost always selects key sizes based on the
best known attacksnd not on the hard problems to which a security problem reslil/e have various parameters we
need to select, S, N, t andu. The sizes ofV, ¢t andy. determine whether one can break the scheme by distinggishin
ciphertexts, or (more seriously) by message or key recorasameter selection is here based on the hardness of

solving explicit closest vector problems (CVPs), in latof dimensionV, involving basis matrices with coefficients
bounded by! (a function oft and V'), and for close vectors whose distance to the lattice isa@lm the size of.. An
algorithm to solve the CVP/BDDP can be directly used to recglaintexts as explained in [16]. The larger the ratio
of t to i the easier it is to recover plaintexts, but the ratio tf ;» also determines how complicated a circuit the basic
somewhat homomorphic scheme can evaluate. Indeed thessiinalratio oft to 1. the less expressive our somewhat
homomorphic scheme is. In selecting ¢t and;. one needs to make a careful analysis of the current state afrttin
lattice basis reduction; a topic which is beyond the scoghisfpaper.

On the other hand, it is not the case that an algorithm to sbkveparse subset sum problem can be used to break
the scheme. The security proof in [9] uses the FHE adversasglve the following SSSP

s S—1

Go=>_3 bij (x: R’) (mod d).

i=1 j=0

The simulator (solving SSSP) is givénand the weights;- B/ (mod d), and uses random ciphertexts to represent

the encryption of the, ;. Since the proof has already shown that ciphertexts of 8peeilues are indistinguishable
from encryptions of random values, the adversary does rmt/kinis in a simulation. The proof in [9] shows how the
simulator can then solve the SSSP. Whilst this easily astadd the fact that the recrypt procedure does not reduce the
security of the scheme, assuming of course the scheme is Kdahtes and the SSSP is hard, it actually tells us very
little in practice. In particular it says: “If the adversdayows the secret key, then recovering another representati

the secret key is equivalent to solving the SSSP”.

Thus the parametersand S determine (in practice) a hidden sparse subset sum prolaigrarrthan a standard
SSSP. Namely, the adversary needs to solve the above subsgrsblem where he is not given access to the value
. Taking the pragmatic view of parameter selection baseth@bést known attack, it is clear that neither the lattice
attacks on the SSSP nor the time-memory trade off methodslve the SSSP apply in the hidden case. This has
important direct implications for parameter size selettith a time-memory trade off is possible then we need to
selectS ands such thatSls/2] > 2* where we do not believe the adversary can perf2troperations.

A more pragmatic view of parameter selection would implyttisince the time-memory trade off against the
hidden SSSP appears impossible, that we sélect 2*. This has a number of direct consequences: Firstly we can
selectS to be much smaller than Gentry—Halevi do, secondly this m@ando not need to complicate the recryption
procedure with the index encoding method they use to sawespacesS is now small enough to not require it.
Thirdly this halves the degree of the resulting recryptiowuit which makes the scheme more efficient, and fourthly
it saves on the computational cost of recryption, since veglte do less work.

In summary: in practice one should selé¢t ¢ andy. according to best practice from lattice basis reductiom. Fo
real systems this means that parameters need to be chosarets@gnificantly larger than the toy examples presented
in Gentry—Halevi. However, when selectiag@ndS one can be less conservative than Gentry—Halevi.

In Section 5 we detail a parallel recryption procedure whiak the same multiplicative depth as the one above; but
which requires more addition operations, where the numtettoa additions depends on the level of SIMD operations
required. Thus the value oimay need to be larger than that required in non SIMD basedsefieAsymptotically the
constant increase will make no difference, but for “praadtiparameters one may have a noticeable difference. Thus
in Section 5 we present experimental results for “toy” sigUlevels. This is done purely to show that our algorithms
make a difference even for choices/®f i andt corresponding to low security levels.

5 Parallel Recryption

Whilst Algorithm 1 will recrypt a ciphertext that encodes element of the algebrd, it can be made significantly
more efficient. Firstly, the procedure recrypts a genesheint inA, yet in practice we will only have thatcontains
l-n < N encrypted bits. Secondly, since the recrypt procedure igaycircuit we can run it on the embedded
copies offfs, i.e. we can use the SIMD style operations to recrybpits in parallel.

The first optimization is easy to obtain: recall tHat; maps a vector of binary polynomials s+ (), . .., x1(¢))
each of of degree less thaninto a polynomiak(X') of degree less thaN. The mapl’, ; thus defines an isomorphism
betweenk!, and T, ;(K) soI';} is well defined on the result of the computation. We can r@:vregrzll explicitly

n,

by an(n - I) x N binary matrixB overF, which is defined as follows:

N-—-1
coeff(k;, 7) = Z Bjtim+1,k41 - coeff(a(X), k).
k=0
Using B we can therefore first obtain encryptions of all the coeffitseof thex;, recrypt these using Algorithm 1 and
then reconstruct the recrypted ciphertext usifyg. In particular, denote with;, ;, a recryption of thé; th coefficient
of theisth component irk!,, then we can obtain a full recryption of an elemenkij by computing

—

n— l
T Y T © ((Hna(0,...,0,97,0,...,0)) |)
i1=012=1
where(0,...,0,4™,0,...,0) € K, is the element whosgth component is equal o', andM (X)| _ is the trivial
encryption of the elemen/ (X) in the algebrad.
Recall that given a ciphertextthe valudc - w;]4 is an encryption of théth coefficient ofa(X'). Since the scheme
is homomorphic and using the matiikwe conclude that

N-1 N-1
Ciyis = E Biytiynt1k+1]c - wila| = |c- g B, +ion41,k41 - Wk
d d

k=0 k=0

is a valid encryption otoeff(k,,,i1). Note that these quantities are obtained as the sum of maxivieiphertexts,
which implies that the original has to be an encryption 6t(0) with ||C(0)||cc < U/((s + 1) - N) for Algorithm 1
to recrypt correctly. The second algorithm thus first coreptihen - [constants (the; are no longer required)

N-1

Viy iy = E Biytizn+1,k+1 - wi (mod d),
k=0

and then computes the recryptians;, = BitRecrypt([c - v;, i2]4, pk). Notice how we have reduced the number of
calls to recrypt fromV down ton - [and that we require only - [constants);, ;, instead of theV constantsy;. The
result is summarized in Algorithm 3. Assuming thg, ;(0,...,0,%™,0,...,0)) | anduv;, ;, are precomputed, the
total cost of recrypting a ciphertext is essentially! - Thits + 2 - n - | - Tinod,d-

Algorithm 3: Recrypting Ciphertext version 2
c<+ 0.
for 41 from O upton — 1 do
for i from O upto ! — 1 do
Ci, is < BitRecrypt([c - vs; in]d, PK).
T T Cipiy © (Fa(0,...,0,9™,0,...,0)) | .
return (¢).

So far we have not exploited the SIMD capabilities of the sohreg homomorphic scheme. Therefore our next
goal is to produce the recryptions ;, in parallel fori, = 1,...,[. Thus we aim to compute a ciphertéxt from c
such that;, represents a recryption of the message

(coeff(kq,11), ..., coeff(k;,i1)),

wherec represents an encryption ofy, . . ., ;). We use the notatiofy to distinguish it from the recryptios; above.

The key observation is that the recrypt procedure is theuatiain of a binary circuit, and that this binary circuit is
identical (bar the constants) no matter which componentreeecrypting. In addition the algebra splits into (at I¢ast
[finite fields of characteristic two, thus we can embed thergingcuit into each of thesecomponents and perform
the associated recryption in parallel. For a fixedve therefore want to execute the computation of the vector

([e-viy1-Cola (mod 2),....[c-viy ;- Cola (mod 2))

in the encrypted domain in parallel. Recall that each corapbaf this vector is computed as

s s S—1
[c-vi, k- Cola (mod 2) @ @ bi y” (mod 2) ® Z Z bi - zz(l;) (mod 2),
i=1 j=0 i=1 j=0

(k) _

wherey, /= ¢ v, k- T - R andz;’;) an approximation o@ff“j)/d up to p bits after the binary point. Recall that

to obtaln the bit3;, = [Zle ZS: bi - zf’j)J (mod 2) we used the functioschool_book_add (M) with input an

s X (p+ 1) arrayM where theith row contalneuﬂas o b;.j - compute_ blts(yz(];)) In fact, B;, was simply the first bit in
the bit vector returned bschool_book_add(M).

If we now want to execute the above computation in ke component (instead of the first), we basically have
to multiply everything byl ;(0,...,0,1,0,...,0), where(0,...,0,1,0,...,0) is the vector ofl elements ofK,,
whosekth element is equal to one, with all other elements being.ZBsaavoid costly modular multiplications by
I, 0,...,0,1,0,..., 0)\a, we will use! different encryptions ob; ;, depending on which of thecomponents of
the algebra we are using. In particular, we no longer augthenpublic key with the data

(p7 S, Sv Ra {:riv {Clj}fz_ol ::1))
wherec; ; < Encrypt(b; 5, pk), but instead replace thg ; components with elements ; . where
eij.k < Encrypt (b; j - I(0,...,0,1,0,...,0),pk) for1 <i<s, 0<j <S5, 0<k<]I.

This means we need to increase the size of the augmented elyliby essentially a factor df Once we have
computed all th&;,'s we can simply recover by computing

C Z éil @ ((Fn,l(wil" 7w“)) ‘a) .

The resulting algorithm is given in Algorithm 4. Note thatimpute each;, we only require one call techool_book_add(A)
compared td calls in Algorithm 3.

Algorithm 4: Recrypting Ciphertext version 3: parallel recryption of allth coefficients of the: elements
embedded in a ciphertext

c+ 0.

for 4, from 0 upton — 1 do
sum<— 0.

A+ 0, whered € M,y (p41)(Z/dZ).
for 2 from O upto! — 1 do
Ciy,ip < C- Vi iy (mod d).
for j from 1 upto s do
Y 4 Cipip - x5 (mod d).
for k from 0 upto S — 1 do
if y is oddthen
sSum-<— sumo €5k, io-
b < compute_bits(y).
for « from 0 upto p do
Aju 4 Aju @ (bu - €j1,i5).
y < y- R (mod d).
a < school_book_add(A).
Ciy < SUuM ag.
CT@®én O (D™, .., 0™)).

return (c).

We letT},..(n, !) denote the cost of performing this recryption operation oreasage consisting bfield elements
fromK,, held in parallel. Assuming thel’, ; (™, ..., ¢™)) |a and thev;, ;, are precomputed we obtain that

Tpar(n, l) =n (S s l4+s- 41+ 1) : Tmod,d + 1+ Tschool book-add -

The main cost advantage therefore stems from the fewertodlie functiorschool_book_add.

Naively it would appear that our parallel version of recryting Algorithm 4, is more efficient than the naive
version using Algorithm 2. However, one may need larger jout#ys to actually implement the parallel recryption
(as it is a more complex circuit). We also need to compare dredoing operations in parallel and with large data
entries (via the algebrd) is more efficient than doing the same operations but with léing the standard bit-wise
FHE scheme but with more complex circuits. It is to this topgEnow turn by examining some “toy” examples.

6 Experimental Results

So the question arises as to whether it is simpler to perfdtil &n bits, or to perform FHE via the algeh#a In this
section we concentrate on estimating the performancermstef the run time and the sizes of the resulting ciphertexts
which need to be stored. First recall key generation; we sddband a polynomiaF' (X') with small coefficients, we
then choose an elemente Z[] which has coefficients of ordef. This results in a value fat of size approximately
NN . 2t-N- thus we require roughly- N bits to represent a single ciphertext.

We first letT'(n) denote the function which returns the numbeifefmultiplications needed to perform a multi-
plication in the fieldK,, = F5». Using Karatsuba multiplication (for example) we find, foa power of two, that

1 ifn=1,
T(n) = {3 - T(n/2) otherwise

This is clearly only an estimate of the overall cost, as weigmering the required additions and management of the
data.

There are various different options one has for implementiperations ot finite fields each of size™". In the
following discussion we concentrate on the following fogptions; clearly other options are available but we select
these as a way of demonstrating the different ways how otintgqaes could be used.

OPTION 1:: We operate on bits using the standard bit-wise FHE schersesje taken = [= 1 in our FHE scheme.
We will then requird’ - n’ - ¢ - N bits to store oul’ finite field elements, and the cost of performing a single SIMD
style multiplication on thé’ finite fields will cost around’ - T'(n’) - Tyits multiplications.

OPTION 2:: We operate on th& finite field elements where each element uses a single ceptigire. we taker = n’
and! = 1 in our FHE scheme. This option has the benefit that we can wirktihe finite field, but we are not forced
to operate in a SIMD manner all the time. With such an optionwilerequire !’ - ¢ - N bits to store oui’ finite
field elements, and performing a single SIMD style multigtion on the’ finite fields will cost around’ - Ty, (n/, 1)
multiplications.

OPTION 3:: We operate on all’ finite fields in a SIMD fashion using only a single ciphertex, we taken = n’
and! = !’ in our FHE scheme. Thus we will requite N to store oui’ finite field elements, and performing a single
SIMD style multiplication on thé’ finite fields will cost around,..(n’, ") multiplications.

OPTION 4:: Here we operate on bits, but we operate on them in a SIMDdashy having a ciphertext represéht
bits, i.e. we takex = 1 andl = I’ in our FHE scheme. With this option we require- ¢ - N bits to store thé’ finite
field elements, and SIMD style multiplication will requif&n’) - Tp,,r(1,1") multiplications.

We summarize the above choices, for the concrete paraneétefs= 8 and!’ = 16, in the following table. We
select a value folV around the size af000, purely to enable comparison with the work of [10]. We iterttis value
is purely for illustrative purposes to show the differeneéAeen the various options; it should not be taken to indicat
the N = 2000 is a secure security level. Fixing, !’ andN rather than leaving them variable is done as the overhead
of the SIMD operations crucially depends on the specific doation of finite field and cyclotomic field chosen, and
has no nice asymptotic meaning. We select a single parainstance simply not to overwhelm the reader with data,
since our goal is purely to show feasibility of our algoritheven at low security levels.

Note, that for Option 1 we seled¥ = 2048 since if we are only encrypting bits then using the polyndmia
F(X) = X?" + 1 will always be more efficient than using(X) = $3455(X). In addition we keep the parameter
as an indeterminate, as we will be returning to that later.

Ciphertext Runtime
N | Space £ bits)] Approx Cost

Option 1| 2048 262144 -t 432 - Thits
Option 2| 2560 40960 - t| 16 - Tpar(8,1)

Option 3| 2560 2560 -t| Tpar(8,16)
Option 4| 2560 20480 - t| 27 - Tpar(1,16)

Thus if one is soley interested in reducing the memory of thleutation one would select Option 3. To deter-
mine which one is most efficient one needs to actually imptgntige schemes, since the actual costs of each op-
eration depend on the value biheeded. So we implemented the above algorithms for the fasgstN,n,l) =
(2048, 1,1), (2560, 8, 1), (2560, 8, 16) and (2560, 1, 16), so as to comparre the four options in the above analysis.

In all cases we found that takirtg= 400 resulted in a scheme in which we were able to recrypt cleamecipxts;
however to enable fully homomorphic encryptions we neeatoypt dirty ciphertexts, and be able to perform some
additional operations. For the first two of our four cases aenfl thatt = 600 was sufficient, whilst for the second
two we found that = 800 was sufficient; note, we increased multiples of100, thus smaller values could have
been sufficient.

In the four cases we found the following recrypt times. We gdeesent, assuming we wished in all cases to im-
plement operations ol = 16 values inF,.., wheren’ = 8, the actual time needed to perform the recrypt on such
data and the total size of all ciphertexts needed to reptaeseh data. In our implementation of the field algorithms
for Option 1 and Option 4 we used the Karatsuba method mesdiabove, and only performed recryption when im-
plementing a multiplication using the FHE scheme; i.e.yption was not performed upon additions. The algorithms
were implemented in C++ using the NTL library and were run enazhine with six Intel Xeon 2.4 GHz processors
and 47 GB of RAM.

Basic FHE Scheme Performing Ops Fofr/,l") = (8, 16)
Recrypt Recrypt Ciphertext
(N,n,l) t | (p,S) |Time (sec) Method|Time (sec Size
(2048,1,1) [600] (4,32) 15| Option 1 7148 18.00MB
(2560, 8,1) | 600| (4, 32) 187| Option 2 2983 3.00MB
(2560, 8,16) | 800 (4,32) 735| Option 3 723 0.25MB
(2560, 1,16) | 800 (4,32) 89| Option 4 2406 2.00MB

We end by noting the following: In our toy example we see tHM[3 operations and parallel recryption offer some
performance advantages. The exact benefit depends on a nofrfaetors. Firstly the size of’ and!’; these are
determined by an application and are often small. In turand !’ affect the choice ofV, which also depends on
the desired security level. The precise values ahd . allowed are then determined by security analysis of lattice
problems. Our toy experiments show that our ability to penf&IMD operations do not affect the sizetofery much
and that the parallel recryption operation is as practisatandard recryption.

The exact choice of which Option is best however depends apalhcation. Just as in standard SIMD vs non-
SIMD operations on a standard processor, whether oneasitize SIMD instructions in a program depends on the
program being run.

7 Possible Applications

Before discussing two possible applications we note thatissue with SIMD operations on data is that sometimes
we wish to move data between various elements il '@ues on which we are operating. This is often a problem,
since the hardware/mathematics/software which suppoetStMD operations precludes such operations. However,
in our FHE scheme such operations can be performed at ndadditost.

Indeed given a SIMD word consisting bélements in a finite fielé's». one can produce a new SIMD word which
consists of any linear function of the bits creating the ioaySIMD word. To see this we notice that it simply requires
multiplying the matrixB used in the parallel recrypt procedure by the matrix defitireglinear map. Thus, we can
perform this linear function as part of the recryption peried for the previous operation.

In particular this means we can shuffle the elements in ourZsWbrd, or extract specific elements, or extract
specific bits, etc. Indeed extracting specific bits in patallas the core of our parallel recrypt procedure explained
above.

We now turn to our two examples: The first example, namely hoorphic evaluation of AES under some ho-
momorphic key, is used to demonstrate how SIMD operatiortggh level (F,s) algebraic structures, allow us to
evaluate complex operations relatively easily. EvaluetibAES circuits using FHE operations has been mentioned as
a possible usage scenario in [13]. The second example, afetaiiase lookup, provides an example of how data can
be searched using SIMD style operations more efficiently tisng the bit-wise homomorphic operations envisaged
in [9].

In this section we assume that all operations are perfornitadoest-processing by the recryption operation. Thus
we are no longer interested in the size of the circuit whicphléments a functionality but simply the cost of the
operations involved. As explained above we have essegntraite key operations; the two algebraic operatigist
andAdd, plus the linear operations on bits mentioned above. We deabte the cost of these three operations by
Cu, C4 andC'r, and we note that’';, essentially comes for free as part of recryption. For exapipkan operation
requires two multiplications, one addition and three Imeperations we shall denote this cost (for simplicity) by
2-Cpy+C4u+3-Cp.

7.1 Bit-Slicing

Any algorithm which is run on a circuit using bit operatiorencbe run multiple times at once, by executing the
algorithm on a set of parameters which supports operationsaltiple bits in parallel. Such a technique is often
called bit-slicing when applied to a single algorithm; hewethe technique is essentially also a bit-wise form of SIMD
operation. Henceany application performed using an FHE algorithm which supptre parallel recrypt procedure
in this paper could be potentially sped-up by at least anrasfimagnitude by operating on multiple versions of the
same algorithm in parallel.

7.2 Application to AES

As an example of the benefits of using FH-SIMD over the bitwi$tE we examine the case of how one would
implement an AES functionality using FHE. Namely, we wanee/er to encrypt a message using a key which is only
available via an FHE encryption. Using AES as a relativeljnptex example application of secure computation has
also been recently suggested for a number of other relatbddéogies; namely two and multi-party MPC [7, 14]. It
is also particularly well suited to SIMD execution due toateerall design.

The method we propose is to encode the entire AES state nrattigingle ciphertext. Recall that the state matrix
is a4-by-4 matrix of elements iffs. We therefore first need to selectanso that the idea(2) splits into at least 6
prime ideals of degree divisible by eight in the field defingdlh, (X). There are a large number of such examples,
including the example we have used in this paper of taking 3485. Note that since(m) is equal tot x 16 we could
also performt AES computations in parallel as well, although we will riettourselves to one for ease of exposition.
In terms of our previous section we |k = Fos denote the standard representatiof of, i.e.

Ks :=F[X]/(X®+ X'+ X+ X +1),

and we letA denote the algebra consisting ®f copies ofF,10, each with the representation induced by the given
factor of®,,,(X) (mod 2).
We assume the AES state matrix is given by

50,0 S0,1 50,2 $0,3
51,0 S1,1 S1,2 S1,3
52,0 S2,1 $2,2 $2.3
53,0 $3,1 83,2 53,3

which we encode as an element’6§© as(so.o, s0.1, - - - , 53,3). Using the mag’s 16 we obtain an element of, which
can then be evaluated @tmodulop to obtain a trivial encryption of the message state (betoeditst round).

To implement AES we assume that the round kkey&ave been presented in encrypted form, using the above
embedding vial's 15. Computing the round keys from a given key can be done usiagdime operations needed
to execute the rounds. Thus if we can implement the roundgefficient FH-SIMD operations, then we can also
compute the encryptions of the round keys given the initégl k

The round structure of AES is made up of four basic operati@h&ch we now discuss in turn.

AddRoundKey This is the simplest operation and is clearly performed fbsiateen bytes in parallel by doing a
single® operation of the FHE scheme. This step can be done at thefcOst.o

ShiftRows In this operation row is shifted left by: — 1 positions. This is clearly an example ofiaear operation
from earlier, in that we map the ciphertext corresponding to

(So,o, 50,1, 50,2, 50,3, 51,0, S1,1, 51,2, 51,3, 52,0, 2,1, 52,2, 2,3, 53,0, 53,1, 53,2, 53,3)

into a ciphertext corresponding to

(80,07 50,15 50,25 50,3, 51,1, 51,2, 51,3, S1,0, 52,2, 2,3, 52,0, 2,1, 53,3, 3,0, 53,1, 83,2)-

Since this is a reordering the cost is giveny.

MixColumns In this step we perform a matrix multiplication on the lefttbé state matrix by a fixed matrix given by

X X+4+1 1 1
1 X X+1 1
1 1 X X+1
X+1 1 1 X

This is accomplished in four stages

1. Compute the trivial encryption of I's 16((X, X, ..., X)), clearly this can be precomputed.

Compute:s < c® c;.

3. By application of threénear operations we can create ciphertextscy, cs andcg corresponding te. shifted up
by one row, shifted up by one row; shifted up by two rows, andshifted up by four rows (where shift rows is
performed with rotation).

4. Computers @ c3 ® cq D ¢5 @ cg and output the result.

N

Notice that our FH-SIMD scheme allows us to perform tldemultiplications in parallel in the second step. The cost
of the MixColumns operation is thefiy; +4-C4 + 4 - Cy.

SubBytes This is the most complex of all the AES operations, howeverdhs much existing literature on straight
line (i.e. no branching) executions of the AES S-Boxes a¢ lg¥el. For example the approach in [3] transforms the
polynomial bases into a “nice” normal basis and then decampthe arithmetic for inversion inft,« and thenF,:
operations. At which point all the arithmetic is just lodicperations, and hence amenable to FH-SIMD operations.
However, this approach is more suited to real hardware, BH«BIMD operations where the basic data type is a bit
(e.g. when using safn,) = (1, 16) in our main scheme).

As we are restricted to operations which can be performediaifly in our FH-SIMD scheme a more naive
approach is probably to be preferred. Recall that the AE®Sddnsists of inverting each state bytelin (where we
define0~! = 0), followed by anF,-linear operation. Also recall that-! = 22°* in the field Ks. We can therefore
apply the S-Box operation to our encrypted state using th@dog method:

—t<+c
Fori =1to6do
o t—1t®TL.
o t—t®c.
t—t®t.
Extract eight ciphertexts), . . ., t7 such that; is the (parallel) encryption of thieth bit of all 16 values int.
Perform the linear operation dp, . . . , t7 in parallel to produce ciphertexss, . . ., s7.
Map these ciphertexts back to an encryption of an elemeat in

The first step, that of producing an encryptioof #2°* wherec is an encryption of, requires at mosts3 fully homo-
morphic multiplications. The second step of extractingdipdertextg, . . ., t7 is essentially a single linear operation.
The third step of adding the elemengs. . . , t; together to producsy, . . ., s7, requirest - 8 = 32 homomaorphic ad-
ditions, due to the nature of the linear operation in AES. fiie step of obtaining a single ciphertext from . . ., s7

is also an application of a linear operation. Thus the tatat of SubBytes is given b3 - Cy; +32-Cy +2 - Cy.

We note that our SIMD evaluation of the AES round function ooty benefits in our system from being able to
executel 6 operations in parallel. We also have the benefit of beingtatdeal directly withF,s arithmetic operations,
as well as decompose into bits where necessary in the lireg@sformation in the S-Box operation. The total cost of
a round function being given by

14-Cpy +37-Ca+7-Cp,

although by interleaving operations a lower cost could pbdpbe obtained.

7.3 Data Base Lookup

We end by examining a more realistic application scenadmely one of searching an encrypted database on a
remote server. Suppose a user has previously encryptechbagat and stored it on a cloud service provider, and
now she wishes to retrieve some of the data. We first notetieaigual atomic database operation of search actually
consists of two operations. The first operation is one ofcdgarhereas the second is one of retrieval. The following
method performs the search using FHE and the retrieval i&ingte Information Retrieval (PIR).

We assume the database is such that one can determine lagfdnehich fields will be searched on. In some
sense this is akin to the basic premise of public key enayptiith keyword search [1], however we have a more
complicated data retrieval operation to perform. To sifgghe discussion we assume that there is only one database
field which is searchable, and another field which contaiaesriformation. Each database entry (in the clear) is then
given by a tupldi, s, d), wheres is the search termd, is the data andis some index which is going to enable retrieval.
The number of such items we denote/byVe assume thatands aren bits in length, and thus can be encoded as an
element of the finite field<,, = Fon.

To encrypt the database the user picks a public/private k@y(pk, sk) for our FH-SIMD scheme, as well as
a symmetric keyK for a symmetric encryption scheni&'x, D). Let us assume that the encryption scheme can
support! operations inF,» in parallel. When placing the database on the cloud serwvioeiger the user divides
the database intfr/l] blocks ofl items. Then to actually send the server fitle encrypted data block, fof =
0,1,2,...,[r/l] — 1 we send

(i]a Cj, E]) = (il~j+17 s 7il~(j+1)a
Encrypt(Ln,i(s1.541,- -+, S1.(j+1))» PK),
E‘]((dl.j_‘_l)7 ey EK(dl(j+l))) .

We now discuss how the user retrieves all data items whictespond to the search term We first recover an
encryption of an encoding of the index terms which contais skearch term. This is done by sending the server one
ciphertext, and receiving one in return. The sent “quergheirtext is equal to

q= Encrypt(F’n,l(Sa ceey S)a pk)7

i.e. an encryption of copies of the query term
The server then takes each data blgcke;, E;) and computesg.l) =q ®pk ¢j. The valuecgl) is then homomor-
phically raised to the powe™ — 1, by performing2n applications ofMult. This results in a ciphertexé?) which

is an encryption of a vector of zero and ones, with a one ontyieing in positionk whens is not equal to théth
component of the vector underlying the ciphertext

The server then computessg) = (cf) @pk Encrypt(I5, (1,1, ..., 1), pk)) @pk Encrypt(I7,,:(i;), pk), and the set

of ciphertexts:f) are then added together usifAidd to obtain a final ciphertext, which is returned to the user. Note,
that this “search” query has a cost(@f- n + 1) - Cps + 2 - C'4 per data block.

The plaintext underlying the returned ciphertéxtonsists of components, where thigh component is given by

@ Uojyk-
S=Sl.j+k
If there is only one match per component then we have recdwbre matching indices and hence can recover the
actual data by engaging in a PIR protocol [4,12]. The prokdeises when we have the possibility of more than one
match per component per query. In this situation we need eodémg algorithm to enable us to recover the exact PIR
inputs we need to recover the data.

In the extreme case we have a possibility of every comporantaming[r/{] matches, i.e. the search tekm
matches with every item in the database. In which case weémbta a trivial encoding, that we must haje/l] < n.
This essentially implies that the length of the databaseusmbed by the number of bits we can encrypti.e [- n.

However, if we can ensure that a maximum:ahatches can occur per SIMD component then we can produce a
more effective encoding as follows: Firstly we assume theodimg used for data retrieval in the PIR is such that we
recover the data item corresponding to an index/comporesitipn pair. This simplifies our discussion as we only
have to concentrate on decoding a single component.

We setm = [r/l], and to each of then blocks we associate anbit index:. We want to therefore be able, given
an xor of the indices = i;, @ ... ®i,,, with s < ¢, to recover the se{i;,, ..., 4;, }. To construct the encoding we
take the parity matrix of aiV, K, D] linear code oveF, of length NV, rank X' and minimum distanc®, which we
assume is greatér- ¢. This is a matrix of dimensioflV. — K) x N. We then take as our indices the columns of this
matrix, which implies that these indices must fitirbits, henceV — K < n. Given an xor of at mostindices we can
recover which indices were xor-ed together by decodindAhex, D] linear code. To see this notice that the sum of
indicesz is a syndrome of a codeword in the linear code. Thus by reaoyéhne error positions in the code from the
syndrome we know which indices, i.e. which columns of thaétpaheck matrix, were xor-ed together. Thus the total
number of distinct indices we can cope with is bounded by theron size of the parity check matrix, i.8.. Hence,
we obtainm = [r/l] < N.

As an example of a possible encoding scheme we take a penB8tiH code which exists for any pair of values
of (s,t) such thats > 3 andt < 2°~!. The primitive BCH code oveF, then has parameters given by = 2° — 1,

N —-K < s-tandD > 2-t+ 1. If we take our FHE scheme of the previous section usingutlie cyclotomic
polynomial withm = 3485, then we havé = 64, n < d = 40 and¢(m) = 2560. Given the bounds

[r/l] < N=2°"—1lands-t <n,

and supposing we take= 3, so we can recover at most three collisions on search terthénvdach component,
then by settingn = d = 40 and(s,¢) = (13,3) we obtain a valid encoding. This implies that the total numbe
of items within the database is boundedibyN = 524224. Clearly using more optimal codes, or different cyclo-
tomic polynomials one can obtain larger values of the whal@ldase, or one can deal with more collisions within a
component.

The above methodology using our FH-SIMD scheme to searchcomponents at once in an efficient manner,
results in a linear speed up in the search of the encryptedhdsé. However, there is another advantage of our splitting
the database intbcomponents; we can deal with (albeit having a probabilityweélid indices being returned) having
more collisions between the search terms. In the above dram@could deal with up to three collisions in each
component, this meant that our method would be guarantebd torrect if there were at most three items in the
database corresponding to each search item. However, icgwaee that the search items are randomly distributed
between thé components, then in practice we can deal with more collsisimce our results will be correct as long
as there are at mostollisionsper componeniThe generalised birthday bound [17] says that we can have

(#)/ - =D/

collisions before the probability of obtaining more thagollisions in one of thé components is greater thap2. In
our above numerical example, with= 3 and! = 64, this equates to just ov@p matches in our database.

8 Acknowledgements

This material is based on research sponsored by the Eur@mamission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT Il. The first author was alspmurted by the Defense Advanced Research Projects

Agency (DARPA) and Air Force Research Laboratory (AFRL) @ndgreement number FA8750-11-2-0079, by the
Royal Society via a Royal Society Wolfson Merit Award, by #RC via an Advanced Grant, and the EPSRC via grant
EP/103126X. The second author was supported by a Postéb&eltowship of the Research Foundation - Flanders
(FWO).

References

1. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persianblidkey encryption with keyword searcAdvances in Cryptol-
ogy — Eurocrypt 2004Lecture Notes in Comput. S8027 506-522, 2004.
2. Z.Brakerski and V. Vaikuntanathan. Fully homomorphicrgption from Ring-LWE and security for key dependent mgssa
To appeaAdvances in Cryptology — Crypto 201llecture Notes in Comput. SSEXXX , XXXX-XXXX, 2011.
3. D. Canright. A very compact S-Box for AE€ryptographic Hardware and Embedded Systems — CHES, 2@@%ure Notes
in Comput. Sci3659 441-455, 2005.
. B. Chor, E. Kushilevitz, O. Goldreich and M. Sudan. Peniaiformation retrievalJ. ACM 45, 965-981, 1998.
5. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathanull{¥x homomorphic encryption over the integerfdvances in
Cryptology — Eurocrypt 201Q_ecture Notes in Comput. S&11Q 24-43, 2010.
6. J.W. Cooley and J.W. Tukey. An algorithm for the machinewation of complex Fourier seriedlath. Comp. 19, 297-301,
1965.
7. 1. Damgard and M. Keller. Secure multiparty AE=nancial Cryptography — FC 201Q_ecture Notes in Comput. SG052
367-374, 2010.
8. C. Gentry. Fully homomorphic encryption using idealitas. Symposium on Theory of Computing — STOC 2@0M,
169-178, 2009.
9. C. Gentry. A fully homomorphic encryption schenManuscript 2009.
10. C. Gentry and S. Halevi. Implementing Gentry’s fullysimmorphic encryption schem@dvances in Cryptology — Eurocrypt
2011, Lecture Notes in Comput. S&632 129-148, 2011.
11. 1.J. Good. The interaction algorithm and practical lnanalysis.J.R. Stat. So¢c20, 361-372, 1958.
12. E. Kushilevitz and R. Ostrovsky. Replication is not regkdSingle database, computationally-private infornmatietrieval.
Foundations of Computer Science — FOCS, '864—-373, 1997.
13. K. Lauter, M. Naehrig, V. Vaikuntanathan. Can homomargmcryption be practical. Preprint, 2011.
14. B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams. 8etwo-party computation is practicalAdvances in Cryptology —
Asiacrypt 2009Lecture Notes in Comput. S&912 250-267, 2009.
15. C.M. Rader. Discrete Fourier transforms when the nurobdata samples is priméroc. IEEE 56, 1107-1108, 1968.
16. N.P. Smart and F. Vercauteren. Fully homomorphic enimypwith relatively small key and ciphertext size®ublic Key
Cryptography — PKC 2010 ecture Notes in Comput. SE056 420-443, 2010.
17. K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota. Birthgeyadox for multi-collisionsinformation Security and Cryptology
—ICISC 2006 Lecture Notes in Comput. Set296 29-40, 2006.
18. L.H. Thomas. Using a computer to solve problems in plsygipplication of Digital ComputersL963.

N

